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Abstract

Whole genome duplication (WGD) occurs across kingdoms and can promote adaptation. However, a
sudden increase in chromosome number, as well as changes in physiology, are traumatic to conserved
processes. Previous work in Arabidopsis arenosa revealed a coordinated genomic response to WGD,
involving physically interacting meiosis proteins, as well as changes related to cell cycle and ion
homeostasis. Here we ask: is this coordinated shift in the same processes repeated in another species
following WGD? To answer this, we resequenced and cytologically assessed replicated populations
from a diploid/autotetraploid system, Cardamine amara, and test the hypothesis that gene and
process-level convergence will be prevalent between these two WGDs adaptation events. Interestingly,
we find that gene-level convergence is negligible, with no more in common than would be expected by
chance. This was most clear at meiosis-related genes, consistent with our cytological assessment of
somewhat lower meiotic stability in C. amara, despite establishment and broad occurrence of the
autotetraploid in nature. In contrast, obvious convergence at the level of functional processes,
including meiotic cell cycle, chromosome organisation and stress signalling was evident. This indicates
that the two autotetraploids survived challenges attendant to WGD via contrasting solutions, modifying
different players from similar processes. Overall, this work gives the first insight into the salient
adaptations required to cope with a genome-doubled state and brings the first genomic evidence that
autopolyploids can utilize multiple trajectories to achieve adaptation to WGD. We speculate that this
flexibility increases the likelihood a nascent polyploid overcomes early stringent challenges to later
access the spectrum of evolutionary opportunities of polyploidy.

Significance statement

Whole genome duplication (WGD) is a tremendous mutation and an important evolutionary force. It
also presents immediate changes to meiosis and cell physiology that nascent polyploids must overcome
to survive. Given the dual facts that WGD adaptation is difficult, but many lineages nevertheless survive
WGD, we ask: how constrained are the evolutionary responses to a genome-doubled state? We
previously identified candidate genes for WGD adaptation in Arabidopsis arenosa, which has natural
diploid and tetraploid variants. Here we test for evolutionary convergence in adaptation to WGD in a
species 17 million years distant, Cardamine amara. This work gives the first genomic insight into of how
autopolyploids utilize multiple adaptive trajectories to manage a genome-doubled state.


https://doi.org/10.1101/2020.01.31.929109
http://creativecommons.org/licenses/by/4.0/

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929109; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Whole genome duplication (WGD) is both a massive mutation and a powerful force in evolution (1).
The opportunities and challenges presented by WGD occur immediately, realised in a single generation.
As such, WGD comes as a shock to the system. Autopolyploids, formed by within-species WGD (without
hybridization), emerge from the chance encounter of unreduced gametes. Thus, they typically harbour
four full haploid genomes that are similar in all pairwise combinations, resulting in a lack of pairing
partner preferences at meiosis. This, combined with multiple crossover events per chromosome pair,
can result in entanglements among three or more homologs at anaphase and mis-segregation or
chromosome breakage, leading to aneuploidy (2—-4). Beyond this, WGD presents a suddenly
transformed intracellular landscape to the conserved workings of the cell, such as altered ion
homeostasis and a host of nucleotypic factors related to cell size, volume, and cell cycle progression (3,
5, 6). Occasionally however, a lineage survives this early trauma and graduates to runaway evolutionary
success. Indeed, there is some direct empirical evidence of the increased adaptability of autopolyploid
lineages from in vitro evolutionary competition experiments (7). With increased ploidy, genetic
variability can be maintained in a masked state, with evidence of lineages acting as allelic sponges
recruiting diverse alleles by gene flow across ploidies, and indeed, species (8, 9). Thus, while substantial
opportunities await lineages that adapt to WGD, clear challenges must be overcome to function as a

polyploid (3, 10, 11).

The genomic basis for adaptation to WGD has been most extensively investigated in Arabidopsis
arenosa, which exists as both diploid and autotetraploid in the wild (12). There, the strongest genomic
signals of adaptation to WGD are in a suite of 8 genes that cooperatively govern early events in the
formation of meiotic chromosome crossovers (13, 14). The products of these genes physically and
functionally interact to control this coordinated, conserved process, which stands as a leading
candidate process mediating adaptation to WGD. In the evolved A. arenosa autotetraploids harbouring
these selected alleles, we observed a decrease in meiotic crossover number as well as fewer
chromosome entanglements relative to synthetic autopolyploids with ancestral diploid alleles (14).
Recent work found that the sister species Arabidopsis lyrata, a younger autotetraploid, also harbours
many of the same selected alleles discovered in A. arenosa (9). Moreover, from a joint population

genomic analysis of both species across a hybrid zone, clear signals of bidirectional adaptive gene flow
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emerge exactly at these adaptive alleles between A. arenosa and A. lyrata (9, 15). Therefore, A. lyrata

and A. arenosa WGD stabilisation events are not independent.

Here we use an independent system, ~17 million years diverged from both A. arenosa and A. lyrata
(16), to test the hypothesis that this solution of nimble meiosis gene evolution is repeated, and if not,
whether changes in other genes from analogous processes are associated with adaptation to WGD.
Given the clear resultsin A. arenosa and A. lyrata, we hypothesised that the adaptive trajectories which
are available to mediate adaptation to a WGD state may be constrained, leading to repeated selection
of the same meiosis genes. Such a result would offer a striking case of convergent evolution in core
cellular processes. To test this hypothesis, we take advantage of a well-characterised model, Cardamine
amara (Brassicaceae, tribe Cardamineae). A large-scale cytotyping survey and genetic analysis
demonstrated an autopolyploid origin of the successful autotetraploid cytotype found in the Eastern
and Central Alps (17-20). Importantly, C. amara is a perennial herb harbouring a high level of genetic
diversity (similar to both A. arenosa and A. lyrata) and shares a similar distribution range and
evolutionary history, with a likely single origin, followed by autotetraploid expansion associated with

glacial oscillations (18, 19).

To test our hypothesis of gene and process-level convergence, we performed genome scans for
selection, contrasting natural autotetraploid and diploid populations. We found the strongest selection
signals specifically at genes involved in cellular functions central to adaptation to WGD: chromosome
remodelling, meiosis, cell cycle regulation, and ion transport. However, the evolutionary response to
WGD in C. amara is very different to that of A. arenosa: overall, we saw minimal gene-level convergence
in loci putatively mediating adaptation to WGD. In particular, none of the same meiosis-related genes
that control meiotic chromosome crossovers in A. arenosa were under selection in C. amara. This is
consistent with observations of clonal spreading and lower meiotic stability in both diploid and
autotetraploid C. amara, suggesting that C. amara autotetraploids are already prepared by their diploid
lifestyle to thrive, at least temporarily, while suffering reduced meiotic fidelity. However, in contrast to
a lack of gene convergence, we find a strong signal of process-level convergence in core processes
controlling DNA management, chromosome organisation, stress signalling, and ion homeostasis.

Overall, our results provide sharp contrast to widespread reports of gene-level convergence across the
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tree of life and suggest that the genomic changes associated with a WGD state might not be as

constrained as would be expected based on their functional conservation across eukaryotes.

Results and Discussion

Population selection, sampling and genetic structure. To assess the genetic basis of adaptation to WGD
in C. amara, we generated a novel synthetic long-read reference genome (N50 = 1.82 mb, 95%
complete BUSCOs; see Methods) and resequenced in triplicate four populations of contrasting ploidy,
sampling 100 individuals: two diploid (LUZ, VRK) and two autotetraploid (CEZ, PIC; Fig. 1A; S| Appendix,
Table S1). We chose these populations based on a comprehensive cytological survey of over 3,000 C.
amara samples throughout the Czech Republic (18). The populations we sampled represent core areas
of each cytotype, away from potential hybrid zones and distant from any triploid-containing

populations. Further, we performed flow cytometry on all samples sequenced to verify expected ploidy.
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Figure 1. Sample population locations and population structure of Cardamine amara. A, Locations of
C. amara populations sampled in the Czech Republic (red, diploids; blue, autotetraploids; scale bar corresponds
to 200 km; shaded area represents each cytotype range from (18), with autotetraploid range expansion
southward). B, Population structure represented by Principal Component Analysis of ~124,000 fourfold
degenerate SNPs. C, Rank Sum design used to minimise any influence of population-specific divergence in tests
for directional selection. 'p1' to 'p4' represent the between-ploidy contrasts used for the rank sum calculations.
'dd' and 'tt' represent within-ploidy contrasts used to subtract signal of local population history.

To obtain robust population allele frequency estimates across genomes, we performed a replicated
pooled sequencing approach. From each population we pooled DNA from 25 individuals in triplicate

and generated on average 31 million reads per pooled sample. We mapped the reads onto our C. amara
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assembly. After read mapping, variant calling and quality filtration, we obtained a final dataset of

2,477,517 SNPs (mean coverage depth per population = 86, S/ Appendix, Table S2).

Population structure of C. amara (Fig. 1B) showed primary differentiation by ploidy (first axis explained
43% of all variability) while the second axis (28% of variability explained) differentiated the two diploid
populations from each other. The two autotetraploid populations had the lowest genetic differentiation
of all contrasts (Fst = 0.04, mean allele frequency difference = 0.06) and showed a complete absence of
fixed differences (Table 1). Close genetic similarity together with spatial arrangement (the populations
represent part of a continuous range of autotetraploid cytotype spanning to Eastern Alps) suggest that
both autotetraploid populations represent the outcome of a single polyploidization event, in line with
previous population genetic inference based on large-scale sampling (18). The similar level of
interploidy divergence within both C. amara and A. arenosa (average Fst between diploids and
autotetraploids = 0.10 and 0.11, respectively) suggests that the polyploidization events in both species

happened at roughly comparable time points in the past (Table 1).

Table 1. Measures of genome-wide differentiation between C. amara and A. arenosa populations

Populations Ploidies @ AFD  Fixed diff Fst # SNPs

PIC - VKR 4x - 2x 0.09 30 0.09 2,326,315
PIC - LUZ 4x - 2x 0.09 2 0.08 2,314,229
CEZ - VKR 4x - 2x 0.11 120 0.12 2,333,538
CEZ - LUZ 4x - 2x 0.11 86 0.11 2,335,004
CEZ-PIC 4x - 4x 0.06 O 0.04 2,297,229
LUZ - VKR 2x - 2x 0.1 6 0.09 2,018,892
A. arenosa tetraploids - A. arenosa diploids  4x - 2x 0.05 21 0.11 7,106,848

Note: Differentiation metrics shown are mean allele frequency difference (AFD), the number of fixed differences
(Fixed diff) and Fst. In the case of A. arenosa, Fst in diploids is calculated as a mean over all pairwise Fst
measurements between the five previously characterised diploid lineages (8).

Directional selection specifically associated with WGD in C. amara. To minimise false positives due to
local population history we leveraged a quartet-based sampling design (21), consisting of two diploid
and two autotetraploid populations (Fig. 1C). We calculated Fst for 1 kb windows with a minimum 20
SNPs for all six possible population contrasts, and ranked windows based on Fst values. The mean

number of SNPs per population contrast was 2,270,868 (Table 1). To focus on WGD-associated
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adaptation, we first assigned ranks to each window based on the Fst values in each of four possible
pairwise diploid-autotetraploid contrasts and identified windows in the top 1% outliers of the resultant
combined rank sum (Fig. 1C, contrasts p1-p4). We then excluded any window which was also present
in the top 1% Fst outliers in diploid-diploid or autotetraploid-autotetraploid population contrasts to
avoid misattribution caused by local population history (Fig. 1C, contrasts' tt' and 'dd'). By this
conservative approach, we identified 440 windows that intersected 229 gene coding loci (S/ Appendix,
Table S3; 'WGD adaptation candidates' below). Among these 229 gene coding loci, a Gene Ontology
(GO) term enrichment analysis yielded 22 significantly enriched biological processes (Fisher's exact test
with conservative 'elim' method, adjusted p < 0.05, S/ Appendix, Table S4). To further refine the gene
list to putatively functional candidates we complemented these differentiation measures with a
guantitative estimate following the fineMAV method (22) (see Methods). SNPs were assigned a
fineMAV score based on the predicted functional consequences of amino acid substitutions, using
Grantham scores, amplified by the allele frequency difference between the two amino acids (22). From
our 229 Fst WGD adaptation candidates, 120 contained at least one 1% fineMAV outlier amino acid
substitution (S/ Appendix, Table S3, S5).

DNA maintenance (repair, chromosome organisation) and meiosis under selection in C. amara. Of
the 22 significantly enriched GO processes, the most significantly enriched by far was 'DNA metabolic
process' (p-value = 6.50E-08, vs 0.00021 for the next most confident enrichment), although there was
also enrichment for 'chromosome organization' and 'meiotic cell cycle.' The 40 genes contributing to
these categories have specifically localised peaks of differentiation (Fig. 2), as well as 1% fineMAV
outlier SNPs in their gene coding regions (Fig. 2, SI Appendix, Table S3). These genes also cluster in
STRING interaction networks, suggesting coevolutionary dynamics driving these selection signatures
(Figure S1; see Methods and Results below). The largest cluster comprises of MSH6, PDS5e, SMC2, MS5,
PKL, HDA18, CRC, and homologs of two uncharacterised, but putative DNA repair related loci
AT1G52950 and AT3G02820 (containing SWI3 domain). MutS Homolog 6 (MSH6) is a component of the
post-replicative DNA mismatch repair system. It forms a heterodimer with MSH2 which binds to DNA
mismatches (23, 24), enhancing mismatch recognition. MutS homologs have also been shown to
control crossover number in A. thaliana (25). The C. amara ortholog of AT1G15940 is a close homolog
of PDS5, a protein required in fungi and animals for formation of the synaptonemal complex and sister

chromatid cohesion (26). Structural Maintenance Of Chromosomes 2 (SMC2/TTN3) is a central
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component of the condensin complex, which is required for segregation of homologous chromosomes
at meiosis (27) and stable mitosis (28). PICKLE (PKL) is a SWI/SWF nuclear-localized chromatin
remodelling factor (29, 30) that also has highly pleiotropic roles in osmotic stress response (31),
stomatal aperture (32), root meristem activity (33), and flowering time (34). Beyond this cluster, other
related DNA metabolism genes among our top outliers include DAYSLEEPER (Fig. 2), a domesticated
transposase that is essential for plant development, first isolated as binding the Kubox1 motif upstream
of the DNA repair gene Ku70 (35). The complex Ku70/Ku80 regulate non-homologous end joining (NHEJ)
double-strand break repair (36). Consistent with this, DAYSLEEPER mutants accumulate DNA damage
(37), but the exact role of DAYSLEEPER in normal DNA maintenance is not understood. Interesting also
is the identification of MALE-STERILE 5 (MS5/TDM1), which is required for cell cycle exit after meiosis
II. As the name implies, MS5 mutants are male sterile, with pollen tetrads undergoing an extra round
of division after meiosis Il without chromosome replication (38). MS5/TDM1 may be an APC/C
component whose function is to ensure meiosis termination at the end of meiosis Il (39). Together, this
set of DNA management loci exhibiting the strongest signals of selection points to widespread

modulation of DNA repair and chromosome management following WGD in C. amara.
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Figure 2. Selective sweep signatures at DNA management and ion homeostasis loci. Examples of selective
sweep signatures among four loci (red) among Fst candidate genes. X-axis gives scaffold position in base pairs.
Y-axis gives Fst values at single-nucleotide polymorphisms (dots) between diploid and autotetraploid C. amara.
Red dots indicate fineMAV outlier SNPs. Red arrows indicate gene models overlapping top 1% Fst windows and
grey lines indicate neighbouring gene coding loci.
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Evolution of stress, signalling, and ion homeostasis genes. The remainder of the enriched GO
categoriesin C. amara revolved around a diversity of intracellular processes, including abiotic and biotic
stress response, protein phosphorylation, root development, ABA signalling, and ion homeostasis. The
intersection of these processes was often represented by several genes. For example, two of the top
20 highest-scoring SNPs in the genome-wide fineMAV analysis reside in SNF1-related protein kinase
SnRK2.9 (S/ Appendix, Table S5). SnRKs have been implicated in osmotic stress and root development
(40, 41), and their activity also mediates the prominent roles of Clade A protein phosphatase 2C
proteins in ABA and stress signalling (42). Interesting in this respect is a strong signature of selection in
HIGHLY ABA-INDUCED PP2C GENE 1, a clade A PP2C protein (S/ Appendix, Table S3). Stress-related
phosphoinositide phosphatases are represented by SAC9, mutants of which exhibit constitutive stress
responses (43). Diverse other genes related to these categories exhibit the strongest signatures of
selection, such as PP2-A8 (44) and AT4G19090, a transmembrane protein strongly expressed in young
buds (45) (Fig. 2).

Given the observed increase in potassium and dehydration stress tolerance in first generation
autotetraploid A. thaliana (5), it is very interesting that our window-based outliers include an especially
dramatic selective sweep at K* Efflux Antiporter 2 (KEA2, Fig. 2), a K* antiporter that modulates
osmoregulation, ion, and pH homeostasis (46). Recent evidence indicates that KEA2 is important for
eliciting a rapid hyperosmotic-induced Ca®* response to water limitation imposed by osmotic stress
(47). The KEA2 locus in autotetraploid C. amara features an exceptional ten fineMAV-outlier SNPs (Fig.
2, S| Appendix, Table S3, S5), indicating that the sweep contains a run of radical amino acid changes at
high allele frequency difference between the ploidies, strongly suggesting a ploidy-selected functional
change. We also detect cation-chloride co-transporter 1 (HAP 5) a Na+, K+, Cl- co-transporter, involved

in diverse developmental processes and Cl- homeostasis (48).

Limited gene-level convergence between C. amara and A. arenosa. We hypothesized that WGD
imposed strong, specific selection pressures leading to convergent directional selection on the same
genes or at least on different genes playing a role in the same process (gene- or function-level
convergence, respectively) between C. amara and A. arenosa. To test for this, we complemented our

C. amara genome scan with an analysis of A. arenosa divergence outliers based on an expanded
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sampling relative to the original A. arenosa genome scan studies (13, 14). We selected the 80 diploid
and 40 autotetraploid individuals sequenced most deeply in a recent range-wide survey (8) of genomic
variation in A. arenosa (mean coverage depth per individual = 18; 160 haploid genomes sampled of
each ploidy), and scanned for Fst outliers in 1 kb windows, as we did for C. amara. We identified 696
windows among 1% Fst outliers, overlapping 452 gene-coding loci (S/ Appendix, Table S6), recovering
results similar to (14), including the interacting set of 8 loci that govern meiotic chromosome
crossovers. However, from this entire list of 452 A. arenosa WGD adaptation candidates, only six
orthologous loci were shared with our 229 C. amara WGD adaptation candidates (Table 2). This degree
of overlap was not significant (p = 0.42, Fisher's exact test), indicating no excess convergence at the
level of orthologous genes beyond random overlap. Similarly, there was no excess overlap among genes
which harbour at least one candidate fineMAV substitution (3 overlapping candidate genes out of 120
in C. amara and 303 in A. arenosa; p = 0.27, Fisher's exact test). This lack of convergence at the ortholog

level may come as a surprise given the expected shared physiological challenges attendant to WGD (3).

Table 2. WGD adaptation candidates in both A. arenosa and C. amara.

C.amaralD A. thalianaID A.arenosalD Name Function (TAIR)

CAg1480 AT1G16460 AL1G28600 MST2/RDH2 embryo/seed development
CAg20214 AT2G45120 AL4G44210 C2H2-like zinc finger stress response

CAg11103 AT3G42170 AL3G27110 DAYSLEEPER DNA repair

CAg16465 AT3G62850 AL1G11960 zinc finger-like unknown

CAg4024 AT5G05480 AL6G15370 Asparagine amidase A  growth and development
CAg5641 AT5G23570 AL6G34840 SGS3 posttranscriptional gene silencing

Note: The number of genes does not exceed random expectations for the overlap of candidate gene lists from
each species, indicating a lack of gene-level convergence. Genes in bold also harbour at least one candidate
fineMAV SNP in both species.

To determine whether we may have failed to detect convergent loci due to missing data or if genes that
stand as top outliers in A. arenosa had few, but potentially functionally-implicated, differentiated SNPs
in C. amara, we performed a targeted search in C. amara for the interacting set of meiosis proteins
found to exhibit the most robust signatures of selection in A. arenosa (14). All meiosis-related orthologs
in C. amara that also exhibit selection signatures in A. arenosa (13 in total) passed our data quality
criteria and were included in our analyses. Three showed any signal at all by fineMAV analysis: PDS5b

harbours an unusually high three fineMAV outlier SNPs, although it is not a window based Fst outlier.
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ASY3, which controls crossover distribution at meiosis, has only one fineMAV 1% outlier polymorphism.
Error! Bookmark not defined.Finally, a regulator of endoreduplication, CYCA2;3, also harbours a
single fineMAV 1% outlier SNP in C. amara, although it was not included in the Fst window analysis
(number of SNPs < 20). However, upon inspection of Fst values of the (unusually low) 7 SNPs in the
window overlapping this gene, the selection signal in CYCA2;3 would be high (mean Fst = 0.55). Thus,
while we detect varying signal in these three meiosis-related genes following WGD, we do not see
signals of selection in the conspicuous set of interacting crossover-controlling genes that were obvious

in A. arenosa (14).

Meiotic stability in C. amara. Despite our broad overall analysis of selection in C. amara, as well as a
targeted assessment of the particular meiosis genes, we did not detect a signal of selection in those
genes in C. amara (S| Appendix, Table S8). The C. amara autotetraploid is well-established lineage that
underwent significant niche expansion in nature (18), but we still wondered if a contrast in meiotic
behaviour underlies this difference in specific loci under selection. Therefore, we cytologically assessed
the degree of male meiotic stability in C. amara (Fig. 3A). This revealed a low degree of stability in both
C. amara cytotypes (mean proportion stable metaphase | cells in diploid maternal seed lines = 0.38 —
0.69, n = 133 scored cells; in tetraploids = 0.03 — 0.38; n = 348 scored cells; S/ Appendix, Table S9).
However, the degree of meiotic stability was lower in autotetraploids compared to diploids (differing
proportion of stable to unstable meiotic cells for each ploidy; D = 62.7, df = 1, p < 0.0001, GLM with
binomial errors; Fig. 3B, SI Appendix, Table S9), which corresponds with the lack of selection signal in
crossover-controlling meiosis genes. Interestingly, we did find that the degree of stability was variable
within each cytotype, suggesting the existence of standing genetic variation that controls stability. In
contrast, higher frequencies of stable metaphase | cells (>80%) have been observed for diploid and
autotetraploid A. arenosa (9). This, together with the observation of frequent clonal spreading of C.
amara (49), indicates that the species has an ability to maintain stable populations, even under varying
efficiencies of euploid gamete production, thus perhaps decreasing the urgency to fully stabilise meiosis

in either cytotype. This, in turn, may have facilitated the establishment of the autotetraploid cytotype.
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Figure 3. Variable meiotic stability in C. amara. A, An example of stable and unstable diploid (8 bivalents) and
autotetraploid (16 bivalents) DAPI-stained meiotic chromosomes (diakinesis and metaphase ). Unstable meiosis
is characterised by multivalent formation and interchromosomal connections. Scale bar corresponds to 10 um.
For a complete overview of all scored chromosome spreads see Figure S4. B, Distribution of meiotic stability
(calculated as proportion of stable and partly stable to all scored meiotic spreads) in diploid and autotetraploid
individuals of C. amara. *** - p < 0.001, GLM with binomial errors.

Evidence for process-level convergence. While we found no excess convergence at the level of
orthologous genes under selection, we speculated that convergence may occur nevertheless at the
level of functional processes. To test this, we used two complementary approaches: overlap of GO term
enrichment and evidence of shared protein function from interaction networks. First, of the 73
significantly (p < 0.05) enriched GO terms in A. arenosa (S| Appendix, Table S7), we found that five were
identical to those significantly enriched in C. amara, which is more than expected by chance (p < 0.001,
Fisher's exact test; Table 3). In addition, some processes were found in both species, but were
represented by slightly different terms, especially in the case of meiosis ("meiotic cell cycle" in C. amara,
"meiotic cell cycle process" in A. arenosa: Tables S4 and S7). Remarkably, the relative ranking of
enrichments of all five convergent terms was identical in both C. amara and A. arenosa (Table 3). This
stands in strong contrast to the fact that A. arenosa presented an obvious set of physically and
functionally interacting genes in the top two categories ('DNA metabolic process' and 'chromosome
organisation'), while the genes in these categories in C. amara are implicated in more diverse DNA

management roles.
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Table 3. Convergent processes under selection in both C. amara and A. arenosa following WGD

GO ID Term p-value p-value Enrichment Enrichment
(C. amara) (A. arenosa) (C.amara) (A. arenosa)

GO0:0006259 DNA metabolic process 6.50E-08 8.20E-04 3.72 2.46

G0:0051276 chromosome organization 0.019 2.10E-04 1.98 2.01

G0:0009738 abscisic acid-activated signalling pathway 0.032 0.022 2.54 2.10

GO:0071215 Cellular response to abscisic acid 0.048 0.04 2.30 1.90

stimulation
G0:0097306 cellular response to alcohol 0.048 0.04 2.30 1.90

Note: p-values given are Fisher's exact test using the conservative 'elim' method, which tests for enrichment of
terms from the bottom of the GO hierarchy to the top and discards any genes that are significantly enriched in a
descendant GO terms (Methods). ‘Enrichment’ refers to fold enrichment.

Second, we sought for evidence that genes under selection in C. amara might interact with those found
under selection in A. arenosa, which would further support process-level convergence between the
species. Thus, we took advantage of protein interaction information from the STRING database, which
provides an estimate of proteins' joint contributions to a shared function (50). For each C. amara WGD
adaptation candidate we searched for the presence of STRING interactors among the A. arenosa WGD
adaptation candidates, reasoning that finding such an association between candidates in two species
may suggest that directional selection has targeted the same processes in both species through
different genes. Following this approach, we found that out of the 229 C. amara WGD adaptation
candidates, 90 were predicted to interact with at least one of the 452 WGD adaptation candidates in
A. arenosa. In fact, 57 likely interacted with more than one A. arenosa candidate protein (Fig. 4 and S/
Appendix, Table S10). This level of overlap was greater than expected by chance (p = 0.001 for both
"any interaction" and "more-than-one interaction", as determined by permutation tests with the same

database and 1000 randomly generated candidate lists).
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Figure 4. Evidence for functional parallelism between C. amara and A. arenosa following independent WGDs.
Plots show C. amara candidate genes in blue and STRING-associated A. arenosa candidate genes in grey. We
used only medium confidence associations and higher (increasing thickness of lines connecting genes indicates
greater confidence). A, meiosis- and chromatin remodelling-related genes. B, ion transport-related genes.

Several large STRING clusters were evident among WGD adaptation candidates in C. amara and A.
arenosa (Fig. 4). The largest of these clusters centre on genome maintenance, specifically meiosis and
chromatin remodelling (Fig 4A), and ion homeostasis (especially K+ and Ca2+), along with stress (ABA)

signalling (Fig 4B), consistent with the results of GO analysis. Taken together, both STRING and GO
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analyses support our hypothesis of functional convergence of these processes following WGD in C.

amara and A. arenosa.

Conclusion

Given the expected shared challenges attendant to WGD in C. amara and A. arenosa, we hypothesised
at least partially convergent evolutionary responses to WGD. While we found obvious convergent
recruitment at the level of functional processes, we did not detect excess convergence at the genic
level. This was consistent with the probable absence of shared standing variation between these
species (51), which are 17 million years diverged. Nevertheless, we note that if any shared variation has
persisted, it was not selected upon convergently in both young autotetraploids, thus strengthening the
conclusion that the genes selected in response to WGD are not highly constrained between these two
species. The most prominent difference we observed here is the lack of an obvious coordinated
evolutionary response in genes stabilizing early meiotic chromosome segregation in C. amara, relative
to the striking coevolution of physically and functionally interacting proteins governing crossover
formation in A. arenosa. This could be explained to some extent by the observation that in C. amara
both diploids and autotetraploids are not uniformly meiotically stable, and autotetraploids may
therefore enjoy a less strict reliance on the generation of a high percentage of euploid gametes. This
may allow the decoupling of crossover reduction from broader changes across meiosis and other
processes we observe. This is not to say that we see no signal of WGD adaptation in C. amara: factors
governing timing during later meiosis, especially the exit from meiotic divisions as evidenced by the
interacting trio of SMG7, SDS and MS5, along with other chromatin remodelling factors and DNA repair-
related proteins, such as MSH6 and DAYSLEEPER give very strong signals. The convergent functions we
did detect (other meiosis processes, chromosome organisation/chromatin remodelling, ABA signalling

and ion transport) provide first insights into the salient challenges associated with WGD.

We conclude that evolutionary solutions to WGD-associated challenges vary from case to case,
suggesting minimal constraint. This may explain how many species manage to thrive following WGD
and, once established as polyploids, experience evolutionary success. In fact, we envision that the

meiotic instability experienced by some WGD lineages, such as C. amara, could serve as a diversity-

15


https://doi.org/10.1101/2020.01.31.929109
http://creativecommons.org/licenses/by/4.0/

392
393
394

395

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929109; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

generating engine promoting large effect genomic structural variation, as has been observed in

aggressive polyploid gliomas (3).

Materials and Methods

Reference Genome Assembly and Alignment

We generated a de novo assembly using the 10x Genomics Chromium approach. In brief, a single diploid
individual from pop LUZ (S/ Appendix, Table S11) was used to generate a single Chromium library,
sequenced using 250PE mode on an lllumina sequencer, and assembled with Supernova version 2.0.0.
This assembly had an overall scaffold N50 of 1.82mb. An assessment of genome completeness using
BUSCO (version 3.0.2) (52) for the 2,251 contigs >=10kb was estimated at 94.8% (1365/1440 BUSCO
groups; S/ Appendix, Table S12).

BioNano Plant Extraction protocol

High molecular weight DNA extraction and 10x synthetic long read library construction detailed
methods are provided in S/ Appendix, Methods. The libraries were run at 250 paired end format on an
Illumina HiSeq.

Sequencing and assembly and assembly QC

Raw reads were subsampled to 90 M reads and assembled with Supernova 2.0.0 (10x Genomics), giving
araw coverage of 60.30x and an effective coverage of 47.43x. The estimated molecule length was 44.15
kb. The assembly size, counting only scaffolds longer than 10kb was 159.53 Mb and the Scaffold N50
was 1.82MB. The k-mer estimate for the genome size was 225.39 MB, hence we are missing 16.61%
from the assembly by retaining only contigs longer than 10Kb. We further scaffolded the assembly using
the published Cardamine hirsuta genome using graphAlign (53) and Nucmer (54).

Gene Calling and Annotation

The 'plants set' database 'embryophyta_odb9.tar.gz' was downloaded from http://busco.ezlab.org/ and
used to assess orthologue presence/absence in our C. amara genome annotation. Running BUSCO gave
Augustus (55) results via BUSCO HMMs to infer where genes lie in the assembly and returning their
protein sequences. A blast (v. 2.2.4) database was built for Brassicales (taxid: 3699) by downloading ~
1.26M protein sequences from https://www.ncbi.nlm.nih.gov/taxonomy/ and the Augustus-predicted
proteins were annotated via Interproscan (56) and blast2go (57).

Orthogrouping and Reciprocal Best Blast Hits

We performed an orthogroup analysis using Orthofinder version 2.3.3 (58). to infer orthologous groups
(0Gs) from four species (C. amara, A. lyrata, A. thaliana, C. pyrenaica). A total of 21,618 OGs were
found. Best reciprocal blast hits (RBHs) for C. amara and A. thaliana genes were found using BLAST
version 2.9.0. C. amara genes were then assigned an A. thaliana gene ID for GO enrichment analysis via
the following protocol: First, if the genes' OG contained only one A. thaliana gene ID, that gene ID was
used. If the OG contained more than one A. thaliana gene, then the RBH was taken. If there was no
RBH the A. thaliana gene ID, then the OG gene with the lowest E-value in a BLAST versus the TAIR10
database was taken. If no OG contained the C. amara gene, then the RBH was taken. Finally, if there
was no OG or RBH then the gene with the lowest E-value in a BLAST versus the TAIR10 database was
taken. BLASTs versus the TAIR10 database were performed during December 2019.
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Population resequencing and genome scans for selection

Sampling design

To isolate genomic regions subjected to directional selection acting specifically between diploids and
autotetraploids, we sampled a set of two diploid and two tetraploid populations (Fig. 1C). We used
comparisons between populations of the same ploidy to constitute a null model for shared
heterogeneity in genetic differentiation arising through processes unrelated to WGD (following an
approach successfully applied in (21)).

Library preparation and sequencing

We extracted DNA in triplicate from 25 individuals for each of the following populations: CEZ (4x), PIC
(4x), VKR (2x), and LUZ (2x). All plants used for DNA extraction were verified for expected ploidy by flow
cytometry. We then pooled samples of each population, constructed Illumina Truseq libraries
(lumina), and sequenced them on an Illumina NextSeq at a 150 base pair, paired-end specification.

Data preparation, alignment, and genotyping
Fastq files from the two runs were combined and concatenated to give an average of 30.5 million reads
per sample. Data processing steps are given in S| Appendix, Methods, along with variant calling steps.

Population genetic structure

We first calculated genome-wide between-population metrics (Nei's Fst (59) and allele frequency
difference). We calculated allele frequencies (AF) as the average AF of all the pools. The AF in individual
pools has been calculated as the fraction of the total number of reads supporting the alternative allele
(60). We wused the python3 PoolSeqBPM pipeline, designed to input pooled data
(https://github.com/mbohutinska/PoolSegBPM). Then we inferred relationships between populations
as genetic distances calculated over putatively neutral four-fold degenerate sites using principal
component analysis (PCA) implemented in adegenet (61).

Window-based selection scan using a quartet design

We performed a window-based Fst (59) scan for directional selection in C. amara, taking advantage of
guartet of two diploid and two autotetraploid populations (Fig. 1C). Using such quartet design, we
identified top candidate windows for selective sweeps associated with ploidy differentiation, while
excluding differentiation patterns private to a single population or ploidy-uninformative selective
sweeps. To do so, we calculated Fst for 1 kb windows with minimum 20 SNPs for all six population pairs
in the quartet (Fig. 1C) and ranked windows based on their Fst value. We excluded windows which were
top 1% outliers in diploid-diploid (dd in Fig. 1C) or autotetraploid-autotetraploid (tt) populations
contrasts, as they represent variation inconsistent with diploid-autotetraploid divergence but rather
signal local differentiation within a cytotype. Next, we assigned ranks to each window based on the Fst
values in four diploid-autotetraploid contrasts and identified windows being top 1% outliers of
minimum rank sum.

To account for possible confounding effect of comparing windows from genic and non-genic regions,
we calculated the number of base pairs overlapping with any gene within each window. There was not
any relationship between the proportion of genic space within a window and Fst (Pearson's R? = -0.057,
Figure S3), indicating that our analyses were unaffected by unequal proportion of genic space in a
window.
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In A. arenosa, we performed window-based Fst scan for directional selection using the same criteria as
for C. amara (1kb windows, min 20 SNPs per window). We did not use the quartet design as the range-
wide dataset of 80 diploid and 40 autotetraploid individuals drawn from many populations assured
power to detect genomic regions with WGD-associated differentiation.

FineMAV

We adopted the Fine-Mapping of Adaptive Variation (fineMAV(22)), and modified it to fit the resources
available for reference genome of C. hirsuta. Specifically, we replaced CADD, the functional score
available for amino acids in human reference (22, 62), by the Grantham score (63), which is a purely
theoretical amino acid substitution value, encoded in the Grantham matrix, where each element shows
the differences of physicochemical properties between two amino acids. Details on FineMAV data
processing are given in SI Appendix, Methods.

Arabidopsis arenosa population genomic dataset

We complemented our analysis of adaptation to WGD in C. amara with analysis of A. arenosa, based
on an expanded sampling (8) relative to the original A. arenosa WGD adaptation studies (13, 14). We
first aligned the short read sequences to the A. lyrata reference genome, called variants and filtered as
previously using the Genome Analysis Toolkit (GATK 3.5 and 3.6 (64)). We used a subset of the dataset
consisting of 80 diploid individuals (samples selected based on the highest mean depth of coverage)
and 40 tetraploid individuals from populations unaffected by secondary introgression from diploid
lineages (8). Such sub-sampling gave us a balanced number of 160 high-quality haploid genomes of
each ploidy suitable for selection scans. Finally, we filtered each subsampled dataset for genotype read
depth > 8 and maximum fraction of missing genotypes < 0.5 in each lineage. We calculated Fst using
python3 ScanTools pipeline (github.com/mbohutinska/ScanTools_ProtEvol). All subsequent analyses
were performed following the same procedure as with C. amara data.

GO enrichment analysis

To infer functions significantly associated with directional selection following WGD, we performed gene
ontology enrichment of gene list using the R package topGO (65), using A. thaliana orthologs of C.
amara/A. lyrata genes, obtained using biomaRt (66). We used Fisher's exact test with conservative
'elim' method, which tests for enrichment of terms from the bottom of the GO hierarchy to the top and
discards any genes that are significantly enriched in a descendant GO terms (67). We used 'biological
process' ontology with minimum node size 150 genes.

Protein associations from STRING database

We searched for association among C. amara and A. arenosa candidate genes using STRING (50)
database. We used multiple proteins search in A. thaliana, with text mining, experiments, databases,
co-expression, neighbourhood, gene fusion and co-occurrence as information sources. We used
minimum confidence 0.4 and retained only 1st shell associations (proteins that are directly associated
with the candidate protein: i.e., neighbouring circles in the network).

Quantifying convergence

We considered convergent candidates all candidate genes or significantly enriched GO categories that
overlapped across both species. Convergent candidate genes had to be members of the same
orthogroups (58). To test for higher than random number of overlapping items we used Fisher's Exact
Test for Count Data in R (68).

18


https://doi.org/10.1101/2020.01.31.929109
http://creativecommons.org/licenses/by/4.0/

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

555
556
557
558
559
560
561
562

563

564
565
566
567
568
569
570

571

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929109; this version posted June 9, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Cytological assessment of meiotic stability

Chromosome preparation

Whole young inflorescences were fixed in freshly prepared ethanol:acetic acid (3:1) overnight,
transferred into 70 % ethanol and later stored at -20 °C until use. Meiotic chromosome spreads were
prepared from anthers according to (69). Briefly, after washing in citrate buffer (10 mM sodium citrate,
pH 4.8), selected flower buds were digested using a 0.3 % mix of pectolytic enzymes (cellulase,
cytohelisase, pectolyase; Sigma-Aldrich Corp., St. Louis, MQ) in citrate buffer for c. 3 h. Individual
anthers were dissected and spread in 20 ul of 60 % acetic acid on a microscope slide placed on a metal
hot plate (50 °C), fixed by ethanol:acetic acid (3:1) and the preparation was dried using a hair dryer.
SuiSI Table Slides were postfixed in freshly prepared 4 % formaldehyde in distilled water for 10 min and
air-dried. The preparations were stained with 4',6-diamidino-2-phenylindole (DAPI; 2 pg/ml) in
Vectashield (Vector Laboratories, Peterborough, UK). Fluorescence signals were analysed using an
Axioimager Z2 epifluorescence microscope (Zeiss, Oberkochen, Germany) and CoolCube CCD camera
(MetaSystems, Newton, MA).

Meiotic stability scoring

In diploids, chromosome spreads with 8 bivalents were scored as "stable meiosis", 7-6 as "partly
stable", 5-4 as "partly unstable", and <4 as "unstable". In autotetraploids, chromosome spreads with
16 bivalents were scored as "stable meiosis", 14-12 as "partly stable", 10-8 as "partly unstable", and <8
as "unstable". We report a mean value of meiotic stability for each ploidy calculated over "stable
meiosis" and over sum of "stable meiosis" and "partly stable” categories. Difference in meiotic stability
between diploids and autotetraploids (Fig. 3B) is reported for the sum of "stable" and "partly stable"
categories. However, considering only "stable meiosis" category does not qualitatively affect the results
(i.e. the degree of meiotic stability is significantly lower in tetraploids, D=125.7,df =1, p < 0.0001, GLM
with binomial errors). Photos of all spreads scored are shown in Figure S4.
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Supplemental Materials and Methods

BioNano Plant Extraction protocol

Fresh young leaves of the C. amara accession LUZ were collected after 48-hour treatment in the dark.
DNA was extracted by the Earlham Institute's Platforms and Pipelines group following an IrysPrep
"Fix'n'Blend" Plant DNA extraction protocol supplied by BioNano Genomics. 2.5 g of fresh young leaves
were fixed with 2% formaldehyde. After washing, leaves were disrupted and homogenized in the
presence of an isolation buffer containing PVP10 and BME to prevent oxidation of polyphenols. Triton
X-100 was added to facilitate the release of nuclei from the broken cells. The nuclei were then purified
on a Percoll cushion. A nuclei phase was taken and washed several times in isolation buffer before
embedding into low melting point agarose. Two plugs of 90 pl were cast using the CHEF Mammalian
Genomic DNA Plug Kit (Bio-Rad 170-3591). Once set at 4°C the plugs were added to a lysis solution
containing 200 ul proteinase K (QIAGEN 158920) and 2.5 ml of BioNano lysis buffer in a 50 ml conical
tube. These were put at 50°C for 2 hours on a thermomixer, making a fresh proteinase K solution to
incubate overnight. The 50 ml tubes were then removed from the thermomixer for 5 minutes before
50 ul RNAse A (Qiagen158924) was added and the tubes returned to the thermomixer for a further
hour at 37°C. The plugs were then washed 7 times in Wash Buffer supplied in Chef kit and 7 times in
1xTE. One plug was removed and melted for 2 minutes at 70°C followed by 5 minutes at 43°C before
adding 10 pl of 0.2 U /ul of GELase (Cambio Ltd G31200). After 45 minutes at 43°C the melted plug was
dialysed on a 0.1 puM membrane (Millipore VCWP04700) sitting on 15 ml of 1xTE in a small petri dish.
After 2 hours the sample was removed with a wide bore tip and mixed gently 5 times and left overnight
at 4°C.

10X library construction

DNA material was diluted to 0.5ng/ul with EB (Qiagen) and checked with a QuBit Flourometer 2.0
(Invitrogen) using the QuBit dsDNA HS Assay kit (Table S11). The Chromium User Guide was followed
as per the manufacturer's instructions (10X Genomics, CG00043, Rev A). The final library was quantified
using gPCR (KAPA Library Quant kit [Ilumina] and ABI Prism gPCR Mix, Kapa Biosystems). Sizing of the
library fragments was checked using a Bioanalyzer (High Sensitivity DNA Reagents, Agilent). Samples
were pooled based on the molarities calculated using the two QC measurements. The library was
clustered at 8 pM with a 1% spike in of PhiX library (lllumina). The pool was run on a HiSeq2500 150bp
Rapid Run V2 mode (lllumina). The following run metrics were applied: Read 1: 250 cycles, Index 1: 8
cycles, Index 2: 0 cycles and Read 2: 250 cycles.

Data preparation, alignment, and genotyping

Fastq files from the two runs were combined and concatenated to give an average of 30.5 million reads
per sample. Adapter sequences were removed via the cutadapt software (version 1.9.1) (1) and quality
trimmed via Sickle (version 33) (2) to generate only high-quality reads (Phred score >=30) of 30bp or
more, resulting in an average of 27.9 million reads per sample. Using samtools (v. 1.7) (3) and bwa (v.
0.7.12) (4) software, the quality-filtered reads were aligned against two references: 89.3% of reads
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mapped to our C. amara assembly, while only 74.5% to C. hirsuta. We retained only the alignment to
C. amara for all analysis. Using the picard software tool (v. 1.134) (5), first duplicate reads were
removed via 'MarkDuplicates' followed by the addition of read group IDs to the bam files via
'AddOrReplaceReadGroups'. Finally, to handle the presence of indels, GATK (v. 3.6.0) (6) was used to
realign reads to the C. amara assembly via 'RealignerTargetCreator' and 'IndelRealigner’.

Variant Calling

Text files describing sample populations and ploidy were prepared, and variants called for the 12 bam
files using Freebayes (v. 1.1.0.46)(7) to generate a single VCF output. Due to working with pooled (high
ploidy) samples, Freebayes was run with '--pooled-discrete' (assumes samples result from pooled
sequencing). In addition, the software was restricted to biallelic sites ('--use-best-n-alleles 2') and indel
sites were excluded ('--no-indels'). The VCF was filtered via bcftools (v 1.8) (8) to remove sites where
the read depth was < 10 or greater than 1.6x the second mode (determined as 1.6 x 31 =50, Figure S2).

FineMAV

We downloaded coding sequences from the C. hirsuta genomic resources web site
http://chi.mpipz.mpg.de/download/annotations/carhr38.cds.fa and mapped to C. amara using gmap.
The resulting sam file was converted to bam-format, sorted and indexed via samtools (v. 1.7) (3), and
then converted to GTF-format via the 'convert' script in Mikado (v1.2.3) (9) which was subsequently
used to build a snpEFF (v. 4.3) (10) database. We estimated the population genetic component of
fineMAV (see (11) for details on calculations) using allele frequency information at each site
(considering minor frequency allele as derived) and DAP parameter of 3.5. Finally, for each amino acid
substitution, we assigned Grantham scores, together with population genetic component of fineMAYV,
using a custom scripts in Python 2.7.10 and the Biopython 1.69 package. We identified the top 1%
outliers and considered them the final candidates identified in fineMAV analysis. All the calculations
were performed using code available at (github.com/paajanen/meiosis_protein_evolution).
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Supplemental Figures

Figure S1
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Figure S1: C. amara candidate meiosis gene associations as identified by STRING. We used only medium
confidence associations and higher (shown as thickness of lines connecting genes).
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132 Figure S2: Distribution of read depth over all sequenced samples.
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133  Figure S3
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134
135 Figure S3: Relationship between the proportion of genic space within a window and Fst.
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Figure S4. DAPI-stained meiotic (metaphase I) chromosomes of
diploid (2n = 16; VKR6, VKRS, LUZ3, LUZ8, LUZ10, LUZ11, LUZ15)
and tetraploid (2n = 32; CEZ7, PIC1, PIC5, PIC9, PIC11, PIC14,
PIC18) individuals of Cardamine amara. Scale bars = 10 um.
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Other supplementary material

Additional data Tables (separate files)

Table S1. GPS coordinates of population localities.
Table S2. Mean depth of coverage (MDOC) per pool of individuals from each population.

Table S3. Genes in the top 1% of Fst scores (1000 bp windows) in C. amara. Note: red lines denote six
genes which are candidates also in A. arenosa.

Table S4. GO terms enriched in C. amara WGD candidate genes. Annotated: # genes in the GO category,
Significant: # candidate genes in each category, p-values crom Fisher's exact test (‘elim' method).

Table S5. Top 1% of amino acid substitutions with the highest fineMAV score.

Table S6. Genes in the top 1% of Fst scores (1000 bp windows) in A. arenosa.

Table S7. GO terms enriched in A. arenosa WGD candidate genes. Annotated: # genes in the GO
category, Significant: # candidate genes in each category, p-values crom Fisher's exact test (‘elim'
method).

Table S8. Targeted search for patterns suggesting directional selection in C. amara orthologs of
candidate A. arenosa meiosis genes.

Table $9. Chromosome stability scoring of individual diploid (2n = 16) and autotetraploid (2n = 32)
plants of Cardamine amara at meiotic metaphase I.

Table S10. C. amara candidate genes that have more than one associated protein among A. arenosa
candidates.

Table S11. Quality checks of DNA isolated from LUZ.

Table S12. Assessment of genome completeness using BUSCO.
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