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Abstract 18 

RNA-Seq is ubiquitous, but depending on the study, sub-optimal sample handling may be 19 

required, resulting in repeated freeze-thaw cycles. However, little is known about how each cycle 20 

impacts downstream analyses, due to a lack of study and known limitations in common RNA 21 

quality metrics, e.g., RIN, at quantifying RNA degradation following repeated freeze-thaws. 22 

Here we quantify the impact of repeated freeze-thaw on the reliability of downstream RNA-Seq 23 

analysis. To do so, we developed a method to estimate the relative noise between technical 24 

replicates independently of RIN. Using this approach we inferred the effect of both RIN and the 25 

number of freeze-thaw cycles on sample noise. We find that RIN is unable to fully account for 26 

the change in sample noise due to freeze-thaw cycles. Additionally, freeze-thaw is detrimental to 27 

sample quality and differential expression (DE) reproducibility, approaching zero after three 28 

cycles for poly(A)-enriched samples, wherein the inherent 3’ bias in read coverage is more 29 
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exacerbated by freeze-thaw cycles, while ribosome-depleted samples are less affected by freeze-30 

thaws. The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of 31 

frozen tissue, and thus, it is important during experimental design and data analysis to consider 32 

the impact of repeated freeze-thaw cycles on reproducibility. 33 

Introduction 34 

RNA sequencing (RNA-Seq) is a ubiquitous technology, used to answer a wide range of 35 

biological questions. Methods for aligning, quantifying, normalizing and analyzing expression 36 

data are available through popular packages such as Tophat, STAR, cufflinks, SVA, RUV, 37 

Combat, DESeq2, edgeR, Kallisto, Salmon, BWA-MEM, and many others1–11. Each method 38 

aims to accommodate and mitigate the unique challenges presented by RNA-Seq data. Some 39 

approaches attempt to account for characterized variability in RNA-Seq measurements due to 40 

factors such as sequencing depth, gene length, and transcripts’ physical characteristics (e.g., GC 41 

content). Others account for “unwanted variance” due to technical, batch, or experimental 42 

variation. Yet, the influence of sample processing, such as tissue lysis and processing time12–14, is 43 

not sufficiently characterized such that it can be explicitly controlled. It is important to 44 

adequately characterize noise introduced to RNA-Seq measurements by sample processing steps 45 

to optimize sample quality, account for transcript degradation, and improve the accuracy and 46 

reproducibility of sequencing.  47 

Transcript degradation continues after sample acquisition and affects data quality. Sample 48 

storage conditions (e.g. temperature and the use of stabilizing reagents) affect sample quality via 49 

RNA degradation14,15. Yet, varying sources of degradation can impact RNA-Seq in different 50 

manners16.  Degradation introduces variability in signal and can be impacted by sample handling. 51 
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Non-uniformity in degradation across genes and samples causes inaccurate normalization and 52 

transcript quantification17. Poly(A)-enrichment methods are commonly used to separate mRNA 53 

from other highly abundant RNA molecules (e.g., rRNA, tRNA, snoRNAs, etc.), but variable 54 

degradation directly impacts read counts by causing non-uniform transcript coverage18. Of 55 

particular interest, freeze-thaw can induce 20% degradation of spike-in standards per cycle, a 56 

factor that may be generalizable to mRNA transcripts19. Freeze-thaw cycles increase RNA 57 

degradation by disrupting lysosomes which store RNases, freeing the enzymes to promiscuously 58 

catalyze nuclease activity20. Furthermore, partially defrosted crystals create uneven cleaving 59 

pressure on mRNA strands21,22. Despite these observations, the extent to which freeze-thaw 60 

negatively impacts count and differential expression in RNA-Seq analyses has not been 61 

comprehensively characterized.  62 

Standard sample quality control often relies on RNA integrity number (RIN), which quantifies 63 

the 28S to 18S rRNA ratio23. RIN-based quality control approaches rely on a heuristic threshold 64 

to assess sufficient quality24,25. RIN-based metrics have known confounders such as transcript 65 

level, and thus have been called into question as an appropriate quality metric26. For example, 66 

RIN failed to indicate a decrease in sample quality in lung cancer tissue samples that underwent 67 

five freeze-thaw cycles27 and, in statistical analyses, failed to correct for the effects of 68 

degradation28. Despite this, many studies rely on RIN to correct for and assess sample quality 69 

confounders16,29,30. This is especially problematic in the case of transcript degradation because 70 

RIN scores are based on entire samples, while degradation effects can be transcript-71 

specific17,3132.  Furthermore, existing studies on degradation are not simply generalizable to 72 

freeze-thaw, which has distinct and independent effects on sample quality and must be fully 73 

explored as such16,33. 74 
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Here, we tested the susceptibility of poly(A)-enriched RNA-Seq results after multiple freeze-75 

thaw cycles. We assessed sample quality independently of RIN by simulating read count 76 

variability to capture the noise between technical replicates. We found that each additional 77 

freeze-thaw cycle increased the random counts between technical replicates by approximately 78 

4%. Subsequently, differential expression reproducibility approached zero after three freeze-79 

thaw cycles. These effects are not captured by RIN. We find that these effects are reflected in 80 

increasing 3’ bias in read coverage when combining poly(A)-extraction with freeze-thaw, a 81 

phenomena that appears to be generalizable to publically available datasets.  82 

Results 83 

3’ bias in read coverage of public datasets is associated to poly(A)-extraction 84 

and freeze-thaw 85 

To examine the prevalence of bias from repeated freeze-thaw cycles, we search for the presence 86 

of RNA-seq distortion in publically available datasets. Specifically, we analyze the gene-87 

coverage distribution in samples prepared with either poly(A)-extraction or ribosomal depletion. 88 

Since freeze-thaw enhances transcript degradation and poly(A)-enriched samples select mRNA 89 

by hybridization to the poly(A)-tail, we expect increased read coverage on the 3’ end of 90 

transcripts--3’ bias--when these two factors are combined. To test this expectation, we compared 91 

gene body coverage from the 5’ to 3’ end between poly(A)-enrichment and ribosomal depletion 92 

prepared samples with and without freezing. Specifically, we examined the median coverage 93 

percentile, the percentile-normalized nucleotide at which median cumulative coverage for a 94 

given sample is achieved (Fig. 1a). 95 
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We analyzed the gene-coverage distribution in three studies: (1) RNA extraction in previously 96 

frozen solid and liquid tissues, (2) RNA extracted immediately after lysis of cultured cells 97 

without freezing, and (3) RNA extraction in previously frozen tissue from important public tissue 98 

resources. 99 
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Figure 1: 3’ Bias is Exacerbated in Frozen, Poly(A)-extracted Samples Across Multiple Studies: (a) 101 

Demonstration for determining median coverage percentile (red vertical line). When coverage is 102 

unbiased, reads (yellow) are distributed throughout the entire body of the transcript (green). In the 103 

absence of read bias and observing coverage as a function of the nucleotide percentile, we see that 104 

cumulative coverage along the transcript reaches 50% half-way through the gene body, at the 50th 105 

percentile nucleotide. In contrast, given a 3’ read bias, there is a shift in the distribution of reads and 106 

cumulative coverage reaches 50% at, for example, the 60th percentile nucleotide. This results in a 107 

rightward shift in median coverage percentile towards the 3’ end of the transcript. In the middle row, 108 

gene coverage (y-axis) at the ith nucleotide percentile from 5’ to 3’ (x-axis) is displayed for samples that 109 

were extracted using either poly(A)-enrichment or ribosomal depletion. Gene body coverage distributions 110 

were calculated for (b) for tissue samples that underwent an unspecified number of freeze-thaw cycles 111 

and (c) cell-culture samples samples that underwent no freeze-thaw cycles. (d) Comparison of 5’ to 3’ 112 

bias ratio (y-axis) of samples from the TCGA and UNC tissue repositories (x-axis) between extraction 113 

methods (two-sample t-test).  Quantifying human RNA samples listed in GEO from 2008-2018, and 114 

stratifying by those annotated as “frozen”, we observe (d) the number of samples prepared with poly(A)-115 

extraction or ribosomal depletion (x-axis) (gray), (f) the proportion of samples extracted using either 116 

method, and (g) the change in the number of samples over time. 117 

In the first study34, a comparison of the performance of poly(A) and ribosomal depletion in liquid 118 

and solid frozen tissue, we see a significant (one-sided Wilcoxon test, p = 0.01591) shift in the 119 

median gene coverage percentile towards the 3' end in the poly(A)-extracted samples (Fig. 1b). 120 

Using generalized linear regression, we found that the median coverage percentile of poly(A)-121 

extracted samples was 3.88% higher (Wald p = 0.011) than comparable ribosomal depletion 122 

extracted samples. In the second study35, cells were not frozen before extraction and there was a 123 

small and insignificant difference in the 3’ bias associated with library preparation (one-sided 124 

Wilcoxon test, p = 0.13, Fig. 1c). While the first two studies extract RNA from tissue and cell-125 
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culture respectively--tissue extraction is typically lower quality, they are internally controlled 126 

and therefore comparable. Finally, the third study36 examines the impact of RNA extraction in 127 

frozen tissue from the UNC and TCGA tumor tissue repositories. We found a significant (two-128 

sample t-test, p<1e16) decrease in the 5’-to-3’ coverage ratio in poly(A)-extracted samples 129 

compared to ribosomal depletion (Fig. 1d), indicating an increase in 3’ bias. 3’ bias was 130 

consistent across RNA extracted from tissue frozen at either repository.  131 

Next, we explored how widespread the impact of these observations may be by quantifying the 132 

prevalence of poly(A)-extraction from frozen tissue by examining metadata in the Gene 133 

Expression Omnibus (GEO). With GEOmetadb 37, we queried all human RNA samples between 134 

2008 and 2018 using either poly(A)-extraction or ribosomal depletion. There are tens to hundred 135 

of thousands of samples annotated as “frozen” for both total and poly(A)-extraction methods 136 

(Fig. 1e).  We note that this is an order of magnitude less than the total query, a value potentially 137 

diminished by the complexity of the metadata. In samples annotated as “frozen”, the frequency 138 

of poly(A) extraction increases from less than 10% to over 25% (Fig. 1f) suggesting that the 139 

problematic combination is prevalent and apparently preferred. Finally, stratifying this trend over 140 

time, we see that poly(A)-extraction, as well as the relative proportion of poly(A)-extracted 141 

frozen samples, is increasing in popularity relative to total RNA extraction, where usage has 142 

remained fairly consistent (Fig. 1g).Taken together, these results indicate a potential, widespread 143 

distortion in RNA-seq associated with a deleterious interaction between poly(A)-extraction and 144 

freeze-thaw. To explore this potential more formally, the remainder of our analyses focus on a 145 

specific experiment to address this question. Specifically we subjected whole-blood extracted 146 

leukocyte samples--with technical replicates--from autistic or typically developing toddlers to a 147 

varying number of freeze-thaw cycles, which we record along with other sample quality metrics 148 
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such as RIN.  149 

An Additional Freeze-Thaw Cycle Increases Random Read Counts 1.4-Fold 150 

To address the scarcity in quantification of loss in sample quality due to freeze-thaw, we 151 

compare changes in sample quality between technical replicates. We first note that neither RIN 152 

nor TIN capture significant (one-sided Wilcoxon test) decreases in sample quality due to 153 

increased freeze-thaw (Fig. S1). Given previous indications that these metrics may not 154 

sufficiently address transcript degradation, we instead measure the introduction of noise—the 155 

randomness in read counts between technical replicates—to samples by freeze-thaw. We 156 

simulated this randomness to reflect the dissimilarity between technical replicates. Since noise 157 

does not rely on RIN, we could compare freeze-thaw and RIN-effects independently.  158 

 159 

Figure 2: Higher Noise in Samples with More Freeze-Thaw Cycles. From left to right, noise—160 

the randomness in read counts between technical replicates—is estimated using Euclidean distance, 161 

RMSE, Pearson correlation,and Spearman correlation. (a) Box plots of noise for samples that underwent 162 

either one or two freeze-thaws. (b) A generalized linear model was used to determine the expected noise 163 
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at one freeze-thaw (N0, pink) and the expected change in noise with each additional freeze-thaw (ΔN, 164 

green). All estimates are significant (p ≤ 0.05). 165 

 166 

Median noise increased 1.4-fold from one to two freeze-thaw cycles  (one-sided Mann-Whitney 167 

U test, p ≤ 0.007) on average across all measures (Fig. 2a). Noise between technical replicates 168 

when samples have only undergone one freeze-thaw was estimated to be 9.11-10.15% (Wald 169 

test, p ≤ 5.77e-7). The expected increase in noise per additional freeze-thaw cycle was estimated 170 

to be 3.6-4.1 percentage points (Wald test, p ≤ 8.12e-3) (Fig. 2b).  171 

RIN Does Not Predict Additional Noise After One Freeze-Thaw Cycle  172 

To follow up on our observations that RIN does not sufficiently capture changes in sample 173 

quality due to freeze-thaw, we asked whether RIN can reflect the differences in sample quality as 174 

measured by noise.  175 

 176 
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Figure 3: Discrepancy in the Relationship Between Noise and RIN due to additional Freeze-177 

Thaw.  Examining the relationship between noise, calculated by Euclidean distance, RMSE, pearson, 178 

and spearman correlation, for samples that underwent either one (blue) or two (red) freeze-thaw cycles. 179 

(a) Scatter plots comparing noise (y-axis) to RIN (x-axis). The solid lines show a linear regression fit and 180 

the shaded regions is the 95% confidence interval for this fit.  (b) The expected change in noise due to a 181 

one point increase in RIN (ΔN, y-axis) estimated by a generalized linear model. Significant estimates (p ≤ 182 

0.05) are marked by a circle and insignificant estimates are marked by a cross. 183 

When only considering samples that underwent one freeze-thaw, each unit increase in RIN 184 

decreases noise by 3.24-3.38 percentage points for all metrics (Wald test, p ≤ 6.3e-3) (Fig. 3a-b). 185 

Yet, when only accounting for samples that underwent two freeze-thaw cycles, noise does not 186 

significantly change as RIN increases. Taken together, these results indicate that while RIN can 187 

be a good measure of noise for samples that underwent one freeze-thaw, it does not capture the 188 

loss in sample quality induced by two freeze-thaw cycles.  189 

Differential Expression Similarity Increases 10.3% in High Quality Samples 190 

Next, we investigated how the introduction of technical variation, noise, impacts downstream 191 

RNA-Seq analysis, specifically, differential expression (DE) analysis. As such, we assessed the 192 

reproducibility of DE results on combinations of samples with varying sample quality. We 193 

compared DE results between subsets of various sizes (4 - 14 samples). We measure 194 

reproducibility using similarity or discordance, based on correlation and dispersion, respectively. 195 

Higher similarity and lower discordance each represent higher reproducibility. We use these 196 

measures to assess differences that arise between subsets consisting of high quality (low freeze-197 

thaw or high RIN) and low quality (high freeze-thaw or low RIN) samples.  198 
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We held two expectations regarding the effect of sample quality on DE reproducibility in the 199 

context of similarity: 1) the reproducibility between subsets with high quality samples should be 200 

higher than those with low quality samples, and 2) both subset size and sample quality should 201 

interact to increase the reproducibility of DE analysis; the increase in stability is reflected by a 202 

higher rate of increase in reproducibility with respect to subset size.  203 

As expected, similarity increases with subset size. This is reflected in the upward shift in the 204 

similarity distribution with increasing subset size (Fig. S10) and the estimated 0.02 (Wald test, p 205 

= 2.2e-5)  increase in similarity per additional sample (Fig. 4a); thus, expected similarity would 206 

increase by 0.20 in a subset with 14 samples over a subset with 4 samples. Regression results for 207 

each model predicting similarity are reported in Supplementary Table 4. 208 

 209 

 210 

Figure 4: Freeze-Thaw and RIN Both Demonstrate Higher Similarity with Increased 211 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.01.020792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.020792
http://creativecommons.org/licenses/by-nd/4.0/


 

14 

Quality.  Top panels summarize generalized linear models used to quantify the change in similarity per 212 

unit increase in  (a) sample size, number of freeze-thaws and RIN combined, (b) only the number of 213 

freeze-thaws, and (c) only RIN. S0 represents the intercept estimate and sample size, freeze-thaw, and RIN 214 

represent coefficient estimates. All estimates are significant. Bottom panels demonstrate fold-change in 215 

median similarity of high quality subsets with respect to low quality subsets at each subset size. The 216 

region shaded in blue (fold-change > 1) indicates instances where the median similarity for high quality 217 

is larger than that of low quality. The region shaded in red (fold-change < 1) indicates instances where 218 

the median similarity for low quality is larger than that of high quality. Average (d) freeze-thaw or (e) 219 

RIN are used to place subset pairs into high or low quality sample bins. Significance (one-sided Mann-220 

Whitney U test) of comparisons in similarity distributions between high and low quality subset pairs are 221 

displayed above each subset size.  222 

We tested our first expectation by placing subset pairs into high and low sample quality bins, 223 

defined by either RIN or freeze-thaw, for each subset size and comparing their similarity values. 224 

Regardless of sample quality, DE similarity increases with subset size. Yet, for nearly all subset 225 

sizes, higher quality bins have significantly (one-sided Mann-Whitney U test, p ≤ 2.8e-17) 226 

higher similarity than low quality bins (Fig. 4e-f). Across subset sizes, we observed an average 227 

1.13-fold and 1.06-fold increase in similarity from low to high quality samples for freeze-thaw 228 

and RIN, respectively.  229 

Similarity significantly (Wald test, p≤ 9.2e-3) decreases with the number of freeze-thaws and 230 

increases with RIN when accounting for the effects of sample size (Fig. 4a-c), validating our 231 

second expectation. Similarity decreases by 0.077 per additional freeze-thaw cycle (Wald test, p 232 

= 8.77e-4). Given the estimated similarity of 0.23 for samples that have not undergone freeze-233 

thaw, this implies that DE reproducibility will approach zero after approximately three freeze-234 

thaw cycles (Fig. 4b). Even when accounting for subset size and the effects of RIN, the 235 
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estimated decrease in similarity from freeze-thaw is nearly the same--0.078 (Wald test, p = 236 

8.77e-4); this further corroborated that RIN alone cannot capture the changes in sample quality 237 

due to freeze-thaw. Taken together, these results indicate that higher sample quality increases DE 238 

reproducibility as measured by similarity.  239 

Discordance Decreases ~5-fold In High Quality Samples 240 

We further investigated the relationship between DE reproducibility and sample quality using an 241 

effect size sensitive measure of discordance. Specifically, we explored how sample quality 242 

affects the relationship between discordance and the mean-variance standardized effect at each 243 

subset size. In this context, we expected 1) discordance at any given effect size to be lower in 244 

high-quality subsets and 2) the rate of increase in discordance to be lower in high quality subsets 245 

relative to low quality subsets.  246 

Corresponding to the regression models used for this analysis, we label our expected discordance 247 

when effect size is zero as D0 and the change in discordance per unit increase in effect size as 248 

ΔD. We observed a significant (Wald test, p ≤ 9.45e-141) decreasing trend in both D0 and ΔD 249 

with increasing subset size (Fig. S11, Supplementary Table 5).  250 

As expected, independent of sample quality, ΔD demonstrates an overall decreasing trend with 251 

respect to subset size for both RIN and freeze-thaw. Given freeze-thaw, at a subset size of 6, 252 

there is a 1.1-fold decrease in the value of ΔD from low quality subsets to high quality subsets. 253 

The disparity in ΔD between high and low sample quality (Δm = ΔDLow Quality / ΔDHigh Quality)  254 

increases nearly monotonically through to the subset size of 14, at which point there is a 3.2-fold 255 

decrease; the monotonicity is an indication of the stability of this relation between discordance 256 

and sample quality. This causes notable differences in discordance values, even at low effect 257 
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sizes (Fig. 5a).  258 

 259 

Figure 5: Higher Sample Quality has Lower Discordance at Each Subset Size. GLM estimates 260 

of discordance predicted from effect size and subset size at high and low quality subsets at each subset 261 

size. High sample quality (blue) is compared to low sample quality (red). 𝛥D values represent the change 262 

in discordance per unit increase in effect size. (a) The predicted discordance with respect to the mean-263 

variance standardized effect at a subset size of 14; sample quality is assessed by freeze-thaw. The 264 

disparity (𝛥m) between the change in discordance per unit increase in effect size for high (𝛥DH) and low 265 

(𝛥DH) quality subsets is also displayed. Summary of results for each subset size (x-axis) for sample 266 

quality represented by either (b) freeze-thaw or (c) RIN. Significant estimates (Wald test, Benjamini-267 
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Hochberg FDR correction, q ≤ 0.1) are marked by a circle and insignificant estimates are marked by a 268 

cross. For freeze-thaw, 𝛥m corresponding to panel A is also displayed.  269 

We estimate discordance with respect to effect size at each subset size and for subsets of either 270 

high and low quality (Fig. 5a). Consistent with our expectations, D0 and ΔD are consistently 271 

lower for high quality subsets as compared to low quality subsets for both freeze-thaw and RIN 272 

across all subset sizes (Fig. 5b-c). Nearly all estimates are significant after multiple test 273 

correction (Wald test, Benjamini-Hochberg FDR correction, q≤ 0.07), with the exception of 274 

those for the smallest subset size for freeze-thaw.  275 

Taken together, these results indicate that higher sample quality increases DE reproducibility as 276 

measured by discordance.  277 

Additional freeze-thaw cycles show increased 3’ bias in poly(A)-enriched but 278 

not ribosomal depletion samples 279 

Finally, we asked whether repeated freeze-thaw cycles can induce a 3’ bias, consistent with the 280 

induction of random reads and the loss of DE reproducibility as well as our initial observation in 281 

the public datasets.  282 

Using the median coverage percentile, we found a shift in mRNA coverage towards the 3’ end in 283 

the poly(A)-enriched samples relative to ribosomal depletion (Fig. S13a). Specifically, the 284 

median coverage percentile for poly(A)-enriched samples is significantly (one-sided Wilcoxon 285 

test, p < 2.2e-16) larger than that of ribosome depletion (Fig. S13b). Samples prepared with 286 

poly(A)-extraction have more 3’ coverage bias compared to ribosomal depletion in both one 287 

(one-sided Wilcoxon test, p = 3.5e-15 ) and two (one-sided Wilcoxon test, p = 1.4e-4) freeze-288 

thaw cycles (Fig. S13d). Altogether, this indicates an overall 3’ bias of poly(A)-enriched 289 
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samples, even independently of freeze-thaw (Fig. S13b). 290 

 291 

Figure 6: Freeze-Thaw Cycles Exacerbate 3’ Bias in poly(A)-enriched samples. (a) Gene coverage (y-292 

axis) at the ith nucleotide percentile (x-axis) for samples that underwent 1-5 freeze-thaws and were 293 

extracted using either poly(A)-enrichment or ribosome depletion. Coverage is normalized to samples that 294 

underwent one freeze-thaw. For each sample, coverage is averaged across all genes; samples are 295 

aggregated using generalized additive model smoothing, with shaded regions representing 95% 296 

confidence intervals. (b) Linear model fits comparing the change in median coverage percentile to the 297 

number of freeze-thaw cycles for ribosome depletion (orange) or poly(A)-extraction (green). 298 

Crucially, this 3’ bias is accentuated when samples are stratified by the number of freeze-thaw 299 

cycles (Fig. 6a). We observe a significant increase (Wald test, p = 8.3e-4)  in median coverage 300 

percentile due to the number of freeze-thaw cycles in poly(A)-enrichment. The increase was not 301 

maintained when was isolated using  ribosome depletion (Wald test, p = 0.155) (Fig. 6b,  302 

Supplementary Table 7). For poly(A)-enriched samples, median coverage percentile increases 303 

3.3 percentage points per root freeze-thaw cycle; the square-root of freeze-thaw was used to 304 

stabilize variance. We further demonstrate a dependency of 3’ bias on freeze-thaw cycles by 305 

showing that median coverage percentile significantly increases with freeze-thaw in poly(A)-306 

enriched samples (Kruskal-Wallis test, p = 0.01). This 3’ bias is particularly apparent after five 307 
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freeze-thaw cycles (one-sided Wilcoxon test, p = 2.4e-3). In contrast, we observe that median 308 

coverage percentile does not significantly change across freeze-thaw cycle counts in ribosomal 309 

depletion (Kruskal-Wallis test, p = 0.084) (Fig. S13c).  310 

Taken together, these analyses indicate that poly(A)-enrichment inherently introduces a 3’ bias 311 

in coverage as compared to ribosome depletion, and that this bias is exclusively exacerbated in 312 

poly(A)-enriched samples due to freeze-thaw cycles. Thus, 3’ bias may indicate the severity of 313 

freeze-thaw induced signal degradation in poly(A)-extracted samples. If this 3’ bias is the root 314 

cause of freeze-thaw induced instability in absolute and differential RNA-seq quantification, 315 

such instabilities may be subverted by substituting poly(A)-selection for ribosomal depletion 316 

during library preparation; such instabilities may be an unnecessary and avoidable 317 

inconvenience. 318 

Discussion 319 

Despite the utility and ubiquity of RNA-Seq, many of the confounding elements associated with 320 

the technology are still being characterized. In this work, we demonstrated how one such 321 

confounder--sample freeze-thaw--impacts sample quality and downstream analyses. We 322 

highlighted biases in publically available datasets, and observed an increased 3' bias when both 323 

freeze-thaw and poly(A)-extraction are features of a sample. 324 

To gain a comprehensive understanding of this effect, we first simulated technical replication to 325 

measure the noise between technical replicates with different treatments. This allowed us to 326 

examine the impact of freeze-thaw cycles and the ability of RIN to capture those impacts. Next, 327 

we examined the impact of freeze-thaw cycles on the robustness and reproducibility of 328 

differential expression analysis. We found freeze-thaw cycles were substantially detrimental to 329 
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the stability of gene expression analysis. By our estimates and at these subset sizes, 330 

reproducibility of a differential expression signature approaches zero after three freeze-thaw 331 

cycles (Supplementary Table 4). Finally, we demonstrated that poly(A)-enriched samples 332 

demonstrate substantial 3’ bias in read coverage with increased freeze-thaw cycles. Our results 333 

have implications with regards to technical variation due to sample handling, the sensitivity of 334 

differential gene expression analysis for frozen tissues and samples, and the utility of RIN. 335 

Technical variation in RNA-Seq is substantial and can be attributed to a variety of factors, 336 

including read coverage, mRNA sampling fraction, library preparation batch, GC content, and 337 

sample handling38,39. As such, accounting for technical variation has been a major research area 338 

of focus for the past decade1,2,5,39,40. Degradation in combination with poly(A)-enrichment is a 339 

known source of variation in RNA-Seq. Yet, before technical variation can be accounted for, it 340 

must be characterized. While studies have looked into the effect of degradation on RNA-Seq, 341 

each mode of degradation impacts sample quality differently, and direct connections between 342 

freeze-thaw and sample quality has mainly been assessed via RIN16,41,42.  343 

Our simulation of technical replicates helps delineate technical variation due to sample handling-344 

-specifically, freeze-thaw. Furthermore, the resulting noise provides an estimate for the number 345 

of random read counts associated with a gene. For example, given an average 25 million reads 346 

sequenced per sample, our approximate 4 percentage points difference in noise between one and 347 

two freeze-thaw cycles gives an expected stochasticity in 1 million of those reads; approximating 348 

the number of protein-coding genes in the human genome to be 20-25 thousand43, we can expect 349 

a difference of ~40-50  random counts per gene to exist between technical replicates due to a 350 

freeze-thaw cycle (Supplementary Methods, Fig. S15). Thus, each freeze-thaw introduces a 351 

non-negligible level of noise to the quantification of gene expression and differential expression 352 
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of such genes. 353 

To check for the possibility that there is a signature which can help correct for freeze-thaw 354 

distortion of RNA-Seq, we attempt to find a group of common DE genes across various DE 355 

methods. We find no such signature (Supplementary Results). This is expected, given that a 356 

major source of reduced sample quality due to freeze-thaw is mRNA degradation, which occurs 357 

randomly for each transcript and sample. A possible path forward is to correct for sample 358 

degradation. Several methods have been proposed for this. While some of these methods rely on 359 

RIN or similar metrics (e.g. mRIN, TIN, etc.)16,44, others have implemented statistical 360 

frameworks which account for gene-specific biases. DegNorm, for example, accounts for the 361 

gene-specific relative randomness in degradation in its correction approach17. Quality surrogate 362 

variable analysis (qSVA) specifically improves differential expression by identifying transcript 363 

features associated with RNA degradation for its correction28. Furthermore, there are recent  364 

methods which only assay the 3’ end of a transcript and therefore claim robustness in degraded 365 

samples45.  While these approaches could help account for noise introduced by RNA degradation 366 

during repeated freeze-thaw cycles, they cannot necessarily remedy the associated loss of signal.   367 

The effect of freeze-thaw and resultant degradation on RNA-Seq is particularly concerning when 368 

considering differential gene expression analysis. It has been observed that RNA degradation can 369 

induce the apparent differential expression in as many as 56% of genes44. To this end, we 370 

quantified this loss of DE reproducibility by measuring similarity and discordance in the context 371 

of sample quality.  We found a decrease in reproducibility with both decreasing RIN and 372 

increasing freeze-thaw.  Interestingly, for most reproducibility assessments, we observed a 373 

monotonic or near monotonic increase in disparity between low and high quality subsets with 374 

respect to subset size. Similarity demonstrated a larger average magnitude of disparity for freeze-375 
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thaw, whereas discordance demonstrated a larger average magnitude of disparity for RIN.   376 

Based on our analysis, the utility of RIN in assessing quality when samples undergo freeze-thaw 377 

is questionable. The non-uniformity in mRNA degradation46–49 due to freeze-thaw sheds light on 378 

these challenges, since RIN cannot quantify quality at the individual gene level23. This is 379 

reflected in the fact that samples with RIN > 8 demonstrate degradation32.  Furthermore, results 380 

assessing the effect of freeze-thaw cycles on RIN are inconclusive. While some studies claim 381 

RIN can be used to account for degradation effects in RNA-Seq16, others suggest it does not 382 

sufficiently capture the effects of degradation on sample quality26,28. When directly observing the 383 

effect of freeze-thaw on RIN, studies have found a negligible effect12  or can only detect an 384 

effect after numerous cycles27,50. 385 

As such, we re-examined the utility of RIN as a measure of sample quality in relation to our 386 

noise estimation of random reads per sample23. We found that while noise increases with both 387 

decreasing RIN and increasing freeze-thaw, RIN may be an insufficient indicator of quality for 388 

samples that have undergone two or more freeze-thaws.  Given these results, RIN may not 389 

always be a good metric to quantify the difference between technical replicates that have 390 

undergone variable sample handling17,26–28. We validate noise by confirming that it does not 391 

change with input RNA concentration, excepting outliers (Fig. S12). Therefore, in the future, 392 

noise could be a useful supplement to RIN when technical replicates are present.  393 

The fact that our predicted decrease in similarity due to freeze-thaw does not change when 394 

incorporating RIN into our model further indicates that RIN alone cannot capture the changes in 395 

sample quality due to freeze-thaw. Despite this, RIN is a good indicator of sample quality, if not 396 

specifically for freeze-thaw. This is reflected in the fact that RIN validates our expectations for 397 

DE reproducibility analysis and the comparable range of noise, similarity, and discordance 398 
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values between freeze-thaw and RIN assessments. 399 

Finally, to confirm our expectation that freeze-thaw decreases sample quality18–22 and to further 400 

characterize the underlying mechanism, we validated the presence of a 3’ bias in coverage. This 401 

builds on our and others’ observations that a lower percentage of poly(A)-enriched transcripts 402 

are covered42. We compared coverage to ribosome depleted RNA-Seq data, which does not use 403 

3’ hybridization to retain transcripts.  We find that poly(A)-enrichment does in fact introduce a 404 

strong 3’ bias in coverage as compared to ribosome depletion. This bias is further exacerbated 405 

with additional freeze-thaw cycles in poly(A)-enriched but not ribosome depleted samples. This 406 

implies that degradation due to freeze-thaw does not impact RNA-sequencing of ribosome 407 

depleted samples to the extent that it does in poly(A)-enriched samples.  In light of  our 408 

demonstrations that 3' bias is associated with a substantial increase in noise and a decrease in DE 409 

reproducibility, these findings suggest that RNA-seq from samples that have both been poly(A)-410 

extracted and undergone freeze-thaw cycles likely has unknown, diminished stability. While not 411 

all studies have technical replicates to estimate noise, the presence of exaggerated 3’ bias when 412 

poly(A)-extraction is combined with freeze-thaw can be a simple indicator of RNA-seq 413 

distortion.  414 

Conclusion 415 

Altogether, these results indicate that transcriptomics quality control steps cannot rely on RIN 416 

alone for samples that have undergone poly(A)-enrichment and multiple freeze-thaws. 417 

Furthermore, accounting for the effect of freeze-thaw on poly(A)-enriched RNA sequencing is 418 

crucial. poly(A)-enrichment is prevalent for RNA-sequencing, and, in parallel, samples that 419 

undergo multiple freeze-thaws are common in many protocols, especially rare tissues, e.g., 420 
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postmortem neural tissue. Yet, there is no clear recommendation to avoid poly(A)-enrichment 421 

following multiple freeze-thaws. Together, these results indicate that ribosomal depletion could 422 

be a better alternative when freeze-thaw is necessary.  423 
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Methods 451 

Sample Collection and Storage 452 

Blood samples drawn from male toddlers with the age range of 1-4 years were usually taken at 453 

the end of the clinical evaluation sessions. To monitor health status, the temperature of each 454 

toddler was monitored using an ear digital thermometer immediately preceding the blood draw. 455 

The blood draw was scheduled for a different day when the temperature was higher than 37 °C. 456 

Moreover, blood draw was not taken if a toddler had some illness (for example, cold or flu), as 457 

observed by us or stated by parents. We collected 4–6 ml blood into EDTA-coated tubes from 458 

each toddler. Blood leukocytes were captured using LeukoLOCK filters (Ambion). After rinsing 459 

the LeukoLOCK filters with PBS, the filters were flushed with RNAlater (Invitrogen) to stabilize 460 
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RNA within the intact leukocytes. After RNA stabilization, the LeukoLOCK filters were 461 

immediately placed in a −20 °C freezer. Additional RNA standards were sourced from normal 462 

human peripheral leukocytes pooled from 39 Asian individuals, ages 18 to 47 (Takara/ClonTech: 463 

636592). The RNA standards underwent 1-5 simulated freeze-thaw cycles; 24hrs frozen at 464 

−80 °C and 1hr defrosting on ice. 465 

RNA Extraction, Sequencing and Quantification 466 

For 47 samples (from 16 individuals), mRNA was extracted using polyA selection with the 467 

TruSeq Stranded mRNA library preparation kit (Illumina). Ribosomal depletion was used to 468 

prepare an additional 52 samples. Relevant metadata regarding polyA-enriched and ribosomal 469 

depleted samples can be found in Supplementary Table 1-2. Ribosome depletion prepared 470 

samples used the TruSeq Stranded Total RNA with RiboZero Gold library preparation kit 471 

(Illumina). RNA Integrity Numbers (RIN) were measured using a NanoDrop ND-1000 472 

(ThermoFisher). Poly-A selected samples were sequenced using 50-base pair single end 473 

sequencing on a HiSeq4000 (Illumina) to a depth of 25M reads. The ribo-depletion prepared 474 

libraries were sequenced using 100-base pair paired end sequencing on a HiSeq4000 (Illumina) 475 

to a depth of 50M reads.   476 

Fastq files for each sample underwent quality control using FastQC (v0.33). PolyA and adaptor-477 

trimming were conducted using Trimmomatic 52. Reads were aligned to the gencode annotated 478 

(v25) human reference genome (GRCh38) using STAR (v2.4.0) 7. Alignments were processed to 479 

sorted SAM files using SAMtools (v1.7) 53. Finally, HTSeq using default settings (v0.6.1) was 480 

used to quantify reads 53,54.  481 
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Estimation of noise between technical replicates 482 

To estimate the noise between technical replicates of the same individual blood samples, we 483 

simulate random loss and gain of reads (Fig. S2). One technical replicate was chosen as the 484 

“reference” replicate, making the other technical replicate the “target” replicate. Specifically, we 485 

designated replicates that have undergone one freeze-thaw as the reference, and those that 486 

underwent two freeze-thaw cycles as the target. The dissimilarity between replicates is measured 487 

by one of four metrics (Euclidean distance, RMSE, Pearson correlation, and Spearman 488 

correlation). We iteratively add and remove random reads to the reference replicate until the 489 

dissimilarity between the simulated replicate and the reference replicate was equal to the 490 

dissimilarity between a target replicate and the reference replicate (Fig. S3, Figure S2). We 491 

define the noise between the reference and target replicate as the fraction of reads added or 492 

removed per total reads in the reference replicate to achieve the aforementioned level of 493 

dissimilarity. We represent this as a percentage, e.g. 5% noise between a reference and target 494 

replicate can be interpreted as 5% randomness between their reads. For additional details on 495 

noise simulation, see Supplementary Methods. 496 

Measuring the Effect of Sample Quality on Noise  497 

To measure the association between noise and sample quality metrics (number of freeze-thaw 498 

cycles, input RNA concentrations, and RNA integrity number), we used a generalized linear 499 

model (GLM). The significance of the model parameters is determined by the Wald test. All 500 

results are reported in Supplementary Table 3. 501 

For each model, to mitigate the contribution of potential confounding variables, samples with 502 

input RNA concentrations in the top and bottom 5% (|z| ≥ 1.645) were removed, decreasing the 503 
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total number of samples from 47 to 41. For noise prediction from concentration, samples with 504 

more than one freeze-thaw were also excluded, decreasing the total number of samples to 35. 505 

Noise prediction from RIN was run separately for samples that had undergone one freeze-thaw 506 

and samples that had undergone two freeze-thaws. 507 

Differential Expression Analysis 508 

We assess whether the observed sample qualities (freeze-thaw and RIN) have an impact on 509 

differential expression (DE) reproducibility using a bootstrapping approach. DE was run on 510 

random sample subsets of varying sizes (Fig. S4). Before subsetting, we filtered our expression 511 

matrix for genes with an average count  ≤  20 across all samples. This reduced the number of 512 

genes from 10,028 to 4,520. The total number of samples considered was 46 when disregarding 513 

samples that were industry standards, were not assigned to either an ASD or TD indication, or 514 

did not have a recorded sample quality (RIN or freeze-thaw) value. 515 

We generated subsets containing N = 4-14 samples. For each subset size N, we generated 2,000 516 

unique subsets. Each subset had an equal number of TD or ASD samples. Additionally, only one 517 

replicate from each blood sample could be included. These requirements limited our subset size 518 

to a maximum of 14 samples. 519 

DE between ASD and TD subjects was conducted using DESeq21. Fig. S10 summarizes DE 520 

results for all subsets. To account for potential confounders, we used RUV5. Specifically, we use 521 

a set of “in-silico empirical” negative control genes, including all but the top 5,000 differentially 522 

expressed genes as described in section 2.4 of the documentation for RUVseq 523 

(http://bioconductor.org/packages/release/bioc/vignettes/RUVSeq/inst/doc/RUVSeq.pdf). We 524 

check that RUV produces consistent results with previous Autism leukocyte gene expression 525 
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signatures51,55, see Supplementary Results. 526 

Similarity to Assess Differential Expression Reproducibility 527 

To assess DE reproducibility, we measure the similarity in log-fold-change (LFC) values 528 

between DE runs. Similarity is calculated as the pairwise spearman correlation of LFC between 529 

all subsets of the same size (Fig. S6). Genes with a median base mean (the mean of counts of all 530 

samples, normalizing for sequencing depth) or median LFC in the bottom 10th percentile across 531 

all subsets were excluded, filtering for low magnitude effects (Fig. S5).  532 

Average RIN and freeze-thaw were measured for all subset pairs. Resulting distributions for all 533 

collected values from similarity analyses are displayed in Fig. S7.  534 

Next, subsets of each size were split into two quantile bins for each quality metric separately. 535 

High sample quality bins (low freeze-thaw or high RIN) were compared to low sample quality 536 

bins.  High sample quality subsets were tested for higher similarity than low sample quality bins 537 

using a one-sided Mann-Whitney U test.  538 

Additionally, three generalized linear models (GLMs) were fit to quantify the contribution of 539 

sample quality metrics to the change in similarity for DE results across subsets. We fit one model 540 

to predict similarity from freeze-thaw and RIN, while also accounting for the improvement in 541 

reproducibility due to increase in subset size (Similarity ~ Freeze-Thaw + RIN + Subset Size). 542 

We also fit two models predicting similarity from freeze-thaw or RIN alone.  543 

Discordance to Assess Differential Expression Reproducibility 544 

We adapted a measure of concordance to measure discordance, or the lack of reproducibility, 545 

between differential expression results56. Average RIN and freeze-thaw were calculated for each 546 
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subset (Fig. S8-9). Subsets for each subset size were split into two quantile bins for either quality 547 

metric (RIN and freeze-thaw). Genes with a median base mean across all subsets in the bottom 548 

tenth percentile were excluded from the analysis (Fig. S5).  549 

We do not use the original concordance at the top (CAT) metric because we are not comparing 550 

our results to a gold standard dataset. Instead, we use gene-wise LFC standard deviation across 551 

subsets as a measure of discordance. Thus, the average LFC for each gene across DE runs is 552 

analogous to the gold standard, and the dispersion from this average indicates a lack of 553 

reproducibility. At each combination of subset size and quality bins, we calculate discordance 554 

and compare it to the gene-wise median effect size (Fig. S8). We measure effect size as the 555 

mean-variance standardized effect1. This and two additional effect size metrics (Cohen’s d and 556 

absolute median LFC) we use are further described in Fig. S9. Results for all three effect size 557 

metrics reflect similar trends and can be found in Supplementary Tables 5-6. 558 

We used a GLM to predict discordance from effect size at each subset size. Additionally, in a 559 

separate GLM, we account for the interaction between effect size and sample quality 560 

(Discordance ~ Effect Size x Sample Quality) at each subset size. Here, sample quality is a 561 

dummy variable, assuming a value of 0  for low quality and 1 for high quality.  We did not 562 

include a term for subset size because regressions were fit within each subset size. 563 

Read Coverage Bias 564 

The distribution of read coverage over each gene body was measured using 565 

geneBody_coverage.py from the RSeQC (v3.0.0) package 57. We measure this coverage ranging 566 

from the 0th percentile (5’ end) to the 100th percentile (3’ end) nucleotide. The ith percentile 567 

nucleotide is calculated as	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒-	/	𝑙𝑒𝑛𝑔𝑡ℎ0121. Coverage at the ith percentile nucleotide is 568 
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normalized across all genes within a sample.  569 

For a given sample, the median coverage percentile is defined as the nucleotide percentile at 570 

which median cumulative coverage is achieved; cumulative coverage is aggregated from the 5’ 571 

end to the 3’ end. The larger the median coverage percentile value, the larger the 3’ bias in 572 

coverage.  We include 9 industry standards to our analysis--six of which had undergone five 573 

freeze-thaw cycles and three of which had undergone one freeze-thaw cycle--to explore the 574 

impact at higher freeze-thaw counts. We also include ribosomal depletion extracted samples as a 575 

negative control.  576 

We extended this read coverage bias to three additional datasets, all of which contained both 577 

poly(A)-extracted and ribosomal depletion extracted samples. The first dataset (PRJNA427184) 578 

contains samples for liquid and solid frozen tissue 34. The second (PRJEB4197) contains 579 

HEK293 samples that explicitly never underwent freeze-thaw cycles 35. The third 580 

(phs000676.v1.p1) contains frozen tissue samples from the UNC and TCG tumor tissue 581 

repositories 36.  For the first two datasets, fastq files were aligned using STAR and gene body 582 

coverage was calculated from alignments using RSeQC as previously described. We did not 583 

directly analyze the raw files from TCGA or UNC, but instead reanalyzed the reported 5’ to 3’ 584 

bias ratios. This ratio is similar to the inverse of the median coverage percentile: the smaller it is, 585 

the larger the 3’ bias in read coverage.  586 

  587 
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