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Abstract

Current single-cell experiments can produce datasets with millions of cells. Unsupervised
clustering can be used to identify cell populations in single-cell analysis but often leads to
interminable computation time at this scale. This problem has previously been mitigated by
subsampling cells, which greatly reduces accuracy. We built on the graph-based algorithm
PhenoGraph and developed FastPG which has the same cell assignment accuracy but is on
average 27x faster in our tests. FastPG also has higher cell assignment accuracy than two other
fast clustering methods, FlowSOM and PARC.

Availability
FastPG is available here: https://qgithub.com/sararselitsky/FastPG

Mass cytometry measures proteins abundances at the single-cell level. This technology can
measure 100,000-200,000 cells per sample and up to around 40 protein markers
simultaneously’. Unsupervised clustering is a common task in single-cell data analysis, with the
goal of unbiasedly identifying known and unknown cell-types based on protein markers.
Clustering cells across multiple samples can be optimal for some experiments to gain a deeper
understanding of how a particular cell population changes in a disease state. Most clustering
algorithms cannot efficiently handle a very large number of collected cells. These algorithms are
severely restricted by computational time and available system memory. Common approaches
to mitigate these issues include subsampling and meta-clustering®*. The disadvantage to both
is loss of information and lower potential to discover rare cell types®.

A commonly used and robust method for mass cytometry data is PhenoGraph?®, which
uses a graph-based approach to unbiasedly identify clusters, or cell types. Here we present
FastPG (Figure 1A), a modified version of PhenoGraph which was developed to maximize
computational efficiency with no loss of cell assignment accuracy. PhenoGraph is composed of
three main steps: (1) creating a k-nearest neighbor network (kNN) of single cells using a
distance measurement calculated from their protein marker abundances, (2) adding weights to
the network through calculating Jaccard index, and (3) partitioning cells into coherent cell
populations using the Louvain algorithm®. We modified PhenoGraph as follows: first, we
replaced the kNN step with a fast kNN approximation, Hierarchical Navigable Small World
(HNSW), which uses logarithmic scaling due to the hierarchical structure of the search space’.
We next parallelized the Jaccard index step for multithreaded execution, and lastly, we replaced
the Louvain algorithm with a fast parallelized version, Grappolo®.

To test for cell assignment accuracy, we benchmarked FastPG against PhenoGraph,
PARC*, and FlowSOM?. We compared FastPG to PhenoGraph to ensure our method was
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getting similar accuracy, and FastPG to PARC and FlowSOM due to the published fast speed of
these algorithms. Briefly, PARC’s first step employs HNSW, the same kNN approximation as
FastPG. PARC next uses a graph-pruning method followed by Leiden® for community detection.
FlowSOM applies a self-organizing map for clustering and has faster runtimes due to
subsampling.

We evaluated the performance of FastPG using four publicly available “gold standard”
mass cytometry data sets from Weber et al.”; all of which were derived from bone marrow:
Levine32 (104,184 cells, 32 protein markers and 14 defined cell types), Levine13 (81,747 cells,
13 protein markers, and 24 defined cell types), Samusik01 (53,173 cells, 37 protein markers,
and 24 defined cell types), and SamusikAll (514,386 cells, 37 protein markers, and 24 defined
cell types). To better understand the precision and accuracy of FastPG compared to the other
methods, we randomly subsampled 20,000 cells from each dataset 20 times. We found that
overall, FastPG identified highly similar populations to PhenoGraph compared to the “gold
standard” labels as evaluated by the F-measure? (geometric mean of precision and recall,
Figure 1B), and both FastPG and PhenoGraph had higher cell assignment accuracy compared
to PARC and FlowSOM (median F-measures respectively, Levine13: 0.89, 0.89, 0.88, 0.83;
Levine32: 0.79, 0.78, 0.74, 0.79; Samusik01: 0.95, 0.95, 0.87, 0.89; and SamusikAll: 0.95, 0.95,
0.87, 0.87).

We next performed runtime comparisons on a single node containing 64 virtual central
processing units (vVCPUs; Intel Xeon Skylake CPUs, 2.7 GHz) and 416 GB memory. We
randomly sampled cells from a large publicly available dataset (FR-FCM-ZYT6) with a total of
38 million cells to compare the performance of FastPG, PhenoGraph, PARC, and FlowSOM on
cell population sizes ranging from 1,000 to 20 million cells. FastPG and FlowSOM were much
faster than PhenoGraph and PARC (Figure 1C, 5M cells: 18, 10, 775, 78 minutes, respectively).
FastPG was on average 27x faster than PhenoGraph and 7x faster than PARC. FastPG
clustered 20 million cells in 1.7 hours, while PARC completed the clustering in 8.6 hours.

The components of PhenoGraph are also implemented as part of Seurat'!, a popular
tool for single cell RNA-seq (scRNA-seq) analysis. To test if FastPG can be applied to cluster
scRNA-seq data and provide similar results as Seurat, we tested both methods on three
datasets using their “gold/silver standard” cell labels (described in detail in the methods):
Zhengmix4eq (4 known cell types, 3,994 cells), Zhengmix8eq (8 known cell types, 3,993 cells),
and pbmc68k (11 known cell types, 68,545). Relative to Seurat, we found that FastPG
generated almost identical cell assignment accuracy (Figure 1D, median F-measures Seurat
and FastPG respectively, Zhengmix4eq: 0.93, 0.92; Zhengmix8eq: 0.76, 0.75; PBMC68k: 0.59,
0.58). FastPG demonstrated greatly increased performance (Figure 1E). FastPG clustered
68,000 cells in 4.3 seconds, whereas Seurat’s runtime was 246.8 seconds. This indicates that
while FastPG was developed for mass cytometry data it can be applied to single-cell data in
general for quick and accurate determination of cell types.

Together, these experiments suggest that our modifications to the individual components
of the PhenoGraph algorithm collectively aid in significantly decreased runtimes with no
information loss. FastPG had similar runtime to FlowSOM and higher cell assignment accuracy
in three of the four datasets. While PARC had better performance than PhenoGraph, FastPG
was much faster and had higher cell assignment accuracy compared to PARC in all four
datasets. FastPG allows for fast clustering single cells from population sizes that are previously
unmatched for both mass cytometry and scRNA-seq data. This allows for the ability to perform
extensive computational experiments for cell assignments, such as performing consensus
clustering, and to aid in integration of cells across multiple samples without subsampling.
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Methods

PhenoGraph and FastPG description

We modified an R implementation of PhenoGraph from Cytofkit>'2. PhenoGraph is composed of
three main steps: (1) creating a k-nearest neighbor network (kNN) of single cells based using a
distance metric calculated from their protein markers, (2) adding weights to the network through
the calculation of Jaccard index, and (3) partitioning cells into coherent cell-populations using
the Louvain algorithm®. Cytofkit uses the space-partitioning kNN method, k-dimensional tree,
which degrades to linear search with large dimensions’. Instead, we used Hierarchical
Navigable Small World (HNSW) which has logarithmic scaling due to the hierarchical structure
of the search space’. We next modified the Jaccard index step to run in parallel using C++
(Rcpp package). Lastly, we replaced the R iGraph implementation of Louvain algorithm with a
parallelized version of the Louvain algorithm, Grappolo®. Grappolo is a shared-memory parallel
software library for community detection implemented in C++ using OpenMP programming
model for multithreading. Grappolo implements several parallelization heuristics for fast
community detection using the Louvain method as the serial template.

Compatrison of FastPG and PhenoGraph using mass cytometry data

We used FlowCore R package to read in the FCS files using the read.FCS default
command.To test cell assignment accuracy of FastPG and PhenoGraph, we set k=30 for the
k-Nearest Neighbor step, as was used in Levine et al.°. We used FastPG v0.0.6 and code
from Rphenograph from default settings of Cytofkit last modified on Nov 9, 2017
(https://github.com/JinmiaoChenLab/cytofkit/blob/master/R/Rphenograph.R). We subsampled
20,000 cells without replacement from each of the “gold standard” data sets and used the F
measure implementation from the FlowSOM R package. We used the PARC v0.33 using
Leidenalg 0.7.0 due to current performance issues with Leidenalg 0.8.0 and FlowSOM v1.18
using default settings, except using k=30 due to the dimensions of the data sets.

For the runtime tests we used a Google Compute Platform instance n1-highmem-64 (64
vCPUs, 416 GB memory). We sampled cells from the large publicly available mass cytometry
data set (FR-FCM-ZYT®6).

Compatrison of FastPG to PhenoGraph using scRNA-seq data

We used 3 public Unique Molecular Identifier (UMI) count datasets to benchmark
FastPG against Seurat. The first two datasets were generated by Duo et al. (2018)'3; in which
florescence-activated cell sorting (FACS)-purified peripheral blood mononuclear cells (PBMCs)
from 10X Genomics were equally mixed into four (Zhengmix4eq) and eight (Zhengmix8eq)
clusters, respectively. These two datasets serve as gold-standard datasets as the identities of
the cells were assigned using FACS, independent from gene expression data. The third dataset,
referred to as PBMC68k, contained a large number of PBMCs from one donor'*. The cell labels
for this dataset was based on the gene expression correlation with 11 purified bulk samples.
These were used as the “silver standard”

We compared FastPG against Seurat v3.0"". For each scRNA-seq dataset, we
performed a standardized quality control process using Seurat, with most default parameter
settings. We first filtered out genes detected in less than one cell and further excluded cells that
had less than 200 detected genes (indication of low-quality) or above 2,500 (indication of
doublets). To control for the cell library size effect, normalization was performed on the filtered
matrix to obtain the normalized counts. The top 2,000 genes were selected. To reduce the
dimensions, principal component analysis was run on the matrix that contained the top 2,000
highly variable genes. Then, we chose the first 30 principal components and k=30 for the kNN
for clustering with Seurat and FastPG. We used the Seurat resolution parameter 0.8 to obtain
the final cluster labels. We ran FastPG and Seurat subsampling 2,000 cells from the original
processed data 20 times for each data set. For clustering performance comparison, we
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calculated F-measure between the cluster labels and the reference labels implemented from the
FlowSOM R package. Time tests were performed on the same GCP instance as the mass
cytometry data described above.

Data Availability

Mass cytometry: Gold standard data sets are available here: https://flowrepository.org/id/FR-
FCM-ZZPH. The data set used for testing the runtime performance is available here:
https://flowrepository.org/id/FR-FCM-ZYT6

Single-cell RNA-seq: The Duo et al. datasets were obtained from the Bioconductor package
DuoClustering2018. The Zheng et al. dataset was downloaded from
https://support.10xgenomics.com/single-cell-gene-expression/datasets.

Code Availability

FastPG is available here: https://github.com/sararselitsky/FastPG.

All of the code for the analyses are available here:
https://github.com/sararselitsky/FastPG accuracy performance scripts
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Figure 1. (A) Schematic which depicts FastPG. Top row shows a representation of FastPG’s
modifications. Bottom row shows the output of each step. Step 1. kNN was replaced with the
kNN-approximation HNSW, which has logarithmic scaling due to the hierarchical structure of the
search space (depicted). The output of this step is a network of cells, where each node is a cell
and neighbor are connected by an edge. Step 2. Modification of the Jaccard index step to run in
parallel, depicted as being distributed to each thread of the CPU. This step adds weights to the
network, which are represented as different edge thicknesses. Step 3. Louvain algorithm was
replaced with a parallelized version, Grappolo, which implements several heuristics for efficient
parallelization for fast community detection. The graph coloring heuristic is depicted, where
different shades of gray represent different colors assigned to nodes (no two neighbors should
receive the same color). The output of this step is the assignment of cells to communities, which
was depicted with different colored nodes. (B) Boxplot displaying the F-measure for four mass
cytometry “gold standard” datasets. (C) Runtime comparisons between PhenoGraph, FastPG,
PARC, and FlowSOM. (D) Boxplot displaying the F-measure for three scRNA-seq “gold/silver
standard” data sets. (E) Runtime comparisons between PhenoGraph and Seurat. (A & C) Box-
and-whisker plots. Boxes represent median + interquartile range and whiskers
+1.5 x interquartile range. Outliers are represented by black dots.
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