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Abstract:

Animals often use assessment signals to communicate information about their quality to a
variety of receivers, including potential mates, competitors, and predators. But what maintains
reliable signaling and prevents signalers from signaling a better quality than they actually have?
Previous work has shown that reliable signaling can be maintained if signalers pay fitness costs
for signaling at different intensities and these costs are greater for lower quality individuals than
higher quality ones. Models supporting this idea typically assume that continuous variation in
signal intensity is perceived as such by receivers. In many organisms, however, receivers have
threshold responses to signals, in which they respond to a signal if it is above a threshold value
and do not respond if the signal is below the threshold value. Here, we use both analytical and
individual-based models to investigate how such threshold responses affect the reliability of
assessment signals. We show that reliable signaling systems can break down when receivers
have an invariant threshold response, but reliable signaling can be rescued if there is variation
among receivers in the location of their threshold boundary. Our models provide an important
step towards understanding signal evolution when receivers have threshold responses to

continuous signal variation.

Keywords: Animal communication, honest signals, mate choice, sensory ecology, sexual

selection, signaling theory
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Introduction:

In contexts ranging from mate choice to aggression, animals use signals to assess each
other (Maynard Smith and Harper 2003; Searcy and Nowicki 2005; Seyfarth et al. 2010). These
signals can include any behavioral or morphological trait of one individual (the “signaler”) that
has evolved to convey information to another individual (the “receiver”), such as the song of a
bird, the sex pheromone of a moth, or the aposematic coloration of a poison frog (Bradbury and
Vehrencamp 2011). The information conveyed in signals often regards the quality of the
signaler, such as the signaler’s size (e.g., call frequency in frogs; Ryan 2001) or physiological
condition (e.g., plumage brightness in some birds; Lindstrom and Lundstrom 2000). A central
question for researchers studying animal signaling systems is, what maintains the reliability of
assessment signals (Searcy and Nowicki 2005)? That is, if it benefits signalers to produce a
signal indicating a better quality than they actually have, why do signalers produce a signal that

reliably (“honestly’”) communicates quality?

In a foundational verbal model, Zahavi (1975) suggested that assessment signals could be
reliable indicators of quality if signalers pay costs for expressing signals. This idea was termed
the “handicap principle” in that signalers of the highest quality could afford to pay greater
handicaps to produce a signal than could signalers of lower quality. Although reliable signaling
was shown not to evolve when Zahavi’s original assumptions were made explicit in genetic
models (Maynard Smith 1976; Kirkpatrick 1986), Grafen (1990a, 1990b) later showed, using
both population genetic and game theory models, that the handicap principle can lead to the
evolution of reliable signaling if two conditions are met. First, the costs of signaling at a given
intensity (e.g., producing a large or colorful signal) must be greater for signalers of lower quality

compared to signalers of higher quality. Second, receivers should be able to assess continuous
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4
variation in signal intensities and thereby gauge signaler quality; that is, as signal intensity
increases continuously, so does the benefit the signaler gains from receivers. (Note that Penn and
Szamado (2020) suggested that Grafen’s models are substantively different from Zahavi’s
original conceptualization. Here, we refer to them both as the “handicap principle” for
consistency with the literature). Johnstone (1997) later developed graphical versions of Grafen’s
(1990a, 1990b) mathematical models, illustrating how the optimal level of signaling—the
equilibrium point at which the net benefits are greatest—will be different for lower versus higher
quality signalers. This variation in equilibrium points leads to reliable signaling (Johnstone

1997).

The cost-based reliable signaling theory developed by Zahavi (1975), Grafen (1990a,
19900), and Johnstone (1997) has played a crucial role in our understanding of the evolution of
animal signals (Maynard Smith and Harper 2003; Searcy and Nowicki 2005). Other studies have
recognized, however, that some assumptions of these models do not necessarily reflect the reality
of animal signaling systems. For example, the initial models of Grafen (19904, 199056) did not
incorporate the concept of perceptual error—when a signaler’s true signal value is not perceived
as such by a receiver. In a subsequent series of models, Grafen and Johnstone showed that
adding perceptual error into models of signal evolution makes otherwise continuous signaling
systems more discrete, such that fewer equilibrium signaling values exist (Johnstone and Grafen
1992a; Grafen and Johnstone 1993; Johnstone 1994). Reliable signaling can be maintained in
these models as long as signalers with greater signal intensity are more likely to be perceived as
having higher-intensity signals (Johnstone and Grafen 1992a). Furthermore, a continuum of
equilibrium signaling values reemerges if perceptual errors are more common at higher signal

intensities or if signaling costs increase more rapidly at higher signal intensities (Johnstone
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96  1994). Other researchers have found results similar to those of Grafen and Johnstone when
97  incorporating other aspects of biological realism into models of signal evolution: when the
98 assumptions of the classic handicap models are relaxed, signaling systems are altered, but

99 reliability can be maintained (e.g., Lachmann and Bergstrom 1998; Proulx 2001).

100 The aforementioned studies have advanced our understanding of signal evolution, but
101  they have all maintained the assumption that receivers can assess continuous variation in signal
102  intensities and thereby gauge signaler quality; that is, as signal intensity increases continuously,
103 so does the benefit the signaler gains from receivers. However, some organisms have threshold
104  responses to assessment signals in which signal receivers respond in a binary manner to

105  continuous variation in signal intensity (e.g., Masataka 1983; Zuk et al. 1990; Reid and Stamps
106  1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011; Roff 2015). In
107  these systems, receivers respond to a signal if it is above a threshold value and do not respond if
108 the signal is below the threshold value. For example, female variable field crickets (Gryllus

109 lineaticeps) prefer males producing chirps at rates above 3.0 chirps per second but do not

110  discriminate between chirp rate variants that both lie either above or below this threshold

111 (Beckers and Wagner 2011).

112 Threshold responses may reflect a behavioral decision by receivers (e.g., Beckers and
113 Wagner 2011), but they may also be linked to an animal’s perceptual system. Categorical

114  perception, for example, occurs when continuous variation in a stimulus is perceived as

115  belonging to distinct categories, with individuals showing an increased capacity to discriminate
116  stimuli that fall into different categories as compared to stimuli that fall in the same category
117  (Harnad 1987; Green et al. 2020). For example, a recent study found that female zebra finches

118  (Taeniopygia guttata) show categorical perception of the orange to red color continuum
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119  representative of male beak color: females labeled eight color variants as lying in two categories
120  and showed better discrimination of cross-category variants as compared to equally-spaced

121 within-category variants (Caves and Green et al. 2018). Categorical perception of signal

122 wvariation, such as that found in zebra finches (Caves, Green et al. 2018), tingara frogs (Baugh et
123 al. 2008), and sparrows (Nelson and Marler 1989), would likely lead to a threshold response if
124  categories are treated in an binary fashion, thereby violating the continuous assumptions of cost-

125  based models of reliable signaling.

126 While some models have investigated when different types of threshold responses will
127  evolve (Janetos 1980; Real 1990; Svennungsen et al. 2011; Bleu et al. 2012), few studies have
128  explored how threshold responses influence the evolution of reliable signaling. Many game

129  theoretical approaches to studying reliable signaling have relaxed the assumption that receivers
130  assess continuous variation in signal intensities (Enquist 1985; Maynard Smith 1991; Hurd 1995;
131  Szamado 1999). However, game theoretic models have typically been of discrete signaling

132 games in which both signalers and receivers choose from a discrete set of behaviors (e.g.,

133 signalers send either a low- or high-quality signal and receivers either attack or do not attack) or
134  continuous signaling games in both signalers and receivers have a continuum of possible states
135  (Johnstone and Grafen 1992b; Bergstrom and Lachmann 1997). Here, we are interested in the
136  case in which signalers are capable of signaling at any intensity on a continuous range (e.g., tail
137  length can be any length from 5—15mm), but receivers have a binary threshold response (e.g.,
138  mate with signaler if and only if tail is longer than 10mm). Broom and Ruxton (2011) have

139  previously explored such a scenario, showing that when receivers respond to signals in a

140  threshold manner it leads to the evolution of “all-or-nothing” signaling systems. That is,

141  signalers with a quality below a critical value all produce the same cheap signal while signalers
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142  with a quality above the critical value all produce the same expensive signal. The model of

143 Broom and Ruxton (2011) assumed that receivers all had the same threshold value. However, it
144  is conceivable that receivers could vary in their threshold values, for example due to

145  environmental conditions or developmental history. Here, we explore the evolutionary

146  implications of such inter-individual variation in threshold values.

147 We begin by developing a model of signal evolution that assumes receivers respond to
148  continuous signal variation in a continuous fashion (akin to the models of Grafen 1990a, 19905;
149  Johnstone 1997). This model requires some simplifying assumptions, but it provides a clear

150  demonstration of how reliable signals evolve when there is not a threshold response (the typical
151  assumption). We then show how threshold responses to continuous signal variation can remove
152  the variation in equilibrium signal intensities central to current models of reliable signaling, but
153  how introducing inter-individual variation in threshold responses can rescue the evolution of
154  reliable signals. In addition to these analytical models, we also develop individual-based

155  simulations to assess the robustness of our conclusions under more realistic ecological and

156  genetic assumptions, as well as to ask what role additional complexities in receiver choice can

157  have on the evolution of signals responded to in a threshold fashion.

158 We focus on the case in which the signaling behavior of the signaler population evolves
159  to optimize fitness and the location of the mean threshold value of the receiver population does
160  not evolve. This assumption is relevant to many biological scenarios in which the threshold value
161  of the receiver population is evolutionarily constrained. For instance, if a receiver’s threshold

162  value is determined by its perceptual machinery rather than a behavioral choice, as with

163  categorical perception, the threshold value might be constrained by its neural physiology (Green

164 et al. 2020; Mason 2020). The threshold value of the receiver population might also be
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165 maintained by stabilizing selection from other ecologically important signals and cues. For
166  example, consider a generalist predator (receiver) under selection to avoid eating an
167  aposematically colored toxic prey species (signaler). The threshold value of aposematic
168  coloration above which the predator will not attack an individual of the focal prey species might
169  be constrained by selection to detect the coloration of other prey species. Finally, threshold
170  values might be constrained by a lack of additive genetic variation in the trait or strong genetic
171  linkage with other important phenotypes (Blows and Hoffmann 2005; Gomulkiewicz and Houle
172 2009). This assumption that the mean threshold value of the receiver population does not evolve
173 simplifies our analytical models, leading to clear predictions. However, we also explore the
174  situation of signaler-receiver coevolution in our individual-based simulations and find that the
175  general conclusions from our analytical models still hold in the presence of signaler-receiver

176  coevolution.

177

178  Continuous Assessment Model

179 We start by constructing a model of signal evolution that assumes receivers respond to
180  continuous signal variation in a continuous fashion (i.e., there is not a threshold response). This
181  model can be thought of as an intermediate between those of Grafen (1990a, 1990b) and

182  Johnstone (1997): it can be mathematically difficult to incorporate ecological complexity into
183  Grafen’s models, while Johnstone’s model is purely graphical and thus cannot be analytically
184  evaluated. This model, and our other analytical models below, are rather simple models in which
185  we do not model the evolution of receivers. Instead, we assume that receivers have a fixed

186  reaction norm which is a continuous function that scales positively with signal intensity (i.e.,

187  receivers are more likely to respond to signals of greater intensity). We also assume that the
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188  optimal signal intensity for a signaler is that which maximizes its net benefit. Therefore, the
189  equilibrium signal intensity is defined as the maximization of the difference between b(s) and
190  c(s), where b(s) is the fitness benefit received by a signaler for producing a signal intensity s and

191  ¢(s) is the fitness cost associated with producing signal intensity s.

192 In line with previous models (Grafen 1990a, 19905b; Johnstone 1997), we assume that
193  fitness costs increase linearly with signal intensity and that these costs increase more rapidly for
194  low-quality signalers than high-quality ones (the same qualitative results should apply for any

195  monotonically increasing cost function). Let ¢(s) = a(q)s, where a(q) is a function relating a

196  signaler’s quality, g, to its cost of signaling. For analytical tractability, we assume that signaling

197  cost decreases linearly with quality and that 0 < g <1 (g = 0 are the lowest quality individuals

198 and g =1 are the highest quality individuals). Therefore,

199 c(s)=[ac,+a(l—q)ls, (1)
200  where a is the rate at which the slope of the cost function decreases with quality, and ¢,

201  determines the minimum possible cost of signaling, ac, . Following the graphical representation

202  of Johnstone (1997), we assume that signaler benefit is a saturating function of signal intensity

203  such that

rs
1+ds’

204 b(s) = )

205  where r is the rate that benefit increases with signal intensity and d is the degree of saturation
206  with signal intensity (plots of equations [1] and [2] can be seen in Figure 1A). More

207  mechanistically, the benefit function can be thought of as a function of the receivers’ reaction
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208  norm, which is not explicitly modeled here but the same qualitative results should apply for any

209  continuous, monotonically increasing benefit function.

210 Maximizing the difference between equation (1) and (2) gives the equilibrium signal

211  intensity

L
115 o a(l+c,—q) 3)

N d

213 (we provide a derivation in the appendix, sec. Al). This equation shows that higher quality

214  signalers will have greater signal intensities than lower quality ones (Figure 1B). In other words,
215  signal intensity is a reliable indicator of quality. Figure 1A demonstrates this pattern for two

216  different qualities, showing that, for high-quality individuals, the maximum net benefit is at a

217 higher signal intensity than for low-quality individuals. With greater values of ¢, the

218 relationship between signaler quality and signal intensity becomes more linear and less steep

219 (Figure 1B). For simplicity, in all other figures, we assume that ¢, =0.

220 The results of this model are in line with those of Grafen (1990a, 19905) and Johnstone
221 (1997). This modeling approach also provides a useful framework that can be adapted to
222 analytically explore animal signaling in different biological scenarios, such as threshold

223 assessment.
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224

225  Figure 1. The evolution of reliable signals in a model with continuous assessment. A)
226  Relationship between signal intensity and fitness costs or benefits for signalers of low (¢ = 0.2)

227  and high (¢ = 0.6) quality, given ¢, = 0. Arrows denote the equilibrium signal intensity, s, for

228  low- and high-quality individuals, which occurs where the difference between benefit and cost is

229  the greatest. B) Relationship between signaler quality and equilibrium signal intensity given by

230  equation (3). Three different values for ¢, are shown. Note that higher quality individuals signal

231  at greater signal intensities and that panel A closely matches Johnstone’s graphical model (1997,

232 Figure 7.2). In both panels, a = 0.5, =4, and d = 4.
233

234 Threshold Assessment Model

235  Fixed Threshold

236 We next adapt the above model so that receivers respond to signal variation in a binary

237  fashion (i.e., a threshold response). That is, if a signal is below a threshold value 7, the receiver
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12
assesses the signal as low-quality and if the signal is above 7, the receiver assesses the signal as
high-quality. Because a signaler’s benefit depends on the receiver’s assessment, the benefit of
signaling at a given intensity can be thought of as the proportion of the receiver population that
assesses the signal as high-quality. For example, in a mating context where males are signaling
to females, a male’s benefit of signaling would be the proportion of females in the population
that assess it as a high-quality mate and therefore mate with it. Alternatively, in the context of
aggressive interactions, the signaler’s benefit is the proportion of competitors that identify the
signaler as high-quality and give up a contest against the signaler. We assume that signal
intensities at or above the receiver threshold gain maximum benefits, while signal intensities
below the threshold gain no benefit. Therefore,

ifs<T,

0
b(s
() 1 ifs>T,

(4)

where 1 is the maximum benefit at which every receiver assesses the signaler as high-quality.

In this model, there are only two equilibrium signal intensities: the baseline signal
intensity 0 and the threshold value 7. This is an example of an all-or-nothing signaling system
and thus our model agrees with that of Broom and Ruxton (2011). If the costs to an individual of
signaling above the threshold are so high that there is never a net benefit of signaling, that
individual will signal at the baseline signal intensity of 0. In all other cases, individuals signal
exactly at the threshold value (Figure 2A,B). This makes intuitive sense: there is no benefit to
signaling below the threshold value because these signals are all assessed as low-quality, but
there is also no benefit of signaling any higher than exactly at the threshold value, because this
would only accrue additional signaling costs. The result of this effect is that signalers on either

side of the threshold will have identical signal intensities of either zero below the threshold or
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260  exactly at the threshold value (Figure 2B). In fact, if we assume that for all qualities ¢ there is

261  some signal intensity s where b(s) > c¢(s), all individuals will signal exactly at the threshold

262 value as is shown in Figure 2C,D. Furthermore, because individuals signaling at an intensity of 0
263  are never assessed as high-quality, a signal intensity of 0 would only be evolutionarily stable if
264  being assessed as high-quality was not strictly necessary for reproduction. Otherwise, all

265  signalers would signal at the threshold value, irrespective of costs. When all signalers signal at
266  the threshold value (e.g., Figure 2D), there is no information provided by the signal and thus, if
267  receivers’ threshold responses are not ecologically, physiologically, or genetically constrained,
268  we would expect receivers to evolve to ignore the signals all together (an outcome conceptually

269  similar to the lek paradox; Borgia 1979; Tomkins et al. 2004; Kotiaho et al. 2008).

270 We focus on the case of a receiver with a binary response, but it is worth noting that the
271  results of this model can be generalized for categorical responses in which receivers have

272 multiple possible assessment categories (e.g., lowest-quality, low-quality, high-quality, highest-
273 quality). As with the binary case, the number of equilibria signal intensities will be equal to the

274  number of assessment categories.

275 The results of this model are similar to those of Lachmann and Bergstrom (1998, see also
276  Bergstrom and Lachmann 1997, 1998) who also showed that there are evolutionarily stable

277  signaling strategies in which different quality signalers signal at the same intensity (they refer to

278  these strategies as “pooling equilibria”). However, their approach assumes that only a finite

279  number of signal types are possible, while our model, as well as the model of Broom and Ruxton
280  (2011), allows for a continuum of possible signal intensities and a finite number of signal

281 intensities emerge as a prediction. The models of Lachmann and Bergstrom (1998) and Broom

282  and Ruxton (2011) are in some ways more general than ours because they consider receiver
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283  coevolution. By assuming that receiver threshold values are evolutionarily constrained, we were
284  able to obtain similar results with a mathematically simpler model that can now be adapted to

285  consider variation in threshold values.
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286

287  Figure 2. In a model with strict threshold assessment, signalers either evolve ‘all-or-nothing’
288  signals (A and B) or all signalers signal at the same value (C and D). A and C show graphical
289  depictions of the relationship between signal intensity and fitness costs or benefits for signalers
290 of low (¢ =0.2) and high (g = 0.8) quality. The dashed gray lines indicate the receiver threshold
291  value. Arrows denote the equilibrium signal intensity, s*, for low- and high-quality individuals,
292  which occurs where the difference between benefit and cost is the greatest. Note that in C the
293  equilibrium signal intensity is the same for low- and high-quality individuals. B and D show the

294  relationship between signaler quality and signal intensity. In A and B, a =2.0 and in C and D, a

295 =0.5.Inall panels, T=1and ¢, =0.
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296 Variable threshold

297 The model above assumes a fixed threshold value for all receivers, but it is likely that
298  threshold values will vary among receivers. For example, the sample of female crickets tested by
299  Beckers & Wagner (2011) showed a threshold of chirp rate for mate choice decisions, but there
300 was also within-sample variance around this threshold value. Similarly, predators may vary in
301 the threshold value of an aposematic signal required to induce avoidance (for examples see

302  Endler and Mappes 2004). Because we assume that receivers do not evolve in this model (which
303 implies threshold values are evolutionarily constrained), our model is most relevant to cases in
304  which variation is threshold values is not genetically determined and rather emerges because of
305 environmental conditions or developmental history (in the Coevolution of Signalers and

306  Receivers section below, we evaluate the effects of allowing threshold evolution using

307 individual-based simulations). To model a variable threshold, we now assume that the threshold
308  values of the receiver population are normally distributed with mean T and variance o>. Note
309 that this convention implies that receivers can have negative threshold values: if a receiver’s
310  threshold value is less than or equal to 0, it evaluates all signalers as high-quality because the
311  minimum signal intensity is 0. Once again assuming that the benefit of the signal is the

312  proportion of the receiver population that assesses the signal as high quality, it follows that

—(T-T)

207

dr , (5

s 1
313 b(s)= exp
‘[o \/ 270’
314  which simply gives that the benefit of signaling at intensity s is the area less than s under a

315  normal distribution with mean T and variance o. For example, if a signal intensity of s is

316  assessed as high-quality by 20% of the receiver population, b(s) = 0.2.
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317 Given equation (5) and assuming that costs still follow equation (1), the equilibrium

318  signal intensity is

319 s =T+ \/—202 In

a(l+c,— gV 270’ ) ) (6)

320  As with equation (3), this equation provides the equilibrium signaling intensity for different

321 qualities of the signalers. However, if 5(0)>s" or if equation (6) is undefined, which occurs if

322 a(l+c,—gN 270” >1, the equilibrium signaling value is instead 0 (see the appendix, sec. Al,

323  for more details and for the derivation of equation [6]).

324 Equation (6) shows that incorporating variance into the receivers’ threshold values

325 restores the reliability of the signaling system such that signalers of different qualities receive
326  maximum net benefits at different signal intensities (Figure 3A). Furthermore, with greater

327  variance, signal intensity increases faster with increasing quality. That is, for signalers of the
328 same difference in quality, increasing variance in receiver thresholds leads to a larger difference

329  in signal intensity (Figure 3B-D).

330 After introducing inter-individual variation in the threshold value, the only case in which

331  signalers of the different qualities signal at exactly the same value is when they are signaling at

332  the baseline value 0 (e.g., Figure 3A, 0> =04 at q < 0.028). Because we assume that threshold
333  values follow a normal distribution, there is always at least a small proportion of the receiver
334  population that have a threshold value less than 0 and thus assess all signalers as high-quality.
335  Therefore, there is always some benefit to signaling at the baseline value, and this benefit

336  increases with increased variance in threshold values because more of the receiver population

337  will have a threshold value less than O.
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338 Interestingly, in this model, the equilibrium signaling value is never between 0 and T
339 (i.e., equation [6] is always greater than T or undefined). In other words, individuals either
340  evolve to signal at the baseline value of 0 or to signal at some intensity above the mean threshold
341  value T . This is surprising because, in this model, there is a benefit to signaling between 0 and
342  the mean threshold value. However, further exploration reveals that the net benefit is always
343 greater to signal either above T or at 0. This is due to the sigmoidal shape of the benefit
344  function: below T, the benefit function curves towards lower values, but above T it curves
345  towards higher values (Figure 3B—D). The sigmoidal shape of the benefit function emerges as a
346  result of the normal distribution of the receiver variance. Because costs are linear, this sigmoidal
347  shape results in the net benefit being greater at values above 7' than below it. If the variation in
348  receiver thresholds has a different distribution, however, it is possible for an equilibrium
349  signaling value to fall between 0 and 7 (see the appendix [sec. A3, fig. A1], for an example

350 assuming a gamma distribution).
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351

352  Figure 3. Variation in receiver threshold values restores reliability of signaling systems. A)
353  Relationship between quality and equilibrium signal intensity given by equation (6). Dashed

354  black line denotes the mean receiver threshold value. Colored curves indicate different

355  relationships for different values of variation in threshold value (o*). B-D) Relationship

356  between signal intensity and fitness costs or benefits for signalers of low (¢ = 0.2) and high (¢ =

357  0.6) quality for three different degrees of variation in the threshold value (o). Gray distributions
358  represent the distributions of threshold values in the receiver population. Arrows denote the

359  equilibrium signal intensity, s, for low- and high-quality individuals, which occurs where the

360 difference between benefit and cost is the greatest. Parameters: 7 =1, a = 0.5, and ¢, =0.

361

362
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363 Individual-based Simulations

364 The analytical models above make many simplifying assumptions (e.g., ignoring genetics
365 and assuming infinite population sizes). To assess the robustness of our results and to explore
366  further ecological complexity, we developed stochastic individual-based simulations. These

367  simulations track individuals’ genotypes and phenotypes and model the evolution of signaling
368  behavior. Unlike in the analytical models, these simulations actually model adaptation via

369  changes in allelic values rather than simply maximizing the net benefit. For these simulations we
370  chose to model the evolution of a mating signal in a sexually reproducing species with two sexes
371  (signalers and receivers). In principle, this same modeling framework could be adapted to fit

372  other types of signaling systems (e.g., intraspecific competition or predator-prey interactions).
373  Methods

374 Each run of the simulation modeled a population in which each individual was either a
375  signaler or a receiver. Each signaler had a quality ¢ (ranging from 0 to 1), which determined its
376  cost of signaling. Each receiver had a threshold 7, which was used to evaluate signalers (details
377  below). Generations were overlapping and population size was regulated by the number of

378  mating sites available K. The simulation was broken up into time steps, which we will refer to as
379  years. There was an annual sequence of events which happened in the following order: mortality,

380 filling of mating sites, reproduction (including signal assessment and mating, Figure 4).

381 Mortality occurred at the start of each year independent of age or reproductive status. For
382  signalers, quality and signal intensity affected mortality such that M =[ac, + a(1—q)]s +m,,
383  where m, is the baseline mortality, a is the rate at which the slope of the cost function decreases

384  with quality, ¢, determines the minimum cost of signaling, and s is the signal intensity.
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385  Receivers died with a fixed mortality of 2m,, which was higher than the baseline signaler
386  mortality in order to keep sex ratios relatively balanced.
387 Receivers occupied mating sites, from which they evaluated the signals of signalers.
388  There were only K mating sites available each year. If there were more than K receivers in the
389  population, K receivers were randomly selected (without replacement) to occupy mating sites
390 that year. Unselected receivers did not mate that year. We assumed that there was no spatial
391  structure to the population such that all individuals had the same probability of arriving at any
392  site and all sites became unoccupied at the end of the year.
393 Receivers selected signalers as mates by evaluating their signal intensity, s. Receivers had

394  threshold assessment of signals such that if a signaler’s signal intensity was above the receiver’s
395 threshold value 7, the receiver evaluated the signaler as a high-quality mate and if the signal

396 intensity was below T, the receiver evaluated the signaler as low-quality. Receivers mated with
397  the first signaler they evaluated as high-quality and did not mate again that year. Each year,

398 receivers evaluated up to N signalers. If by that point no signalers were evaluated as high-quality,
399 the receiver mated with the final signaler that it evaluated regardless of quality (i.e., threshold

400  with last-chance option; Janetos 1980). The threshold value of each receiver was randomly
401  assigned at birth (regardless of genotype) from a normal distribution with mean 7 and variance

402  o°. Each mated pair produced B offspring per year and all offspring survived with a probability

403 0.5.

404 Each signaler had a trait, z(g), which determined its signal intensity as a function of its

405  quality. This trait was genetically determined by 11 additive diploid loci, each with infinitely

406  many possible allelic values. Each locus determined the signaling value when the signaler had a
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407  specific quality (broken up by increments of 0.1). That is, locus 1 determined the signal intensity
408  when the signaler’s quality was 0.0, locus 2 determined the signal intensity when the signaler’s
409  quality was 0.1, and so on. This implementation allows signal intensity to be almost any function
410  of quality. The phenotypic values of signal intensity for a given quality were determined by

411  adding together the genotypic values of each haplotype at the respective locus plus a random

412  environmental component drawn from a zero-mean normal distribution with variance e*. If an
413  individual’s genotypic value was less than 0, its phenotype was assigned to be 0. An individual’s
414  phenotype (signal intensity) was determined at birth and did not change throughout its lifetime.
415  Note that, because ¢ is a continuous quantity, but the trait z(g) is in increments of 0.1, signalers
416  evaluated their quality by rounding to the nearest increment of 0.1. Therefore, signalers could not
417  perfectly evaluate their own quality, which is a realistic assumption for many organisms (e.g.,

418  Percival and Moore 2010).

419 At birth, each offspring was randomly assigned to either the signaling sex (signalers) or
420 the receiving sex (receivers) and each signaler was randomly (uniform distribution, 0—1)

421  assigned a quality g. Each haplotype of the offspring was assigned by randomly selecting one of
422  the alleles at each locus of the respective parent (i.e., independent recombination). During birth,

423  a mutation occurred on each locus with probability £ . If a mutation occurred, a random value

424  drawn from a zero-mean normal distribution with variance p> was added to the value at that

425  locus. Receivers were only carriers for this trait, and it did not affect their preference.

426 Each run of the simulation was initiated with 2K individuals whose genotypes were

427  randomly assigned from a normal distribution with mean 7 and variance 0.2 (sex, quality, and

428  signal were randomly assigned in the same manner as they were assigned at birth). To allow
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429  populations to reach selection-mutation-drift balance, there was a 10,000-year “burn-in” period
430  at the beginning of the simulation. We used two different methods for this burn-in period. In the
431  first, receivers randomly selected mates independent of signal and there was no cost of signaling.
432  This simply allowed the population to reach mutation-drift balance so that the initially assigned
433  genotypes did not affect results. In the second method, receivers assessed signals in a continuous

434  manner, where the probability of mating with a signaler was [(rs)/(1+ ds)]+ 0.05, where 0.05 is

435  the baseline probability of mating and » and d are the same as in equation (2). This latter method
436  models how signals evolve if receivers evolve threshold assessment after previously having had
437  continuous assessment. In both cases, following the 10,000-year burn-in period, simulations then
438  ran for 20,000 years with threshold assessment. Results were qualitatively similar using both

439  methods for the 10,000-year burn-in period. For simplicity, all presented results are for the case
440  in which receivers responded in a continuous fashion during the burn-in period because there
441  was less variation among runs of those simulations (see figure A2 for results of simulations with

442  random mating during the burn-in period).
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444  Figure 4. Life-history diagram for the individual-based simulations. The star indicates the start

-

443

445  of the annual cycle. Silhouettes of fiddler crabs (genus Uca) are included as visual examples for

446  signalers and receivers in a mating context.

447

448  Results

449 The results of our individual-based simulations matched the qualitative predictions of our
450 analytical model. As predicted by the analytical model, with little variance in threshold values,
451  signalers evolved to signal at relatively similar values whether they were low- or high-quality;

452  however, with greater variance, the difference between signal values became greater (Figure 5).
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453 There was greater variance in the signal intensity of low-quality individuals compared
454  with high-quality ones both within and among runs of the simulation (among run variation
455  shown in Figure 5). This is likely because there was more genetic drift at the loci associated with
456  signaling when low-quality. Because low-quality individuals were less likely to mate, there were
457  fewer opportunities for selection to act on these loci. Although low-quality individuals signaled
458  at lower intensity than high-quality ones on average, in some runs of the simulation, genetic drift

459  led to low-quality individuals signaling at unexpectedly high signal intensities.

=04y
o’ =0.04
o

Signal intensity
00 05 10 15 20 25 3.0

o
o

0.2 0.4 0.6 0.8 1.0
Signaler quality

460

461  Figure 5. The relationship between signaler quality and signal intensity in the individual-based
462  simulations. Compare to the analytical model results shown in Figure 3A. The dashed black line
463  denotes the mean threshold value. Shaded areas represent the mean of 10 runs of the simulation

464  plus or minus one standard deviation. Different colored shading represents different levels of
465  threshold variation (o). Negative genotypic values were interpreted as zeros, as that is how they

466  affected phenotype. Parameters: 7 =1,a=0.5, ¢,=0,K=300,u=0.25, p>=0.01,

467 ¢ =0.0001,B8=5,N=10.
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The individual-based simulations provide additional information about the phenotypic
distribution of signalers in the population that cannot be gained by our analytical methods

(Figure 6). These distributions show that even if the mean genotype of the population was to

always signal above the threshold value (as was the case for 0° = 0.004 and ¢° = 0.04 in Figure
5), there were still individuals in the populations with signal intensities below the threshold
value. In other words, as long as there is variation in threshold values, signal intensities can vary
along a continuum (Figure 6). Furthermore, the greater the variation in threshold values, the
more uniform the distribution of signal intensities (Figure 6). For all simulation parameters, there
was a peak in the number of individuals signaling at an intensity of 0. This is because 0 is the
minimum signal intensity and thus the tail of the phenotypic distribution that would be below 0

was all clustered into that phenotypic value.

One major difference between our analytical model and individual-based simulations is

that the simulations did not show the sudden change from signaling at the baseline value to

signaling above the threshold value that was seen the analytical models (compare 0>=0.4 in
Figure 3A and Figure 5). This disagreement can be explained by considering the ecological
assumptions of our models. Recall in the analytical model that there was always some benefit to
signaling at the baseline value because threshold values were normally distributed and thus some
proportion of the receiver population assessed all signal intensities as high-quality. In essence,
this logic assumes that the population is infinitely large, which was obviously not the case in the

individual-based simulations.
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489 However, in our individual-based simulations, a benefit of signaling at the baseline value
490  emerged in another way, which was by receivers mating with the final signaler that they
491  evaluated regardless of its quality (i.e., the last-chance option). This provided signalers some
492  chance of mating, even if their signal intensity was below the threshold value of all receivers.
493  The lower the maximum number of signalers a receiver evaluated N, the greater this baseline
494  benefit, because there was an increased chance that any given signaler was the final one a
495  receiver evaluated. Reducing the value of N in the simulations resulted in sudden changes in
496  signal intensities similar to those seen in the analytical model (Figure 7). Furthermore, the lower
497  the value of N, the higher the quality at which this sudden change occurred. This pattern is
498 intuitive because with a greater baseline benefit, populations should evolve to only signal above
499 the baseline value when there is a larger net-benefit, which occurs at high qualities. Indeed, in
500 the extreme case of N = 1, which would amount to random mating, we would expect all

501 individuals to signal at the baseline value and thus sustain the minimum signaling costs.

502 We also restructured simulations so that receivers did not mate with the last mate that
503 they evaluated and instead did not mate at all if none of the N signalers evaluated had a signal
504 intensity above their threshold value (i.e., fixed-threshold without a last-chance option; Roff
505  2015). In these simulations, mean signaling values below the threshold value were less likely to
506  evolve (Figure A3). This is logical, because as with increasing the value of N in the simulations
507  with a last-chance option, this scenario decreases the benefit of signaling at the baseline value.
508 The only way a signaler can mate is if its signal intensity is above the threshold value of a

509 receiver.

510 We also ran simulations in which variation was incorporated into the signalers instead of

511 the receivers. Biologically, this occurs when a signal (a phenotype) is influenced by local
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environment conditions (i.e., phenotypic plasticity). In these simulations, all receivers had the

same threshold value and we incorporated variation into the signalers by increasing the random

environmental component of the phenotype e, which is equivalent to decreasing the heritability
of the signaling trait. As with variation in threshold values, in these simulations, signals once
again evolved so that higher quality individuals signaled at greater signal intensities than lower
quality ones, and the strength of this pattern increased with more variation in the random
environmental component (Figure A4). This result occurs because there is selection for high-
quality individuals to signal farther above the threshold value to ensure that their phenotype (and
their offspring’s phenotypes) are above the threshold value regardless of the environmental
effect. As above, in these simulations, receivers mated with the last signaler evaluated, so there
was some benefit for low-quality individuals to signal below the threshold value because they
could reduce the costs of signaling and still have a chance of being the last signaler a receiver

evaluated.
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526  Figure 6. The phenotypic distribution of signalers in the individual-based simulations. Each
527  panel shows the distributions for the cumulative number of individuals in 5 runs of the

528  simulation. The solid vertical line indicates the mean threshold value of the receiver population.

529  Parameters: T =1, K =300, u =025, p>=0.01, ¢ =0.0001, B=35, N=10.
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532  Figure 7. Results of the individual-based simulations for different values for the maximum
533  number of mates a receiver could evaluate N. If a receiver did not encounter a signaler with a
534  signal intensity above the receiver’s threshold, it mated with the final signaler it evaluated

535  regardless of signal intensity. Each line shows the mean genotypic values for 10 runs of the
536  simulation. Parameters: 7 =1, o =0.004, K =300, u=0.25, p> =0.01, ¢’ =0.0001, B =5.
537

538  Coevolution of Signalers and Receivers

539 Up to this point, all of our models have assumed that the mean threshold value of the
540 receiver population does not evolve. In this section, we present results from a model that we
541  adapted from our individual-based simulations to explore the coevolution of signalers and

542  receivers. To do so, we assumed that a receiver’s threshold value was determined by a single-
543  locus quantitative trait and that receivers had greater fecundity if they mated with a higher

544  quality signaler. These simulations were not intended to investigate all of the nuances of

545  signaler-receiver coevolution, but instead were intended to test whether the general conclusions
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546  from our above models hold even with receiver evolution. These simulations were identical to

547  the individual-based simulation described above except for the key differences mentioned below.

548 The receiver’s threshold value was determined by a single-locus quantitative trait. All
549 individuals (signalers and receivers) had a genotypic value for this trait, but it was only

550  expressed in receivers. There was no genetic correlation between threshold genotypes and

551  signaling genotypes. Each receiver’s phenotypic value of the threshold was their genotypic value

552  plus a random environmental component drawn from a zero-mean normal distribution with

553  variance o°.

554 Recall that in the original model, receivers did not acquire any fitness benefits for mating
555  with higher quality signalers. In this version of the model, however, we wanted threshold values
556  to evolve, so we included fitness benefits for mating with higher quality signalers. This was

557  implemented by having receivers have one additional offspring (B + 1 offspring) with a

558  probability of their mate’s quality (recall that quality ranges from 0 to 1).

559 The genotype (for the threshold trait) of offspring was simply the average value of both
560  of their parents. To speed up the pace of evolution, we assumed that a mutation occurred with
561 every birth such that a random value drawn from a zero-mean normal distribution with variance
562  0.02 was added to the offspring’s genotype. These mutations added additional variance to the
563  threshold values, a factor that was not included in our previous models (the analytical model or
564  other simulations). This difference precludes quantitative comparisons of our previous models
565  with the coevolutionary models we present here, but we are still able to make qualitative

566  comparisons.


https://doi.org/10.1101/2020.05.30.125518
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.125518; this version posted October 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

31
567 Simulations were initiated as in previously described simulations. Unless otherwise
568  specified (see figure AS for exceptions), individuals’ initial threshold values were randomly
569  assigned with a mean of 1 and variance 0.04. For the 10,000-year “burn-in” period, individuals
570  had continuous assessment after which they evaluated signalers in a threshold manner. After the
571  burn-in period, simulations ran for 20,000 generations. This simulation length appeared to be

572  long enough for thresholds to reach a stable value (Figure AS).

573 As in our previous models, these simulations showed that increased variance in threshold
574  values leads to a greater difference between the signaling values of low- and high-quality
575  signalers (Figure A6), thus demonstrating that the qualitative results of our previous models are

576  unchanged, even if receivers’ thresholds and signalers’ signals are allowed to coevolve.

577

578  Discussion:

579 Most previous models of signal evolution have assumed that receivers assess continuous
580  variation in a signals in a continuous manner (e.g., Grafen 1990a, 19905; Johnstone 1994). In
581  many species, however, receivers exhibit threshold responses in which receivers respond to

582  continuously varying signals in an binary fashion (e.g., Masataka 1983; Zuk et al. 1990; Reid
583  and Stamps 1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011).
584  We have shown that (1) invariant threshold assessment of signals leads to all-or-nothing signals
585  (Broom and Ruxton 2011) or a breakdown of reliable signaling systems, but (2) reliable

586  signaling can be restored if variation is introduced either in the value of the threshold boundary
587  among receivers or in the translation of genotype to phenotype among signalers. In addition, (3)

588  when reliable signaling evolves, the mean signal intensity of signalers will typically be above the
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589  mean threshold value of receivers, but (4) the population of signalers will still show a continuum

590 of signal intensities from well below to well above the population mean threshold.

591 Our models emphasize the importance of variation among receivers in maintaining

592  reliable signaling systems. In natural populations, it seems highly likely that threshold values
593  will vary among receivers to some degree because local environmental conditions affect

594  phenotypes. Indeed, in a mating context, there is often considerable variation in mate choice
595  among receivers due to genetic, developmental, or environmental differences (Jennions and
596  Petrie 1997). In animals exhibiting categorical perception in particular, there is evidence of
597  variation in category boundaries (Caves and Green et al. 2018; Zipple and Green et al. 2019;
598  Caves et at. 2020) as well as context-dependence of categorical boundaries (Lachlan and

599  Nowicki 2015). Future empirical work should quantify the degree of variation among receivers’
600 threshold values and more directly investigate its effect on signal evolution. Empirical work
601  could also test conclusions (3) and (4) above by comparing the distribution of signal intensities

602  and threshold values in threshold signaling systems.

603 Although our models explicitly considered signals whose reliability is maintained as a
604  result of high- and low-quality signalers facing differential costs of signaling, a similar

605  framework also applies to signals whose reliability is maintained as a result of high- and low-
606  need signalers receiving differential benefits of signaling (Johnstone 1997). An example of this
607 latter case would be nestling birds begging for food from their parents. In this scenario, the

608  benefit of signaling (begging) increases more rapidly for high-need nestlings than low-need ones.
609  As is the case for models with continuous assessment, the same general conclusions emerge from
610  our threshold assessment models whether we assume signalers have differential costs or benefits

611  (see the appendix [sec. A2, fig. A7 and fig. A8] for differential benefits results).
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612 Similarly, while we have only discussed among-receiver variation in threshold values
613  (i.e., inter-receiver variation), the same general patterns should hold if individual receivers vary
614  in their threshold values over time (intra-receiver variation). This intra-receiver variation might
615  emerge from changes during development or changes in environmental conditions, but it could
616  also be a result of variation in an individual receiver’s ability to detect a threshold boundary.
617  That is, a receiver might mistakenly assess a signal as above its threshold when in actuality it
618  was not or vice versa. Our analytical model treats all these types of variation identically;
619 therefore, it predicts that either inter- or intra-receiver variation in threshold values will maintain
620  signal reliability. This suggests that while perceptual errors by the receiver decrease the number
621  of equilibrium signaling values in models with continuous assessment (Johnstone and Grafen
622  1992a), in models with threshold assessment, perceptual errors might in fact increase the number
623  of equilibrium signaling values. Our individual-based simulations only explicitly modeled inter-
624  receiver variation, however. It would be useful for future studies to explore intra-receiver

625  variation more explicitly.

626 Our analytical models focus on pure fixed threshold assessment, in which individual

627  receivers evaluate any signal above their threshold value as high-quality and below their

628  threshold as low-quality. However, there are different variants of threshold assessment in which
629  receivers responses follow a general threshold rule but are context-dependent (reviewed by Roff
630  2015). For instance, there is evidence that female variable field crickets, Gryllus lineaticeps,

631  evaluate mates using a threshold strategy with a last-chance option in which females use a

632  threshold rule, but if a female has evaluated N males and none of them were above the threshold
633  value, it mates with the final male encountered (Janetos 1980; Beckers and Wagner 2011). The

634  results of our individual-based simulations show that while our general conclusions about signal
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evolution hold whether receivers follow as a pure fixed threshold strategy or have a last-chance
option, the specific relationship between signaler quality and signal intensity will differ
depending on the strategy. Moreover, with the last-chance option, this relationship depends on
the number of signalers evaluated before mating with the final signaler. We have not evaluated
other context-dependent threshold strategies (reviewed in Roff 2015), but it is likely that these

will also alter the specific relationship between signaler quality and signal intensity.

In addition, we have only considered the evolution of signals under relatively simple
ecological scenarios in which reliable signaling is maintained by differential signaling costs (or
benefits), but in more complicated scenarios, reliable signals can evolve even without immediate
signaling costs. For example, reliable signaling can evolve without signaling costs when there
are repeated interactions (Rich and Zollman 2016). Similarly, reliable signaling might evolve via
kin selection when individuals are signaling among close relatives (e.g., begging in birds; Caro et
al. 2016). Furthermore, our models do not explain the evolution of dishonest signals (in our
models, signals either evolve to be reliable or to contain no information). Dishonest signals (or
“bluffs”) can be maintained in otherwise reliable signaling systems by the existence of frequency

dependent selection (Szamado6 2017), a factor that is not present in our models.

Another complexity we do not consider here is the ability of receivers to assess their own
quality. Mutual assessment plays and important role in signaling, particularly in the context of
animal contests where individuals might have to compare their own resource holding potential to
that advertised by their opponent (Arnott and Elwood 2009; Elwood and Arnott 2012). When
evaluating the signals of opponents, an individual might have a threshold response, such that its
giving-up decision is based on a threshold signal value set by the individual’s own resource

holding potential. Understanding how threshold responses affect signal evolution in such
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658  situations would be a valuable future direction of our work. It is worth noting, however, that
659  despite many examples of mutual displays before contests, there is surprisingly little empirical
660  evidence that contestants compare their own display to the display of their opponent (Elwood

661  and Arnott 2012).

662 It is important to recognize that most of our models assume there is a fixed mean

663  threshold value for the receiver population. If variations in threshold values among receivers are
664  due to heritable differences, threshold values themselves will be subject to natural selection and
665  potentially change over time (Janetos 1980; Real 1990; Bleu et al. 2012). We would expect the
666  mean threshold value to remain stable if threshold values are either physiologically constrained,
667  as might be the case in some species with categorical perception, or ecologically constrained, as
668  might be the case when the same perceptual machinery is used to assess signals in addition to
669  being used in some other ecological context (e.g., female guppies, Poecilia reticulata, use the

670  color orange for mate assessment and food detection; Rodd et al. 2002).

671 The coevolution of threshold and signal does not change the qualitative results of our
672  models. Our individual-based simulations with coevolution confirmed that the qualitative

673  conclusions of our models can still hold when selection causes receivers’ thresholds to evolve
674  (Figure A6). However, we only explored a limited set of ecological and genetic assumptions in
675 those simulations, and additional work is necessary to more fully understand how the

676  coevolution between signalers’ signals and receivers’ thresholds affects the reliability of

677  signaling systems. For instance, in intra-specific signaling systems (e.g., mate choice), there is
678  often a genetic correlation between receiver preference (here, the threshold value) and signaling

679 traits, which can lead to emergent evolutionary phenomena such as Fisherian runaway selection
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(Fisher 1930; Lande 1981; Kirkpatrick 1982). Future studies should explore how threshold

responses by receivers affects these processes.
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