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Abstract

RNA molecules function as messengers or noncoding adaptor molecules, structural
components, and regulators of genome organization and gene expression. Their roles
and regulation are mediated by other molecules they interact with, especially RNA binding
proteins (RBPs). Here we report RNA proximity labeling (RPL), an RNA-centric method
based on fusion of an endonuclease-deficient Type VI CRISPR-Cas protein (dCas13b)
and engineered ascorbate peroxidase (APEX2) to discover in vivo target RNA proximal
proteins (RPPs) through proximity-based biotinylation. U7 RPPs enriched by proximity-
based biotinylation included both U7 snRNA canonical and noncanonical functions-
related proteins. In addition, profiling of poly(A) tail proximal proteins uncovered expected
categories of RBPs for poly(A) tails and also provided novel evidence for poly(A)* RNA
5’-3’ proximity and expanded subcellular localizations. Our results suggest that RPL is a
rapid approach for identifying both interacting and neighboring proteins associated with

target RNA molecules in their native cellular contexts.
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Introduction

RNA molecules include both messengers encoding proteins (MRNAs) and noncoding
RNAs (ncRNAs) such as adaptor tRNAs and regulatory long noncoding RNAs (IncRNASs).
Around 2% of the human genome encodes mRNAs (/nternational Human Genome
Sequencing Consortium, 2001; Venter et al., 2001), while the majority is pervasively
transcribed into ncRNAs (Berretta and Morillon, 2009; Djebali et al., 2012), including
IncRNAs that are widely considered as a large family of potential regulators (Batista and
Chang, 2013; lyer et al., 2015; Yang et al., 2014). However, only a small number of
IncRNAs have been functionally and mechanistically studied and most remain
uncharacterized (Kopp and Mendell, 2018).

The functions and regulation of RNA transcripts are mediated by other molecules they
associate with, particularly RNA binding proteins (RBPs) that govern many critical RNA
activities (Dreyfuss et al., 2002; Glisovic et al., 2008; Hentze et al., 2018; Lunde et al.,
2007). Discovery of the interacting proteins for a given transcript plays pivotal role in
unveiling its function and underlying mechanism. Currently, mechanistic study of IncRNAs
is impeded by the shortage of RNA-centric tools and the limitations of existing methods
(Ci Chu et al., 2015; Ramanathan et al., 2019). Antisense probe-based ChIRP (C. Chu
et al., 2015) or RAP (McHugh et al., 2015) requires crosslinking via chemicals or UV
light. However, chemicals such as formaldehyde also crosslink protein-protein
interactions, which may lead to false-positive associations (Panhale et al., 2019). Since
UV-crosslinking has very low efficiency, antisense probe-based purification methods
usually require a large number of cells (~100-800 million) (Lin et al., 2019; McHugh et

al., 2015), which may not be feasible for slow-growing model systems such as primary
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cell cultures. Moreover, UV-crosslinking can induce RNA alterations like modifications
(Wurtmann and Wolin, 2009) that could change binding affinity of RNA to certain RBPs
(Bernard et al., 2012) and impair downstream protein analysis (Urdaneta and
Beckmann, 2019). An alternative approach, tagging of endogenous RNA requires
genetic manipulation and may interfere with endogenous RNA functions (Laprade et al.,
2020). Therefore, methods to discover endogenous RNA interacting proteins are needed.

In this study, we developed RPL (RNA proximity labelling) method to identify in vivo
target RNA proximal proteins (RPPs) without crosslinking or genetic manipulation. U1
RPPs recalled U1 functional relevant proteins, while poly(A) tail RPPs recalled expected
categories of RBPs for poly(A) tails providing additional evidence for poly(A)* RNA 5’-3’

proximity and expanded subcellular localizations.
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Results

Design and development of RPL, an RNA-centric method for screening RPPs
Inspired by the applications of RNA-targeting Type VI CRISPR-Cas systems (Abudayyeh
etal., 2017; Cox et al., 2017; Konermann et al., 2018; Yan et al., 2018) and proximity
labeling using engineered soybean ascorbate peroxidase (Lam et al., 2015; Rhee et al.,
2013) and biotin ligase (Branon et al., 2018; Kim et al., 2016; Roux ef al., 2012), we
designed RPL, an RNA-centric approach based on a fusion protein of endonuclease-
deficient Cas13 (dCas13) and proximity labeling enzyme APEX2 (Figure 1A). The fusion
protein is directed to target RNA by a sequence-specific guide RNA (gRNA). In the
presence of hydrogen peroxide (H202), APEX2 in the fusion protein oxidizes substrate
biotin-phenol (BP) to short-lived biotin-phenoxyl radicals, which covalently react with
electron-rich amino acids (like tyrosine) on RPPs within a small radius (Rhee et al., 2013)
of the fusion protein (Figure 1A). The biotinylated RPPs, which may include target RNA
direct binding proteins, indirect binding proteins, and proximal proteins just present within
biotinylating radius, can be readily enriched using streptavidin beads and profiled by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) (Figure 1A).

To construct the fusion protein, Cas13b was used for its high efficacy in RNA
knockdown with minimal off-target effect (Cox et al., 2017) and high specificity in RNA
labeling (Yang et al., 2019). For proximity labeling enzyme, we chose APEX2 for its fast
kinetics and high activity (Lam et al., 2015). Catalytically dead Cas13b from Prevotella
sp. P5-125 (dPspCas13b) (Cox ef al., 2017) was fused to APEX2 with FLAG and HA
tags (Figure 1B). The expression of the fusion protein dCas13b-APEX2 (from hereon in

called the RPL protein) was confirmed by western blot using an anti-FLAG or anti-HA
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93

94 Figure 1. Designing and developing the RPL method. (A). Schematic illustration of RPL workflow. A
95 sequence-specific gRNA directs dCas13-APEX2 to target RNA and APEX2 in the fusion protein biotinylates
96 target RNA proximal proteins (RPPs) in vivo in the presence of biotin-phenol and H20:. Biotinylated RPPs
97 are then enriched using streptavidin beads and analyzed by liquid chromatography-tandem mass
98  spectrometry (LC-MS/MS). (B). Diagram of the fusion protein dPspCas13b-FLAG-APEX2-HA (dCas13b-
99  APEX2, or the RPL protein) expression construct. (C). Expression validation of the RPL protein by western
100 blot. HEK293T cells transfected with or without the RPL plasmid were harvested 24h-72h post transfection
101 and whole cell lysates were blotted with an anti-FLAG or anti-HA antibody. (D). The RPL protein is
102 expressed in both cytoplasm and nucleus. HEK293T cells transfected with the RPL plasmid for 24h were
103 fractionated into cytoplasmic (Cy) and nuclear (Nu) fractions. Fractionation efficiency was evaluated by
104 blotting cytoplasmic protein B-Tubulin and nuclear protein U1-70k. (E). Validation of enzymatic activity of
105 APEX2 in the RPL protein. HEK293T cells transfected with the RPL plasmid were treated with different
106  combinations of biotin-phenol (BP) and H202. Whole cell lysates were blotted with anti-biotin antibody. -

107  actinin (C) and (E) was used as loading control.
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108 antibody (Figure 1C). The subcellular localization of the RPL protein was examined when
109 ectopically expressed in HEK293T cells. Efficient separation between cytoplasmic and
110 nuclear fractions was confirmed by blotting for cytoplasmic marker B-Tubulin and nuclear
111  marker U1-70k. The RPL protein was detected in both cytoplasm and nucleus (Figure
112 1D). To test if peroxidase activity of APEX2 is maintained in the RPL protein, HEK293T
113  cells were treated with different combinations of BP and H202 24h post transfection of the
114 RPL plasmid. The detection of biotinylated proteins requires both BP and H>O., indicating
115 that APEX2 in the RPL protein retains peroxidase activity (Figure 1E). The results also
116  suggest that endogenous biotinylated proteins are rare in HEK293T cells and low level of
117 endogenous H20- (Belousov et al., 2006; Huang and Sikes, 2014; Lyublinskaya and
118 Antunes, 2019) could not trigger efficient biotinylation. These data suggest that the RPL
119 protein has peroxidase activity and can be applied to target both cytoplasmic and nuclear
120 transcripts.

121

122 Design and validation of gRNAs targeting U7 snRNA

123 To test the approach, we asked whether U7 snRNA proximal proteins (U7 RPPs)
124  identified with the RPL protein include any known U7 RBPs. The U7 snRNA was selected
125 for three reasons: (1) its high abundance (Gesteland, 1993), (2) its structures in human
126 U171 small nuclear ribonucleoprotein (snRNP) and in spliceosome have been solved
127 (Charenton et al., 2019; Pomeranz Krummel et al., 2009; Weber et al., 2010), and (3)
128 its interacting proteins in U1 snRNP (Stark et al., 2001) and in spliceosome (Zhou ef al.,

129  2002) have been well documented.
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130 Since Cas13b targets single-stranded RNA (Cox et al., 2017; Smargon et al., 2017),
131  three gRNAs (U7-1, U1-2, and U1-3) targeting U7 single-stranded regions were designed
132 based on its structure in pre-B complex (Charenton et al., 2019) (Figure 2A). We first
133  tested if U7 gRNAs direct wild-type PspCas13b to U7 and cleave it by measuring U1
134  expression in HEK293T cells cotransfected with wild-type PspCas13b plasmid and
135 plasmid expressing U1 gRNA or nontargeting control (NTC) gRNA at a 1:1 molar ratio.
136  The expression of U7 was significantly lower in U7 gRNA-transfected cells compared with
137 NTC gRNA-transfected cells (Figure 2B). The expression of a group of nontargets with
138 a wide range of abundance was not affected (Figure 2B), except U2, which may be
139 caused by Cas13b collateral activity (Gootenberg et al., 2018) since U1 and U2 are in
140 close contact during spliceosome assembly. The result indicated that U7 gRNAs can
141  specifically direct PspCas13b to U7. We then tested if U7 gRNAs deliver the RPL protein
142  to U1 using RNA immunoprecipitation (RIP) experiment. Since the U6 promoter is slightly
143  stronger than CMV promoter in HEK293T cells (Lebbink et al., 2011), a 1:2 molar ratio
144  between the RPL plasmid (CMV promoter) and gRNA expressing plasmid (U6 promoter)
145  was used to avoid nonspecific targeting due to excess RPL protein. The RPL protein was
146  efficiently retrieved by anti-HA but not isotype control IgG (Figure 2C). Analysis of RNA
147  extracted from RIP experiment showed that anti-HA pulled down 5 times more RNA than
148  control (Figure 2D), certifying the RPL protein RNA binding activity. Although there is no
149  significant difference in the amount of RNA pulled down by the RPL protein with NTC or
150 U1 gRNAs (Figure 2D), U1 gRNAs significantly enriched U1 for ~2-3-fold compared with
151 NTC gRNA (Figure 2E). The fact that much more abundant 78S was not enriched (Figure

152  2E) suggested that U1 gRNAs are able to specifically direct the RPL protein to U1.
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153
154 Figure 2. Designing and validating gRNAs targeting U7 snRNA. (A). Based on U1 structure, three gRNAs

155  with spacers targeting U7 nucleotides (nt) 1-30 (U7-1), 101-130 (U7-2), and 108-137 (U1-3) were designed.
156  Cartoon representation of U7 (PDB ID: 6QX9, pre-B complex) is colored in black, 1-30 in green, 101-107
157  in red, 108-130 in magenta, and 131-137 in blue. (B). The expression of U7 snRNA was significantly
158  downregulated in U1 gRNA-transfected cells. HEK293T cells were cotransfected with plasmid expressing
159  wild-type PspCas13b and plasmid expressing U7 or NTC gRNA (1:1 molar ratio). The expression of U7 or
160  agroup of nontargets was quantified by RT-qPCR and normalized to GAPDH. (C). Confirmation of pulldown
161 of the RPL protein by RIP using western blot. HEK293T cells were cotransfected with the RPL plasmid and
162 plasmid expressing U1 or NTC gRNA (1:2 molar ratio). Anti-HA antibody or isotype control IgG were used
163 to immunoprecipitate the RPL protein. Clean-Blot IP detection reagent was used for blotting. (D). The
164  amount of total RNA extracted from RIP experiment. (E). U7 gRNAs specifically directed the RPL protein
165 to U1. The expression of U7 snRNA and nontarget 18S rRNA was quantified by RT-gPCR and normalized
166 to GAPDH. Data shown in (B), (D), and (E) are mean = SD from 5 independent experiments. ***p<0.001,

167 ns, not significant. Student’s t test.
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168 RPL-MS identified both U7 canonical and noncanonical roles-related proteins

169 We next enriched U1 RPPs using RPL with the same 1:2 molar ratio to avoid excess RPL
170 protein that can cause nonspecific targeting and proximity labeling. U1 has compact
171  structure in pre-B complex (Charenton et al., 2019) (Figure 2A) and its size (less than
172 ~10 nm in diameter) is much smaller than the biotinylating range of APEX2 (likely ~20-40
173  nm or larger in diameter) (Fazal et al., 2019; Padron et al., 2019; Rhee et al., 2013), so
174 we considered experiments using our three U7 gRNAs as replicates. We analyzed
175 streptavidin-enriched biotinylated proteins by LC-MS/MS (RPL-MS). Using label-free
176 intensity-based absolute quantification (iBAQ) values to measure enrichment in U7 gRNA
177  relative to protein amounts in the NTC gRNA sample, RPL-MS identified 226 U1 RPPs (p
178 < 0.05 and log2 fold change [FC] > 2, false discovery rate [FDR] < 0.25, Benjamini-
179  Hochberg method), including known U7 direct RBPs (e.g. SNRNP70, also known as U1-
180 70k) (Stark et al., 2007) and RBPs that likely interact with U7 indirectly due to their
181 function in the spliceosome (e.g. SNRPA1 and SNRPB2) (Zhou et al., 2002) (Figure 3A,
182  Table S1). We verified the enrichment of U1-70k using western blot and found that it was
183  enriched ~2-fold by all three U1 gRNAs (Figure 3B), consistent with RPL-MS results
184  (Figure 3A). Analysis of KEGG pathways enriched in the group of U7 RPPs using
185 STRING (Szklarczyk et al., 2019) showed that ‘Spliceosome’ is the most significantly
186  enriched pathway (FDR < 108) (Figure 3C). Indeed, U7 RPPs included 99 splicing and
187 related factors (Cvitkovic and Jurica, 2013), 56 proteins previously found by U7 ChIRP-
188 MS (C. Chu et al., 2015), and 58 proteins revealed by XLIP-MS using anti-U1A and/or
189  anti-U1-70k antibody (So et al., 2019) (Figure 3D). In addition, the binding between U1

190 and four U1 RPPs was further supported by corresponding CLIP-Seq data as shown in

10
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192 Figure 3. U7 RPPs identified by RPL-MS. (A). U7 RPPs revealed by RPL-MS include known U7 RBPs.
193  Volcano plot shows U7/NTC iBAQ ratio (fold change, FC) of protein quantification in U7 gRNA cells
194  compared with NTC gRNA cells. RPL-MS enriched 226 U1 RPPs (orange dots) that were statistically
195  significant (p < 0.05 and logz2 FC > 2, FDR < 0.25, Benjamini-Hochberg method). Each dot represents the
196 average value from experiments using three U7 gRNAs. Blue dots represent proteins from pre-B
197 spliceosome complex. (B). U7 direct RBP U1-70k was enriched by RPL. HEK293T cells transfected with
198 the RPL plasmid and plasmid expressing U7 gRNA or NTC gRNA were treated with BP and H202. Whole
199 cell lysates (Input) or streptavidin-enriched biotinylated proteins (RPL enriched) were blotted. Numbers
200 represent relative amount of U1-70k under the corresponding conditions from RPL enriched normalized to
201 input. (C). KEGG pathways significantly enriched by 226 U1 RPPs using STRING. (D). Comparison of U1
202 RPPs, U1 interactors identified by ChIRP-MS, U1 interactors identified by XLIP-MS using anti-U1A and/or
203 anti-U1-70k antibody, and splicing & related proteins. Numbers listed below are total number of proteins
204  from each group. (E). List of 4 U1 RPPs with CLIP-Seq data supporting their association of U7 found in

11
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205 ENCORI. (F). Summary of U1 RPPs related to U7 functions. (G). Inferred distances between U7 or APEX2

206 in the RPL protein and those 6 U7 RPPs present in pre-B complex shown in (A).

207

208 ENCORI (Lietal., 2014), including DDX3X that is not known to interact with U7 in human
209 (Deckert et al., 2006; Tarn and Chang, 2009) (Figure 3E). These results together
210 validated that RPL can efficiently identify most known RBPs for U1.

211 U1 RPPs also included previously reported U7 interactor RNA polymerase Il (Spiluttini
212 etal., 2010; Yu and Reed, 2015) (Figure 3F), which is required for a noncanonical role
213  of U1 in chromatin retention of ncRNAs (Yin et al., 2020). Moreover, U1 RPL retrieved
214  proteins involved in chromatin remodeling, DNA modification, histone modification, and
215 transcription (Table S1), which could be regulated by chromatin-associated ncRNAs
216  (Huang et al., 2020; Li and Fu, 2019). The presence of GTF2F2 among the U7 RPPs
217  may relate to a role for U7 in regulation of transcription initiation (Damgaard et al., 2008;
218 Kwek et al., 2002) (Figure 3F). Interestingly, RPL-MS revealed nuclear import receptor
219 importin-B1 (KPNB1) (Figure 3F), which is required for U7 nuclear import (Palacios,
220 1997). Six RBPs in pre-B complex (Charenton et al., 2019) were identified as U1 RPPs
221  (Figure 3A). Their distances to U7 snRNA in pre-B complex may provide insight to the
222  Dbiotinylating range of the RPL protein. The inferred distances between APEX2 in the RPL
223 protein and those RBPs are all smaller than 12 nm and the average is 6.6 nm (Figure
224  3G), suggesting that APEX2 may biotinylate proteins within 12 nm. The inferred distances
225 between U7 and associated RBPs range from 4.2 nm to 20.8 nm with an average of 12.5
226 nm (Figure 3G), suggesting that RPL can biotinylate proximal proteins within ~20 nm of
227 target RNA. These data indicated that RPL enables efficient identification of validated

228 RBPs associated with both canonical and noncanonical functions of U1.

12
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229

230 RPL-MS recalled expected categories of proteins for poly(A) tails

231 To further test the generality of RPL method, we applied it to poly(A) tails, which are
232  adenosines added to the 3’ ends of the majority of eukaryotic mMRNAs and many IncRNAs
233  inthe absence of template (Derrien et al., 2012; Guttman et al., 2009; Tian, 2005; Yang
234  etal., 2011). Poly(A) tails play critical role in mRNA translation and stability (Dreyfus and
235  Régnier, 2002) and their removal triggers mRNA decapping and decay (Muhlrad et al.,
236 1994; Norbury, 2013; Yamashita et al., 2005). Although the 5 and 3’ ends of pre-
237  translational mMRNAs (Metkar et al., 2018) and deadenylating mRNAs (Chen and Shyu,
238  2011) are distant (Figure 4A, 5°-3’ distance), the physical distances between the two
239 ends of diverse RNAs are incredibly close regardless of their length, type, species, or
240 complexity (Lai et al., 2018; Leija-Martinez et al., 2014) (Figure 4A, 5°-3’ proximity).
241  As oligomers of 30 nt poly(U) are not found at the 3’ of RNA (Chang et al., 2014; Lim et
242  al., 2018) and rarely occur in the human transcriptome, poly(U)-targeting gRNA, or poly(U)
243  gRNA, was used as negative control. The RPL plasmid was cotransfected with plasmid
244  expressing poly(A) or poly(U) gRNA into HEK293T cells at a 1:2 molar ratio and then RPL
245 was performed. Using label-free iBAQ values to measure enrichment in poly(A) gRNA
246  relative to protein amounts in the poly(U) gRNA sample, RPL-MS enriched 786 proteins
247  as poly(A) tail RPPs (Benjamini-Hochberg-adjusted p < 0.05 and log2FC > 2) (Figure 4B,
248 Table S2). Poly(A) tail RPPs included seven poly(A) binding proteins, fifteen 3'UTR
249  binding proteins, ten 5’UTR binding proteins, and one cap binding protein (Figure 4B,
250 Table S3), all of which are known to associate with poly(A) tails. Retrieval of proteins from

251 both 5’ and 3’ ends by RPL within a small radius provided additional evidence for poly(A)*
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252  RNA 5’-3’ proximity.

253 Among poly(A) tail RPPs, at least 48% were RBPs interacting with poly(A)* RNA (Baltz
254 etal., 2012; Castello et al., 2012; Kwon et al., 2013; Milek et al., 2017) (Figure 4C). In
255 theory, poly(A) gRNA can direct the RPL protein to any transcripts with 30 nt-poly(A) tail
256  or longer (Figure 4A), including transcripts undergoing polyadenylation, readenylation,
257 deadenylation, or translation. We then interrogated poly(A) tail RPPs for other expected
258 classes of proteins, including factors involved in polyadenylation (Shi and Manley, 2015),
259 readenylation or deadenylation (Yan, 2014), and translation (Dreyfus and Régnier,
260 2002). Indeed, RPL-MS enriched five cleavage and polyadenylation factors for poly(A)*
261 RNA (Figure 4D) but no such factors unique for poly(A) RNA (e.g. SLBP and ZNF473)
262  (Gilmartin, 2005) (Table S3). Moreover, poly(A) tail RPPs included three exosome
263  proteins (Chlebowski et al., 2013), two deadenylase complex proteins (Collart, 2016),
264 as well as decapping factor EDC3 (Mugridge et al., 2018) (Figure 4D, Table S3).
265 Importantly, twenty translation initiation factors, fifteen translation elongation factors,
266  seventy ribosomal subunits, and eighteen tRNA ligases were identified by RPL-MS
267 (Figure 4D, Table S3), putatively supporting a model that poly(A) tail recruits translation
268 initiation factors to initiate translation at the 5’ end like their viral counterparts (Simon and
269  Miller, 2013; Truniger et al., 2017). Moreover, RPL-MS revealed twelve proteins
270 involved in degradation of AU-rich element-containing mRNAs and 66 nonsense-
271  mediated decay proteins (including 58 ribosomal subunits) (Chang et al., 2007; Laroia
272  etal., 2002, 1999) (Table S3), further suggesting that RPL enables efficient discovery of

273 most relevant and validated RBPs proximal to poly(A) tails.

14


https://doi.org/10.1101/2020.02.28.970442
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.970442; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A dCas13b-APEX2 B —
$3' poly(A) binding L
?7‘77 £ SYNCRIP 5°UTR blndlng
e~ KHDRBSH1 e e NCL
22 &/,;p&?? ) DDX3X P RPS13
5 m’G AAAAA ® HNRNPU F SHMT2
5'-3' distance ; PABPC1 ) ;/ Egggi
+ PABPC4
poly(A)+ RNA ) DDX1 . Jhg# RPL26
S 3’ = - L
5 cap bindin A5 KHSRP. . RBM4 IGF2BP1
%, & o 1{ %P 9 HNRNPAQ - HnRNPD HNRNPA2B1
B, e & g EIF3D P53 DDX5 HORNPR
444AAAAN>‘P\ T ~,_:~": HNRNPC TARDBP CCT5
5'-3’ proximity 5 m’G L o 3’UTR binding _
poly(A)+ RNA 0 L n=1,032
0 2 4 6
log,(FC)
CPA factors (5) Deadenylase complex (2)
3'UTR
% RBPs (15) ?27 binding (1)
) 3 74’74 AR
ST AAAAA
= ;)S tRNA 5-3’ proximity 5An'§7G Do
@ ligases oly(A)+ RNA pping
:nU (1 8) p factor (1)
Ribosomal

subunits (70)

274 Fig. 4

275 Figure 4. RPL-MS revealed poly(A) tail RPPs in HEK293T cells. (A). Application of RPL to poly(A) tails. In
276  the presence of gRNA, the RPL protein (dCas13b-APEX2) is directed to poly(A) tails ranging from 30 nt up
277  to ~250 nt. In 5’-3’ distance model, RPL will detect PABPs and 3'UTR binding proteins that bind proximal
278  to poly(A) tail within the biotinylating range. In 5’-3’ proximity model, RPL will also identify cap-binding
279 proteins and 5’'UTR binding proteins that bind proximal to the cap and lie within the biotinylating range. (B).
280 RPL-MS identified poly(A) tail RPPs. Volcano plot shows RPL-labeled proteins in HEK293T cells. For each
281  protein, the poly(A)/poly(U) iBAQ ratio reflects the enrichment of identified protein in poly(A) gRNA cells
282 compared with poly(U) gRNA transfected cells. RPL-MS identified 786 proteins (light purple dots) as
283  significantly enriched (Benjamini-Hochberg-adjusted p < 0.05 and log2FC > 2). Each data point represents
284  the average value from biological triplicates. Red dots represent proteins belonging to PABPs, blue dots
285  for 3'UTR binding proteins, green dots for 5’UTR binding proteins, and black dot for cap binding protein.
286 (C). Venn diagram shows the comparison of poly(A) tail RPPs and RBPs associated with poly(A)* RNA in
287 different cells. Numbers below each group represent the sizes of the protein cohort. (D). Summary of
288  expected categories of poly(A) tail RPPs that support 5'-3’ proximity and the role of poly(A) tail in mRNA
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289 translation. Each category of proteins points to a location/region of poly(A)* RNA where they most likely
290 associate with when identified by RPL. PABPs, poly(A) binding proteins; CPA, cleavage and

291 polyadenylation; TIFs, translation initiation factors; TEFs, translation elongation factors.

292

293 Localization analysis of poly(A) tail RPPs unveils expanded subcellular
294 localizations for poly(A)* RNA

295 Poly(A) tails are important for RNA nuclear export (Huang and Carmichael, 1996) via
296 the nuclear pore complex (NPC) (Okamura et al., 2015). This is further supported by the
297  presence of 90 mRNA processing factors, 20 mRNA nuclear export proteins, and 13 NPC
298 proteins in poly(A) tail RPPs (Figure 5A). It is not surprising that tRNAs and pre-miRNAs
299 nuclear export factors were also included (Table S3) since their precursors or primary
300 transcripts are also polyadenylated (Cai, 2004; Kadaba et al., 2006). Poly(A) tail RPPs
301 contained eight tRNA processing factors and five tRNA nuclear export factors (Kruse et
302 al., 2000), as well as three pri-miRNA processing factors and two pre-miRNA export
303 factors (Bohnsack et al., 2004; Lund et al., 2004; Yi et al., 2003) (Table S3), supporting
304 that their processing is coupled with export (Kim, 2005; Kohler and Hurt, 2007). Poly(A)
305 tail RPPs recovered 27 RBPs involved in mRNA transport (including zipcodes binding
306 protein IGF2BP1), 48 microtubule proteins, and 139 plasma membrane proteins that are
307 used by mRNAs to achieve different subcellular localizations (Holt and Bullock, 2009;
308 Mofatteh and Bullock, 2017) (Figure 5A), possibly suggesting a role for the poly(A) tail
309 in RNA subcellular localization.

310 Since unique localizations of RPPs reflect target RNA proximal localizations, we built
311 a putative subcellular localization map for poly(A)* RNA by comparing poly(A) tail RPPs

312  with proteins extracted from 22 subcellular compartments (Figure 5B, Table S3). The
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313  results are generally consistent with previous reports that both mRNAs and ncRNAs have
314 multiple subcellular localizations (Blower, 2013; Carlevaro-Fita and Johnson, 2019;
315 Fazal et al., 2019; Wilk et al., 2016) and also support the presence of mRNAs in P-
316 bodies, stress granule, and the exosome (Chlebowski et al., 2013; Decker and Parker,
317  2012). Interestingly, RPL-MS also identified marker proteins of the endosome, lysosome,
318 proteasome, and Golgi apparatus, indicative of expanded subcellular localizations for
319 poly(A)" RNA (Figure 5B, Table S3). Discovery of lysosomal and proteasomal proteins
320 in poly(A) tail RPPs is compatible with the existence of RNA degradation pathway
321 ‘RNautophagy’ in the lysosome (Fujiwara et al., 2013) and degradation function of
322 proteasomes for AU-rich element-containing mRNAs (Laroia et al., 2002, 1999). The
323 identification of endosomal proteins is in accordance with that late endosomes can be
324 used by mRNAs as a platform for translation (Cioni et al., 2019). Poly(A) tail RPPs
325 included Golgi marker cis-Golgi matrix protein GOLGA2 (Munro, 2011) (Table S3), which
326  has recently been annotated as an RBP by multiple groups (Caudron-Herger et al., 2019;
327 Queiroz et al., 2019; Trendel et al., 2019), suggesting that Golgi may be a novel
328 subcellular location for poly(A)* RNA. More experimental data are needed to determine
329  which specific transcripts are associated with GOLGAZ2 in the Golgi apparatus and the
330 biological significance of those interactions.

331
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333 Figure 5. Poly(A) tail RPPs included proteins involved in subcellular localization of RNA. (A). RPL-MS
334 revealed proteins involved in RNA processing, nuclear export, transport, and subcellular localization for
335 poly(A) tail RPPs. (B). A putative subcellular localization map of poly(A)* RNA built upon subcellular
336 localization of poly(A) tail RPPs. Poly(A) tail RPPs were compared with proteins extracted from
337 corresponding GO terms. Numbers in brackets represent the size of each category of proteins. A full list of
338 proteins in each category can be found in Table S3.

339

340 Discussion

341 RPL: an RNA-centric approach for RPPs identification in living cells

342  We present an RNA-centric method, RPL, for discovering RPPs for transcripts of interest
343 and evaluate it in two distinct contexts—first interrogating a specific ncRNA target U7 and
344 second surveying a heterogenous group of poly(A)* RNA in living cells. Both U7 RPPs
345 and poly(A) tail RPPs demonstrated that RPL enables efficient discovery of functional

346 relevant RBPs for target transcripts. The recall of KPNB1 for U7 nuclear import suggests

347 that RPL allows to detect transient and/or weak interacting proteins (Branon et al., 2017;
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348 Roux et al., 2013). Compared with alternative methods, RPL needs no crosslinking or
349 sonication, requires far fewer cells (~20-40 million vs ~100-800 million) and involves no
350 genetic manipulation, which may interfere target RNA functions (Laprade et al., 2020).
351 The short pulse of labeling potentially permits RPL to be applied to study RNA-protein
352 dynamics. Recently, APEX2 has also been reported to biotinylate proximal nucleic acids
353 (Fazal etal., 2019; Padron et al., 2019; Y. Zhou et al., 2019), suggesting that RPL could
354 be potentially applied to identify RNA and DNA in addition to proteins proximal to the
355 target RNA (together as ‘RNA proximitome’) within living cells.

356 During the preparation of our manuscript, similar strategies using different fusion
357 proteins of endonuclease-deficient Cas13 protein (dLwaCas13a, dPspCas13b, and
358 dRfxCas13d) and proximity labeling enzyme (APEX2, BiolD2, BASU, and PafA) were
359 reported (Han et al., 2020; Li et al., 2020; Yi et al., 2020; Zhang et al., 2020).
360 Applications of these methods together with ours to both mRNAs and ncRNAs with wide
361 range of abundance (~10%-10° copies/cell) demonstrate that these methods have broad
362 potential to identify functional relevant RBPs for diverse transcripts.

363 RPPs identified using the dCas13b-APEX2 are expected to include three types of
364  proteins theoretically: proteins that directly bind to target RNA, proteins that associated
365 with target RNA indirectly via protein-protein interactions, and proteins present within the
366  biotinylating range. Biological replicates are expected to help enrich the first two groups
367 of RBPs and reduce the third type as false positive candidates may not be enriched
368 repeatedly. In addition, an optimal molar ratio between the fusion protein and gRNA,
369 which enables efficient proximity-based biotinylation and prevents nonspecific labeling

370 due to excess fusion protein, is crucial for separating signal from noise. A validated set of
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371  gRNAs that can specifically direct fusion protein to target RNA with low off-target activity
372 is another key factor. As complementarity between the gRNA spacer and targeted region
373 as well as local RNA accessibility are essential for RNA targeting (Abudayyeh et al.,
374 2017; Cox et al., 2017; Konermann et al., 2018; Smargon et al., 2017), general
375 principles for gRNA designing can provide critical help in choosing spacer sequence and
376  length for gRNA aiming at single-stranded region of target RNA (Bandaru et al., 2020;
377 Wessels et al., 2020).

378

379 Limitations and directions for improvement

380 High concentration of H2O2 (1 mM) used in the RPL method may cause oxidative stress
381 and necrosis to the cells (Clement and Pervaiz, 2001) and may preclude the application
382 of RPL to systems sensitive to oxidative stress and cell harm. Similar to other fusion
383 proteins, the RPL protein due to its large size (~130kDa) may pose steric hindrance to
384 access target RNA and increase the biotinylating range, which could reduce specificity
385 and limit the application to mapping RNA functional domains (Quinn et al., 2014) and
386 RNA-protein interactions at high resolution. Improvement could be achieved using smaller
387 Cas13 proteins by structure-guided truncations (Zhang et al., 2018). Alternatively, CIRTS
388 strategy could be applied to assemble a much smaller gRNA-dependent RNA proximity
389 labeling enzyme (Rauch et al., 2019).

390 Another limitation is that RPL and similar tools may not identify RBPs for a target RNA
391 as efficiently as antisense probe-based methods, as the RPL protein has to compete with
392 the RBPs bound to the target transcript (Wessels et al., 2020). The RPL protein can only

393 access single-stranded regions of target RNA (Cox et al., 2017; Smargon et al., 2017)
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394 and only proteins with electron-rich amino acids like tyrosine exposed on the surface
395 within the biotinylating range have the opportunity to be labeled (Rhee et al., 2013). The
396 same limitation also applies to other proximity labeling enzymes including BiolD and its
397 relatives and PafA, which all favor lysine as labeling substrate (Liu et al., 2018;
398 Samavarchi-Tehrani et al., 2020).

399

400 Perspectives

401 We anticipate that RPL and similar methods will be widely applied to characterize the
402  functions and regulation of diverse categories of RNA in multiple cell types and organisms.
403 Since both Cas13s and proximity labeling are very active research areas, further
404 optimization and refinements of RPL and similar methods are expected. Utilizations of
405 these tools together with protein-centric methods (Licatalosi et al., 2008; Van Nostrand
406 et al., 2016), annotation of RNA structure (Spitale et al., 2015; Sun et al., 2019) could
407 shed light on the molecular mechanisms of IncRNA functions, RNA-protein interactions,
408 RNA functional domain, and binding specificities for RBPs.

409
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426  Materials and methods
427 Key Resources Table
Reagent or Resource Source Identifier
Antibodies
U1-70k EMD Millipore Cat.# 05-1588, RRID: AB_11210916
B-tubulin Sigma Aldrich Cat.# T8328, RRID: AB_1844090
HA Santa Cruz Cat.# sc-7392, RRID: AB_627809
FLAG Santa Cruz Cat.# sc-166384, RRID: AB_2017592
Biotin Santa Cruz Cat.# sc-57636, RRID: AB_628778
B-actin Santa Cruz Cat.# sc-47778, RRID: AB_626632
[e[€; Thermo Fisher Scientific Cat.# 10500C, RRID: AB 2532981
Chemicals
biotin-phenol Iris Biotech Cat.# LS-3500.1000, RRID: N/A
hydrogen peroxide (H202) Sigma Aldrich Cat.# H1009, RRID: N/A
sodium azide Sigma Aldrich Cat.# S2002-5G, RRID: N/A
sodium ascorbate Sigma Aldrich Cat.# PHR1279-1G, RRID: N/A
Trolox Sigma Aldrich Cat.# 238813-1G, RRID: N/A
Dynabeads Protein A Thermo Fisher Scientific Cat.#: 10001D, RRID: N/A
Streptavidin magnetic beads Thermo Fisher Scientific Cat.# 88817, RRID: N/A
Plasmids
PCO04G-EFTa-FopCastdb- Addgene RRID: Addgene_103862
pC0053-CMV-dPspCas13b-
GS-ADAR2DD (E488Q)-delta- Addgene RRID: Addgene_103869
984-1090
pCMV'dKE,FI’E%f;ib'FLAG' This study N/A
pcDNA3-APEX2-NES Addgene RRID: Addgene_49386
PspCas13b NTC gRNA Addgene RRID: Addgene 103854
PspCas13b U1-1 gRNA This study N/A
PspCas13b U1-2 gRNA This study N/A
PspCas13b U1-3 gRNA This study N/A
PspCas13b poly(A) gRNA This study N/A
PspCas13b poly(U) gRNA This study N/A
Experimental Models: Cell lines
Human HEK293T cells ATCC Cat.# CRL-3216, RRID: CVCL_0063
Software and Algorithms
PyMOL PyMOL RRID: SCR_000305
Metascape Metascape RRID: SCR_016620
STRING STRING RRID: SCR_005223
Limma Limma RRID: SCR_010943
428

429 Plasmids and cloning. pC0046-EF1a-PspCas13b-NES-HIV was a gift from Dr. Feng Zhang (Addgene
430 plasmid # 103862). pCMV-dPspCas13b-FLAG-APEX2-HA (RPL plasmid) was constructed by replacing
431  ADAR2DD-delta-984-1090 in pC0053-CMV-dPspCas13b-GS-ADAR2DD (E488Q)-delta-984-1090 (a gift

432  from Dr. Feng Zhang, Addgene plasmid # 103869) with FLAG-APEX2-HA subcloned from pcDNA3-
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433  APEX2-NES (a gift from Dr. Alice Ting, Addgene plasmid # 49386) using the following primers:

434  dPspCas13b-For: 5TACCCATACGATGTTCCAGATTACGCTTAAGCGGCCGCTCGAGTCY,,

435  dPspCas13b-Rev: 5GTCGTCATCCTTGTAGTCGGATCCCAGTGTCAGTCTTTICAAGS',

436  FLAG-APEX2-HA-For: 5’GACTACAAGGATGACGACG3',

437  FLAG-APEX2-HA-Rev: 5TGGAACATCGTATGGGTACTGCAGGGCATCAGCAAACS'.

438 PCR was performed using Q5 High-Fidelity DNA Polymerase (New England Biolabs, Cat.# M0491L). PCR
439  fragments were assembled using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Cat.#
440 E2621S) according to manufacturer’s instructions. The following spacer sequences were used to express
441  gRNAs using pC0043-PspCas13b crRNA backbone (a gift from Dr. Feng Zhang, Addgene plasmid #
442  103854):

443  NTC: ATGTCTTCCTGGGACGAAGACAA

444  U1-1130: ATCATGGTATCTCCCCTGCCAGGTAAGTAT,

445  U1-2101-130: CAAATTATGCAGTCGAGTTTCCCACATTTG,

446  U17-310s-137: ACTACCACAAATTATGCAGTCGAGTTTCCC,

447 Poly(A): TTTTTTTTTTTTTTTTTTTTTTITTITTITITT,

448  Poly(U) : AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.

449  The sequences of all constructs have been confirmed using Sanger sequencing.

450

451  Transfection and in vivo proximity dependent biotinylation. For validation of U7 gRNAs in directing the
452 RPL protein to target U7, HEK293T cells were seeded into 12-well plates and were transfected with 1.5 ug
453  the RPL plasmid and 0.5 pg Cas13b gRNAs (NTC, U7-1, U7-2, U1-3) while ~80% confluency using
454 Lipofectamine 3000 (Thermo Fisher Scientific, Cat.# L3000015). For RIP experiments, HEK293T cells were
455  seeded into 6-well plates and were transfected with 2.5 ug the RPL plasmid and 1.5 ug Cas13b gRNAs
456  while ~80% confluency using Lipofectamine 3000. For proximity-dependent biotinylation, HEK293T cells
457  were seeded into 150 mm plate and were transfected with 25 ug the RPL plasmid and 15 ug Cas13b gRNAs
458 (NTC, U1-1, U1-2, U1-3, poly[A], poly[U]) while ~80% confluency using Lipofectamine 3000. HEK293T cells
459  were incubated with 25 mL of DMEM media containing 25 pL of 500 mM biotin-phenol (Iris Biotech, Cat.#

460 LS-3500.1000) in DMSO for 30 min at 37 °C 24h post transfection. Cells were then treated with 1 mM
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461  hydrogen peroxide (H202) (Sigma Aldrich, Cat# H1009) for 1 min on a horizontal shaker at room
462  temperature. The labeling solution was aspirated and cells were washed twice with 25 mL of quencher
463 solution (10 mM sodium azide [Sigma Aldrich, Cat.# S2002-5G], 10 mM sodium ascorbate [Sigma Aldrich,
464  Cat.#PHR1279-1G], and 5 mM Trolox [Sigma Aldrich, Cat.# 238813-1G] in DPBS (Thermo Fisher Scientific,
465 Cat.# 14040182). Cells were then washed three times with 15 mL of DPBS and were pelleted by
466  centrifugation at 1,500 g for 5 min at 4 °C. Cell pellets were snap frozen and stored at =80 °C.

467

468 Streptavidin enrichment of biotinylated proteins. Cell pellets from two 150 mm plates of transfected
469 HEK293T cells were lysed in 2 mL cell lysis buffer (10 mM HEPES, pH7.5 by KOH, 150 mM NaCl, 0.1%
470 NP-40, 5 mM EGTA, 5 mM Trolox, 10 mM Sodium ascorbate acid, 10 mM Sodium azide, 1 mM PMSF).
471 Streptavidin magnetic beads (Thermo Fisher Scientific, Cat.# 88817) were washed twice with cell lysis
472 buffer and 3.5 mg of each whole cell lysate sample were incubated with 100 uL magnetic bead slurry with
473 rotation for 2 h at room temperature. After enrichment, the flowthrough was removed and beads were
474  washed with 2 x 1 mL cell lysis buffer, 1mL 1 M KCI, 1 mL 0.1 M Na2COs, 1 mL of 2 M urea in 10 mM Tris-
475  HCI (pH 8.0), and again with 2 x 1 mL cell lysis buffer. Biotinylated proteins were then eluted by boiling the
476 magnetic beads in 30 uL 4 x Laemmli sample buffer (Bio-Rad, Cat.# 1610747) supplemented with 20 mM
477  DTT and 2 mM biotin.

478

479 LC-MS/MS and label-free quantitative mass spectrometry proteomic analysis

480 The streptavidin-enriched proteins were profiled using label-free quantitative mass spectrometry as
481 previously described (B. Zhou et al., 2019) at Cedars-Sinai Medical Center Biomarker Discovery Platform
482  Core.

483

484  Data analysis for RNA proximal proteins

485 Data were first filtered to exclude non-human proteins and proteins that were detected in only one or none
486  of the U7 replicates or poly(A) replicates. Then proteins detected with two or greater unique peptides were
487 subjected to logz transformation. Only the top gene name was kept from multiple candidates. Since U7 has

488 compact structure in pre-B complex and its size is much smaller than the biotinylating range of APEX2,

25


https://doi.org/10.1101/2020.02.28.970442
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.970442; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

489 experiments using U7 gRNAs (U71-1, U71-2, U1-3) were considered as replicates to compare with
490 nontargeting controls (NTC1, partially [65%] targeting UBTF; NTC2, targeting poly[A]; NTC3, targeting
491  poly[U]). Moderated t-test with a paired design was used to compare the logz-transformed iBAQ values
492 between U7 and NTC or between poly(A) and poly(U) using limma package (Smyth, 2004). p values were
493  adjust using the Benjamini-Hochberg (BH) method (Benjamini and Hochberg, 1995) for multiple
494  comparisons. Proteins with p < 0.05 were considered statistically significant. There are 226 U1 RPPs with
495 p<0.05, log2FC > 2, FDR < 0.25 and 786 poly(A) tail RPPs with BH-adjusted p < 0.05, log2FC > 2.

496

497 Comparison RPPs with different gene ontology (GO) terms

498 Lists of human proteins were retrieved (04/13/2020) from QuickGO (https://www.ebi.ac.uk/QuickGO/) via

499 searching corresponding GO terms and selecting ‘Homo sapiens (9606)' under Taxon, except P-bodies

500 and stress granule, which were both curated using data summarized from Wikipedia (04/24/2020)

501 (https://en.wikipedia.org/wiki/P-bodies, https://en.wikipedia.org/wiki/Stress_granule). The venn diagrams

502  were generated using online tools (http://bicinformatics.psb.ugent.be/webtools/Venn/).

503

504 Cellular fractionation. Cells were fractionated as previously described with slight modification (Lin et al.,
505 2019). Six million HEK293T cells were treated with PML buffer (10 mM Tris-HCI, pH 7.5, 0.15% NP-40, 150
506 mM NaCl) on ice for 4 min after homogenization by flicking. Lysates were loaded onto a 24% sucrose
507 cushion (24% RNase-free sucrose in PML buffer) using large orifice tips, and centrifuged at 15,000 x g for
508 10 min at 4°C. The supernatant (cytoplasmic fraction) was retained and the pellet (nuclear fraction) was
509 washed with 1 x PBS/1 mM EDTA and resuspended in 200 uL of 1 x PBS/1 mM EDTA. Fractionation
510 efficiency was validated by western blot using B-tubulin (Sigma Aldrich, Cat.# T8328, 1:2,000) as
511  cytoplasmic marker and U1-70k (EMD Millipore, Cat.# 05-1588, 1:1,000) as nuclear marker.

512

513 RNA Immunoprecipitation (RIP). RIP was performed as previously described with slight modification (Lin
514 et al., 2019). Twelve microliter Dynabeads Protein A (Thermo Fisher Scientific, Cat.#: 10001D) were
515  washed with 200 pL HBS (150 mM NaCl, 10 mM HEPES, pH7.5 by KOH) and incubated with 2 pg anti-HA

516 (Santa Cruz, Cat.# sc-7392) or 2 ug rabbit IgG isotype (Thermo Fisher Scientific, Cat.# 10500C) in the
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517 presence of 80 uL HBS buffer at room temperature for 1 h. Eight million HEK293T cells were lysed with
518 800 pL cell lysis buffer (HBS, 0.1% NP-40, 5 mM EGTA, supplemented with 1 x protease inhibitor cocktail
519 [Roche, Cat.# 11873580001], 1 x PhosSTOP protease inhibitor cocktail [Roche, Cat.# 4906837001], 1 mM
520 PMSF [Sigma Aldrich, Cat.# 93482], and Superase-in [Ambion, Cat.# AM2696]) at 4°C for 1 h. Cell debris
521 and insoluble proteins were removed by centrifugation at 4°C, 12,000 g for 10 min, and the supernatants
522  were incubated with HA-conjugated or IgG-conjugated Dynabeads at 4°C for 1 h. The Dynabeads were
523  then washed 3 times with wash buffer (HBS, 0.1% NP-40) and aliquoted into two halves. Proteins
524  associated with half of the Dynabeads were eluted with 22 uL 4 x Laemmli sample buffer (Bio-Rad, Cat.#
525 1610747) by boiling at 95 °C for 5 min. RNA was extracted from the other half of Dynabeads using TRIzol
526 LS (Thermo Fisher Scientific, Cat.# 10296028).

527

528 RNA extraction and RT-qPCR. RNA associated with immunoprecipitated RPL fusion protein or RNA from
529  gRNA transfected cells were extracted using TRIzol LS. M-MLV reverse transcriptase (Promega, Cat.#
530 M5301) and random hexamers (Promega, Cat# C1181) were used for reverse transcription. Gene
531  expression was quantified by RT-qPCR using iQ SYBR Green supermix (Bio-Rad, Cat.# 170-8886). The
532 relative gene expression was calculated using the 222t method and normalized to GAPDH. Five
533 nanograms cDNA was used for RT-gPCR analysis on CFX96 Touch Real-Time PCR Detection System
534  (Bio-Rad) using the following primer pairs:

535  U1-RT-For: 55CCAGGGCGAGGCTTATCCATT3’, U1-RT-Rev: 55GCAGTCCCCCACTACCACAAATI;
536  U2-RT-For: TTCTCGGCCTTTTGGCTAAG; U2-RT-Rev: CTCCCTGCTCCAAAAATCCA,

537  UB-RT-For: GCTTCGGCAGCACATATACTAAAAT,; UB-RT-Rev: CGCTTCACGAATTTGCGTGTCAT;

538 5.8S-RT-For: GGTGGATCACTCGGCTCGT,; 5.85-RT-Rev: GCAAGTGCGTTCGAAGTGTC;

539  18S-RT-For: 55CAGCCACCCGAGATTGAGCAZ', 18S-RT-Rev: 5TAGTAGCGACGGGCGTGTGI;

540  28S-RT-For: CCCAGTGCTCTGAATGTCAA, 28S-RT-Rev: AGTGGGAATCTCGTTCATCC;

541  GAPDH-RT-For: 5TGCCAAATATGATGACATCAAGAAZ’,

542  GAPDH-RT-Rev: 5GGAGTGGGTGTCGCTGTTG3'.

543
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544  Western blot. Protein samples were run on 4-20% gradient precast protein gel (Bio-Rad, Cat.# 456-1096)
545 and transferred onto PVDF membrane (Bio-Rad, Cat.# 1704157). After 1 h blocking, membranes were
546 incubated with anti-FLAG (Santa Cruz, Cat.# sc-166384, 1:1,000), anti-HA (Santa Cruz, Cat.# sc-7392,
547 1:1,000), anti-biotin (Santa Cruz, Cat.# sc-57636, 1:1,000), or anti- B-actin (Santa Cruz, Cat.# sc-47778,
548 1:2,000) at 4°C overnight. Membranes were washed three times with Tris-buffered saline containing 0.5%
549  Tween 20 (TBST) before incubating with HRP-conjugated secondary antibody at room temperature for 2 h.
550 Then the membranes were incubated briefly with ECL Western Blotting Substrate (Thermo Fisher Scientific,
551 Cat.#: 32106) after three times wash with TBST. The membranes were exposed to HyBlot Autoradiography
552 Film (Denville Scientific, Cat.#: E3018).

553

554  Distance calculation. The distances between U7 snRNA and U7 RPPs identified by RPL in the pre-B
555  complex structure (PDB ID: 6QX9) were measured using PyMOL (Schrodinger, 2020). We used the
556  distance from U7 snRNA (nucleotide 1) to the proximal residues of U7 RPPs to estimate the actual distance
557  (D1). Since there is no structure available for PspCas13b, we used the structure of PbuCas13b (PDB ID:
558 6DTD) to infer the distance between U7 RPPs and APEX2 in the RPL protein. Basically, the average
559 distances between gRNA (nucleotide 1, 12, and 23 of spacer) and the C-terminus of PbuCas13b, where
560 the APEX2 was fused to, were measured (D2). The inferred distances between APEX2 and RPPs were
561 then calculated as absolute value of the differences between D1 and D2.

562

563 Data availability. Raw images for western blots and raw mass spectrometry data for both U7 RPPs and

564  poly(A) RPPs are included as supporting files.

565
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