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RNA-Seq is ubiquitous, but depending on the study, sub-optimal sample handling may be
required, resulting in repeated freeze-thaw cycles. However, little is known about how each cycle
impacts downstream analyses, due to a lack of study and known limitations in common RNA
quality metrics, e.g., RIN, at quantifying RNA degradation following repeated freeze-thaws.
Here we quantify the impact of repeated freeze-thaw on the reliability of downstream RNA-Seq
analysis. To do so, we developed a method to estimate the relative noise between technical
replicates independently of RIN. Using this approach we inferred the effect of both RIN and the
number of freeze-thaw cycles on sample noise. We find that RIN is unable to fully account for
the change in sample noise due to freeze-thaw cycles. Additionally, freeze-thaw is detrimental to
sample quality and differential expression (DE) reproducibility, approaching zero after three

cycles for poly(A)-enriched samples, wherein the inherent 3’ bias in read coverage is more
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exacerbated by freeze-thaw cycles, while ribosome-depleted samples are less affected by freeze-
thaws. The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of
frozen tissue, and thus, it is important during experimental design and data analysis to consider

the impact of repeated freeze-thaw cycles on reproducibility.

Introduction

RNA sequencing (RNA-Seq) is a ubiquitous technology, used to answer a wide range of
biological questions. Methods for aligning, quantifying, normalizing and analyzing expression
data are available through popular packages such as Tophat, STAR, cufflinks, SVA, RUV,
Combat, DESeq2, edgeR, Kallisto, Salmon, BWA-MEM, and many others'~'!. Each method
aims to accommodate and mitigate the unique challenges presented by RNA-Seq data. Some
approaches attempt to account for characterized variability in RNA-Seq measurements due to
factors such as sequencing depth, gene length, and transcripts’ physical characteristics (e.g., GC
content). Others account for “unwanted variance” due to technical, batch, or experimental
variation. Yet, the influence of sample processing, such as tissue lysis and processing time'>™'4, is
not sufficiently characterized such that it can be explicitly controlled. It is important to
adequately characterize noise introduced to RNA-Seq measurements by sample processing steps
to optimize sample quality, account for transcript degradation, and improve the accuracy and

reproducibility of sequencing.

Transcript degradation continues after sample acquisition and affects data quality. Sample
storage conditions (e.g. temperature and the use of stabilizing reagents) affect sample quality via
RNA degradation'*!3, Yet, varying sources of degradation can impact RNA-Seq in different

manners'é. Degradation introduces variability in signal and can be impacted by sample handling.
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Non-uniformity in degradation across genes and samples causes inaccurate normalization and
transcript quantification!”. Poly(A)-enrichment methods are commonly used to separate mRNA
from other highly abundant RNA molecules (e.g., TRNA, tRNA, snoRNAs, etc.), but variable
degradation directly impacts read counts by causing non-uniform transcript coverage'®. Of
particular interest, freeze-thaw can induce 20% degradation of spike-in standards per cycle, a
factor that may be generalizable to mRNA transcripts'’. Freeze-thaw cycles increase RNA
degradation by disrupting lysosomes which store RNases, freeing the enzymes to promiscuously
catalyze nuclease activity?’. Furthermore, partially defrosted crystals create uneven cleaving
pressure on mRNA strands?!'?2. Despite these observations, the extent to which freeze-thaw
negatively impacts count and differential expression in RNA-Seq analyses has not been

comprehensively characterized.

Standard sample quality control often relies on RNA integrity number (RIN), which quantifies
the 28S to 18S rRNA ratio?’. RIN-based quality control approaches rely on a heuristic threshold
to assess sufficient quality?*?°. RIN-based metrics have known confounders such as transcript
level, and thus have been called into question as an appropriate quality metric?®. For example,
RIN failed to indicate a decrease in sample quality in lung cancer tissue samples that underwent
five freeze-thaw cycles?’ and, in statistical analyses, failed to correct for the effects of
degradation?®. Despite this, many studies rely on RIN to correct for and assess sample quality
confounders'®?>%°. This is especially problematic in the case of transcript degradation because
RIN scores are based on entire samples, while degradation effects can be transcript-
specific!”3132, Furthermore, existing studies on degradation are not simply generalizable to
freeze-thaw, which has distinct and independent effects on sample quality and must be fully

explored as such!633,
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Here, we tested the susceptibility of poly(A)-enriched RNA-Seq results after multiple freeze-
thaw cycles. We assessed sample quality independently of RIN by simulating read count
variability to capture the noise between technical replicates. We found that each additional
freeze-thaw cycle increased the random counts between technical replicates by approximately
4%. Subsequently, differential expression reproducibility approached zero after three freeze-
thaw cycles. These effects are not captured by RIN. We find that these effects are reflected in
increasing 3’ bias in read coverage when combining poly(A)-extraction with freeze-thaw, a

phenomena that appears to be generalizable to publically available datasets.

Results

3’ bias in read coverage of public datasets is associated to poly(A)-extraction

and freeze-thaw

To examine the prevalence of bias from repeated freeze-thaw cycles, we search for the presence
of RNA-seq distortion in publically available datasets. Specifically, we analyze the gene-
coverage distribution in samples prepared with either poly(A)-extraction or ribosomal depletion.
Since freeze-thaw enhances transcript degradation and poly(A)-enriched samples select mRNA
by hybridization to the poly(A)-tail, we expect increased read coverage on the 3’ end of
transcripts--3’ bias--when these two factors are combined. To test this expectation, we compared
gene body coverage from the 5° to 3’ end between poly(A)-enrichment and ribosomal depletion
prepared samples with and without freezing. Specifically, we examined the median coverage
percentile, the percentile-normalized nucleotide at which median cumulative coverage for a

given sample is achieved (Fig. 1a).
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We analyzed the gene-coverage distribution in three studies: (1) RNA extraction in previously
frozen solid and liquid tissues, (2) RNA extracted immediately after lysis of cultured cells
without freezing, and (3) RNA extraction in previously frozen tissue from important public tissue

resources.
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Figure 1: 3’ Bias is Exacerbated in Frozen, Poly(A)-extracted Samples Across Multiple Studies: (a)
Demonstration for determining median coverage percentile (red vertical line). When coverage is
unbiased, reads (yellow) are distributed throughout the entire body of the transcript (green). In the
absence of read bias and observing coverage as a function of the nucleotide percentile, we see that
cumulative coverage along the transcript reaches 50% half-way through the gene body, at the 50"
percentile nucleotide. In contrast, given a 3’ read bias, there is a shift in the distribution of reads and
cumulative coverage reaches 50% at, for example, the 60™ percentile nucleotide. This results in a
rightward shift in median coverage percentile towards the 3’ end of the transcript. In the middle row,
gene coverage (y-axis) at the i nucleotide percentile from 5’ to 3’ (x-axis) is displayed for samples that
were extracted using either poly(A)-enrichment or ribosomal depletion. Gene body coverage distributions
were calculated for (b) for tissue samples that underwent an unspecified number of freeze-thaw cycles
and (c) cell-culture samples samples that underwent no freeze-thaw cycles. (d) Comparison of 5’ to 3’
bias ratio (y-axis) of samples from the TCGA and UNC tissue repositories (x-axis) between extraction
methods (two-sample t-test). Quantifying human RNA samples listed in GEO from 2008-2018, and
stratifying by those annotated as “‘frozen”, we observe (d) the number of samples prepared with poly(A)-
extraction or ribosomal depletion (x-axis) (gray), (f) the proportion of samples extracted using either

method, and (g) the change in the number of samples over time.

In the first study®*, a comparison of the performance of poly(A) and ribosomal depletion in liquid
and solid frozen tissue, we see a significant (one-sided Wilcoxon test, p = 0.01591) shift in the
median gene coverage percentile towards the 3' end in the poly(A)-extracted samples (Fig. 1b).
Using generalized linear regression, we found that the median coverage percentile of poly(A)-
extracted samples was 3.88% higher (Wald p = 0.011) than comparable ribosomal depletion
extracted samples. In the second study?, cells were not frozen before extraction and there was a
small and insignificant difference in the 3’ bias associated with library preparation (one-sided

Wilcoxon test, p = 0.13, Fig. 1¢). While the first two studies extract RNA from tissue and cell-
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126  culture respectively--tissue extraction is typically lower quality, they are internally controlled
127  and therefore comparable. Finally, the third study3® examines the impact of RNA extraction in
128  frozen tissue from the UNC and TCGA tumor tissue repositories. We found a significant (two-
129  sample t-test, p<lel6) decrease in the 5’-to-3’ coverage ratio in poly(A)-extracted samples
130  compared to ribosomal depletion (Fig. 1d), indicating an increase in 3’ bias. 3’ bias was

131  consistent across RNA extracted from tissue frozen at either repository.

132 Next, we explored how widespread the impact of these observations may be by quantifying the
133 prevalence of poly(A)-extraction from frozen tissue by examining metadata in the Gene

134  Expression Omnibus (GEO). With GEOmetadb 37, we queried all human RNA samples between
135 2008 and 2018 using either poly(A)-extraction or ribosomal depletion. There are tens to hundred
136  of thousands of samples annotated as “frozen” for both total and poly(A)-extraction methods

137  (Fig. 1e). We note that this is an order of magnitude less than the total query, a value potentially
138  diminished by the complexity of the metadata. In samples annotated as “frozen”, the frequency
139  of poly(A) extraction increases from less than 10% to over 25% (Fig. 1f) suggesting that the

140  problematic combination is prevalent and apparently preferred. Finally, stratifying this trend over
141  time, we see that poly(A)-extraction, as well as the relative proportion of poly(A)-extracted

142  frozen samples, is increasing in popularity relative to total RNA extraction, where usage has

143  remained fairly consistent (Fig. 1g).Taken together, these results indicate a potential, widespread
144  distortion in RNA-seq associated with a deleterious interaction between poly(A)-extraction and
145  freeze-thaw. To explore this potential more formally, the remainder of our analyses focus on a
146  specific experiment to address this question. Specifically we subjected whole-blood extracted
147  leukocyte samples--with technical replicates--from autistic or typically developing toddlers to a

148  varying number of freeze-thaw cycles, which we record along with other sample quality metrics
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149  such as RIN.

150  An Additional Freeze-Thaw Cycle Increases Random Read Counts 1.4-Fold

151  To address the scarcity in quantification of loss in sample quality due to freeze-thaw, we

152  compare changes in sample quality between technical replicates. We first note that neither RIN
153 nor TIN capture significant (one-sided Wilcoxon test) decreases in sample quality due to

154  increased freeze-thaw (Fig. S1). Given previous indications that these metrics may not

155  sufficiently address transcript degradation, we instead measure the introduction of noise—the
156  randomness in read counts between technical replicates—to samples by freeze-thaw. We

157  simulated this randomness to reflect the dissimilarity between technical replicates. Since noise

158  does not rely on RIN, we could compare freeze-thaw and RIN-effects independently.
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160  Figure 2: Higher Noise in Samples with More Freeze-Thaw Cycles. From left to right, noise—
161  the randomness in read counts between technical replicates—is estimated using Euclidean distance,
162  RMSE, Pearson correlation,and Spearman correlation. (a) Box plots of noise for samples that underwent

163  either one or two freeze-thaws. (b) A generalized linear model was used to determine the expected noise
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at one freeze-thaw (Ny, pink) and the expected change in noise with each additional freeze-thaw (AN,

green). All estimates are significant (p < 0.05).

Median noise increased 1.4-fold from one to two freeze-thaw cycles (one-sided Mann-Whitney
U test, p < 0.007) on average across all measures (Fig. 2a). Noise between technical replicates
when samples have only undergone one freeze-thaw was estimated to be 9.11-10.15% (Wald
test, p < 5.77e-7). The expected increase in noise per additional freeze-thaw cycle was estimated

to be 3.6-4.1 percentage points (Wald test, p < 8.12e-3) (Fig. 2b).

RIN Does Not Predict Additional Noise After One Freeze-Thaw Cycle

To follow up on our observations that RIN does not sufficiently capture changes in sample
quality due to freeze-thaw, we asked whether RIN can reflect the differences in sample quality as

measured by noise.
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Figure 3: Discrepancy in the Relationship Between Noise and RIN due to additional Freeze-
Thaw. Examining the relationship between noise, calculated by Euclidean distance, RMSE, pearson,
and spearman correlation, for samples that underwent either one (blue) or two (red) freeze-thaw cycles.
(a) Scatter plots comparing noise (y-axis) to RIN (x-axis). The solid lines show a linear regression fit and
the shaded regions is the 95% confidence interval for this fit. (b) The expected change in noise due to a
one point increase in RIN (AN, y-axis) estimated by a generalized linear model. Significant estimates (p <

0.05) are marked by a circle and insignificant estimates are marked by a cross.

When only considering samples that underwent one freeze-thaw, each unit increase in RIN
decreases noise by 3.24-3.38 percentage points for all metrics (Wald test, p < 6.3e-3) (Fig. 3a-b).
Yet, when only accounting for samples that underwent two freeze-thaw cycles, noise does not
significantly change as RIN increases. Taken together, these results indicate that while RIN can
be a good measure of noise for samples that underwent one freeze-thaw, it does not capture the

loss in sample quality induced by two freeze-thaw cycles.

Differential Expression Similarity Increases 10.3% in High Quality Samples

Next, we investigated how the introduction of technical variation, noise, impacts downstream
RNA-Seq analysis, specifically, differential expression (DE) analysis. As such, we assessed the
reproducibility of DE results on combinations of samples with varying sample quality. We
compared DE results between subsets of various sizes (4 - 14 samples). We measure
reproducibility using similarity or discordance, based on correlation and dispersion, respectively.
Higher similarity and lower discordance each represent higher reproducibility. We use these
measures to assess differences that arise between subsets consisting of high quality (low freeze-

thaw or high RIN) and low quality (high freeze-thaw or low RIN) samples.

12
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199  We held two expectations regarding the effect of sample quality on DE reproducibility in the
200  context of similarity: 1) the reproducibility between subsets with high quality samples should be
201  higher than those with low quality samples, and 2) both subset size and sample quality should
202  interact to increase the reproducibility of DE analysis; the increase in stability is reflected by a

203 higher rate of increase in reproducibility with respect to subset size.

204  As expected, similarity increases with subset size. This is reflected in the upward shift in the

205  similarity distribution with increasing subset size (Fig. S10) and the estimated 0.02 (Wald test, p
206 =2.2e-5) increase in similarity per additional sample (Fig. 4a); thus, expected similarity would
207 increase by 0.20 in a subset with 14 samples over a subset with 4 samples. Regression results for

208  each model predicting similarity are reported in Supplementary Table 4.
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Quality. Top panels summarize generalized linear models used to quantify the change in similarity per

unit increase in (a) sample size, number of freeze-thaws and RIN combined, (b) only the number of
freeze-thaws, and (c) only RIN. Sy represents the intercept estimate and sample size, freeze-thaw, and RIN
represent coefficient estimates. All estimates are significant. Bottom panels demonstrate fold-change in
median similarity of high quality subsets with respect to low quality subsets at each subset size. The
region shaded in blue (fold-change > 1) indicates instances where the median similarity for high quality
is larger than that of low quality. The region shaded in red (fold-change < 1) indicates instances where
the median similarity for low quality is larger than that of high quality. Average (d) freeze-thaw or (e)
RIN are used to place subset pairs into high or low quality sample bins. Significance (one-sided Mann-
Whitney U test) of comparisons in similarity distributions between high and low quality subset pairs are

displayed above each subset size.

We tested our first expectation by placing subset pairs into high and low sample quality bins,
defined by either RIN or freeze-thaw, for each subset size and comparing their similarity values.
Regardless of sample quality, DE similarity increases with subset size. Yet, for nearly all subset
sizes, higher quality bins have significantly (one-sided Mann-Whitney U test, p < 2.8e-17)
higher similarity than low quality bins (Fig. 4e-f). Across subset sizes, we observed an average
1.13-fold and 1.06-fold increase in similarity from low to high quality samples for freeze-thaw

and RIN, respectively.

Similarity significantly (Wald test, p< 9.2e-3) decreases with the number of freeze-thaws and
increases with RIN when accounting for the effects of sample size (Fig. 4a-c), validating our
second expectation. Similarity decreases by 0.077 per additional freeze-thaw cycle (Wald test, p
= 8.77e-4). Given the estimated similarity of 0.23 for samples that have not undergone freeze-
thaw, this implies that DE reproducibility will approach zero after approximately three freeze-

thaw cycles (Fig. 4b). Even when accounting for subset size and the effects of RIN, the
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estimated decrease in similarity from freeze-thaw is nearly the same--0.078 (Wald test, p =
8.77e-4); this further corroborated that RIN alone cannot capture the changes in sample quality
due to freeze-thaw. Taken together, these results indicate that higher sample quality increases DE

reproducibility as measured by similarity.

Discordance Decreases ~5-fold In High Quality Samples

We further investigated the relationship between DE reproducibility and sample quality using an
effect size sensitive measure of discordance. Specifically, we explored how sample quality
affects the relationship between discordance and the mean-variance standardized effect at each
subset size. In this context, we expected 1) discordance at any given effect size to be lower in
high-quality subsets and 2) the rate of increase in discordance to be lower in high quality subsets

relative to low quality subsets.

Corresponding to the regression models used for this analysis, we label our expected discordance
when effect size is zero as Do and the change in discordance per unit increase in effect size as
AD. We observed a significant (Wald test, p < 9.45e-141) decreasing trend in both Do and AD

with increasing subset size (Fig. S11, Supplementary Table 5).

As expected, independent of sample quality, AD demonstrates an overall decreasing trend with
respect to subset size for both RIN and freeze-thaw. Given freeze-thaw, at a subset size of 6,
there is a 1.1-fold decrease in the value of AD from low quality subsets to high quality subsets.
The disparity in AD between high and low sample quality (Am = AD¢vow Quatity / ADHigh Quality)
increases nearly monotonically through to the subset size of 14, at which point there is a 3.2-fold
decrease; the monotonicity is an indication of the stability of this relation between discordance

and sample quality. This causes notable differences in discordance values, even at low effect
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5a).

Sample Quality by Freeze-Thaw
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Figure 5: Higher Sample Quality has Lower Discordance at Each Subset Size. GLM estimates

of discordance predicted from effect size and subset size at high and low quality subsets at each subset

size. High sample quality (blue) is compared to low sample quality (red). AD values represent the change

in discordance per unit increase in effect size. (a) The predicted discordance with respect to the mean-

variance standardized effect at a subset size of 14, sample quality is assessed by freeze-thaw. The

disparity (Am) between the change in discordance per unit increase in effect size for high (ADy) and low

(ADp) quality subsets is also displayed. Summary of results for each subset size (x-axis) for sample

quality represented by either (b) freeze-thaw or (c) RIN. Significant estimates (Wald test, Benjamini-
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Hochberg FDR correction, ¢ < 0.1) are marked by a circle and insignificant estimates are marked by a

cross. For freeze-thaw, Am corresponding to panel A is also displayed.

We estimate discordance with respect to effect size at each subset size and for subsets of either
high and low quality (Fig. Sa). Consistent with our expectations, Do and AD are consistently
lower for high quality subsets as compared to low quality subsets for both freeze-thaw and RIN
across all subset sizes (Fig. Sb-¢). Nearly all estimates are significant after multiple test
correction (Wald test, Benjamini-Hochberg FDR correction, q< 0.07), with the exception of

those for the smallest subset size for freeze-thaw.

Taken together, these results indicate that higher sample quality increases DE reproducibility as

measured by discordance.

Additional freeze-thaw cycles show increased 3’ bias in poly(A)-enriched but

not ribosomal depletion samples

Finally, we asked whether repeated freeze-thaw cycles can induce a 3’ bias, consistent with the
induction of random reads and the loss of DE reproducibility as well as our initial observation in

the public datasets.

Using the median coverage percentile, we found a shift in mRNA coverage towards the 3’ end in
the poly(A)-enriched samples relative to ribosomal depletion (Fig. S13a). Specifically, the
median coverage percentile for poly(A)-enriched samples is significantly (one-sided Wilcoxon
test, p < 2.2e-16) larger than that of ribosome depletion (Fig. S13b). Samples prepared with
poly(A)-extraction have more 3’ coverage bias compared to ribosomal depletion in both one
(one-sided Wilcoxon test, p = 3.5e-15 ) and two (one-sided Wilcoxon test, p = 1.4e-4) freeze-

thaw cycles (Fig. S13d). Altogether, this indicates an overall 3’ bias of poly(A)-enriched
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290 samples, even independently of freeze-thaw (Fig. S13b).
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292  Figure 6: Freeze-Thaw Cycles Exacerbate 3’ Bias in poly(A)-enriched samples. (a) Gene coverage (y-
293 axis) at the i" nucleotide percentile (x-axis) for samples that underwent 1-5 freeze-thaws and were

294  extracted using either poly(A)-enrichment or ribosome depletion. Coverage is normalized to samples that
295  underwent one freeze-thaw. For each sample, coverage is averaged across all genes; samples are

296  aggregated using generalized additive model smoothing, with shaded regions representing 95%

297  confidence intervals. (b) Linear model fits comparing the change in median coverage percentile to the

298  number of freeze-thaw cycles for ribosome depletion (orange) or poly(A)-extraction (green).

299  Crucially, this 3’ bias is accentuated when samples are stratified by the number of freeze-thaw
300 cycles (Fig. 6a). We observe a significant increase (Wald test, p = 8.3e-4) in median coverage
301 percentile due to the number of freeze-thaw cycles in poly(A)-enrichment. The increase was not
302 maintained when was isolated using ribosome depletion (Wald test, p = 0.155) (Fig. 6b,

303  Supplementary Table 7). For poly(A)-enriched samples, median coverage percentile increases
304 3.3 percentage points per root freeze-thaw cycle; the square-root of freeze-thaw was used to

305 stabilize variance. We further demonstrate a dependency of 3 bias on freeze-thaw cycles by
306  showing that median coverage percentile significantly increases with freeze-thaw in poly(A)-

307 enriched samples (Kruskal-Wallis test, p = 0.01). This 3’ bias is particularly apparent after five
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308 freeze-thaw cycles (one-sided Wilcoxon test, p = 2.4e-3). In contrast, we observe that median
309 coverage percentile does not significantly change across freeze-thaw cycle counts in ribosomal

310  depletion (Kruskal-Wallis test, p = 0.084) (Fig. S13c¢).

311  Taken together, these analyses indicate that poly(A)-enrichment inherently introduces a 3’ bias
312  in coverage as compared to ribosome depletion, and that this bias is exclusively exacerbated in
313  poly(A)-enriched samples due to freeze-thaw cycles. Thus, 3’ bias may indicate the severity of
314  freeze-thaw induced signal degradation in poly(A)-extracted samples. If this 3’ bias is the root
315 cause of freeze-thaw induced instability in absolute and differential RNA-seq quantification,
316  such instabilities may be subverted by substituting poly(A)-selection for ribosomal depletion
317  during library preparation; such instabilities may be an unnecessary and avoidable

318  inconvenience.

319  Discussion

320  Despite the utility and ubiquity of RNA-Seq, many of the confounding elements associated with
321  the technology are still being characterized. In this work, we demonstrated how one such

322  confounder--sample freeze-thaw--impacts sample quality and downstream analyses. We

323  highlighted biases in publically available datasets, and observed an increased 3' bias when both

324  freeze-thaw and poly(A)-extraction are features of a sample.

325  To gain a comprehensive understanding of this effect, we first simulated technical replication to
326  measure the noise between technical replicates with different treatments. This allowed us to

327  examine the impact of freeze-thaw cycles and the ability of RIN to capture those impacts. Next,
328  we examined the impact of freeze-thaw cycles on the robustness and reproducibility of

329  differential expression analysis. We found freeze-thaw cycles were substantially detrimental to
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330 the stability of gene expression analysis. By our estimates and at these subset sizes,

331 reproducibility of a differential expression signature approaches zero after three freeze-thaw
332 cycles (Supplementary Table 4). Finally, we demonstrated that poly(A)-enriched samples
333  demonstrate substantial 3’ bias in read coverage with increased freeze-thaw cycles. Our results
334  have implications with regards to technical variation due to sample handling, the sensitivity of

335  differential gene expression analysis for frozen tissues and samples, and the utility of RIN.

336  Technical variation in RNA-Seq is substantial and can be attributed to a variety of factors,

337  including read coverage, mRNA sampling fraction, library preparation batch, GC content, and
338  sample handling*®3°. As such, accounting for technical variation has been a major research area
339  of focus for the past decade!?>>3%4, Degradation in combination with poly(A)-enrichment is a
340  known source of variation in RNA-Seq. Yet, before technical variation can be accounted for, it
341  must be characterized. While studies have looked into the effect of degradation on RNA-Seq,
342  each mode of degradation impacts sample quality differently, and direct connections between

343 freeze-thaw and sample quality has mainly been assessed via RIN!641:42,

344  Our simulation of technical replicates helps delineate technical variation due to sample handling-
345  -specifically, freeze-thaw. Furthermore, the resulting noise provides an estimate for the number
346  of random read counts associated with a gene. For example, given an average 25 million reads
347  sequenced per sample, our approximate 4 percentage points difference in noise between one and
348  two freeze-thaw cycles gives an expected stochasticity in 1 million of those reads; approximating
349  the number of protein-coding genes in the human genome to be 20-25 thousand*?, we can expect
350 adifference of ~40-50 random counts per gene to exist between technical replicates due to a

351 freeze-thaw cycle (Supplementary Methods, Fig. S15). Thus, each freeze-thaw introduces a

352  non-negligible level of noise to the quantification of gene expression and differential expression
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of such genes.

To check for the possibility that there is a signature which can help correct for freeze-thaw
distortion of RNA-Seq, we attempt to find a group of common DE genes across various DE
methods. We find no such signature (Supplementary Results). This is expected, given that a
major source of reduced sample quality due to freeze-thaw is mRNA degradation, which occurs
randomly for each transcript and sample. A possible path forward is to correct for sample
degradation. Several methods have been proposed for this. While some of these methods rely on
RIN or similar metrics (e.g. mRIN, TIN, etc.)'®*, others have implemented statistical
frameworks which account for gene-specific biases. DegNorm, for example, accounts for the
gene-specific relative randomness in degradation in its correction approach!’. Quality surrogate
variable analysis (qQSVA) specifically improves differential expression by identifying transcript
features associated with RNA degradation for its correction?®. Furthermore, there are recent
methods which only assay the 3’ end of a transcript and therefore claim robustness in degraded
samples®. While these approaches could help account for noise introduced by RNA degradation

during repeated freeze-thaw cycles, they cannot necessarily remedy the associated loss of signal.

The effect of freeze-thaw and resultant degradation on RNA-Seq is particularly concerning when
considering differential gene expression analysis. It has been observed that RNA degradation can
induce the apparent differential expression in as many as 56% of genes**. To this end, we
quantified this loss of DE reproducibility by measuring similarity and discordance in the context
of sample quality. We found a decrease in reproducibility with both decreasing RIN and
increasing freeze-thaw. Interestingly, for most reproducibility assessments, we observed a
monotonic or near monotonic increase in disparity between low and high quality subsets with

respect to subset size. Similarity demonstrated a larger average magnitude of disparity for freeze-
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thaw, whereas discordance demonstrated a larger average magnitude of disparity for RIN.

Based on our analysis, the utility of RIN in assessing quality when samples undergo freeze-thaw
is questionable. The non-uniformity in mRNA degradation*—° due to freeze-thaw sheds light on
these challenges, since RIN cannot quantify quality at the individual gene level?. This is
reflected in the fact that samples with RIN > 8 demonstrate degradation®?. Furthermore, results
assessing the effect of freeze-thaw cycles on RIN are inconclusive. While some studies claim
RIN can be used to account for degradation effects in RNA-Seq'®, others suggest it does not
sufficiently capture the effects of degradation on sample quality?®?%, When directly observing the
effect of freeze-thaw on RIN, studies have found a negligible effect'? or can only detect an

effect after numerous cycles?”°.

As such, we re-examined the utility of RIN as a measure of sample quality in relation to our
noise estimation of random reads per sample?’. We found that while noise increases with both
decreasing RIN and increasing freeze-thaw, RIN may be an insufficient indicator of quality for
samples that have undergone two or more freeze-thaws. Given these results, RIN may not
always be a good metric to quantify the difference between technical replicates that have
undergone variable sample handling'7-?6-2%, We validate noise by confirming that it does not
change with input RNA concentration, excepting outliers (Fig. S12). Therefore, in the future,

noise could be a useful supplement to RIN when technical replicates are present.

The fact that our predicted decrease in similarity due to freeze-thaw does not change when
incorporating RIN into our model further indicates that RIN alone cannot capture the changes in
sample quality due to freeze-thaw. Despite this, RIN is a good indicator of sample quality, if not
specifically for freeze-thaw. This is reflected in the fact that RIN validates our expectations for

DE reproducibility analysis and the comparable range of noise, similarity, and discordance
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values between freeze-thaw and RIN assessments.

Finally, to confirm our expectation that freeze-thaw decreases sample quality'®2? and to further
characterize the underlying mechanism, we validated the presence of a 3’ bias in coverage. This
builds on our and others’ observations that a lower percentage of poly(A)-enriched transcripts
are covered*?. We compared coverage to ribosome depleted RNA-Seq data, which does not use
3’ hybridization to retain transcripts. We find that poly(A)-enrichment does in fact introduce a
strong 3’ bias in coverage as compared to ribosome depletion. This bias is further exacerbated
with additional freeze-thaw cycles in poly(A)-enriched but not ribosome depleted samples. This
implies that degradation due to freeze-thaw does not impact RNA-sequencing of ribosome
depleted samples to the extent that it does in poly(A)-enriched samples. In light of our
demonstrations that 3' bias is associated with a substantial increase in noise and a decrease in DE
reproducibility, these findings suggest that RNA-seq from samples that have both been poly(A)-
extracted and undergone freeze-thaw cycles likely has unknown, diminished stability. While not
all studies have technical replicates to estimate noise, the presence of exaggerated 3’ bias when
poly(A)-extraction is combined with freeze-thaw can be a simple indicator of RNA-seq

distortion.

Conclusion

Altogether, these results indicate that transcriptomics quality control steps cannot rely on RIN
alone for samples that have undergone poly(A)-enrichment and multiple freeze-thaws.
Furthermore, accounting for the effect of freeze-thaw on poly(A)-enriched RNA sequencing is
crucial. poly(A)-enrichment is prevalent for RNA-sequencing, and, in parallel, samples that

undergo multiple freeze-thaws are common in many protocols, especially rare tissues, €.g.,
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421  postmortem neural tissue. Yet, there is no clear recommendation to avoid poly(A)-enrichment
422  following multiple freeze-thaws. Together, these results indicate that ribosomal depletion could

423  be a better alternative when freeze-thaw is necessary.
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Methods

Sample Collection and Storage

Blood samples drawn from male toddlers with the age range of 1-4 years were usually taken at
the end of the clinical evaluation sessions. To monitor health status, the temperature of each
toddler was monitored using an ear digital thermometer immediately preceding the blood draw.
The blood draw was scheduled for a different day when the temperature was higher than 37 °C.
Moreover, blood draw was not taken if a toddler had some illness (for example, cold or flu), as
observed by us or stated by parents. We collected 4—6 ml blood into EDTA-coated tubes from
each toddler. Blood leukocytes were captured using LeukoLOCK filters (Ambion). After rinsing

the LeukoLOCK filters with PBS, the filters were flushed with RNAlater (Invitrogen) to stabilize
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RNA within the intact leukocytes. After RNA stabilization, the LeukoLOCK filters were
immediately placed in a —20 °C freezer. Additional RNA standards were sourced from normal
human peripheral leukocytes pooled from 39 Asian individuals, ages 18 to 47 (Takara/ClonTech:
636592). The RNA standards underwent 1-5 simulated freeze-thaw cycles; 24hrs frozen at

—80 °C and 1hr defrosting on ice.

RNA Extraction, Sequencing and Quantification

For 47 samples (from 16 individuals), mRNA was extracted using polyA selection with the
TruSeq Stranded mRNA library preparation kit (Illumina). Ribosomal depletion was used to
prepare an additional 52 samples. Relevant metadata regarding polyA-enriched and ribosomal
depleted samples can be found in Supplementary Table 1-2. Ribosome depletion prepared
samples used the TruSeq Stranded Total RNA with RiboZero Gold library preparation kit
(ITlumina). RNA Integrity Numbers (RIN) were measured using a NanoDrop ND-1000
(ThermoFisher). Poly-A selected samples were sequenced using 50-base pair single end
sequencing on a HiSeq4000 (Illumina) to a depth of 25M reads. The ribo-depletion prepared
libraries were sequenced using 100-base pair paired end sequencing on a HiSeq4000 (I1lumina)

to a depth of S0M reads.

Fastq files for each sample underwent quality control using FastQC (v0.33). PolyA and adaptor-
trimming were conducted using Trimmomatic 2. Reads were aligned to the gencode annotated
(v25) human reference genome (GRCh38) using STAR (v2.4.0) 7. Alignments were processed to
sorted SAM files using SAMtools (v1.7) 3. Finally, HTSeq using default settings (v0.6.1) was

used to quantify reads 3>,
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Estimation of noise between technical replicates

To estimate the noise between technical replicates of the same individual blood samples, we
simulate random loss and gain of reads (Fig. S2). One technical replicate was chosen as the
“reference” replicate, making the other technical replicate the “target” replicate. Specifically, we
designated replicates that have undergone one freeze-thaw as the reference, and those that
underwent two freeze-thaw cycles as the target. The dissimilarity between replicates is measured
by one of four metrics (Euclidean distance, RMSE, Pearson correlation, and Spearman
correlation). We iteratively add and remove random reads to the reference replicate until the
dissimilarity between the simulated replicate and the reference replicate was equal to the
dissimilarity between a target replicate and the reference replicate (Fig. S3, Figure S2). We
define the noise between the reference and target replicate as the fraction of reads added or
removed per total reads in the reference replicate to achieve the aforementioned level of
dissimilarity. We represent this as a percentage, e.g. 5% noise between a reference and target
replicate can be interpreted as 5% randomness between their reads. For additional details on

noise simulation, see Supplementary Methods.

Measuring the Effect of Sample Quality on Noise

To measure the association between noise and sample quality metrics (number of freeze-thaw
cycles, input RNA concentrations, and RNA integrity number), we used a generalized linear
model (GLM). The significance of the model parameters is determined by the Wald test. All

results are reported in Supplementary Table 3.

For each model, to mitigate the contribution of potential confounding variables, samples with

input RNA concentrations in the top and bottom 5% (|z| > 1.645) were removed, decreasing the
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total number of samples from 47 to 41. For noise prediction from concentration, samples with
more than one freeze-thaw were also excluded, decreasing the total number of samples to 35.
Noise prediction from RIN was run separately for samples that had undergone one freeze-thaw

and samples that had undergone two freeze-thaws.

Differential Expression Analysis

We assess whether the observed sample qualities (freeze-thaw and RIN) have an impact on
differential expression (DE) reproducibility using a bootstrapping approach. DE was run on
random sample subsets of varying sizes (Fig. S4). Before subsetting, we filtered our expression
matrix for genes with an average count < 20 across all samples. This reduced the number of
genes from 10,028 to 4,520. The total number of samples considered was 46 when disregarding
samples that were industry standards, were not assigned to either an ASD or TD indication, or

did not have a recorded sample quality (RIN or freeze-thaw) value.

We generated subsets containing N = 4-14 samples. For each subset size N, we generated 2,000
unique subsets. Each subset had an equal number of TD or ASD samples. Additionally, only one
replicate from each blood sample could be included. These requirements limited our subset size

to a maximum of 14 samples.

DE between ASD and TD subjects was conducted using DESeq2!. Fig. S10 summarizes DE
results for all subsets. To account for potential confounders, we used RUV?>. Specifically, we use
a set of “in-silico empirical” negative control genes, including all but the top 5,000 differentially
expressed genes as described in section 2.4 of the documentation for RUVseq

(http://bioconductor.org/packages/release/bioc/vignettes/RUV Seq/inst/doc/RUVSeq.pdf). We

check that RUV produces consistent results with previous Autism leukocyte gene expression
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signatures>’>, see Supplementary Results.

Similarity to Assess Differential Expression Reproducibility

To assess DE reproducibility, we measure the similarity in log-fold-change (LFC) values
between DE runs. Similarity is calculated as the pairwise spearman correlation of LFC between
all subsets of the same size (Fig. S6). Genes with a median base mean (the mean of counts of all
samples, normalizing for sequencing depth) or median LFC in the bottom 10" percentile across

all subsets were excluded, filtering for low magnitude effects (Fig. S5).

Average RIN and freeze-thaw were measured for all subset pairs. Resulting distributions for all

collected values from similarity analyses are displayed in Fig. S7.

Next, subsets of each size were split into two quantile bins for each quality metric separately.
High sample quality bins (low freeze-thaw or high RIN) were compared to low sample quality
bins. High sample quality subsets were tested for higher similarity than low sample quality bins

using a one-sided Mann-Whitney U test.

Additionally, three generalized linear models (GLMs) were fit to quantify the contribution of
sample quality metrics to the change in similarity for DE results across subsets. We fit one model
to predict similarity from freeze-thaw and RIN, while also accounting for the improvement in
reproducibility due to increase in subset size (Similarity ~ Freeze-Thaw + RIN + Subset Size).

We also fit two models predicting similarity from freeze-thaw or RIN alone.

Discordance to Assess Differential Expression Reproducibility

We adapted a measure of concordance to measure discordance, or the lack of reproducibility,

between differential expression results*®. Average RIN and freeze-thaw were calculated for each
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547  subset (Fig. S8-9). Subsets for each subset size were split into two quantile bins for either quality
548  metric (RIN and freeze-thaw). Genes with a median base mean across all subsets in the bottom

549  tenth percentile were excluded from the analysis (Fig. S5).

550  We do not use the original concordance at the top (CAT) metric because we are not comparing
551  our results to a gold standard dataset. Instead, we use gene-wise LFC standard deviation across
552  subsets as a measure of discordance. Thus, the average LFC for each gene across DE runs is
553  analogous to the gold standard, and the dispersion from this average indicates a lack of

554  reproducibility. At each combination of subset size and quality bins, we calculate discordance
555  and compare it to the gene-wise median effect size (Fig. S8). We measure effect size as the
556  mean-variance standardized effect'. This and two additional effect size metrics (Cohen’s d and
557  absolute median LFC) we use are further described in Fig. S9. Results for all three effect size

558  metrics reflect similar trends and can be found in Supplementary Tables 5-6.

559  We used a GLM to predict discordance from effect size at each subset size. Additionally, in a
560 separate GLM, we account for the interaction between effect size and sample quality

561 (Discordance ~ Effect Size x Sample Quality) at each subset size. Here, sample quality is a
562  dummy variable, assuming a value of 0 for low quality and 1 for high quality. We did not

563 include a term for subset size because regressions were fit within each subset size.

564 Read Coverage Bias

565  The distribution of read coverage over each gene body was measured using
566  geneBody coverage.py from the RSeQC (v3.0.0) package °’. We measure this coverage ranging
567 from the 0™ percentile (5> end) to the 100" percentile (3” end) nucleotide. The i percentile

568  nucleotide is calculated as nucleotide; / lengthge,.. Coverage at the i percentile nucleotide is
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normalized across all genes within a sample.

For a given sample, the median coverage percentile is defined as the nucleotide percentile at
which median cumulative coverage is achieved; cumulative coverage is aggregated from the 5’
end to the 3’ end. The larger the median coverage percentile value, the larger the 3’ bias in
coverage. We include 9 industry standards to our analysis--six of which had undergone five
freeze-thaw cycles and three of which had undergone one freeze-thaw cycle--to explore the
impact at higher freeze-thaw counts. We also include ribosomal depletion extracted samples as a

negative control.

We extended this read coverage bias to three additional datasets, all of which contained both
poly(A)-extracted and ribosomal depletion extracted samples. The first dataset (PRINA427184)
contains samples for liquid and solid frozen tissue **. The second (PRJEB4197) contains
HEK293 samples that explicitly never underwent freeze-thaw cycles 3°. The third
(phs000676.v1.pl) contains frozen tissue samples from the UNC and TCG tumor tissue
repositories 3. For the first two datasets, fastq files were aligned using STAR and gene body
coverage was calculated from alignments using RSeQC as previously described. We did not
directly analyze the raw files from TCGA or UNC, but instead reanalyzed the reported 5’ to 3’
bias ratios. This ratio is similar to the inverse of the median coverage percentile: the smaller it is,

the larger the 3’ bias in read coverage.
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