

1 **Title:** Threshold assessment, categorical perception, and the evolution of reliable signaling

2 **Running Title:** Threshold assessment and honest signals

3 **Authors:** James H. Peniston*¹, Patrick A. Green^{2,3}, Matthew N. Zipple³, Stephen Nowicki³

4 1. Department of Biology, University of Florida, Gainesville, FL, USA

5 2. Centre for Ecology and Conservation, College of Life and Environmental Sciences, University
6 of Exeter, Penryn, Cornwall, UK

7 3. Department of Biology, Duke University, Durham, NC, USA

8 * Corresponding author: jimmpen@ufl.edu

9 **Author Contributions:** All authors conceptualized the study together and contributed to model
10 design and interpretation. J.H.P. constructed the models and wrote the first draft of the
11 manuscript. P.A.G., M.N.Z., and S.N. contributed to the writing of the manuscript.

12

13 **Acknowledgments:** We are grateful to E.M. Caves, S. Peters, S. Johnsen, and S. Zlotnik for
14 providing value advice throughout this project. We also thank N. Kortessis and the members of
15 the UF SRNE journal club for providing comments on earlier versions of this manuscript.
16 Funding was provided by the Duke University Office of the Provost. PAG was supported by a
17 Human Frontier Science Program Fellowship # LT000460/2019-L. M.N.Z. was supported by an
18 NSF graduate research fellowship.

19

20 **Data Accessibility Statement:** Code for the individual-based simulations along with
21 accompanying documentation will be posted on Dyrad upon acceptance. The code is available to
22 reviewers upon request.

23

24

25

26

27

28 **Abstract:**

29 Animals often use assessment signals to communicate information about their quality to a
30 variety of receivers, including potential mates, competitors, and predators. But what maintains
31 reliable signaling and prevents signalers from signaling a better quality than they actually have?
32 Previous work has shown that reliable signaling can be maintained if signalers pay fitness costs
33 for signaling at different intensities and these costs are greater for lower quality individuals than
34 higher quality ones. Models supporting this idea typically assume that continuous variation in
35 signal intensity is perceived as such by receivers. In many organisms, however, receivers have
36 threshold responses to signals, in which they respond to a signal if it is above a threshold value
37 and do not respond if the signal is below the threshold value. Here, we use both analytical and
38 individual-based models to investigate how such threshold responses affect the reliability of
39 assessment signals. We show that reliable signaling systems can break down when receivers
40 have an invariant threshold response, but reliable signaling can be rescued if there is variation
41 among receivers in the location of their threshold boundary. Our models provide an important
42 step towards understanding signal evolution when receivers have threshold responses to
43 continuous signal variation.

44

45 **Keywords:** Animal communication, honest signals, mate choice, sensory ecology, sexual
46 selection, signaling theory

47

48

49

50 **Introduction:**

51 In contexts ranging from mate choice to aggression, animals use signals to assess each
52 other (Maynard Smith and Harper 2003; Searcy and Nowicki 2005; Seyfarth et al. 2010). These
53 signals can include any behavioral or morphological trait of one individual (the “signaler”) that
54 has evolved to convey information to another individual (the “receiver”), such as the song of a
55 bird, the sex pheromone of a moth, or the aposematic coloration of a poison frog (Bradbury and
56 Vehrencamp 2011). The information conveyed in signals often regards the quality of the
57 signaler, such as the signaler’s size (e.g., call frequency in frogs; Ryan 2001) or physiological
58 condition (e.g., plumage brightness in some birds; Lindström and Lundström 2000). A central
59 question for researchers studying animal signaling systems is, what maintains the reliability of
60 assessment signals (Searcy and Nowicki 2005)? That is, if it benefits signalers to produce a
61 signal indicating a better quality than they actually have, why do signalers produce a signal that
62 reliably (“honestly”) communicates quality?

63 In a foundational verbal model, Zahavi (1975) suggested that assessment signals could be
64 reliable indicators of quality if signalers pay costs for expressing signals. This idea was termed
65 the “handicap principle” in that signalers of the highest quality could afford to pay greater
66 handicaps to produce a signal than could signalers of lower quality. Although reliable signaling
67 was shown not to evolve when Zahavi’s original assumptions were made explicit in genetic
68 models (Maynard Smith 1976; Kirkpatrick 1986), Grafen (1990a, 1990b) later showed, using
69 both population genetic and game theory models, that the handicap principle can lead to the
70 evolution of reliable signaling if two conditions are met. First, the costs of signaling at a given
71 intensity (e.g., producing a large or colorful signal) must be greater for signalers of lower quality
72 compared to signalers of higher quality. Second, receivers should be able to assess continuous

73 variation in signal intensities and thereby gauge signaler quality; that is, as signal intensity
74 increases continuously, so does the benefit the signaler gains from receivers. (Note that Penn and
75 Számadó (2020) suggested that Grafen’s models are substantively different from Zahavi’s
76 original conceptualization. Here, we refer to them both as the “handicap principle” for
77 consistency with the literature). Johnstone (1997) later developed graphical versions of Grafen’s
78 (1990a, 1990b) mathematical models, illustrating how the optimal level of signaling—the
79 equilibrium point at which the net benefits are greatest—will be different for lower *versus* higher
80 quality signalers. This variation in equilibrium points leads to reliable signaling (Johnstone
81 1997).

82 The cost-based reliable signaling theory developed by Zahavi (1975), Grafen (1990a,
83 1990b), and Johnstone (1997) has played a crucial role in our understanding of the evolution of
84 animal signals (Maynard Smith and Harper 2003; Searcy and Nowicki 2005). Other studies have
85 recognized, however, that some assumptions of these models do not necessarily reflect the reality
86 of animal signaling systems. For example, the initial models of Grafen (1990a, 1990b) did not
87 incorporate the concept of perceptual error—when a signaler’s true signal value is not perceived
88 as such by a receiver. In a subsequent series of models, Grafen and Johnstone showed that
89 adding perceptual error into models of signal evolution makes otherwise continuous signaling
90 systems more discrete, such that fewer equilibrium signaling values exist (Johnstone and Grafen
91 1992a; Grafen and Johnstone 1993; Johnstone 1994). Reliable signaling can be maintained in
92 these models as long as signalers with greater signal intensity are more likely to be perceived as
93 having higher-intensity signals (Johnstone and Grafen 1992a). Furthermore, a continuum of
94 equilibrium signaling values reemerges if perceptual errors are more common at higher signal
95 intensities or if signaling costs increase more rapidly at higher signal intensities (Johnstone

96 1994). Other researchers have found results similar to those of Grafen and Johnstone when
97 incorporating other aspects of biological realism into models of signal evolution: when the
98 assumptions of the classic handicap models are relaxed, signaling systems are altered, but
99 reliability can be maintained (e.g., Lachmann and Bergstrom 1998; Proulx 2001).

100 The aforementioned studies have advanced our understanding of signal evolution, but
101 they have all maintained the assumption that receivers can assess continuous variation in signal
102 intensities and thereby gauge signaler quality; that is, as signal intensity increases continuously,
103 so does the benefit the signaler gains from receivers. However, some organisms have threshold
104 responses to assessment signals in which signal receivers respond in a binary manner to
105 continuous variation in signal intensity (e.g., Masataka 1983; Zuk et al. 1990; Reid and Stamps
106 1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011; Roff 2015). In
107 these systems, receivers respond to a signal if it is above a threshold value and do not respond if
108 the signal is below the threshold value. For example, female variable field crickets (*Gryllus*
109 *lineaticeps*) prefer males producing chirps at rates above 3.0 chirps per second but do not
110 discriminate between chirp rate variants that both lie either above or below this threshold
111 (Beckers and Wagner 2011).

112 Threshold responses may reflect a behavioral decision by receivers (e.g., Beckers and
113 Wagner 2011), but they may also be linked to an animal's perceptual system. Categorical
114 perception, for example, occurs when continuous variation in a stimulus is perceived as
115 belonging to distinct categories, with individuals showing an increased capacity to discriminate
116 stimuli that fall into different categories as compared to stimuli that fall in the same category
117 (Harnad 1987; Green et al. 2020). For example, a recent study found that female zebra finches
118 (*Taeniopygia guttata*) show categorical perception of the orange to red color continuum

119 representative of male beak color: females labeled eight color variants as lying in two categories
120 and showed better discrimination of cross-category variants as compared to equally-spaced
121 within-category variants (Caves and Green et al. 2018). Categorical perception of signal
122 variation, such as that found in zebra finches (Caves, Green et al. 2018), túngara frogs (Baugh et
123 al. 2008), and sparrows (Nelson and Marler 1989), would likely lead to a threshold response if
124 categories are treated in an binary fashion, thereby violating the continuous assumptions of cost-
125 based models of reliable signaling.

126 While some models have investigated when different types of threshold responses will
127 evolve (Janetos 1980; Real 1990; Svennungsen et al. 2011; Bleu et al. 2012), few studies have
128 explored how threshold responses influence the evolution of reliable signaling. Many game
129 theoretical approaches to studying reliable signaling have relaxed the assumption that receivers
130 assess continuous variation in signal intensities (Enquist 1985; Maynard Smith 1991; Hurd 1995;
131 Számadó 1999). However, game theoretic models have typically been of discrete signaling
132 games in which both signalers and receivers choose from a discrete set of behaviors (e.g.,
133 signalers send either a low- or high-quality signal and receivers either attack or do not attack) or
134 continuous signaling games in which signalers and receivers have a continuum of possible states
135 (Johnstone and Grafen 1992b; Bergstrom and Lachmann 1997). Here, we are interested in the
136 case in which signalers are capable of signaling at any intensity on a continuous range (e.g., tail
137 length can be any length from 5–15mm), but receivers have a binary threshold response (e.g.,
138 mate with signaler if and only if tail is longer than 10mm). Broom and Ruxton (2011) have
139 previously explored such a scenario, showing that when receivers respond to signals in a
140 threshold manner it leads to the evolution of “all-or-nothing” signaling systems. That is,
141 signalers with a quality below a critical value all produce the same cheap signal while signalers

142 with a quality above the critical value all produce the same expensive signal. The model of
143 Broom and Ruxton (2011) assumed that receivers all had the same threshold value. However, it
144 is conceivable that receivers could vary in their threshold values, for example due to
145 environmental conditions or developmental history. Here, we explore the evolutionary
146 implications of such inter-individual variation in threshold values.

147 We begin by developing a model of signal evolution that assumes receivers respond to
148 continuous signal variation in a continuous fashion (akin to the models of Grafen 1990*a*, 1990*b*;
149 Johnstone 1997). This model requires some simplifying assumptions, but it provides a clear
150 demonstration of how reliable signals evolve when there is not a threshold response (the typical
151 assumption). We then show how threshold responses to continuous signal variation can remove
152 the variation in equilibrium signal intensities central to current models of reliable signaling, but
153 how introducing inter-individual variation in threshold responses can rescue the evolution of
154 reliable signals. In addition to these analytical models, we also develop individual-based
155 simulations to assess the robustness of our conclusions under more realistic ecological and
156 genetic assumptions, as well as to ask what role additional complexities in receiver choice can
157 have on the evolution of signals responded to in a threshold fashion.

158 We focus on the case in which the signaling behavior of the signaler population evolves
159 to optimize fitness and the location of the mean threshold value of the receiver population does
160 not evolve. This assumption is relevant to many biological scenarios in which the threshold value
161 of the receiver population is evolutionarily constrained. For instance, if a receiver's threshold
162 value is determined by its perceptual machinery rather than a behavioral choice, as with
163 categorical perception, the threshold value might be constrained by its neural physiology (Green
164 et al. 2020; Mason 2020). The threshold value of the receiver population might also be

165 maintained by stabilizing selection from other ecologically important signals and cues. For
166 example, consider a generalist predator (receiver) under selection to avoid eating an
167 aposematically colored toxic prey species (signaler). The threshold value of aposematic
168 coloration above which the predator will not attack an individual of the focal prey species might
169 be constrained by selection to detect the coloration of other prey species. Finally, threshold
170 values might be constrained by a lack of additive genetic variation in the trait or strong genetic
171 linkage with other important phenotypes (Blows and Hoffmann 2005; Gomulkiewicz and Houle
172 2009). This assumption that the mean threshold value of the receiver population does not evolve
173 simplifies our analytical models, leading to clear predictions. However, we also explore the
174 situation of signaler-receiver coevolution in our individual-based simulations and find that the
175 general conclusions from our analytical models still hold in the presence of signaler-receiver
176 coevolution.

177

178 **Continuous Assessment Model**

179 We start by constructing a model of signal evolution that assumes receivers respond to
180 continuous signal variation in a continuous fashion (i.e., there is not a threshold response). This
181 model can be thought of as an intermediate between those of Grafen (1990a, 1990b) and
182 Johnstone (1997): it can be mathematically difficult to incorporate ecological complexity into
183 Grafen's models, while Johnstone's model is purely graphical and thus cannot be analytically
184 evaluated. This model, and our other analytical models below, are rather simple models in which
185 we do not model the evolution of receivers. Instead, we assume that receivers have a fixed
186 reaction norm which is a continuous function that scales positively with signal intensity (i.e.,
187 receivers are more likely to respond to signals of greater intensity). We also assume that the

188 optimal signal intensity for a signaler is that which maximizes its net benefit. Therefore, the
189 equilibrium signal intensity is defined as the maximization of the difference between $b(s)$ and
190 $c(s)$, where $b(s)$ is the fitness benefit received by a signaler for producing a signal intensity s and
191 $c(s)$ is the fitness cost associated with producing signal intensity s .

192 In line with previous models (Grafen 1990a, 1990b; Johnstone 1997), we assume that
193 fitness costs increase linearly with signal intensity and that these costs increase more rapidly for
194 low-quality signalers than high-quality ones (the same qualitative results should apply for any
195 monotonically increasing cost function). Let $c(s) = \alpha(q)s$, where $\alpha(q)$ is a function relating a
196 signaler's quality, q , to its cost of signaling. For analytical tractability, we assume that signaling
197 cost decreases linearly with quality and that $0 \leq q \leq 1$ ($q = 0$ are the lowest quality individuals
198 and $q = 1$ are the highest quality individuals). Therefore,

199
$$c(s) = [ac_0 + a(1-q)]s, \quad (1)$$

200 where a is the rate at which the slope of the cost function decreases with quality, and c_0
201 determines the minimum possible cost of signaling, ac_0 . Following the graphical representation
202 of Johnstone (1997), we assume that signaler benefit is a saturating function of signal intensity
203 such that

204
$$b(s) = \frac{rs}{1+ds}, \quad (2)$$

205 where r is the rate that benefit increases with signal intensity and d is the degree of saturation
206 with signal intensity (plots of equations [1] and [2] can be seen in Figure 1A). More
207 mechanistically, the benefit function can be thought of as a function of the receivers' reaction

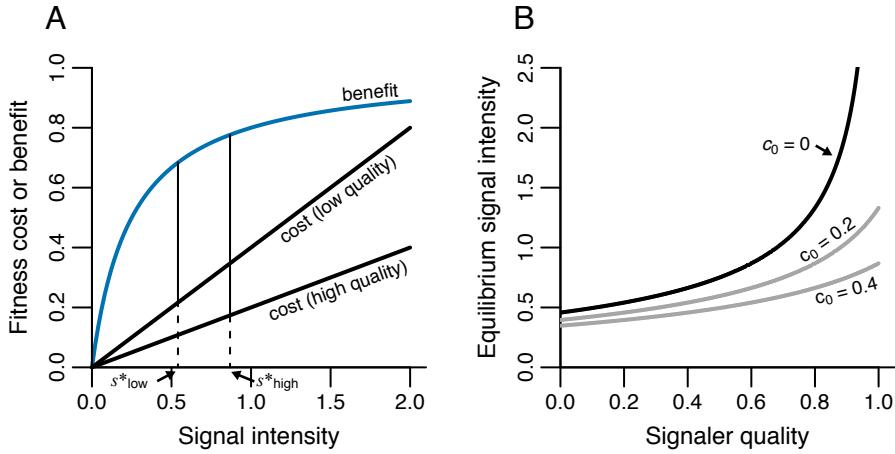
208 norm, which is not explicitly modeled here but the same qualitative results should apply for any
209 continuous, monotonically increasing benefit function.

210 Maximizing the difference between equation (1) and (2) gives the equilibrium signal
211 intensity

$$212 s^* = \frac{\sqrt{\frac{r}{a(1+c_0-q)}} - 1}{d} \quad (3)$$

213 (we provide a derivation in the appendix, sec. A1). This equation shows that higher quality
214 signalers will have greater signal intensities than lower quality ones (Figure 1B). In other words,
215 signal intensity is a reliable indicator of quality. Figure 1A demonstrates this pattern for two
216 different qualities, showing that, for high-quality individuals, the maximum net benefit is at a
217 higher signal intensity than for low-quality individuals. With greater values of c_0 , the
218 relationship between signaler quality and signal intensity becomes more linear and less steep
219 (Figure 1B). For simplicity, in all other figures, we assume that $c_0 = 0$.

220 The results of this model are in line with those of Grafen (1990a, 1990b) and Johnstone
221 (1997). This modeling approach also provides a useful framework that can be adapted to
222 analytically explore animal signaling in different biological scenarios, such as threshold
223 assessment.



224

225 **Figure 1.** The evolution of reliable signals in a model with continuous assessment. A)
226 Relationship between signal intensity and fitness costs or benefits for signalers of low ($q = 0.2$)
227 and high ($q = 0.6$) quality, given $c_0 = 0$. Arrows denote the equilibrium signal intensity, s^* , for
228 low- and high-quality individuals, which occurs where the difference between benefit and cost is
229 the greatest. B) Relationship between signaler quality and equilibrium signal intensity given by
230 equation (3). Three different values for c_0 are shown. Note that higher quality individuals signal
231 at greater signal intensities and that panel A closely matches Johnstone's graphical model (1997,
232 Figure 7.2). In both panels, $a = 0.5$, $r = 4$, and $d = 4$.

233

234 **Threshold Assessment Model**

235 *Fixed Threshold*

236 We next adapt the above model so that receivers respond to signal variation in a binary
237 fashion (i.e., a threshold response). That is, if a signal is below a threshold value T , the receiver

238 assesses the signal as low-quality and if the signal is above T , the receiver assesses the signal as
239 high-quality. Because a signaler's benefit depends on the receiver's assessment, the benefit of
240 signaling at a given intensity can be thought of as the proportion of the receiver population that
241 assesses the signal as high-quality. For example, in a mating context where males are signaling
242 to females, a male's benefit of signaling would be the proportion of females in the population
243 that assess it as a high-quality mate and therefore mate with it. Alternatively, in the context of
244 aggressive interactions, the signaler's benefit is the proportion of competitors that identify the
245 signaler as high-quality and give up a contest against the signaler. We assume that signal
246 intensities at or above the receiver threshold gain maximum benefits, while signal intensities
247 below the threshold gain no benefit. Therefore,

$$248 \quad b(s) \begin{cases} 0 & \text{if } s < T, \\ 1 & \text{if } s \geq T, \end{cases} \quad (4)$$

249 where 1 is the maximum benefit at which every receiver assesses the signaler as high-quality.

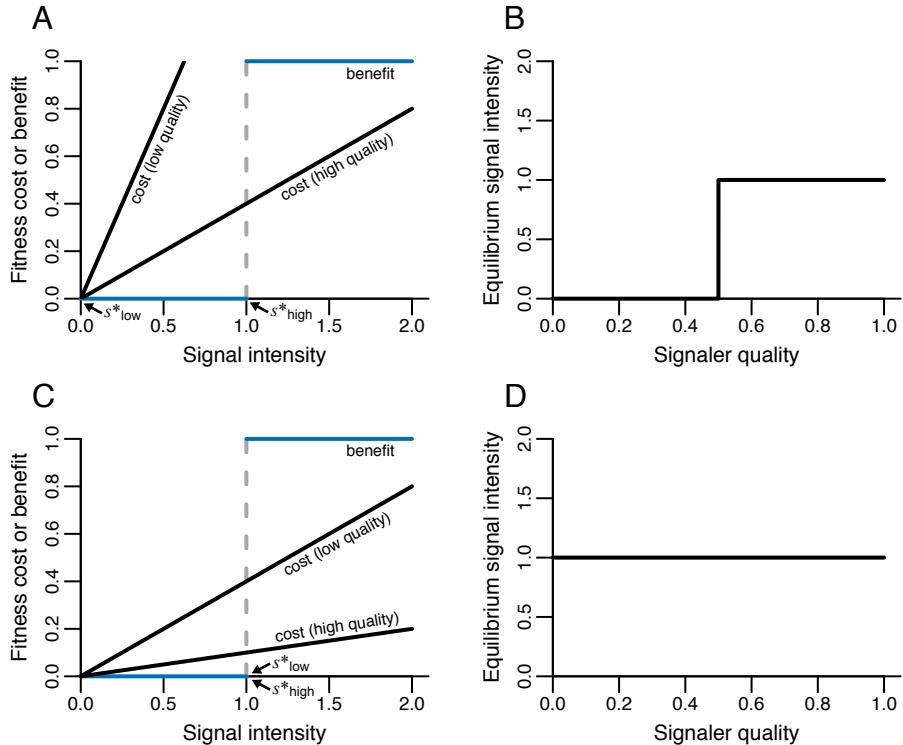
250 In this model, there are only two equilibrium signal intensities: the baseline signal
251 intensity 0 and the threshold value T . This is an example of an all-or-nothing signaling system
252 and thus our model agrees with that of Broom and Ruxton (2011). If the costs to an individual of
253 signaling above the threshold are so high that there is never a net benefit of signaling, that
254 individual will signal at the baseline signal intensity of 0. In all other cases, individuals signal
255 exactly at the threshold value (Figure 2A,B). This makes intuitive sense: there is no benefit to
256 signaling below the threshold value because these signals are all assessed as low-quality, but
257 there is also no benefit of signaling any higher than exactly at the threshold value, because this
258 would only accrue additional signaling costs. The result of this effect is that signalers on either
259 side of the threshold will have identical signal intensities of either zero below the threshold or

260 exactly at the threshold value (Figure 2B). In fact, if we assume that for all qualities q there is
261 some signal intensity s where $b(s) > c(s)$, all individuals will signal exactly at the threshold
262 value as is shown in Figure 2C,D. Furthermore, because individuals signaling at an intensity of 0
263 are never assessed as high-quality, a signal intensity of 0 would only be evolutionarily stable if
264 being assessed as high-quality was not strictly necessary for reproduction. Otherwise, all
265 signalers would signal at the threshold value, irrespective of costs. When all signalers signal at
266 the threshold value (e.g., Figure 2D), there is no information provided by the signal and thus, if
267 receivers' threshold responses are not ecologically, physiologically, or genetically constrained,
268 we would expect receivers to evolve to ignore the signals all together (an outcome conceptually
269 similar to the lek paradox; Borgia 1979; Tomkins et al. 2004; Kotiaho et al. 2008).

270 We focus on the case of a receiver with a binary response, but it is worth noting that the
271 results of this model can be generalized for categorical responses in which receivers have
272 multiple possible assessment categories (e.g., lowest-quality, low-quality, high-quality, highest-
273 quality). As with the binary case, the number of equilibria signal intensities will be equal to the
274 number of assessment categories.

275 The results of this model are similar to those of Lachmann and Bergstrom (1998, see also
276 Bergstrom and Lachmann 1997, 1998) who also showed that there are evolutionarily stable
277 signaling strategies in which different quality signalers signal at the same intensity (they refer to
278 these strategies as “pooling equilibria”). However, their approach assumes that only a finite
279 number of signal types are possible, while our model, as well as the model of Broom and Ruxton
280 (2011), allows for a continuum of possible signal intensities and a finite number of signal
281 intensities emerge as a prediction. The models of Lachmann and Bergstrom (1998) and Broom
282 and Ruxton (2011) are in some ways more general than ours because they consider receiver

283 coevolution. By assuming that receiver threshold values are evolutionarily constrained, we were
284 able to obtain similar results with a mathematically simpler model that can now be adapted to
285 consider variation in threshold values.



286

287 **Figure 2.** In a model with strict threshold assessment, signalers either evolve ‘all-or-nothing’
288 signals (A and B) or all signalers signal at the same value (C and D). A and C show graphical
289 depictions of the relationship between signal intensity and fitness costs or benefits for signalers
290 of low ($q = 0.2$) and high ($q = 0.8$) quality. The dashed gray lines indicate the receiver threshold
291 value. Arrows denote the equilibrium signal intensity, s^* , for low- and high-quality individuals,
292 which occurs where the difference between benefit and cost is the greatest. Note that in C the
293 equilibrium signal intensity is the same for low- and high-quality individuals. B and D show the
294 relationship between signaler quality and signal intensity. In A and B, $a = 2.0$ and in C and D, a
295 = 0.5. In all panels, $T = 1$ and $c_0 = 0$.

296 *Variable threshold*

297 The model above assumes a fixed threshold value for all receivers, but it is likely that
298 threshold values will vary among receivers. For example, the sample of female crickets tested by
299 Beckers & Wagner (2011) showed a threshold of chirp rate for mate choice decisions, but there
300 was also within-sample variance around this threshold value. Similarly, predators may vary in
301 the threshold value of an aposematic signal required to induce avoidance (for examples see
302 Endler and Mappes 2004). Because we assume that receivers do not evolve in this model (which
303 implies threshold values are evolutionarily constrained), our model is most relevant to cases in
304 which variation in threshold values is not genetically determined and rather emerges because of
305 environmental conditions or developmental history (in the *Coevolution of Signalers and*
306 *Receivers* section below, we evaluate the effects of allowing threshold evolution using
307 individual-based simulations). To model a variable threshold, we now assume that the threshold
308 values of the receiver population are normally distributed with mean \bar{T} and variance σ^2 . Note
309 that this convention implies that receivers can have negative threshold values: if a receiver's
310 threshold value is less than or equal to 0, it evaluates all signalers as high-quality because the
311 minimum signal intensity is 0. Once again assuming that the benefit of the signal is the
312 proportion of the receiver population that assesses the signal as high quality, it follows that

$$313 \quad b(s) = \int_{-\infty}^s \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(T-\bar{T})^2}{2\sigma^2}\right] dT, \quad (5)$$

314 which simply gives that the benefit of signaling at intensity s is the area less than s under a
315 normal distribution with mean \bar{T} and variance σ^2 . For example, if a signal intensity of s is
316 assessed as high-quality by 20% of the receiver population, $b(s) = 0.2$.

317 Given equation (5) and assuming that costs still follow equation (1), the equilibrium
318 signal intensity is

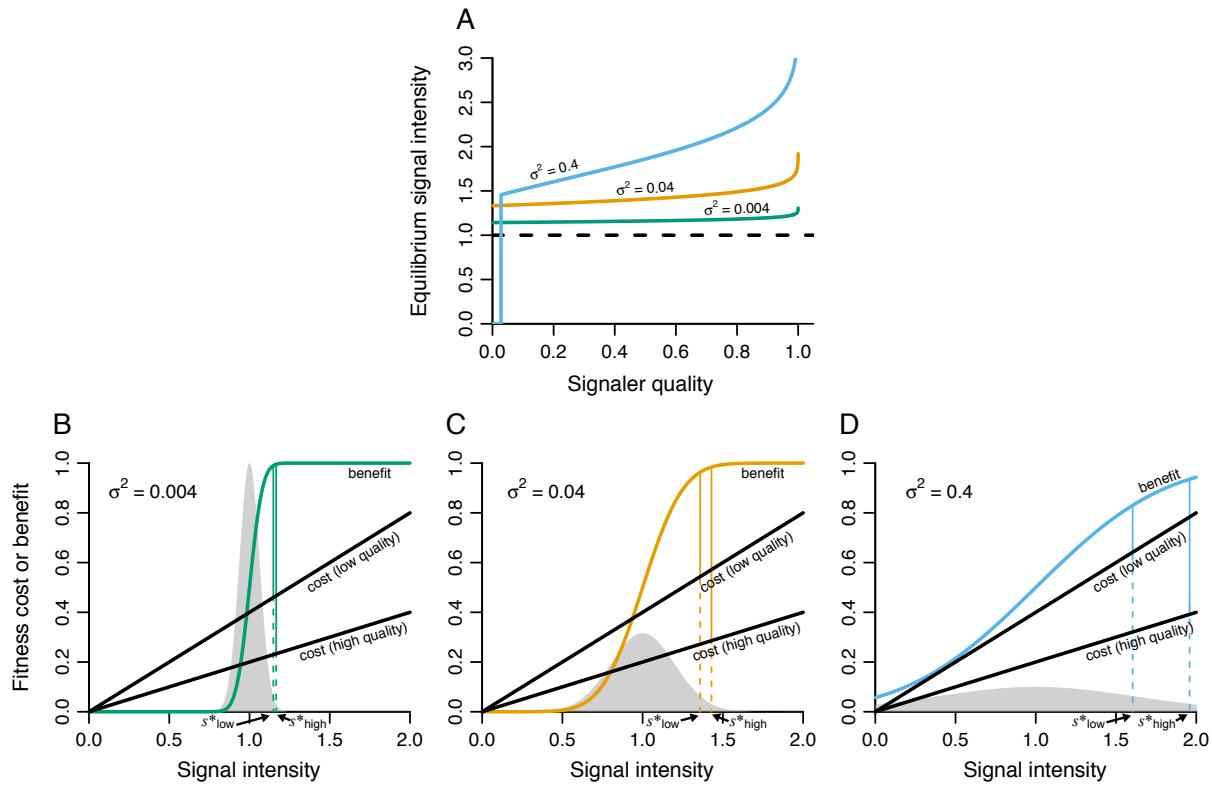
319
$$s^* = \bar{T} + \sqrt{-2\sigma^2 \ln(a(1+c_0-q)\sqrt{2\pi\sigma^2})}. \quad (6)$$

320 As with equation (3), this equation provides the equilibrium signaling intensity for different
321 qualities of the signalers. However, if $b(0) > s^*$ or if equation (6) is undefined, which occurs if
322 $a(1+c_0-q)\sqrt{2\pi\sigma^2} \geq 1$, the equilibrium signaling value is instead 0 (see the appendix, sec. A1,
323 for more details and for the derivation of equation [6]).

324 Equation (6) shows that incorporating variance into the receivers' threshold values
325 restores the reliability of the signaling system such that signalers of different qualities receive
326 maximum net benefits at different signal intensities (Figure 3A). Furthermore, with greater
327 variance, signal intensity increases faster with increasing quality. That is, for signalers of the
328 same difference in quality, increasing variance in receiver thresholds leads to a larger difference
329 in signal intensity (Figure 3B–D).

330 After introducing inter-individual variation in the threshold value, the only case in which
331 signalers of the different qualities signal at exactly the same value is when they are signaling at
332 the baseline value 0 (e.g., Figure 3A, $\sigma^2 = 0.4$ at $q < 0.028$). Because we assume that threshold
333 values follow a normal distribution, there is always at least a small proportion of the receiver
334 population that have a threshold value less than 0 and thus assess all signalers as high-quality.
335 Therefore, there is always some benefit to signaling at the baseline value, and this benefit
336 increases with increased variance in threshold values because more of the receiver population
337 will have a threshold value less than 0.

338 Interestingly, in this model, the equilibrium signaling value is never between 0 and \bar{T}
339 (i.e., equation [6] is always greater than \bar{T} or undefined). In other words, individuals either
340 evolve to signal at the baseline value of 0 or to signal at some intensity above the mean threshold
341 value \bar{T} . This is surprising because, in this model, there is a benefit to signaling between 0 and
342 the mean threshold value. However, further exploration reveals that the net benefit is always
343 greater to signal either above \bar{T} or at 0. This is due to the sigmoidal shape of the benefit
344 function: below \bar{T} , the benefit function curves towards lower values, but above \bar{T} it curves
345 towards higher values (Figure 3B–D). The sigmoidal shape of the benefit function emerges as a
346 result of the normal distribution of the receiver variance. Because costs are linear, this sigmoidal
347 shape results in the net benefit being greater at values above \bar{T} than below it. If the variation in
348 receiver thresholds has a different distribution, however, it is possible for an equilibrium
349 signaling value to fall between 0 and \bar{T} (see the appendix [sec. A3, fig. A1], for an example
350 assuming a gamma distribution).



351

352 **Figure 3.** Variation in receiver threshold values restores reliability of signaling systems. A)
353 Relationship between quality and equilibrium signal intensity given by equation (6). Dashed
354 black line denotes the mean receiver threshold value. Colored curves indicate different
355 relationships for different values of variation in threshold value (σ^2). B–D) Relationship
356 between signal intensity and fitness costs or benefits for signalers of low ($q = 0.2$) and high ($q =$
357 0.6) quality for three different degrees of variation in the threshold value (σ^2). Gray distributions
358 represent the distributions of threshold values in the receiver population. Arrows denote the
359 equilibrium signal intensity, s^* , for low- and high-quality individuals, which occurs where the
360 difference between benefit and cost is the greatest. Parameters: $\bar{T} = 1$, $a = 0.5$, and $c_0 = 0$.

361

362

363 **Individual-based Simulations**

364 The analytical models above make many simplifying assumptions (e.g., ignoring genetics
365 and assuming infinite population sizes). To assess the robustness of our results and to explore
366 further ecological complexity, we developed stochastic individual-based simulations. These
367 simulations track individuals' genotypes and phenotypes and model the evolution of signaling
368 behavior. Unlike in the analytical models, these simulations actually model adaptation via
369 changes in allelic values rather than simply maximizing the net benefit. For these simulations we
370 chose to model the evolution of a mating signal in a sexually reproducing species with two sexes
371 (signalers and receivers). In principle, this same modeling framework could be adapted to fit
372 other types of signaling systems (e.g., intraspecific competition or predator-prey interactions).

373 *Methods*

374 Each run of the simulation modeled a population in which each individual was either a
375 signaler or a receiver. Each signaler had a quality q (ranging from 0 to 1), which determined its
376 cost of signaling. Each receiver had a threshold T , which was used to evaluate signalers (details
377 below). Generations were overlapping and population size was regulated by the number of
378 mating sites available K . The simulation was broken up into time steps, which we will refer to as
379 years. There was an annual sequence of events which happened in the following order: mortality,
380 filling of mating sites, reproduction (including signal assessment and mating, Figure 4).

381 Mortality occurred at the start of each year independent of age or reproductive status. For
382 signalers, quality and signal intensity affected mortality such that $M = [ac_0 + a(1-q)]s + m_0$,
383 where m_0 is the baseline mortality, a is the rate at which the slope of the cost function decreases
384 with quality, c_0 determines the minimum cost of signaling, and s is the signal intensity.

385 Receivers died with a fixed mortality of $2m_0$, which was higher than the baseline signaler
386 mortality in order to keep sex ratios relatively balanced.

387 Receivers occupied mating sites, from which they evaluated the signals of signalers.

388 There were only K mating sites available each year. If there were more than K receivers in the
389 population, K receivers were randomly selected (without replacement) to occupy mating sites
390 that year. Unselected receivers did not mate that year. We assumed that there was no spatial
391 structure to the population such that all individuals had the same probability of arriving at any
392 site and all sites became unoccupied at the end of the year.

393 Receivers selected signalers as mates by evaluating their signal intensity, s . Receivers had
394 threshold assessment of signals such that if a signaler's signal intensity was above the receiver's
395 threshold value T , the receiver evaluated the signaler as a high-quality mate and if the signal
396 intensity was below T , the receiver evaluated the signaler as low-quality. Receivers mated with
397 the first signaler they evaluated as high-quality and did not mate again that year. Each year,
398 receivers evaluated up to N signalers. If by that point no signalers were evaluated as high-quality,
399 the receiver mated with the final signaler that it evaluated regardless of quality (i.e., threshold
400 with last-chance option; Janetos 1980). The threshold value of each receiver was randomly
401 assigned at birth (regardless of genotype) from a normal distribution with mean \bar{T} and variance
402 σ^2 . Each mated pair produced B offspring per year and all offspring survived with a probability
403 0.5.

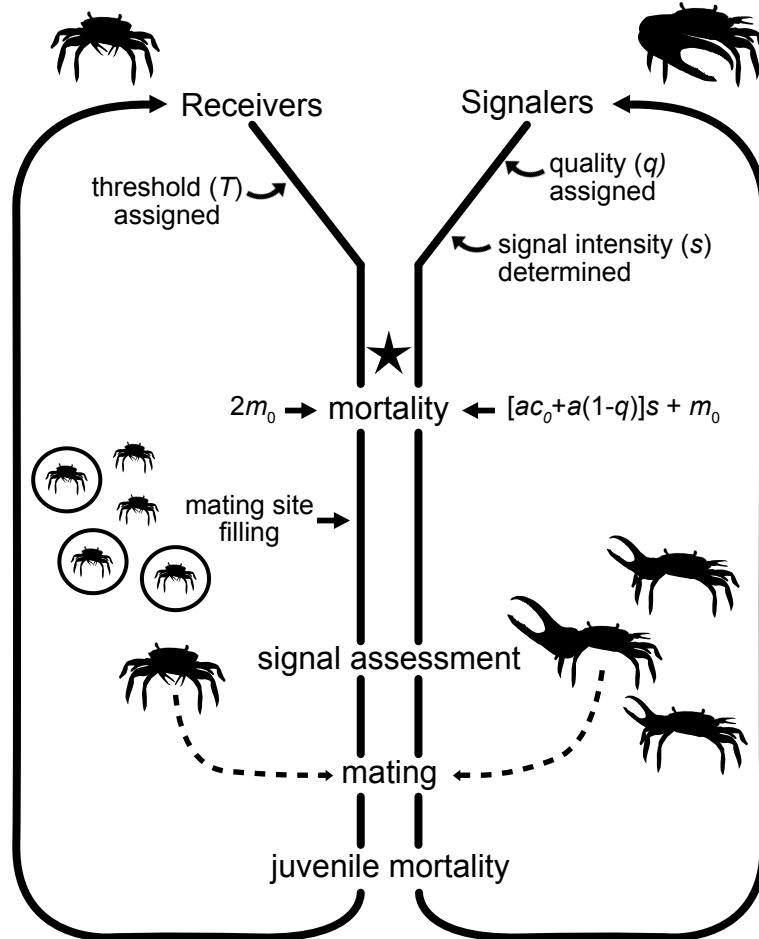
404 Each signaler had a trait, $z(q)$, which determined its signal intensity as a function of its
405 quality. This trait was genetically determined by 11 additive diploid loci, each with infinitely
406 many possible allelic values. Each locus determined the signaling value when the signaler had a

407 specific quality (broken up by increments of 0.1). That is, locus 1 determined the signal intensity
408 when the signaler's quality was 0.0, locus 2 determined the signal intensity when the signaler's
409 quality was 0.1, and so on. This implementation allows signal intensity to be almost any function
410 of quality. The phenotypic values of signal intensity for a given quality were determined by
411 adding together the genotypic values of each haplotype at the respective locus plus a random
412 environmental component drawn from a zero-mean normal distribution with variance e^2 . If an
413 individual's genotypic value was less than 0, its phenotype was assigned to be 0. An individual's
414 phenotype (signal intensity) was determined at birth and did not change throughout its lifetime.
415 Note that, because q is a continuous quantity, but the trait $z(q)$ is in increments of 0.1, signalers
416 evaluated their quality by rounding to the nearest increment of 0.1. Therefore, signalers could not
417 perfectly evaluate their own quality, which is a realistic assumption for many organisms (e.g.,
418 Percival and Moore 2010).

419 At birth, each offspring was randomly assigned to either the signaling sex (signalers) or
420 the receiving sex (receivers) and each signaler was randomly (uniform distribution, 0–1)
421 assigned a quality q . Each haplotype of the offspring was assigned by randomly selecting one of
422 the alleles at each locus of the respective parent (i.e., independent recombination). During birth,
423 a mutation occurred on each locus with probability μ . If a mutation occurred, a random value
424 drawn from a zero-mean normal distribution with variance ρ^2 was added to the value at that
425 locus. Receivers were only carriers for this trait, and it did not affect their preference.

426 Each run of the simulation was initiated with $2K$ individuals whose genotypes were
427 randomly assigned from a normal distribution with mean \bar{T} and variance 0.2 (sex, quality, and
428 signal were randomly assigned in the same manner as they were assigned at birth). To allow

429 populations to reach selection-mutation-drift balance, there was a 10,000-year “burn-in” period
430 at the beginning of the simulation. We used two different methods for this burn-in period. In the
431 first, receivers randomly selected mates independent of signal and there was no cost of signaling.
432 This simply allowed the population to reach mutation-drift balance so that the initially assigned
433 genotypes did not affect results. In the second method, receivers assessed signals in a continuous
434 manner, where the probability of mating with a signaler was $[(rs) / (1 + ds)] + 0.05$, where 0.05 is
435 the baseline probability of mating and r and d are the same as in equation (2). This latter method
436 models how signals evolve if receivers evolve threshold assessment after previously having had
437 continuous assessment. In both cases, following the 10,000-year burn-in period, simulations then
438 ran for 20,000 years with threshold assessment. Results were qualitatively similar using both
439 methods for the 10,000-year burn-in period. For simplicity, all presented results are for the case
440 in which receivers responded in a continuous fashion during the burn-in period because there
441 was less variation among runs of those simulations (see figure A2 for results of simulations with
442 random mating during the burn-in period).



443

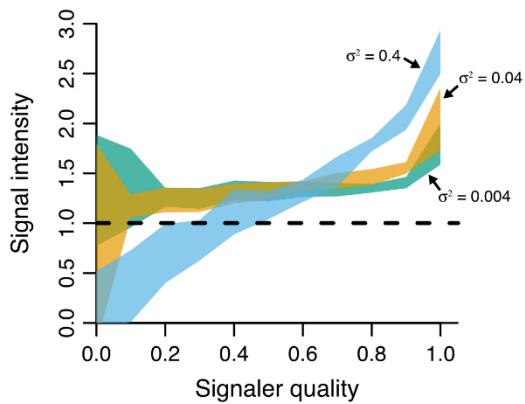
444 **Figure 4.** Life-history diagram for the individual-based simulations. The star indicates the start
445 of the annual cycle. Silhouettes of fiddler crabs (genus *Uca*) are included as visual examples for
446 signalers and receivers in a mating context.

447

448 *Results*

449 The results of our individual-based simulations matched the qualitative predictions of our
450 analytical model. As predicted by the analytical model, with little variance in threshold values,
451 signalers evolved to signal at relatively similar values whether they were low- or high-quality;
452 however, with greater variance, the difference between signal values became greater (Figure 5).

453 There was greater variance in the signal intensity of low-quality individuals compared
454 with high-quality ones both within and among runs of the simulation (among run variation
455 shown in Figure 5). This is likely because there was more genetic drift at the loci associated with
456 signaling when low-quality. Because low-quality individuals were less likely to mate, there were
457 fewer opportunities for selection to act on these loci. Although low-quality individuals signaled
458 at lower intensity than high-quality ones on average, in some runs of the simulation, genetic drift
459 led to low-quality individuals signaling at unexpectedly high signal intensities.



460

461 **Figure 5.** The relationship between signaler quality and signal intensity in the individual-based
462 simulations. Compare to the analytical model results shown in Figure 3A. The dashed black line
463 denotes the mean threshold value. Shaded areas represent the mean of 10 runs of the simulation
464 plus or minus one standard deviation. Different colored shading represents different levels of
465 threshold variation (σ^2). Negative genotypic values were interpreted as zeros, as that is how they
466 affected phenotype. Parameters: $\bar{T} = 1$, $a = 0.5$, $c_0 = 0$, $K = 300$, $u = 0.25$, $\rho^2 = 0.01$,
467 $e^2 = 0.0001$, $B = 5$, $N = 10$.

468

469 The individual-based simulations provide additional information about the phenotypic
470 distribution of signalers in the population that cannot be gained by our analytical methods
471 (Figure 6). These distributions show that even if the mean genotype of the population was to
472 always signal above the threshold value (as was the case for $\sigma^2 = 0.004$ and $\sigma^2 = 0.04$ in Figure
473 5), there were still individuals in the populations with signal intensities below the threshold
474 value. In other words, as long as there is variation in threshold values, signal intensities can vary
475 along a continuum (Figure 6). Furthermore, the greater the variation in threshold values, the
476 more uniform the distribution of signal intensities (Figure 6). For all simulation parameters, there
477 was a peak in the number of individuals signaling at an intensity of 0. This is because 0 is the
478 minimum signal intensity and thus the tail of the phenotypic distribution that would be below 0
479 was all clustered into that phenotypic value.

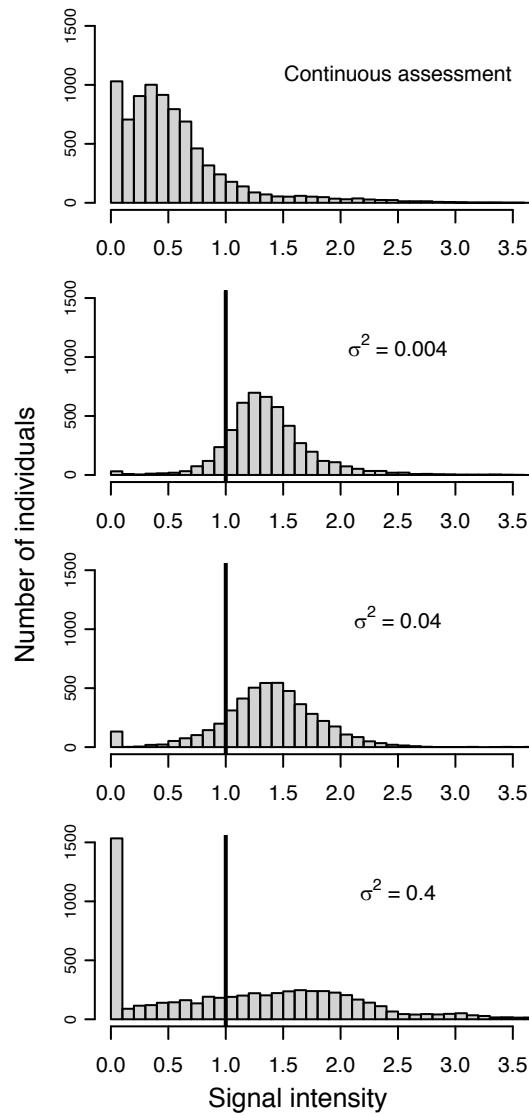
480 One major difference between our analytical model and individual-based simulations is
481 that the simulations did not show the sudden change from signaling at the baseline value to
482 signaling above the threshold value that was seen the analytical models (compare $\sigma^2 = 0.4$ in
483 Figure 3A and Figure 5). This disagreement can be explained by considering the ecological
484 assumptions of our models. Recall in the analytical model that there was always some benefit to
485 signaling at the baseline value because threshold values were normally distributed and thus some
486 proportion of the receiver population assessed all signal intensities as high-quality. In essence,
487 this logic assumes that the population is infinitely large, which was obviously not the case in the
488 individual-based simulations.

489 However, in our individual-based simulations, a benefit of signaling at the baseline value
490 emerged in another way, which was by receivers mating with the final signaler that they
491 evaluated regardless of its quality (i.e., the last-chance option). This provided signalers some
492 chance of mating, even if their signal intensity was below the threshold value of all receivers.
493 The lower the maximum number of signalers a receiver evaluated N , the greater this baseline
494 benefit, because there was an increased chance that any given signaler was the final one a
495 receiver evaluated. Reducing the value of N in the simulations resulted in sudden changes in
496 signal intensities similar to those seen in the analytical model (Figure 7). Furthermore, the lower
497 the value of N , the higher the quality at which this sudden change occurred. This pattern is
498 intuitive because with a greater baseline benefit, populations should evolve to only signal above
499 the baseline value when there is a larger net-benefit, which occurs at high qualities. Indeed, in
500 the extreme case of $N = 1$, which would amount to random mating, we would expect all
501 individuals to signal at the baseline value and thus sustain the minimum signaling costs.

502 We also restructured simulations so that receivers did not mate with the last mate that
503 they evaluated and instead did not mate at all if none of the N signalers evaluated had a signal
504 intensity above their threshold value (i.e., fixed-threshold without a last-chance option; Roff
505 2015). In these simulations, mean signaling values below the threshold value were less likely to
506 evolve (Figure A3). This is logical, because as with increasing the value of N in the simulations
507 with a last-chance option, this scenario decreases the benefit of signaling at the baseline value.
508 The only way a signaler can mate is if its signal intensity is above the threshold value of a
509 receiver.

510 We also ran simulations in which variation was incorporated into the signalers instead of
511 the receivers. Biologically, this occurs when a signal (a phenotype) is influenced by local

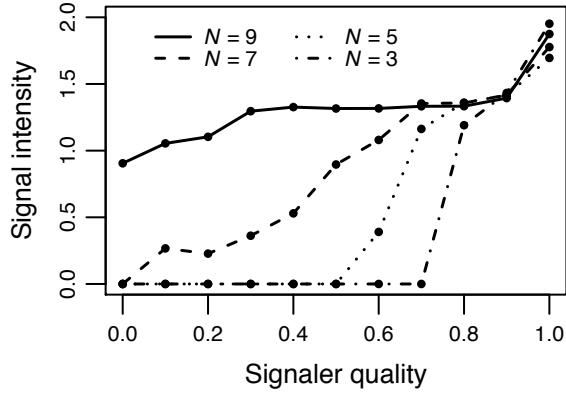
512 environment conditions (i.e., phenotypic plasticity). In these simulations, all receivers had the
513 same threshold value and we incorporated variation into the signalers by increasing the random
514 environmental component of the phenotype e^2 , which is equivalent to decreasing the heritability
515 of the signaling trait. As with variation in threshold values, in these simulations, signals once
516 again evolved so that higher quality individuals signaled at greater signal intensities than lower
517 quality ones, and the strength of this pattern increased with more variation in the random
518 environmental component (Figure A4). This result occurs because there is selection for high-
519 quality individuals to signal farther above the threshold value to ensure that their phenotype (and
520 their offspring's phenotypes) are above the threshold value regardless of the environmental
521 effect. As above, in these simulations, receivers mated with the last signaler evaluated, so there
522 was some benefit for low-quality individuals to signal below the threshold value because they
523 could reduce the costs of signaling and still have a chance of being the last signaler a receiver
524 evaluated.



525

526 **Figure 6.** The phenotypic distribution of signalers in the individual-based simulations. Each
527 panel shows the distributions for the cumulative number of individuals in 5 runs of the
528 simulation. The solid vertical line indicates the mean threshold value of the receiver population.
529 Parameters: $\bar{T} = 1$, $K = 300$, $u = 0.25$, $\rho^2 = 0.01$, $e^2 = 0.0001$, $B = 5$, $N = 10$.

530



531

532 **Figure 7.** Results of the individual-based simulations for different values for the maximum
533 number of mates a receiver could evaluate N . If a receiver did not encounter a signaller with a
534 signal intensity above the receiver's threshold, it mated with the final signaller it evaluated
535 regardless of signal intensity. Each line shows the mean genotypic values for 10 runs of the
536 simulation. Parameters: $\bar{T} = 1$, $\sigma^2 = 0.004$, $K = 300$, $u = 0.25$, $\rho^2 = 0.01$, $e^2 = 0.0001$, $B = 5$.

537

538 *Coevolution of Signalers and Receivers*

539 Up to this point, all of our models have assumed that the mean threshold value of the
540 receiver population does not evolve. In this section, we present results from a model that we
541 adapted from our individual-based simulations to explore the coevolution of signalers and
542 receivers. To do so, we assumed that a receiver's threshold value was determined by a single-
543 locus quantitative trait and that receivers had greater fecundity if they mated with a higher
544 quality signaller. These simulations were not intended to investigate all of the nuances of
545 signaller-receiver coevolution, but instead were intended to test whether the general conclusions

546 from our above models hold even with receiver evolution. These simulations were identical to
547 the individual-based simulation described above except for the key differences mentioned below.

548 The receiver's threshold value was determined by a single-locus quantitative trait. All
549 individuals (signalers and receivers) had a genotypic value for this trait, but it was only
550 expressed in receivers. There was no genetic correlation between threshold genotypes and
551 signaling genotypes. Each receiver's phenotypic value of the threshold was their genotypic value
552 plus a random environmental component drawn from a zero-mean normal distribution with
553 variance σ^2 .

554 Recall that in the original model, receivers did not acquire any fitness benefits for mating
555 with higher quality signalers. In this version of the model, however, we wanted threshold values
556 to evolve, so we included fitness benefits for mating with higher quality signalers. This was
557 implemented by having receivers have one additional offspring ($B + 1$ offspring) with a
558 probability of their mate's quality (recall that quality ranges from 0 to 1).

559 The genotype (for the threshold trait) of offspring was simply the average value of both
560 of their parents. To speed up the pace of evolution, we assumed that a mutation occurred with
561 every birth such that a random value drawn from a zero-mean normal distribution with variance
562 0.02 was added to the offspring's genotype. These mutations added additional variance to the
563 threshold values, a factor that was not included in our previous models (the analytical model or
564 other simulations). This difference precludes quantitative comparisons of our previous models
565 with the coevolutionary models we present here, but we are still able to make qualitative
566 comparisons.

567 Simulations were initiated as in previously described simulations. Unless otherwise
568 specified (see figure A5 for exceptions), individuals' initial threshold values were randomly
569 assigned with a mean of 1 and variance 0.04. For the 10,000-year "burn-in" period, individuals
570 had continuous assessment after which they evaluated signalers in a threshold manner. After the
571 burn-in period, simulations ran for 20,000 generations. This simulation length appeared to be
572 long enough for thresholds to reach a stable value (Figure A5).

573 As in our previous models, these simulations showed that increased variance in threshold
574 values leads to a greater difference between the signaling values of low- and high-quality
575 signalers (Figure A6), thus demonstrating that the qualitative results of our previous models are
576 unchanged, even if receivers' thresholds and signalers' signals are allowed to coevolve.

577

578 **Discussion:**

579 Most previous models of signal evolution have assumed that receivers assess continuous
580 variation in a signals in a continuous manner (e.g., Grafen 1990*a*, 1990*b*; Johnstone 1994). In
581 many species, however, receivers exhibit threshold responses in which receivers respond to
582 continuously varying signals in an binary fashion (e.g., Masataka 1983; Zuk et al. 1990; Reid
583 and Stamps 1997; Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson et al. 2011).
584 We have shown that (1) invariant threshold assessment of signals leads to all-or-nothing signals
585 (Broom and Ruxton 2011) or a breakdown of reliable signaling systems, but (2) reliable
586 signaling can be restored if variation is introduced either in the value of the threshold boundary
587 among receivers or in the translation of genotype to phenotype among signalers. In addition, (3)
588 when reliable signaling evolves, the mean signal intensity of signalers will typically be above the

589 mean threshold value of receivers, but (4) the population of signalers will still show a continuum
590 of signal intensities from well below to well above the population mean threshold.

591 Our models emphasize the importance of variation among receivers in maintaining
592 reliable signaling systems. In natural populations, it seems highly likely that threshold values
593 will vary among receivers to some degree because local environmental conditions affect
594 phenotypes. Indeed, in a mating context, there is often considerable variation in mate choice
595 among receivers due to genetic, developmental, or environmental differences (Jennions and
596 Petrie 1997). In animals exhibiting categorical perception in particular, there is evidence of
597 variation in category boundaries (Caves and Green et al. 2018; Zipple and Green et al. 2019;
598 Caves et al. 2020) as well as context-dependence of categorical boundaries (Lachlan and
599 Nowicki 2015). Future empirical work should quantify the degree of variation among receivers'
600 threshold values and more directly investigate its effect on signal evolution. Empirical work
601 could also test conclusions (3) and (4) above by comparing the distribution of signal intensities
602 and threshold values in threshold signaling systems.

603 Although our models explicitly considered signals whose reliability is maintained as a
604 result of high- and low-quality signalers facing differential costs of signaling, a similar
605 framework also applies to signals whose reliability is maintained as a result of high- and low-
606 need signalers receiving differential benefits of signaling (Johnstone 1997). An example of this
607 latter case would be nestling birds begging for food from their parents. In this scenario, the
608 benefit of signaling (begging) increases more rapidly for high-need nestlings than low-need ones.
609 As is the case for models with continuous assessment, the same general conclusions emerge from
610 our threshold assessment models whether we assume signalers have differential costs or benefits
611 (see the appendix [sec. A2, fig. A7 and fig. A8] for differential benefits results).

612 Similarly, while we have only discussed among-receiver variation in threshold values
613 (i.e., inter-receiver variation), the same general patterns should hold if individual receivers vary
614 in their threshold values over time (intra-receiver variation). This intra-receiver variation might
615 emerge from changes during development or changes in environmental conditions, but it could
616 also be a result of variation in an individual receiver's ability to detect a threshold boundary.
617 That is, a receiver might mistakenly assess a signal as above its threshold when in actuality it
618 was not or *vice versa*. Our analytical model treats all these types of variation identically;
619 therefore, it predicts that either inter- or intra-receiver variation in threshold values will maintain
620 signal reliability. This suggests that while perceptual errors by the receiver decrease the number
621 of equilibrium signaling values in models with continuous assessment (Johnstone and Grafen
622 1992a), in models with threshold assessment, perceptual errors might in fact *increase* the number
623 of equilibrium signaling values. Our individual-based simulations only explicitly modeled inter-
624 receiver variation, however. It would be useful for future studies to explore intra-receiver
625 variation more explicitly.

626 Our analytical models focus on pure fixed threshold assessment, in which individual
627 receivers evaluate any signal above their threshold value as high-quality and below their
628 threshold as low-quality. However, there are different variants of threshold assessment in which
629 receivers responses follow a general threshold rule but are context-dependent (reviewed by Roff
630 2015). For instance, there is evidence that female variable field crickets, *Gryllus lineaticeps*,
631 evaluate mates using a threshold strategy with a last-chance option in which females use a
632 threshold rule, but if a female has evaluated N males and none of them were above the threshold
633 value, it mates with the final male encountered (Janetos 1980; Beckers and Wagner 2011). The
634 results of our individual-based simulations show that while our general conclusions about signal

635 evolution hold whether receivers follow a pure fixed threshold strategy or have a last-chance
636 option, the specific relationship between signaler quality and signal intensity will differ
637 depending on the strategy. Moreover, with the last-chance option, this relationship depends on
638 the number of signalers evaluated before mating with the final signaler. We have not evaluated
639 other context-dependent threshold strategies (reviewed in Roff 2015), but it is likely that these
640 will also alter the specific relationship between signaler quality and signal intensity.

641 In addition, we have only considered the evolution of signals under relatively simple
642 ecological scenarios in which reliable signaling is maintained by differential signaling costs (or
643 benefits), but in more complicated scenarios, reliable signals can evolve even without immediate
644 signaling costs. For example, reliable signaling can evolve without signaling costs when there
645 are repeated interactions (Rich and Zollman 2016). Similarly, reliable signaling might evolve via
646 kin selection when individuals are signaling among close relatives (e.g., begging in birds; Caro et
647 al. 2016). Furthermore, our models do not explain the evolution of dishonest signals (in our
648 models, signals either evolve to be reliable or to contain no information). Dishonest signals (or
649 “bluffs”) can be maintained in otherwise reliable signaling systems by the existence of frequency
650 dependent selection (Számadó 2017), a factor that is not present in our models.

651 Another complexity we do not consider here is the ability of receivers to assess their own
652 quality. Mutual assessment plays an important role in signaling, particularly in the context of
653 animal contests where individuals might have to compare their own resource holding potential to
654 that advertised by their opponent (Arnott and Elwood 2009; Elwood and Arnott 2012). When
655 evaluating the signals of opponents, an individual might have a threshold response, such that its
656 giving-up decision is based on a threshold signal value set by the individual’s own resource
657 holding potential. Understanding how threshold responses affect signal evolution in such

658 situations would be a valuable future direction of our work. It is worth noting, however, that
659 despite many examples of mutual displays before contests, there is surprisingly little empirical
660 evidence that contestants compare their own display to the display of their opponent (Elwood
661 and Arnott 2012).

662 It is important to recognize that most of our models assume there is a fixed mean
663 threshold value for the receiver population. If variations in threshold values among receivers are
664 due to heritable differences, threshold values themselves will be subject to natural selection and
665 potentially change over time (Janetos 1980; Real 1990; Bleu et al. 2012). We would expect the
666 mean threshold value to remain stable if threshold values are either physiologically constrained,
667 as might be the case in some species with categorical perception, or ecologically constrained, as
668 might be the case when the same perceptual machinery is used to assess signals in addition to
669 being used in some other ecological context (e.g., female guppies, *Poecilia reticulata*, use the
670 color orange for mate assessment and food detection; Rodd et al. 2002).

671 The coevolution of threshold and signal does not change the qualitative results of our
672 models. Our individual-based simulations with coevolution confirmed that the qualitative
673 conclusions of our models can still hold when selection causes receivers' thresholds to evolve
674 (Figure A6). However, we only explored a limited set of ecological and genetic assumptions in
675 those simulations, and additional work is necessary to more fully understand how the
676 coevolution between signalers' signals and receivers' thresholds affects the reliability of
677 signaling systems. For instance, in intra-specific signaling systems (e.g., mate choice), there is
678 often a genetic correlation between receiver preference (here, the threshold value) and signaling
679 traits, which can lead to emergent evolutionary phenomena such as Fisherian runaway selection

680 (Fisher 1930; Lande 1981; Kirkpatrick 1982). Future studies should explore how threshold
681 responses by receivers affects these processes.

682

683 **References**

684 Arnott, G., and R. W. Elwood. 2009. Assessment of fighting ability in animal contests. *Animal*
685 *Behaviour* 77:991–1004.

686 Baugh, A. T., K. L. Akre, and M. J. Ryan. 2008. Categorical perception of a natural, multivariate
687 signal: Mating call recognition in túngara frogs. *Proceedings of the National Academy of*
688 *Sciences* 105:8985–8988.

689 Beckers, O. M., and W. E. Wagner. 2011. Mate sampling strategy in a field cricket: evidence for
690 a fixed threshold strategy with last chance option. *Animal Behaviour* 81:519–527.

691 Bergstrom, C. T., and M. Lachmann. 1998. Signaling among relatives. III. Talk is cheap.
692 *Proceedings of the National Academy of Sciences* 95:5100–5105.

693 Bergstrom, C. T., and M. Lachmann. 1997. Signalling among relatives. I. Is costly signalling too
694 costly? *Philos Trans R Soc Lond B Biol Sci* 352:609–617.

695 Bleu, J., C. Bessa-Gomes, and D. Laloï. 2012. Evolution of female choosiness and mating
696 frequency: effects of mating cost, density and sex ratio. *Animal Behaviour* 83:131–136.

697 Blows, M. W., and A. A. Hoffmann. 2005. A reassessment of genetic limits to evolutionary
698 change. *Ecology* 86:1371–1384.

699 Borgia, G. 1979. Sexual selection and the evolution of mating systems. Pp. 19–80 in M. S. Blum
700 and N. A. Blum, eds. *Sexual selection and the evolution of mating systems*. Academic
701 Press, New York, New York.

702 Bradbury, J. W., and S. L. Vehrencamp. 2011. *Principles of Animal Communication*. 2nd ed.
703 Oxford University Press, Sunderland, MA.

704 Broom, M., and G. D. Ruxton. 2011. Some Mistakes Go Unpunished: The Evolution of “All or
705 Nothing” Signalling. *Evolution* 65:2743–2749.

706 Caro, S. M., S. A. West, and A. S. Griffin. 2016. Sibling conflict and dishonest signaling in
707 birds. *Proceedings of the National Academy of Sciences* 113:13803–13808.

708 Caves, E. M., P. A. Green, M. N. Zipple, S. Peters, S. Johnsen, and S. Nowicki. 2018.
709 Categorical perception of colour signals in a songbird. *Nature* 560:365–367.

710 Caves, E. M., L. E. Schweikert, P. A. Green, M. N. Zipple, C. Taboada, S. Peters, S. Nowicki,
711 and S. Johnsen. 2020. Variation in carotenoid-containing retinal oil droplets correlates
712 with variation in perception of carotenoid coloration. *Behav Ecol Sociobiol* 74:93.

713 Elwood, R. W., and G. Arnott. 2012. Understanding how animals fight with Lloyd Morgan’s
714 canon. *Animal Behaviour* 84:1095–1102.

715 Endler, J. A., and J. Mappes. 2004. Predator Mixes and the Conspicuousness of Aposematic
716 Signals. *The American Naturalist* 163:532–547. The University of Chicago Press.

717 Enquist, M. 1985. Communication during aggressive interactions with particular reference to
718 variation in choice of behaviour. *Animal Behaviour* 33:1152–1161.

719 Fisher, Ronald. A. 1930. *The genetical theory of natural selection*. Oxford: Clarendon Press,
720 Oxford, England.

721 Gomulkiewicz, R., and D. Houle. 2009. Demographic and Genetic Constraints on Evolution. *The*
722 *American Naturalist* 174:E218–E229. The University of Chicago Press.

723 Grafen, A. 1990a. Biological signals as handicaps. *Journal of Theoretical Biology* 144:517–546.

724 Grafen, A. 1990b. Sexual selection unhandicapped by the fisher process. *Journal of Theoretical*
725 *Biology* 144:473–516.

726 Grafen, A., and R. A. Johnstone. 1993. Why we need ESS signalling theory. *Philosophical*
727 *Transactions of the Royal Society of London. Series B: Biological Sciences* 340:245–
728 250.

729 Green, P. A., N. C. Brändley, and S. Nowicki. 2020. Categorical perception in animal
730 communication and decision-making. *Behav Ecol*, doi: 10.1093/beheco/araa004.

731 Harnad, S. R. (ed). 1987. Categorical perception: the groundwork of cognition. Cambridge
732 University Press, New York.

733 Hurd, P. L. 1995. Communication in discrete action-response games. *Journal of Theoretical*
734 *Biology* 174:217–222.

735 Janetos, A. C. 1980. Strategies of Female Mate Choice: A Theoretical Analysis. *Behavioral*
736 *Ecology and Sociobiology* 7:107–112.

737 Jennions, M. D., and M. Petrie. 1997. Variation in mate choice and mating preferences: a review
738 of causes and consequences. *Biological Reviews* 72:283–327.

739 Johnstone, R. A. 1994. Honest signalling, perceptual error and the evolution of ‘all-or-nothing’
740 displays. *Proceedings of the Royal Society of London. Series B: Biological Sciences*
741 256:169–175.

742 Johnstone, R. A. 1997. The evolution of animal signals. Pp. 155–178 in J. R. Krebs and N. B.
743 Davies, eds. *Behavioural ecology: an Evolutionary Approach*. Blackwell Publishing,
744 Malden, MA, USA.

745 Johnstone, R. A., and A. Grafen. 1992a. Error-prone signalling. *Proceedings of the Royal*
746 *Society of London. Series B: Biological Sciences* 248:229–233.

747 Johnstone, R. A., and A. Grafen. 1992b. The continuous Sir Philip Sidney game: A simple model
748 of biological signalling. *Journal of Theoretical Biology* 156:215–234.

749 Kirkpatrick, M. 1982. Sexual selection and the evolution of female choice. *Evolution* 36:1–12.

750 Kirkpatrick, M. 1986. The Handicap Mechanism of Sexual Selection Does Not Work. *The*
751 *American Naturalist* 127:222–240.

752 Kotiaho, J. S., N. R. LeBas, M. Puurtinen, and J. L. Tomkins. 2008. On the resolution of the lek
753 paradox. *Trends in Ecology & Evolution* 23:1–3.

754 Lachmann, M., and C. T. Bergstrom. 1998. Signalling among Relatives: II. Beyond the Tower of
755 Babel. *Theoretical Population Biology* 54:146–160.

756 Lande, R. 1981. Models of speciation by sexual selection on polygenic traits. *Proceedings of the*
757 *National Academy of Sciences* 78:3721–3725.

758 Lindström, K., and J. Lundström. 2000. Male greenfinches (*Carduelis chloris*) with brighter
759 ornaments have higher virus infection clearance rate. *Behav Ecol Sociobiol* 48:44–51.

760 Masataka, N. 1983. Categorical responses to natural and synthesized alarm calls in Goeldi’s
761 monkeys (*Callimico goeldii*). *Primates* 24:40–51.

762 Mason, A. C. 2020. Perception, decision, and selection: a comment on Green et al. *Behav Ecol*
763 31:869–869. Oxford Academic.

764 Maynard Smith, J. 1991. Honest signalling: the philip sidney game. *Animal Behaviour* 42:1034–
765 1035.

766 Maynard Smith, J. 1976. Sexual selection and the handicap principle. *Journal of Theoretical*
767 *Biology* 57:239–242.

768 Maynard Smith, J., and D. Harper. 2003. *Animal Signals*. Oxford University Press, New York.

769 Nelson, D. A., and P. Marler. 1989. Categorical perception of a natural stimulus continuum:
770 birdsong. *Science* 244:976–978.

771 Penn, D. J., and S. Számadó. 2020. The Handicap Principle: how an erroneous hypothesis
772 became a scientific principle. *Biological Reviews* 95:267–290.

773 Percival, D., and P. Moore. 2010. Shelter size influences self-assessment of size in crayfish,
774 *Orconectes rusticus*: Consequences for agonistic fights. *Behaviour* 147:103–119.

775 Proulx, S. R. 2001. Can behavioural constraints alter the stability of signalling equilibria?
776 *Proceedings of the Royal Society of London. Series B: Biological Sciences* 268:2307–
777 2313.

778 Real, L. 1990. Search theory and mate choice. i. models of single-sex discrimination. *The*
779 *American Naturalist* 136:376–405.

780 Reid, M. L., and J. A. Stamps. 1997. Female mate choice tactics in a resource-based mating
781 system: field tests of alternative models. *The American Naturalist* 150:98–121.

782 Rich, P., and K. J. S. Zollman. 2016. Honesty through repeated interactions. *Journal of*
783 *Theoretical Biology* 395:238–244.

784 Robinson, E. J. H., N. R. Franks, S. Ellis, S. Okuda, and J. A. R. Marshall. 2011. A simple
785 threshold rule is sufficient to explain sophisticated collective decision-making. *PLOS*
786 *ONE* 6:e19981.

787 Rodd, F. H., K. A. Hughes, G. F. Grether, and C. T. Baril. 2002. A possible non-sexual origin of
788 mate preference: are male guppies mimicking fruit? *Proceedings of the Royal Society of*
789 *London. Series B: Biological Sciences* 269:475–481.

790 Roff, D. A. 2015. The evolution of mate choice: a dialogue between theory and experiment.
791 *Annals of the New York Academy of Sciences* 1360:1–15.

792 Ryan, M. J. (ed). 2001. *Anuran communication*. Smithsonian Institution Press, Washington, DC.

793 Searcy, W. A., and S. Nowicki. 2005. *The Evolution of Animal Communication: Reliability and*
794 *Deception in Signaling Systems*. Princeton University Press, Princeton, New Jersey.

795 Seyfarth, R. M., D. L. Cheney, T. Bergman, J. Fischer, K. Zuberbühler, and K. Hammerschmidt.
796 2010. The central importance of information in studies of animal communication. *Animal*
797 *Behaviour* 80:3–8.

798 Stoltz, J. A., and M. C. B. Andrade. 2010. Female's courtship threshold allows intruding males
799 to mate with reduced effort. *Proc. R. Soc. B* 277:585–592.

800 Svennungsen, T. O., Ø. H. Holen, and O. Leimar. 2011. Inducible Defenses: Continuous
801 Reaction Norms or Threshold Traits? *The American Naturalist* 178:397–410. The
802 University of Chicago Press.

803 Számadó, S. 1999. The validity of the handicap principle in discrete action–response games.
804 *Journal of Theoretical Biology* 198:593–602.

805 Számadó, S. 2017. When honesty and cheating pay off: the evolution of honest and dishonest
806 equilibria in a conventional signalling game. *BMC Evol Biol* 17:270.

807 Tomkins, J. L., J. Radwan, J. S. Kotiaho, and T. Tregenza. 2004. Genic capture and resolving the
808 lek paradox. *Trends in Ecology & Evolution* 19:323–328.

809 Zahavi, A. 1975. Mate selection—A selection for a handicap. *Journal of Theoretical Biology*
810 53:205–214.

811 Zipple, M. N., E. M. Caves, P. A. Green, S. Peters, S. Johnsen, and S. Nowicki. 2019.
812 Categorical colour perception occurs in both signalling and non-signalling colour ranges
813 in a songbird. *Proc. R. Soc. B* 286:20190524.
814 Zuk, M., K. Johnson, R. Thornhill, and J. D. Ligon. 1990. Mechanisms of female choice in red
815 jungle fowl. *Evolution* 44:477–485.
816