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 2 

Abstract: 28 

 Animals often use assessment signals to communicate information about their quality to a 29 

variety of receivers, including potential mates, competitors, and predators. But what maintains 30 

reliable signaling and prevents signalers from signaling a better quality than they actually have? 31 

Previous work has shown that reliable signaling can be maintained if signalers pay fitness costs 32 

for signaling at different intensities and these costs are greater for lower quality individuals than 33 

higher quality ones. Models supporting this idea typically assume that continuous variation in 34 

signal intensity is perceived as such by receivers. In many organisms, however, receivers have 35 

threshold responses to signals, in which they respond to a signal if it is above a threshold value 36 

and do not respond if the signal is below the threshold value. Here, we use both analytical and 37 

individual-based models to investigate how such threshold responses affect the reliability of 38 

assessment signals. We show that reliable signaling systems can break down when receivers 39 

have an invariant threshold response, but reliable signaling can be rescued if there is variation 40 

among receivers in the location of their threshold boundary. Our models provide an important 41 

step towards understanding signal evolution when receivers have threshold responses to 42 

continuous signal variation. 43 

 44 

Keywords: Animal communication, honest signals, mate choice, sensory ecology, sexual 45 

selection, signaling theory 46 
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Introduction:   50 

In contexts ranging from mate choice to aggression, animals use signals to assess each 51 

other (Maynard Smith and Harper 2003; Searcy and Nowicki 2005; Seyfarth et al. 2010). These 52 

signals can include any behavioral or morphological trait of one individual (the “signaler”) that 53 

has evolved to convey information to another individual (the “receiver”), such as the song of a 54 

bird, the sex pheromone of a moth, or the aposematic coloration of a poison frog (Bradbury and 55 

Vehrencamp 2011). The information conveyed in signals often regards the quality of the 56 

signaler, such as the signaler’s size (e.g., call frequency in frogs; Ryan 2001) or physiological 57 

condition (e.g., plumage brightness in some birds; Lindström and Lundström 2000). A central 58 

question for researchers studying animal signaling systems is, what maintains the reliability of 59 

assessment signals (Searcy and Nowicki 2005)? That is, if it benefits signalers to produce a 60 

signal indicating a better quality than they actually have, why do signalers produce a signal that 61 

reliably (“honestly”) communicates quality? 62 

In a foundational verbal model, Zahavi (1975) suggested that assessment signals could be 63 

reliable indicators of quality if signalers pay costs for expressing signals. This idea was termed 64 

the “handicap principle” in that signalers of the highest quality could afford to pay greater 65 

handicaps to produce a signal than could signalers of lower quality. Although reliable signaling 66 

was shown not to evolve when Zahavi’s original assumptions were made explicit in genetic 67 

models (Maynard Smith 1976; Kirkpatrick 1986), Grafen (1990a, 1990b) later showed, using 68 

both population genetic and game theory models, that the handicap principle can lead to the 69 

evolution of reliable signaling if two conditions are met. First, the costs of signaling at a given 70 

intensity (e.g., producing a large or colorful signal) must be greater for signalers of lower quality 71 

compared to signalers of higher quality. Second, receivers should be able to assess continuous 72 
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variation in signal intensities and thereby gauge signaler quality; that is, as signal intensity 73 

increases continuously, so does the benefit the signaler gains from receivers. (Note that Penn and 74 

Számadó (2020) suggested that Grafen’s models are substantively different from Zahavi’s 75 

original conceptualization. Here, we refer to them both as the “handicap principle” for 76 

consistency with the literature). Johnstone (1997) later developed graphical versions of Grafen’s 77 

(1990a, 1990b) mathematical models, illustrating how the optimal level of signaling—the 78 

equilibrium point at which the net benefits are greatest—will be different for lower versus higher 79 

quality signalers. This variation in equilibrium points leads to reliable signaling (Johnstone 80 

1997). 81 

The cost-based reliable signaling theory developed by Zahavi (1975), Grafen (1990a, 82 

1990b), and Johnstone (1997) has played a crucial role in our understanding of the evolution of 83 

animal signals (Maynard Smith and Harper 2003; Searcy and Nowicki 2005). Other studies have 84 

recognized, however, that some assumptions of these models do not necessarily reflect the reality 85 

of animal signaling systems. For example, the initial models of Grafen (1990a, 1990b) did not 86 

incorporate the concept of perceptual error—when a signaler’s true signal value is not perceived 87 

as such by a receiver. In a subsequent series of models, Grafen and Johnstone showed that 88 

adding perceptual error into models of signal evolution makes otherwise continuous signaling 89 

systems more discrete, such that fewer equilibrium signaling values exist (Johnstone and Grafen 90 

1992a; Grafen and Johnstone 1993; Johnstone 1994). Reliable signaling can be maintained in 91 

these models as long as signalers with greater signal intensity are more likely to be perceived as 92 

having higher-intensity signals (Johnstone and Grafen 1992a). Furthermore, a continuum of 93 

equilibrium signaling values reemerges if perceptual errors are more common at higher signal 94 

intensities or if signaling costs increase more rapidly at higher signal intensities (Johnstone 95 
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1994). Other researchers have found results similar to those of Grafen and Johnstone when 96 

incorporating other aspects of biological realism into models of signal evolution: when the 97 

assumptions of the classic handicap models are relaxed, signaling systems are altered, but 98 

reliability can be maintained (e.g., Lachmann and Bergstrom 1998; Proulx 2001). 99 

The aforementioned studies have advanced our understanding of signal evolution, but 100 

they have all maintained the assumption that receivers can assess continuous variation in signal 101 

intensities and thereby gauge signaler quality; that is, as signal intensity increases continuously, 102 

so does the benefit the signaler gains from receivers. However, some organisms have threshold 103 

responses to assessment signals in which signal receivers respond in a binary manner to 104 

continuous variation in signal intensity (e.g., Masataka 1983; Zuk et al. 1990; Reid and Stamps 105 

1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011; Roff 2015). In 106 

these systems, receivers respond to a signal if it is above a threshold value and do not respond if 107 

the signal is below the threshold value. For example, female variable field crickets (Gryllus 108 

lineaticeps) prefer males producing chirps at rates above 3.0 chirps per second but do not 109 

discriminate between chirp rate variants that both lie either above or below this threshold 110 

(Beckers and Wagner 2011).  111 

Threshold responses may reflect a behavioral decision by receivers (e.g., Beckers and 112 

Wagner 2011), but they may also be linked to an animal’s perceptual system. Categorical 113 

perception, for example, occurs when continuous variation in a stimulus is perceived as 114 

belonging to distinct categories, with individuals showing an increased capacity to discriminate 115 

stimuli that fall into different categories as compared to stimuli that fall in the same category 116 

(Harnad 1987; Green et al. 2020). For example, a recent study found that female zebra finches 117 

(Taeniopygia guttata) show categorical perception of the orange to red color continuum 118 
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representative of male beak color: females labeled eight color variants as lying in two categories 119 

and showed better discrimination of cross-category variants as compared to equally-spaced 120 

within-category variants (Caves and Green et al. 2018). Categorical perception of signal 121 

variation, such as that found in zebra finches (Caves, Green et al. 2018), túngara frogs (Baugh et 122 

al. 2008), and sparrows (Nelson and Marler 1989), would likely lead to a threshold response if 123 

categories are treated in an binary fashion, thereby violating the continuous assumptions of cost-124 

based models of reliable signaling. 125 

While some models have investigated when different types of threshold responses will 126 

evolve (Janetos 1980; Real 1990; Svennungsen et al. 2011; Bleu et al. 2012), few studies have 127 

explored how threshold responses influence the evolution of reliable signaling. Many game 128 

theoretical approaches to studying reliable signaling have relaxed the assumption that receivers 129 

assess continuous variation in signal intensities (Enquist 1985; Maynard Smith 1991; Hurd 1995; 130 

Számadó 1999). However, game theoretic models have typically been of discrete signaling 131 

games in which both signalers and receivers choose from a discrete set of behaviors (e.g., 132 

signalers send either a low- or high-quality signal and receivers either attack or do not attack) or 133 

continuous signaling games in both signalers and receivers have a continuum of possible states 134 

(Johnstone and Grafen 1992b; Bergstrom and Lachmann 1997). Here, we are interested in the 135 

case in which signalers are capable of signaling at any intensity on a continuous range (e.g., tail 136 

length can be any length from 5–15mm), but receivers have a binary threshold response (e.g., 137 

mate with signaler if and only if tail is longer than 10mm). Broom and Ruxton (2011) have 138 

previously explored such a scenario, showing that when receivers respond to signals in a 139 

threshold manner it leads to the evolution of “all-or-nothing” signaling systems. That is, 140 

signalers with a quality below a critical value all produce the same cheap signal while signalers 141 
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with a quality above the critical value all produce the same expensive signal. The model of 142 

Broom and Ruxton (2011) assumed that receivers all had the same threshold value. However, it 143 

is conceivable that receivers could vary in their threshold values, for example due to 144 

environmental conditions or developmental history. Here, we explore the evolutionary 145 

implications of such inter-individual variation in threshold values. 146 

We begin by developing a model of signal evolution that assumes receivers respond to 147 

continuous signal variation in a continuous fashion (akin to the models of Grafen 1990a, 1990b; 148 

Johnstone 1997). This model requires some simplifying assumptions, but it provides a clear 149 

demonstration of how reliable signals evolve when there is not a threshold response (the typical 150 

assumption). We then show how threshold responses to continuous signal variation can remove 151 

the variation in equilibrium signal intensities central to current models of reliable signaling, but 152 

how introducing inter-individual variation in threshold responses can rescue the evolution of 153 

reliable signals. In addition to these analytical models, we also develop individual-based 154 

simulations to assess the robustness of our conclusions under more realistic ecological and 155 

genetic assumptions, as well as to ask what role additional complexities in receiver choice can 156 

have on the evolution of signals responded to in a threshold fashion. 157 

We focus on the case in which the signaling behavior of the signaler population evolves 158 

to optimize fitness and the location of the mean threshold value of the receiver population does 159 

not evolve. This assumption is relevant to many biological scenarios in which the threshold value 160 

of the receiver population is evolutionarily constrained. For instance, if a receiver’s threshold 161 

value is determined by its perceptual machinery rather than a behavioral choice, as with 162 

categorical perception, the threshold value might be constrained by its neural physiology (Green 163 

et al. 2020; Mason 2020). The threshold value of the receiver population might also be 164 
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maintained by stabilizing selection from other ecologically important signals and cues. For 165 

example, consider a generalist predator (receiver) under selection to avoid eating an 166 

aposematically colored toxic prey species (signaler). The threshold value of aposematic 167 

coloration above which the predator will not attack an individual of the focal prey species might 168 

be constrained by selection to detect the coloration of other prey species. Finally, threshold 169 

values might be constrained by a lack of additive genetic variation in the trait or strong genetic 170 

linkage with other important phenotypes (Blows and Hoffmann 2005; Gomulkiewicz and Houle 171 

2009). This assumption that the mean threshold value of the receiver population does not evolve 172 

simplifies our analytical models, leading to clear predictions. However, we also explore the 173 

situation of signaler-receiver coevolution in our individual-based simulations and find that the 174 

general conclusions from our analytical models still hold in the presence of signaler-receiver 175 

coevolution. 176 

 177 

Continuous Assessment Model 178 

We start by constructing a model of signal evolution that assumes receivers respond to 179 

continuous signal variation in a continuous fashion (i.e., there is not a threshold response). This 180 

model can be thought of as an intermediate between those of Grafen (1990a, 1990b) and 181 

Johnstone (1997): it can be mathematically difficult to incorporate ecological complexity into 182 

Grafen’s models, while Johnstone’s model is purely graphical and thus cannot be analytically 183 

evaluated. This model, and our other analytical models below, are rather simple models in which 184 

we do not model the evolution of receivers. Instead, we assume that receivers have a fixed 185 

reaction norm which is a continuous function that scales positively with signal intensity (i.e., 186 

receivers are more likely to respond to signals of greater intensity). We also assume that the 187 
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optimal signal intensity for a signaler is that which maximizes its net benefit. Therefore, the 188 

equilibrium signal intensity is defined as the maximization of the difference between b(s) and 189 

c(s), where b(s) is the fitness benefit received by a signaler for producing a signal intensity s and 190 

c(s) is the fitness cost associated with producing signal intensity s. 191 

In line with previous models (Grafen 1990a, 1990b; Johnstone 1997), we assume that 192 

fitness costs increase linearly with signal intensity and that these costs increase more rapidly for 193 

low-quality signalers than high-quality ones (the same qualitative results should apply for any 194 

monotonically increasing cost function). Let , where  is a function relating a 195 

signaler’s quality, q, to its cost of signaling. For analytical tractability, we assume that signaling 196 

cost decreases linearly with quality and that  (  are the lowest quality individuals 197 

and  are the highest quality individuals). Therefore, 198 

 ,  (1) 199 

where a is the rate at which the slope of the cost function decreases with quality, and  200 

determines the minimum possible cost of signaling, . Following the graphical representation 201 

of Johnstone (1997), we assume that signaler benefit is a saturating function of signal intensity 202 

such that 203 

  , (2) 204 

where r is the rate that benefit increases with signal intensity and d is the degree of saturation 205 

with signal intensity (plots of equations [1] and [2] can be seen in Figure 1A). More 206 

mechanistically, the benefit function can be thought of as a function of the receivers’ reaction 207 

c(s)=α(q)s α(q)

0≤ q≤1 q= 0

q=1

c(s)= [ac0+ a(1−q)]s

c0

ac0

b(s)= rs
1+ ds
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 10 

norm, which is not explicitly modeled here but the same qualitative results should apply for any 208 

continuous, monotonically increasing benefit function. 209 

 Maximizing the difference between equation (1) and (2) gives the equilibrium signal 210 

intensity 211 

   (3) 212 

(we provide a derivation in the appendix, sec. A1). This equation shows that higher quality 213 

signalers will have greater signal intensities than lower quality ones (Figure 1B). In other words, 214 

signal intensity is a reliable indicator of quality. Figure 1A demonstrates this pattern for two 215 

different qualities, showing that, for high-quality individuals, the maximum net benefit is at a 216 

higher signal intensity than for low-quality individuals. With greater values of , the 217 

relationship between signaler quality and signal intensity becomes more linear and less steep 218 

(Figure 1B). For simplicity, in all other figures, we assume that . 219 

 The results of this model are in line with those of Grafen (1990a, 1990b) and Johnstone 220 

(1997). This modeling approach also provides a useful framework that can be adapted to 221 

analytically explore animal signaling in different biological scenarios, such as threshold 222 

assessment. 223 

s* =

r
a(1+ c0−q)

−1

d

c0

c0 = 0
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 11 

  224 

Figure 1. The evolution of reliable signals in a model with continuous assessment. A) 225 

Relationship between signal intensity and fitness costs or benefits for signalers of low (q = 0.2) 226 

and high (q = 0.6) quality, given . Arrows denote the equilibrium signal intensity, s*, for 227 

low- and high-quality individuals, which occurs where the difference between benefit and cost is 228 

the greatest. B) Relationship between signaler quality and equilibrium signal intensity given by 229 

equation (3). Three different values for  are shown. Note that higher quality individuals signal 230 

at greater signal intensities and that panel A closely matches Johnstone’s graphical model (1997, 231 

Figure 7.2). In both panels, a = 0.5, r = 4, and d = 4. 232 

 233 

Threshold Assessment Model 234 

Fixed Threshold 235 

 We next adapt the above model so that receivers respond to signal variation in a binary 236 

fashion (i.e., a threshold response). That is, if a signal is below a threshold value T, the receiver 237 
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assesses the signal as low-quality and if the signal is above T, the receiver assesses the signal as 238 

high-quality. Because a signaler’s benefit depends on the receiver’s assessment, the benefit of 239 

signaling at a given intensity can be thought of as the proportion of the receiver population that 240 

assesses the signal as high-quality. For example, in a mating context where males are signaling 241 

to females, a male’s benefit of signaling would be the proportion of females in the population 242 

that assess it as a high-quality mate and therefore mate with it. Alternatively, in the context of 243 

aggressive interactions, the signaler’s benefit is the proportion of competitors that identify the 244 

signaler as high-quality and give up a contest against the signaler. We assume that signal 245 

intensities at or above the receiver threshold gain maximum benefits, while signal intensities 246 

below the threshold gain no benefit. Therefore,  247 

  (4) 248 

where 1 is the maximum benefit at which every receiver assesses the signaler as high-quality. 249 

 In this model, there are only two equilibrium signal intensities: the baseline signal 250 

intensity 0 and the threshold value T. This is an example of an all-or-nothing signaling system 251 

and thus our model agrees with that of Broom and Ruxton (2011). If the costs to an individual of 252 

signaling above the threshold are so high that there is never a net benefit of signaling, that 253 

individual will signal at the baseline signal intensity of 0. In all other cases, individuals signal 254 

exactly at the threshold value (Figure 2A,B). This makes intuitive sense: there is no benefit to 255 

signaling below the threshold value because these signals are all assessed as low-quality, but 256 

there is also no benefit of signaling any higher than exactly at the threshold value, because this 257 

would only accrue additional signaling costs. The result of this effect is that signalers on either 258 

side of the threshold will have identical signal intensities of either zero below the threshold or 259 

b(s) 0 if s<T ,
1 if s≥T  ,

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪
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exactly at the threshold value (Figure 2B). In fact, if we assume that for all qualities q there is 260 

some signal intensity s where , all individuals will signal exactly at the threshold 261 

value as is shown in Figure 2C,D. Furthermore, because individuals signaling at an intensity of 0 262 

are never assessed as high-quality, a signal intensity of 0 would only be evolutionarily stable if 263 

being assessed as high-quality was not strictly necessary for reproduction. Otherwise, all 264 

signalers would signal at the threshold value, irrespective of costs. When all signalers signal at 265 

the threshold value (e.g., Figure 2D), there is no information provided by the signal and thus, if 266 

receivers’ threshold responses are not ecologically, physiologically, or genetically constrained, 267 

we would expect receivers to evolve to ignore the signals all together (an outcome conceptually 268 

similar to the lek paradox; Borgia 1979; Tomkins et al. 2004; Kotiaho et al. 2008). 269 

We focus on the case of a receiver with a binary response, but it is worth noting that the 270 

results of this model can be generalized for categorical responses in which receivers have 271 

multiple possible assessment categories (e.g., lowest-quality, low-quality, high-quality, highest-272 

quality). As with the binary case, the number of equilibria signal intensities will be equal to the 273 

number of assessment categories. 274 

The results of this model are similar to those of Lachmann and Bergstrom (1998, see also 275 

Bergstrom and Lachmann 1997, 1998) who also showed that there are evolutionarily stable 276 

signaling strategies in which different quality signalers signal at the same intensity (they refer to 277 

these strategies as “pooling equilibria”). However, their approach assumes that only a finite 278 

number of signal types are possible, while our model, as well as the model of Broom and Ruxton 279 

(2011), allows for a continuum of possible signal intensities and a finite number of signal 280 

intensities emerge as a prediction. The models of Lachmann and Bergstrom (1998) and Broom 281 

and Ruxton (2011) are in some ways more general than ours because they consider receiver 282 

b(s)> c(s)
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coevolution. By assuming that receiver threshold values are evolutionarily constrained, we were 283 

able to obtain similar results with a mathematically simpler model that can now be adapted to 284 

consider variation in threshold values. 285 

 286 

Figure 2. In a model with strict threshold assessment, signalers either evolve ‘all-or-nothing’ 287 

signals (A and B) or all signalers signal at the same value (C and D). A and C show graphical 288 

depictions of the relationship between signal intensity and fitness costs or benefits for signalers 289 

of low (q = 0.2) and high (q = 0.8) quality. The dashed gray lines indicate the receiver threshold 290 

value. Arrows denote the equilibrium signal intensity, s*, for low- and high-quality individuals, 291 

which occurs where the difference between benefit and cost is the greatest. Note that in C the 292 

equilibrium signal intensity is the same for low- and high-quality individuals. B and D show the 293 

relationship between signaler quality and signal intensity. In A and B, a = 2.0 and in C and D, a 294 

= 0.5. In all panels, T = 1 and . 295 
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Variable threshold 296 

 The model above assumes a fixed threshold value for all receivers, but it is likely that 297 

threshold values will vary among receivers. For example, the sample of female crickets tested by 298 

Beckers & Wagner (2011) showed a threshold of chirp rate for mate choice decisions, but there 299 

was also within-sample variance around this threshold value. Similarly, predators may vary in 300 

the threshold value of an aposematic signal required to induce avoidance (for examples see 301 

Endler and Mappes 2004). Because we assume that receivers do not evolve in this model (which 302 

implies threshold values are evolutionarily constrained), our model is most relevant to cases in 303 

which variation is threshold values is not genetically determined and rather emerges because of 304 

environmental conditions or developmental history (in the Coevolution of Signalers and 305 

Receivers section below, we evaluate the effects of allowing threshold evolution using 306 

individual-based simulations). To model a variable threshold, we now assume that the threshold 307 

values of the receiver population are normally distributed with mean  and variance . Note 308 

that this convention implies that receivers can have negative threshold values: if a receiver’s 309 

threshold value is less than or equal to 0, it evaluates all signalers as high-quality because the 310 

minimum signal intensity is 0. Once again assuming that the benefit of the signal is the 311 

proportion of the receiver population that assesses the signal as high quality, it follows that 312 

 ,  (5) 313 

which simply gives that the benefit of signaling at intensity s is the area less than s under a 314 

normal distribution with mean  and variance . For example, if a signal intensity of s is 315 

assessed as high-quality by 20% of the receiver population, b(s) = 0.2. 316 

T σ2

b(s)= 1

2πσ2
exp −(T−T )

2

2σ2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ dT

−∞

s

∫

T σ2
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Given equation (5) and assuming that costs still follow equation (1), the equilibrium 317 

signal intensity is 318 

 .  (6) 319 

As with equation (3), this equation provides the equilibrium signaling intensity for different 320 

qualities of the signalers. However, if  or if equation (6) is undefined, which occurs if 321 

, the equilibrium signaling value is instead 0 (see the appendix, sec. A1, 322 

for more details and for the derivation of equation [6]).  323 

Equation (6) shows that incorporating variance into the receivers’ threshold values 324 

restores the reliability of the signaling system such that signalers of different qualities receive 325 

maximum net benefits at different signal intensities (Figure 3A). Furthermore, with greater 326 

variance, signal intensity increases faster with increasing quality. That is, for signalers of the 327 

same difference in quality, increasing variance in receiver thresholds leads to a larger difference 328 

in signal intensity (Figure 3B–D). 329 

After introducing inter-individual variation in the threshold value, the only case in which 330 

signalers of the different qualities signal at exactly the same value is when they are signaling at 331 

the baseline value 0 (e.g., Figure 3A,  at q < 0.028). Because we assume that threshold 332 

values follow a normal distribution, there is always at least a small proportion of the receiver 333 

population that have a threshold value less than 0 and thus assess all signalers as high-quality. 334 

Therefore, there is always some benefit to signaling at the baseline value, and this benefit 335 

increases with increased variance in threshold values because more of the receiver population 336 

will have a threshold value less than 0. 337 

s* =T + −2σ2 ln a(1+ c0−q) 2πσ
2( )

b(0)> s*

a(1+ c0−q) 2πσ
2 ≥1

σ2 = 0.4
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Interestingly, in this model, the equilibrium signaling value is never between 0 and 338 

(i.e., equation [6] is always greater than  or undefined). In other words, individuals either 339 

evolve to signal at the baseline value of 0 or to signal at some intensity above the mean threshold 340 

value . This is surprising because, in this model, there is a benefit to signaling between 0 and 341 

the mean threshold value. However, further exploration reveals that the net benefit is always 342 

greater to signal either above  or at 0. This is due to the sigmoidal shape of the benefit 343 

function: below , the benefit function curves towards lower values, but above  it curves 344 

towards higher values (Figure 3B–D). The sigmoidal shape of the benefit function emerges as a 345 

result of the normal distribution of the receiver variance. Because costs are linear, this sigmoidal 346 

shape results in the net benefit being greater at values above  than below it. If the variation in 347 

receiver thresholds has a different distribution, however, it is possible for an equilibrium 348 

signaling value to fall between 0 and  (see the appendix [sec. A3, fig. A1], for an example 349 

assuming a gamma distribution). 350 
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 351 

Figure 3. Variation in receiver threshold values restores reliability of signaling systems. A) 352 

Relationship between quality and equilibrium signal intensity given by equation (6). Dashed 353 

black line denotes the mean receiver threshold value. Colored curves indicate different 354 

relationships for different values of variation in threshold value ( ). B–D) Relationship 355 

between signal intensity and fitness costs or benefits for signalers of low (q = 0.2) and high (q = 356 

0.6) quality for three different degrees of variation in the threshold value ( ). Gray distributions 357 

represent the distributions of threshold values in the receiver population. Arrows denote the 358 

equilibrium signal intensity, s*, for low- and high-quality individuals, which occurs where the 359 

difference between benefit and cost is the greatest. Parameters: , a = 0.5, and . 360 

 361 
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Individual-based Simulations 363 

The analytical models above make many simplifying assumptions (e.g., ignoring genetics 364 

and assuming infinite population sizes). To assess the robustness of our results and to explore 365 

further ecological complexity, we developed stochastic individual-based simulations. These 366 

simulations track individuals’ genotypes and phenotypes and model the evolution of signaling 367 

behavior. Unlike in the analytical models, these simulations actually model adaptation via 368 

changes in allelic values rather than simply maximizing the net benefit. For these simulations we 369 

chose to model the evolution of a mating signal in a sexually reproducing species with two sexes 370 

(signalers and receivers). In principle, this same modeling framework could be adapted to fit 371 

other types of signaling systems (e.g., intraspecific competition or predator-prey interactions). 372 

Methods 373 

 Each run of the simulation modeled a population in which each individual was either a 374 

signaler or a receiver. Each signaler had a quality q (ranging from 0 to 1), which determined its 375 

cost of signaling. Each receiver had a threshold T, which was used to evaluate signalers (details 376 

below). Generations were overlapping and population size was regulated by the number of 377 

mating sites available K. The simulation was broken up into time steps, which we will refer to as 378 

years. There was an annual sequence of events which happened in the following order: mortality, 379 

filling of mating sites, reproduction (including signal assessment and mating, Figure 4). 380 

Mortality occurred at the start of each year independent of age or reproductive status. For 381 

signalers, quality and signal intensity affected mortality such that , 382 

where  is the baseline mortality, a is the rate at which the slope of the cost function decreases 383 

with quality,  determines the minimum cost of signaling, and s is the signal intensity. 384 

M = [ac0+ a(1−q)]s+m0

m0

c0
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Receivers died with a fixed mortality of , which was higher than the baseline signaler 385 

mortality in order to keep sex ratios relatively balanced. 386 

Receivers occupied mating sites, from which they evaluated the signals of signalers. 387 

There were only K mating sites available each year. If there were more than K receivers in the 388 

population, K receivers were randomly selected (without replacement) to occupy mating sites 389 

that year. Unselected receivers did not mate that year. We assumed that there was no spatial 390 

structure to the population such that all individuals had the same probability of arriving at any 391 

site and all sites became unoccupied at the end of the year. 392 

Receivers selected signalers as mates by evaluating their signal intensity, s. Receivers had 393 

threshold assessment of signals such that if a signaler’s signal intensity was above the receiver’s 394 

threshold value T, the receiver evaluated the signaler as a high-quality mate and if the signal 395 

intensity was below T, the receiver evaluated the signaler as low-quality. Receivers mated with 396 

the first signaler they evaluated as high-quality and did not mate again that year. Each year, 397 

receivers evaluated up to N signalers. If by that point no signalers were evaluated as high-quality, 398 

the receiver mated with the final signaler that it evaluated regardless of quality (i.e., threshold 399 

with last-chance option; Janetos 1980). The threshold value of each receiver was randomly 400 

assigned at birth (regardless of genotype) from a normal distribution with mean  and variance 401 

. Each mated pair produced B offspring per year and all offspring survived with a probability 402 

0.5. 403 

Each signaler had a trait, , which determined its signal intensity as a function of its 404 

quality. This trait was genetically determined by 11 additive diploid loci, each with infinitely 405 

many possible allelic values. Each locus determined the signaling value when the signaler had a 406 

2m0

T

σ2

z(q)
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specific quality (broken up by increments of 0.1). That is, locus 1 determined the signal intensity 407 

when the signaler’s quality was 0.0, locus 2 determined the signal intensity when the signaler’s 408 

quality was 0.1, and so on. This implementation allows signal intensity to be almost any function 409 

of quality. The phenotypic values of signal intensity for a given quality were determined by 410 

adding together the genotypic values of each haplotype at the respective locus plus a random 411 

environmental component drawn from a zero-mean normal distribution with variance . If an 412 

individual’s genotypic value was less than 0, its phenotype was assigned to be 0. An individual’s 413 

phenotype (signal intensity) was determined at birth and did not change throughout its lifetime. 414 

Note that, because q is a continuous quantity, but the trait  is in increments of 0.1, signalers 415 

evaluated their quality by rounding to the nearest increment of 0.1. Therefore, signalers could not 416 

perfectly evaluate their own quality, which is a realistic assumption for many organisms (e.g., 417 

Percival and Moore 2010). 418 

At birth, each offspring was randomly assigned to either the signaling sex (signalers) or 419 

the receiving sex (receivers) and each signaler was randomly (uniform distribution, 0–1) 420 

assigned a quality q. Each haplotype of the offspring was assigned by randomly selecting one of 421 

the alleles at each locus of the respective parent (i.e., independent recombination). During birth, 422 

a mutation occurred on each locus with probability . If a mutation occurred, a random value 423 

drawn from a zero-mean normal distribution with variance  was added to the value at that 424 

locus. Receivers were only carriers for this trait, and it did not affect their preference. 425 

Each run of the simulation was initiated with 2K individuals whose genotypes were 426 

randomly assigned from a normal distribution with mean  and variance 0.2 (sex, quality, and 427 

signal were randomly assigned in the same manner as they were assigned at birth). To allow 428 

e2

z(q)

µ

ρ2

T
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populations to reach selection-mutation-drift balance, there was a 10,000-year “burn-in” period 429 

at the beginning of the simulation. We used two different methods for this burn-in period. In the 430 

first, receivers randomly selected mates independent of signal and there was no cost of signaling. 431 

This simply allowed the population to reach mutation-drift balance so that the initially assigned 432 

genotypes did not affect results. In the second method, receivers assessed signals in a continuous 433 

manner, where the probability of mating with a signaler was , where 0.05 is 434 

the baseline probability of mating and r and d are the same as in equation (2). This latter method 435 

models how signals evolve if receivers evolve threshold assessment after previously having had 436 

continuous assessment. In both cases, following the 10,000-year burn-in period, simulations then 437 

ran for 20,000 years with threshold assessment. Results were qualitatively similar using both 438 

methods for the 10,000-year burn-in period. For simplicity, all presented results are for the case 439 

in which receivers responded in a continuous fashion during the burn-in period because there 440 

was less variation among runs of those simulations (see figure A2 for results of simulations with 441 

random mating during the burn-in period). 442 

[(rs) / (1+ ds)]+0.05
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 443 

Figure 4. Life-history diagram for the individual-based simulations. The star indicates the start 444 

of the annual cycle. Silhouettes of fiddler crabs (genus Uca) are included as visual examples for 445 

signalers and receivers in a mating context. 446 

 447 

Results 448 

The results of our individual-based simulations matched the qualitative predictions of our 449 

analytical model. As predicted by the analytical model, with little variance in threshold values, 450 

signalers evolved to signal at relatively similar values whether they were low- or high-quality; 451 

however, with greater variance, the difference between signal values became greater (Figure 5). 452 
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There was greater variance in the signal intensity of low-quality individuals compared 453 

with high-quality ones both within and among runs of the simulation (among run variation 454 

shown in Figure 5). This is likely because there was more genetic drift at the loci associated with 455 

signaling when low-quality. Because low-quality individuals were less likely to mate, there were 456 

fewer opportunities for selection to act on these loci. Although low-quality individuals signaled 457 

at lower intensity than high-quality ones on average, in some runs of the simulation, genetic drift 458 

led to low-quality individuals signaling at unexpectedly high signal intensities. 459 

 460 

Figure 5. The relationship between signaler quality and signal intensity in the individual-based 461 

simulations. Compare to the analytical model results shown in Figure 3A. The dashed black line 462 

denotes the mean threshold value. Shaded areas represent the mean of 10 runs of the simulation 463 

plus or minus one standard deviation. Different colored shading represents different levels of 464 

threshold variation ( ). Negative genotypic values were interpreted as zeros, as that is how they 465 

affected phenotype. Parameters: , a = 0.5, , K = 300, u = 0.25, , 466 

, B = 5, N = 10. 467 

σ2
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 468 

The individual-based simulations provide additional information about the phenotypic 469 

distribution of signalers in the population that cannot be gained by our analytical methods 470 

(Figure 6). These distributions show that even if the mean genotype of the population was to 471 

always signal above the threshold value (as was the case for  and  in Figure 472 

5), there were still individuals in the populations with signal intensities below the threshold 473 

value. In other words, as long as there is variation in threshold values, signal intensities can vary 474 

along a continuum (Figure 6). Furthermore, the greater the variation in threshold values, the 475 

more uniform the distribution of signal intensities (Figure 6). For all simulation parameters, there 476 

was a peak in the number of individuals signaling at an intensity of 0. This is because 0 is the 477 

minimum signal intensity and thus the tail of the phenotypic distribution that would be below 0 478 

was all clustered into that phenotypic value. 479 

One major difference between our analytical model and individual-based simulations is 480 

that the simulations did not show the sudden change from signaling at the baseline value to 481 

signaling above the threshold value that was seen the analytical models (compare  in 482 

Figure 3A and Figure 5). This disagreement can be explained by considering the ecological 483 

assumptions of our models. Recall in the analytical model that there was always some benefit to 484 

signaling at the baseline value because threshold values were normally distributed and thus some 485 

proportion of the receiver population assessed all signal intensities as high-quality. In essence, 486 

this logic assumes that the population is infinitely large, which was obviously not the case in the 487 

individual-based simulations.  488 

σ2 = 0.004 σ2 = 0.04

σ2 = 0.4
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However, in our individual-based simulations, a benefit of signaling at the baseline value 489 

emerged in another way, which was by receivers mating with the final signaler that they 490 

evaluated regardless of its quality (i.e., the last-chance option). This provided signalers some 491 

chance of mating, even if their signal intensity was below the threshold value of all receivers. 492 

The lower the maximum number of signalers a receiver evaluated N, the greater this baseline 493 

benefit, because there was an increased chance that any given signaler was the final one a 494 

receiver evaluated. Reducing the value of N in the simulations resulted in sudden changes in 495 

signal intensities similar to those seen in the analytical model (Figure 7). Furthermore, the lower 496 

the value of N, the higher the quality at which this sudden change occurred. This pattern is 497 

intuitive because with a greater baseline benefit, populations should evolve to only signal above 498 

the baseline value when there is a larger net-benefit, which occurs at high qualities. Indeed, in 499 

the extreme case of N = 1, which would amount to random mating, we would expect all 500 

individuals to signal at the baseline value and thus sustain the minimum signaling costs. 501 

We also restructured simulations so that receivers did not mate with the last mate that 502 

they evaluated and instead did not mate at all if none of the N signalers evaluated had a signal 503 

intensity above their threshold value (i.e., fixed-threshold without a last-chance option; Roff 504 

2015). In these simulations, mean signaling values below the threshold value were less likely to 505 

evolve (Figure A3). This is logical, because as with increasing the value of N in the simulations 506 

with a last-chance option, this scenario decreases the benefit of signaling at the baseline value. 507 

The only way a signaler can mate is if its signal intensity is above the threshold value of a 508 

receiver. 509 

We also ran simulations in which variation was incorporated into the signalers instead of 510 

the receivers. Biologically, this occurs when a signal (a phenotype) is influenced by local 511 
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environment conditions (i.e., phenotypic plasticity). In these simulations, all receivers had the 512 

same threshold value and we incorporated variation into the signalers by increasing the random 513 

environmental component of the phenotype , which is equivalent to decreasing the heritability 514 

of the signaling trait. As with variation in threshold values, in these simulations, signals once 515 

again evolved so that higher quality individuals signaled at greater signal intensities than lower 516 

quality ones, and the strength of this pattern increased with more variation in the random 517 

environmental component (Figure A4). This result occurs because there is selection for high-518 

quality individuals to signal farther above the threshold value to ensure that their phenotype (and 519 

their offspring’s phenotypes) are above the threshold value regardless of the environmental 520 

effect. As above, in these simulations, receivers mated with the last signaler evaluated, so there 521 

was some benefit for low-quality individuals to signal below the threshold value because they 522 

could reduce the costs of signaling and still have a chance of being the last signaler a receiver 523 

evaluated. 524 

e2
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 525 

Figure 6. The phenotypic distribution of signalers in the individual-based simulations. Each 526 

panel shows the distributions for the cumulative number of individuals in 5 runs of the 527 

simulation. The solid vertical line indicates the mean threshold value of the receiver population. 528 

Parameters: ,  K = 300, u = 0.25, , , B = 5, N = 10. 529 
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 531 

Figure 7. Results of the individual-based simulations for different values for the maximum 532 

number of mates a receiver could evaluate N. If a receiver did not encounter a signaler with a 533 

signal intensity above the receiver’s threshold, it mated with the final signaler it evaluated 534 

regardless of signal intensity. Each line shows the mean genotypic values for 10 runs of the 535 

simulation. Parameters: , ,  K = 300, u = 0.25, , , B = 5. 536 

 537 

Coevolution of Signalers and Receivers 538 

Up to this point, all of our models have assumed that the mean threshold value of the 539 

receiver population does not evolve. In this section, we present results from a model that we 540 

adapted from our individual-based simulations to explore the coevolution of signalers and 541 

receivers. To do so, we assumed that a receiver’s threshold value was determined by a single-542 

locus quantitative trait and that receivers had greater fecundity if they mated with a higher 543 

quality signaler. These simulations were not intended to investigate all of the nuances of 544 

signaler-receiver coevolution, but instead were intended to test whether the general conclusions 545 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Signaler quality

Si
gn

al
 in

te
ns

ity

N  = 9
N  = 7

N  = 5
N  = 3

T =1 σ2 = 0.004 ρ2 = 0.01 e2 = 0.0001

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.05.30.125518doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125518
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

from our above models hold even with receiver evolution. These simulations were identical to 546 

the individual-based simulation described above except for the key differences mentioned below. 547 

 The receiver’s threshold value was determined by a single-locus quantitative trait. All 548 

individuals (signalers and receivers) had a genotypic value for this trait, but it was only 549 

expressed in receivers. There was no genetic correlation between threshold genotypes and 550 

signaling genotypes. Each receiver’s phenotypic value of the threshold was their genotypic value 551 

plus a random environmental component drawn from a zero-mean normal distribution with 552 

variance . 553 

Recall that in the original model, receivers did not acquire any fitness benefits for mating 554 

with higher quality signalers. In this version of the model, however, we wanted threshold values 555 

to evolve, so we included fitness benefits for mating with higher quality signalers. This was 556 

implemented by having receivers have one additional offspring (B + 1 offspring) with a 557 

probability of their mate’s quality (recall that quality ranges from 0 to 1). 558 

 The genotype (for the threshold trait) of offspring was simply the average value of both 559 

of their parents. To speed up the pace of evolution, we assumed that a mutation occurred with 560 

every birth such that a random value drawn from a zero-mean normal distribution with variance 561 

0.02 was added to the offspring’s genotype. These mutations added additional variance to the 562 

threshold values, a factor that was not included in our previous models (the analytical model or 563 

other simulations). This difference precludes quantitative comparisons of our previous models 564 

with the coevolutionary models we present here, but we are still able to make qualitative 565 

comparisons.  566 

σ2
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 Simulations were initiated as in previously described simulations. Unless otherwise 567 

specified (see figure A5 for exceptions), individuals’ initial threshold values were randomly 568 

assigned with a mean of 1 and variance 0.04. For the 10,000-year “burn-in” period, individuals 569 

had continuous assessment after which they evaluated signalers in a threshold manner. After the 570 

burn-in period, simulations ran for 20,000 generations. This simulation length appeared to be 571 

long enough for thresholds to reach a stable value (Figure A5). 572 

As in our previous models, these simulations showed that increased variance in threshold 573 

values leads to a greater difference between the signaling values of low- and high-quality 574 

signalers (Figure A6), thus demonstrating that the qualitative results of our previous models are 575 

unchanged, even if receivers’ thresholds and signalers’ signals are allowed to coevolve. 576 

 577 

Discussion: 578 

Most previous models of signal evolution have assumed that receivers assess continuous 579 

variation in a signals in a continuous manner (e.g., Grafen 1990a, 1990b; Johnstone 1994). In 580 

many species, however, receivers exhibit threshold responses in which receivers respond to 581 

continuously varying signals in an binary fashion (e.g., Masataka 1983; Zuk et al. 1990; Reid 582 

and Stamps 1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011). 583 

We have shown that (1) invariant threshold assessment of signals leads to all-or-nothing signals 584 

(Broom and Ruxton 2011) or a breakdown of reliable signaling systems, but (2) reliable 585 

signaling can be restored if variation is introduced either in the value of the threshold boundary 586 

among receivers or in the translation of genotype to phenotype among signalers. In addition, (3) 587 

when reliable signaling evolves, the mean signal intensity of signalers will typically be above the 588 
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mean threshold value of receivers, but (4) the population of signalers will still show a continuum 589 

of signal intensities from well below to well above the population mean threshold. 590 

Our models emphasize the importance of variation among receivers in maintaining 591 

reliable signaling systems. In natural populations, it seems highly likely that threshold values 592 

will vary among receivers to some degree because local environmental conditions affect 593 

phenotypes. Indeed, in a mating context, there is often considerable variation in mate choice 594 

among receivers due to genetic, developmental, or environmental differences (Jennions and 595 

Petrie 1997). In animals exhibiting categorical perception in particular, there is evidence of 596 

variation in category boundaries (Caves and Green et al. 2018; Zipple and Green et al. 2019; 597 

Caves et at. 2020) as well as context-dependence of categorical boundaries (Lachlan and 598 

Nowicki 2015). Future empirical work should quantify the degree of variation among receivers’ 599 

threshold values and more directly investigate its effect on signal evolution. Empirical work 600 

could also test conclusions (3) and (4) above by comparing the distribution of signal intensities 601 

and threshold values in threshold signaling systems. 602 

Although our models explicitly considered signals whose reliability is maintained as a 603 

result of high- and low-quality signalers facing differential costs of signaling, a similar 604 

framework also applies to signals whose reliability is maintained as a result of high- and low-605 

need signalers receiving differential benefits of signaling (Johnstone 1997). An example of this 606 

latter case would be nestling birds begging for food from their parents. In this scenario, the 607 

benefit of signaling (begging) increases more rapidly for high-need nestlings than low-need ones. 608 

As is the case for models with continuous assessment, the same general conclusions emerge from 609 

our threshold assessment models whether we assume signalers have differential costs or benefits 610 

(see the appendix [sec. A2, fig. A7 and fig. A8] for differential benefits results). 611 
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Similarly, while we have only discussed among-receiver variation in threshold values 612 

(i.e., inter-receiver variation), the same general patterns should hold if individual receivers vary 613 

in their threshold values over time (intra-receiver variation). This intra-receiver variation might 614 

emerge from changes during development or changes in environmental conditions, but it could 615 

also be a result of variation in an individual receiver’s ability to detect a threshold boundary. 616 

That is, a receiver might mistakenly assess a signal as above its threshold when in actuality it 617 

was not or vice versa. Our analytical model treats all these types of variation identically; 618 

therefore, it predicts that either inter- or intra-receiver variation in threshold values will maintain 619 

signal reliability. This suggests that while perceptual errors by the receiver decrease the number 620 

of equilibrium signaling values in models with continuous assessment (Johnstone and Grafen 621 

1992a), in models with threshold assessment, perceptual errors might in fact increase the number 622 

of equilibrium signaling values. Our individual-based simulations only explicitly modeled inter-623 

receiver variation, however. It would be useful for future studies to explore intra-receiver 624 

variation more explicitly. 625 

Our analytical models focus on pure fixed threshold assessment, in which individual 626 

receivers evaluate any signal above their threshold value as high-quality and below their 627 

threshold as low-quality. However, there are different variants of threshold assessment in which 628 

receivers responses follow a general threshold rule but are context-dependent (reviewed by Roff 629 

2015). For instance, there is evidence that female variable field crickets, Gryllus lineaticeps, 630 

evaluate mates using a threshold strategy with a last-chance option in which females use a 631 

threshold rule, but if a female has evaluated N males and none of them were above the threshold 632 

value, it mates with the final male encountered (Janetos 1980; Beckers and Wagner 2011). The 633 

results of our individual-based simulations show that while our general conclusions about signal 634 
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evolution hold whether receivers follow as a pure fixed threshold strategy or have a last-chance 635 

option, the specific relationship between signaler quality and signal intensity will differ 636 

depending on the strategy. Moreover, with the last-chance option, this relationship depends on 637 

the number of signalers evaluated before mating with the final signaler. We have not evaluated 638 

other context-dependent threshold strategies (reviewed in Roff 2015), but it is likely that these 639 

will also alter the specific relationship between signaler quality and signal intensity. 640 

In addition, we have only considered the evolution of signals under relatively simple 641 

ecological scenarios in which reliable signaling is maintained by differential signaling costs (or 642 

benefits), but in more complicated scenarios, reliable signals can evolve even without immediate 643 

signaling costs. For example, reliable signaling can evolve without signaling costs when there 644 

are repeated interactions (Rich and Zollman 2016). Similarly, reliable signaling might evolve via 645 

kin selection when individuals are signaling among close relatives (e.g., begging in birds; Caro et 646 

al. 2016). Furthermore, our models do not explain the evolution of dishonest signals (in our 647 

models, signals either evolve to be reliable or to contain no information). Dishonest signals (or 648 

“bluffs”) can be maintained in otherwise reliable signaling systems by the existence of frequency 649 

dependent selection (Számadó 2017), a factor that is not present in our models. 650 

Another complexity we do not consider here is the ability of receivers to assess their own 651 

quality. Mutual assessment plays and important role in signaling, particularly in the context of 652 

animal contests where individuals might have to compare their own resource holding potential to 653 

that advertised by their opponent (Arnott and Elwood 2009; Elwood and Arnott 2012). When 654 

evaluating the signals of opponents, an individual might have a threshold response, such that its 655 

giving-up decision is based on a threshold signal value set by the individual’s own resource 656 

holding potential. Understanding how threshold responses affect signal evolution in such 657 
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situations would be a valuable future direction of our work. It is worth noting, however, that 658 

despite many examples of mutual displays before contests, there is surprisingly little empirical 659 

evidence that contestants compare their own display to the display of their opponent (Elwood 660 

and Arnott 2012). 661 

It is important to recognize that most of our models assume there is a fixed mean 662 

threshold value for the receiver population. If variations in threshold values among receivers are 663 

due to heritable differences, threshold values themselves will be subject to natural selection and 664 

potentially change over time (Janetos 1980; Real 1990; Bleu et al. 2012). We would expect the 665 

mean threshold value to remain stable if threshold values are either physiologically constrained, 666 

as might be the case in some species with categorical perception, or ecologically constrained, as 667 

might be the case when the same perceptual machinery is used to assess signals in addition to 668 

being used in some other ecological context (e.g., female guppies, Poecilia reticulata, use the 669 

color orange for mate assessment and food detection; Rodd et al. 2002).  670 

The coevolution of threshold and signal does not change the qualitative results of our 671 

models. Our individual-based simulations with coevolution confirmed that the qualitative 672 

conclusions of our models can still hold when selection causes receivers’ thresholds to evolve 673 

(Figure A6). However, we only explored a limited set of ecological and genetic assumptions in 674 

those simulations, and additional work is necessary to more fully understand how the 675 

coevolution between signalers’ signals and receivers’ thresholds affects the reliability of 676 

signaling systems. For instance, in intra-specific signaling systems (e.g., mate choice), there is 677 

often a genetic correlation between receiver preference (here, the threshold value) and signaling 678 

traits, which can lead to emergent evolutionary phenomena such as Fisherian runaway selection 679 
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(Fisher 1930; Lande 1981; Kirkpatrick 1982). Future studies should explore how threshold 680 

responses by receivers affects these processes.  681 

 682 
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