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Abstract 
Current single-cell experiments can produce datasets with millions of cells. Unsupervised 
clustering can be used to identify cell populations in single-cell analysis but often leads to 
interminable computation time at this scale. This problem has previously been mitigated by 
subsampling cells, which greatly reduces accuracy. We built on the graph-based algorithm 
PhenoGraph and developed FastPG which has the same cell assignment accuracy but is on 
average 27x faster in our tests. FastPG also has higher cell assignment accuracy than two other 
fast clustering methods, FlowSOM and PARC. 
 
Availability 
FastPG is available here: https://github.com/sararselitsky/FastPG 
 
 
 
Mass cytometry measures proteins abundances at the single-cell level. This technology can 
measure 100,000-200,000 cells per sample and up to around 40 protein markers 
simultaneously1. Unsupervised clustering is a common task in single-cell data analysis, with the 
goal of unbiasedly identifying known and unknown cell-types based on protein markers. 
Clustering cells across multiple samples can be optimal for some experiments to gain a deeper 
understanding of how a particular cell population changes in a disease state. Most clustering 
algorithms cannot efficiently handle a very large number of collected cells. These algorithms are 
severely restricted by computational time and available system memory. Common approaches 
to mitigate these issues include subsampling and meta-clustering2-4. The disadvantage to both 
is loss of information and lower potential to discover rare cell types4.  

A commonly used and robust method for mass cytometry data is PhenoGraph5, which 
uses a graph-based approach to unbiasedly identify clusters, or cell types. Here we present 
FastPG (Figure 1A), a modified version of PhenoGraph which was developed to maximize 
computational efficiency with no loss of cell assignment accuracy. PhenoGraph is composed of 
three main steps: (1) creating a k-nearest neighbor network (kNN) of single cells using a 
distance measurement calculated from their protein marker abundances, (2) adding weights to 
the network through calculating Jaccard index, and (3) partitioning cells into coherent cell 
populations using the Louvain algorithm6. We modified PhenoGraph as follows: first, we 
replaced the kNN step with a fast kNN approximation, Hierarchical Navigable Small World 
(HNSW), which uses logarithmic scaling due to the hierarchical structure of the search space7. 
We next parallelized the Jaccard index step for multithreaded execution, and lastly, we replaced 
the Louvain algorithm with a fast parallelized version, Grappolo8.  

To test for cell assignment accuracy, we benchmarked FastPG against PhenoGraph, 
PARC4, and FlowSOM2. We compared FastPG to PhenoGraph to ensure our method was 
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getting similar accuracy, and FastPG to PARC and FlowSOM due to the published fast speed of 
these algorithms. Briefly, PARC’s first step employs HNSW, the same kNN approximation as 
FastPG. PARC next uses a graph-pruning method followed by Leiden9 for community detection. 
FlowSOM applies a self-organizing map for clustering and has faster runtimes due to 
subsampling. 

We evaluated the performance of FastPG using four publicly available “gold standard” 
mass cytometry data sets from Weber et al.10; all of which were derived from bone marrow: 
Levine32 (104,184 cells, 32 protein markers and 14 defined cell types), Levine13 (81,747 cells, 
13 protein markers, and 24 defined cell types), Samusik01 (53,173 cells, 37 protein markers, 
and 24 defined cell types), and SamusikAll (514,386 cells, 37 protein markers, and 24 defined 
cell types). To better understand the precision and accuracy of FastPG compared to the other 
methods, we randomly subsampled 20,000 cells from each dataset 20 times. We found that 
overall, FastPG identified highly similar populations to PhenoGraph compared to the “gold 
standard” labels as evaluated by the F-measure2 (geometric mean of precision and recall, 
Figure 1B), and both FastPG and PhenoGraph had higher cell assignment accuracy compared 
to PARC and FlowSOM (median F-measures respectively, Levine13: 0.89, 0.89, 0.88, 0.83; 
Levine32: 0.79, 0.78, 0.74, 0.79; Samusik01: 0.95, 0.95, 0.87, 0.89; and SamusikAll: 0.95, 0.95, 
0.87, 0.87). 

We next performed runtime comparisons on a single node containing 64 virtual central 
processing units (vCPUs; Intel Xeon Skylake CPUs, 2.7 GHz) and 416 GB memory. We 
randomly sampled cells from a large publicly available dataset (FR-FCM-ZYT6) with a total of 
38 million cells to compare the performance of FastPG, PhenoGraph, PARC, and FlowSOM on 
cell population sizes ranging from 1,000 to 20 million cells. FastPG and FlowSOM were much 
faster than PhenoGraph and PARC (Figure 1C, 5M cells: 18, 10, 775, 78 minutes, respectively). 
FastPG was on average 27x faster than PhenoGraph and 7x faster than PARC. FastPG 
clustered 20 million cells in 1.7 hours, while PARC completed the clustering in 8.6 hours. 

The components of PhenoGraph are also implemented as part of Seurat11, a popular 
tool for single cell RNA-seq (scRNA-seq) analysis. To test if FastPG can be applied to cluster 
scRNA-seq data and provide similar results as Seurat, we tested both methods on three 
datasets using their “gold/silver standard” cell labels (described in detail in the methods): 
Zhengmix4eq (4 known cell types, 3,994 cells), Zhengmix8eq (8 known cell types, 3,993 cells), 
and pbmc68k (11 known cell types, 68,545). Relative to Seurat, we found that FastPG 
generated almost identical cell assignment accuracy (Figure 1D, median F-measures Seurat 
and FastPG respectively, Zhengmix4eq: 0.93, 0.92; Zhengmix8eq: 0.76, 0.75; PBMC68k: 0.59, 
0.58). FastPG demonstrated greatly increased performance (Figure 1E). FastPG clustered 
68,000 cells in 4.3 seconds, whereas Seurat’s runtime was 246.8 seconds. This indicates that 
while FastPG was developed for mass cytometry data it can be applied to single-cell data in 
general for quick and accurate determination of cell types.  

Together, these experiments suggest that our modifications to the individual components 
of the PhenoGraph algorithm collectively aid in significantly decreased runtimes with no 
information loss. FastPG had similar runtime to FlowSOM and higher cell assignment accuracy 
in three of the four datasets. While PARC had better performance than PhenoGraph, FastPG 
was much faster and had higher cell assignment accuracy compared to PARC in all four 
datasets. FastPG allows for fast clustering single cells from population sizes that are previously 
unmatched for both mass cytometry and scRNA-seq data. This allows for the ability to perform 
extensive computational experiments for cell assignments, such as performing consensus 
clustering, and to aid in integration of cells across multiple samples without subsampling.  
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Methods 
PhenoGraph and FastPG description 
We modified an R implementation of PhenoGraph from Cytofkit5,12. PhenoGraph is composed of 
three main steps: (1) creating a k-nearest neighbor network (kNN) of single cells based using a 
distance metric calculated from their protein markers, (2) adding weights to the network through 
the calculation of Jaccard index, and (3) partitioning cells into coherent cell-populations using 
the Louvain algorithm6. Cytofkit uses the space-partitioning kNN method, k-dimensional tree, 
which degrades to linear search with large dimensions7. Instead, we used Hierarchical 
Navigable Small World (HNSW) which has logarithmic scaling due to the hierarchical structure 
of the search space7. We next modified the Jaccard index step to run in parallel using C++ 
(Rcpp package). Lastly, we replaced the R iGraph implementation of Louvain algorithm with a 
parallelized version of the Louvain algorithm, Grappolo8. Grappolo is a shared-memory parallel 
software library for community detection implemented in C++ using OpenMP programming 
model for multithreading. Grappolo implements several parallelization heuristics for fast 
community detection using the Louvain method as the serial template.  
 
Comparison of FastPG and PhenoGraph using mass cytometry data 

We used FlowCore R package to read in the FCS files using the read.FCS default 
command.To test cell assignment accuracy of FastPG and PhenoGraph, we set k=30 for the 
k-Nearest Neighbor step, as was used in Levine et al.5. We used FastPG v0.0.6 and code 
from Rphenograph from default settings of Cytofkit last modified on Nov 9, 2017 
(https://github.com/JinmiaoChenLab/cytofkit/blob/master/R/Rphenograph.R). We subsampled 
20,000 cells without replacement from each of the “gold standard” data sets and used the F 
measure implementation from the FlowSOM R package. We used the PARC v0.33 using 
Leidenalg 0.7.0 due to current performance issues with Leidenalg 0.8.0 and FlowSOM v1.18 
using default settings, except using k=30 due to the dimensions of the data sets. 

For the runtime tests we used a Google Compute Platform instance n1-highmem-64 (64 
vCPUs, 416 GB memory). We sampled cells from the large publicly available mass cytometry 
data set (FR-FCM-ZYT6). 
 
Comparison of FastPG to PhenoGraph using scRNA-seq data 

We used 3 public Unique Molecular Identifier (UMI) count datasets to benchmark 
FastPG against Seurat. The first two datasets were generated by Duo et al. (2018)13; in which 
florescence-activated cell sorting (FACS)-purified peripheral blood mononuclear cells (PBMCs) 
from 10X Genomics were equally mixed into four (Zhengmix4eq) and eight (Zhengmix8eq) 
clusters, respectively. These two datasets serve as gold-standard datasets as the identities of 
the cells were assigned using FACS, independent from gene expression data. The third dataset, 
referred to as PBMC68k, contained a large number of PBMCs from one donor14. The cell labels 
for this dataset was based on the gene expression correlation with 11 purified bulk samples. 
These were used as the “silver standard”  

We compared FastPG against Seurat v3.011. For each scRNA-seq dataset, we 
performed a standardized quality control process using Seurat, with most default parameter 
settings. We first filtered out genes detected in less than one cell and further excluded cells that 
had less than 200 detected genes (indication of low-quality) or above 2,500 (indication of 
doublets). To control for the cell library size effect, normalization was performed on the filtered 
matrix to obtain the normalized counts. The top 2,000 genes were selected. To reduce the 
dimensions, principal component analysis was run on the matrix that contained the top 2,000 
highly variable genes. Then, we chose the first 30 principal components and k=30 for the kNN 
for clustering with Seurat and FastPG.  We used the Seurat resolution parameter 0.8 to obtain 
the final cluster labels. We ran FastPG and Seurat subsampling 2,000 cells from the original 
processed data 20 times for each data set. For clustering performance comparison, we 
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calculated F-measure between the cluster labels and the reference labels implemented from the 
FlowSOM R package. Time tests were performed on the same GCP instance as the mass 
cytometry data described above. 
 
Data Availability 
Mass cytometry: Gold standard data sets are available here: https://flowrepository.org/id/FR-
FCM-ZZPH. The data set used for testing the runtime performance is available here: 
https://flowrepository.org/id/FR-FCM-ZYT6 
Single-cell RNA-seq: The Duo et al. datasets were obtained from the Bioconductor package 
DuoClustering2018. The Zheng et al. dataset was downloaded from 
https://support.10xgenomics.com/single-cell-gene-expression/datasets. 
 
Code Availability 
FastPG is available here: https://github.com/sararselitsky/FastPG. 
All of the code for the analyses are available here: 
https://github.com/sararselitsky/FastPG_accuracy_performance_scripts 
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Figure 1. (A) Schematic which depicts FastPG. Top row shows a representation of FastPG’s 
modifications. Bottom row shows the output of each step. Step 1. kNN was replaced with the 
kNN-approximation HNSW, which has logarithmic scaling due to the hierarchical structure of the 
search space (depicted). The output of this step is a network of cells, where each node is a cell 
and neighbor are connected by an edge. Step 2. Modification of the Jaccard index step to run in 
parallel, depicted as being distributed to each thread of the CPU. This step adds weights to the 
network, which are represented as different edge thicknesses. Step 3. Louvain algorithm was 
replaced with a parallelized version, Grappolo, which implements several heuristics for efficient 
parallelization for fast community detection. The graph coloring heuristic is depicted, where 
different shades of gray represent different colors assigned to nodes (no two neighbors should 
receive the same color). The output of this step is the assignment of cells to communities, which 
was depicted with different colored nodes. (B) Boxplot displaying the F-measure for four mass 
cytometry “gold standard” datasets. (C) Runtime comparisons between PhenoGraph, FastPG, 
PARC, and FlowSOM. (D) Boxplot displaying the F-measure for three scRNA-seq “gold/silver 
standard” data sets. (E) Runtime comparisons between PhenoGraph and Seurat. (A & C) Box-
and-whisker plots. Boxes represent median ± interquartile range and whiskers 
±1.5 × interquartile range. Outliers are represented by black dots. 
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