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Variation in translation-elongation kinetics along a transcript’s coding sequence plays an 
important role in the maintenance of cellular protein homeostasis by regulating co-
translational protein folding, localization, and maturation. Translation-elongation speed is 
influenced by molecular factors within mRNA and protein sequences. For example, the 
presence of proline in the ribosome’s P- or A-site slows down translation, but the effect of 
other pairs of amino acids, in the context of all 400 possible pairs, has not been 
characterized. Here, we study Saccharomyces cerevisiae using a combination of 
bioinformatics, mutational experiments, and evolutionary analyses, and show that many 
different pairs of amino acids and their associated tRNA molecules predictably and 
causally encode translation rate information when these pairs are present in the A- and P-
sites of the ribosome independent of other factors known to influence translation speed 
including mRNA structure, wobble base pairing, tripeptide motifs, positively charged 
upstream nascent chain residues, and cognate tRNA concentration. The fast-translating 
pairs of amino acids that we identify are enriched four-fold relative to the slow-translating 
pairs across Saccharomyces cerevisiae’s proteome, while the slow-translating pairs are 
enriched downstream of domain boundaries. Thus, the chemical identity of amino acid 
pairs contributes to variability in translation rates, elongation kinetics are causally 
encoded in the primary structure of proteins, and signatures of evolutionary selection 
indicate their potential role in co-translational processes. 
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INTRODUCTION

The rates associated with translation determine the time scales of protein synthesis [1,2], 
influence protein expression levels [3], and can affect the structure and function of the protein 
produced [4–6]. While the rate of translation initiation is a key kinetic parameter influencing protein 
expression levels, the non-uniform rate of translation elongation across coding sequences can 
influence the fate of nascent proteins and the downstream cellular processes they take part in. 
Variation in translation-elongation kinetics influences protein homeostasis by modulating co-
translational protein folding, localization, and maturation [6–8]. Hence, characterizing the 
molecular factors that determine the rate at which individual codon positions along a transcript 
are translated aids our understanding of how a functional proteome is regulated and produced in 
vivo.  

The rate of translation elongation was originally thought to be determined only by the A-
site codon’s cognate tRNA concentration as it influences the rate of tRNA accommodation into 
the A-site [9,10]. More frequently used codons across a transcriptome were presumed to be 
translated at faster rates as they typically have a higher abundance of cognate tRNAs. Over the 
past decade some ten other molecular factors have been identified that can influence the rate of 
translation elongation [7,11] including features inherent to the mRNA sequence, such as mRNA 
structure [12–14], and features inherent to the protein sequence, such as the presence of 
particular tripeptide sequence motifs composed of one or more prolines [15–19] and positively 
charged nascent-chain residues within the negatively charged ribosome exit tunnel [20–22]. 
There are still unexplored molecular factors that have the potential to influence translation 
elongation rates. Furthermore, the aforementioned protein-based factors suggest the intriguing 
possibility that the primary structures of proteins, beyond proline containing motifs [15], have the 
potential to causally encode translation-elongation rate information. 

Since the ribosome catalyzes peptide bond formation between 400 unique amino acid pairs 
when they reside in the P- and A-sites of the ribosome, we hypothesized that the chemical identity 
of the P-site amino-acid, in the context of these pairs, could influence translation speed at the A-
site in a predictable and causal way, beyond known effects arising from proline-containing pairs 
and cognate tRNA concentration. In this study, we utilize ribosome profiling data generated from 
Saccharomyces cerevisiae to test this hypothesis. We bioinformatically isolated the effect of the 
P-site amino acid and tRNA identities on translation at the A-site by keeping the A-site amino acid 
fixed, as this controls for cognate tRNA concentration and accommodation kinetics. We identified 
certain amino acids, that when present in the P-site, appear to either speed up or slow down the 
rate of translation when a particular amino acid is present in the A-site. We experimentally tested 
these predictions by mutating the P-site amino acid and detected the change in ribosome density, 
which is a function of translation speed, via ribosome profiling. While an amino acid effect has 
been well established for proline, this is the first study to identify a large number of amino acid 
pairs for which the chemical identity of the P-site amino acid and tRNA systematically influences 
the translation elongation rate at the A-site. Finally, we demonstrate that across the 
Saccharomyces cerevisiae proteome there are signatures of evolutionary selection pressure on 
the fast- and slow-translating amino acid pairs we have identified that suggests these pairs might 
play a role in regulating the co-translational maturation of proteins. 

RESULTS 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.04.20.051839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051839
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

Beyond proline, the identity of the P-site amino acid can influence the translation rate at 
the A-site. Ribosome profiling is a high-throughput technique that measures ribosome densities 
that are a function of the location and number of ribosomes translating different codon positions 
across a transcriptome [23]. The measured normalized ribosome density 𝜌 at a codon position is 
equal to the number of reads mapped to that position divided by the average number of reads per 
codon in the coding sequence in which that codon resides. 𝜌 at a codon is inversely related to the 
speed at which ribosomes translate that codon [24]. A 𝜌 greater than 1.0 indicates that there is 
slower than average translation elongation rate while a 𝜌 less than 1.0 reflects faster than average 
translation. Thus, from one codon position to the next along a transcript, a ribosome can be said 
to speed-up or slow-down its elongation speed reflected in the variation of 𝜌.  

We analyzed the translational profiles of 364 high-coverage transcripts (Data S1) 
measured in six independent, published data sets from four different labs [25–29] (Table S1). 
These datasets where chosen because they have high read coverage and do not use 
cycloheximide (CHX) pre-treatment, as CHX has been shown to artificially distort ribosome 
profiles [30]. The 364 transcripts were chosen after applying a filter of at least 3 reads per codon 
in the dataset with the highest coverage [26]. This high coverage filter allows us to minimize any 
sequencing noise and provides a more precise reporter of translation speed. This subset of 
transcripts is representative of the entire transcriptome as the sequence properties of these 
transcripts are similarly distributed (see Fig. S8 of ref. 14). 

To isolate the effect of the P-site on translation at the A-site we compare the ribosome 
density when a particular amino acid is present in the P-site versus when it is not. Specifically, for 
each of the 400 unique pairs of amino acids that can reside in the P- and A-sites — which for a 
given pair we denote as (𝑋, 𝑍), where 𝑋 is the amino acid in the P-site and 𝑍 is the amino acid in 
the A-site — we first determined the normalized ribosome density distribution, [𝜌(𝑋, 𝑍)], arising 
from all instances of the pair (𝑋, 𝑍) in the data set as well as the distribution [𝜌(~𝑋, 𝑍)] arising 
from all instances of 𝑍 being in the A-site but 𝑋 not being present in the P-site. For example, for 
the pair denoted (N, R), N is in the P-site and R is in the A-site, while (~N, R) corresponds to the 
19 other naturally occurring amino acids that can be in the P-site when R is in the A-site (Fig. 1a). 
We then calculated the percent change (Eq. 1) in the median of [𝜌(𝑋, 𝑍)] relative to the median of 
[𝜌(~𝑋, 𝑍)], as this measures whether the identity of the P-site amino acid tends to lead to faster 
or slower translation relative to when any other amino acid is present in the P-site.  
 

    𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑐ℎ𝑎𝑛𝑔𝑒	 = 	!"#$%&[((*,,)]/	!"#$%&[((~*,,)]
!"#$%&[((~*,,)]

∙ 100	%                            [1] 

We use the median of these [𝜌(𝑋, 𝑍)] distributions, as opposed to the average, because the 
median is less sensitive to outlier, long-tail effects in right-skewed distributions typically found in 
ribosome profiles (Fig. 1a (inset) and 1c). Critically, this analysis approach controls for 
confounding cognate tRNA concentration effects and accommodation kinetics at the A-site 
because the A-site amino acid is held fixed. We do this for all possible 20 amino acids in the P-
site for a fixed amino acid in the A-site (Fig. S1a). For an amino acid in the P-site, there are 21 
possible pairs when we include the presence of stop codons in the A-site (Fig. S1b). Applying this 
analysis to each of the six published datasets we obtained six, 21-by-20 matrices reporting the 
percent change (Eq. 1) in ribosome density when a particular amino acid pair is present in the P- 
and A-sites (Fig. S2).  
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Given the well-known variability in ribosome profiling results between different experiments 
[31] we focus on highly robust, reproducible results by (i) only drawing conclusions from the sign 
of the percent change, which indicates either a speed up or slow down between different pairs of 
amino acids, and by (ii) taking the intersection of those pairs that exhibit a consistent sign change 
and have a percent change that is statistically different than zero in at least four of the datasets. 
We find 86 pairs in which the presence of a particular P-site amino acid is associated with faster 
translation (green-shifted colors in Fig. 1b) and 81 pairs in which the identity of the P-site amino 
acid is associated with slower translation (red-shifted colors in Fig. 1b). The results for the 
remaining pairs are not significant or are not consistent across the datasets (gray boxes in Fig. 
1b). An important, naturally occurring internal control in these data is proline, which is known from 
biochemical studies [16,32] to tend to slow down translation when present in the P-site. Consistent 
with those findings, we observe a vertical strip of warm colors in Fig. 1b when Pro is in the P-site, 
indicating that when paired with almost any other amino acid in the A-site, proline tends to 
increase ribosome density, i.e., slow translation down relative to any other amino acid being in 
the P-site. These results suggest that the identity of the P-site amino acid in 167 pairs of amino 
acids can, on average, predictably speed up or slow down translation relative to the median speed 
when any other amino acid is in the P-site. 

 
Factors known to modulate translation speed do not explain these results. To test whether 
the potentially confounding factors of tripeptide motifs [15], positively charged upstream residues 
[20,21], downstream mRNA structure [13,33], cognate tRNA concentration [28,34], or inosine-
modified-wobble-decoding tRNAs [35] explain the direction of the speed changes in Fig. 1b, we 
controlled for each of these factors separately by leaving them out of our dataset one at a time, 
and reapplied Eq. 1 to each new dataset. For example, Green and colleagues identified triplets 
of amino acids, such as PPG, that slow down translation. To control for these triplets, we removed 
all amino acid pairs that were found in these specific tripeptide sequence contexts (see SI 
Methods). In the example of PPG, the reduced data set only has occurrences of the dipeptide PG 
without an N-terminal flanking proline. We find that even in the absence of these confounding 
factors, the sign of the speed change remains the same for all 167 pairs and remains the same 
for 166-out-of-167 pairs when controlling for non-optimal codons (Fig. S3).  
 To test if wobble base pairing codons versus Watson Crick base pairing codons affect our 
conclusions, we split our dataset into those instances of amino acid pairs decoded by wobble 
base pairing and those decoded by Watson Crick geometries. For the wobble-base data set, we 
find (Fig. S4) that 165-out-of-167 pairs exhibit the same sign change as Fig. 1b.  For the Watson 
Crick dataset 166-out-of-167 pairs exhibit the same sign change as Fig. 1b. Thus, the geometry 
of the base pairing does not explain our observations in Fig. 1b. 

In summary, while these molecular factors undoubtedly contribute to codon translation 
rates in a variety of contexts, they do not explain the faster or slower amino acid pairs that we 
observe in Fig. 1b. 

Other robustness tests. There is the potential that other factors associated with our analysis 
may also influence the results in Fig. 1b. We first tested whether the read-depth threshold 
(currently requiring at least 3 reads at each codon position) influences our results by constructing 
data sets with those genes having at least 1 read at (i) 100%, (ii) 90%, and (iii) 75% of the codon 
positions in their coding sequence, and analyzed these datasets using Eq. 1. We find (Fig. S5) 
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the same sign of the percent change for 166-out-of-167 of the significant amino acids pairs shown 
Fig. 1b. (Amino acid pair (K,D) switches from slowing down translation to speeding up translation 
when the read threshold is relaxed to include genes that have less than 75% codons with reads.) 
Thus, the results presented in Fig. 1b are robust to changes in read-depth threshold. 

Next, we tested if mRNA expression level influences our results by splitting the 364 
transcripts in our dataset into the half with the highest expression level and the half with the lowest 
expression level and analyzed each using Eq. 1. We find that the sign change (Fig. S6d, e) is 
consistent for 166-out-of-167 amino acid pairs indicating that the results in Fig. 1b are not 
influenced by variation in expression level within our data set. 
 We then proceeded to test whether broad regions of the transcripts yield different results. 
To do this, we split our dataset into amino acid pairs, and their associated normalized ribosome 
densities, from the first half of each coding sequence, the other dataset was from the second half 
of each coding sequence. Eq. 1 was then applied to each dataset. We find the same sign of the 
percent change for all 167 significant amino acids pairs in Fig. 1b from the dataset composed of 
the first half of the coding sequence (Fig. S6b). Similarly, we find the same sign of the percent 
change for 166-out-of-167 amino acid pairs from the dataset composed of the second half (Fig. 
S6c). The loss of statistical significance for some of the pairs (lighter orange and lighter blue in 
Fig. S6) is to be expected due to the reduction of the sample size by half, on average. However, 
even for these pairs, the sign change is still consistent with Fig. 1b. Thus, our results are not 
biased by the broad region of the coding sequence from which the ribosome density and amino 
acid pairs arise from. 
 Finally, we test whether more localized regions of the coding sequence are biasing our 
results – including disordered segments, signal peptides, and transmembrane domains. 
Specifically, we created a dataset in which instances of amino acid pairs arising from disordered 
protein segments are removed; a dataset in which only cytosolic proteins are present and hence 
do not contain signal sequences; and a dataset in which regions predicted to be similar to 
transmembrane domains are removed. Applying Eq. 1 to these datasets we find the sign of the 
percent change is maintained for all 167 significant amino acid pairs for (Fig. S7). Thus, these 
local regions of coding sequences are not influencing the results in Fig. 1b. 

In summary, the results in Fig. 1b are robust to variation in thresholds used in the analysis, 
to variation in expression levels, and variation in which regions of the transcript the ribosome 
profiling reads come from. 
  

Mutating the P-site amino acid is predicted to alter the translation rate at the A-site. Figure 
1b predicts that by keeping the A-site amino acid fixed and mutating the P-site amino acid it is 
possible to speed up or slow down translation elongation (i.e., change the sign of the percent 
change in Eq. 1). For example, when comparing the amino acid pairs (N,R) to (S,R), where R is 
the amino acid in the A-site, we find (N,R) tends to have 53% more ribosome density than (S,R) 
(Fig. 1c). Hence, we predict that the codon encoding R in the (S,R) pair will be translated faster 
than the codon encoding R in the (N,R) pair. We predict that for the 7,980 possible P-site 
mutations in amino acid pairs where the A-site is fixed there will be a systematic change in 
translation rate for a majority of them (Fig. 1d and Data S2). Because we are dealing with 
overlapping ribosome density distributions (Fig. 1c) it is most appropriate to think probabilistically 
- in terms of the likelihood that a mutation will speed up or slow down translation. We can calculate 
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the odds (Eq. S3) that a mutation at the P-site will speed up or slow down translation. For example, 
for the mutation (N,R) to (S,R) we calculate translation will speed up with 3-to-1 odds. Thus, out 
of four randomly selected instances of (N,R) across the proteome, these odds predict that if you 
mutate N to S for each, three of the instances will speed up translation, and one of the instances 
will slow down translation on average. We calculated these odds for each of the possible 7,980 
mutations and found a broad distribution (Fig. 1e). With odds of 5.7-to-1, mutating (W,G) to (P,G) 
will slow down translation, while with odds of 1-to-1, mutating (V,W) to (H,W) is as equally likely 
to speed up translation as it is to slow down translation when Val is mutated to His in the different 
instances of (V,W) across the proteome (Data S2). In summary, this bioinformatics analysis 
predicts which P-site amino acid mutations are most likely to result in higher or lower translation 
elongation rates relative to the wild-type protein sequence. 

Mutational experiments are consistent with amino acid identity influencing translation 
elongation rates. To experimentally test these predictions, we introduced 12 non-synonymous 
mutations into various positions of five non-essential S. cerevisiae genes that are not involved in 
translation, and no mutations were made at functional sites of the encoded proteins [36] (Table 
S2). Five of the mutations are predicted to speed up translation based on Fig. 1b, five are 
predicted to slow down translation, and two are predicted to have minimal effects on translation 
speed when the mutated residue is present in the P-site.  

To ensure precise measurements at codon resolution we performed ribosome profiling 
experiments at unconventionally high read depths, having an average of 86 million mapped 
exome reads per sample after removing reads mapped to rRNA genes, and totaling 1.7 billion 
mapped exome reads across the samples (Table S3). The resulting ribosome profiles exhibit 
strong 3-nt periodicity, 87% of mapped reads are in frame zero at a fragment size of 28 nt, and 
there is a very strong correlation between ribosome profiles for the same gene across samples 
(Pearson r=0.96, Figs. S8 and S9). These results indicate technical biases are minimal in these 
experiments, and any such biases that exist will likely cancel out when we carry out the relative 
comparison between wild type and mutant results.  

Comparing the normalized ribosome densities between the wild-type and mutant strains 
(Fig. 2), we find that in all cases the direction of change in ribosome density at the A-site is 
consistent with the predictions from Fig. 1b. Two of these ten mutations include a proline in the 
P-site, for which we observe a speedup when the pair (P,G) is mutated to (E,G) in the gene 
YMR122W-A (Fig. 2a), while mutating (Q,D) to (P,D) in YOL109W leads to a slowdown of 
translation (Fig. 2b). These two mutations serve as positive controls because proline has 
previously been shown to slow down translation [16,19].  

Two additional mutations were incorporated as negative controls and are predicted to 
cause little change in the rate of translation (i.e., mutations that switch between gray boxes or 
between the same colored boxes in Fig. 1b). We found that while the normalized ribosome 
densities of these mutants are statistically different from that of the wild type (Fig. 2c) the effect 
size is much smaller. The median effect size on translation speed was 2.5-fold lower than what 
we observed for the other 10 mutations (Fig. 2d). That the negative controls exhibit minor changes 
in translation speed is to be expected. As previously discussed, we are dealing with overlapping 
ribosome density and speed distributions (Figs. 1c, e), and there is an associated odds of seeing 
some speed up or slow down. 
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In summary, the results from these mutational experiments are consistent with the 
hypothesis that the P-site amino acid can predictably alter the translation rate at the A-site. 
 
A qualitative bioinformatics assessment of amino acid versus tRNA contributions. The 
amino acid mutations we introduced also change the identity of the tRNA molecule at the P-site. 
Therefore, this change in tRNA identity could be an alternative explanation for the cause of the 
altered translation speeds (Fig. 2). We have already shown that the decoding geometry is not the 
main source of the translation rate change, as both Watson-Crick and Wobble base pairing 
codons yield similar results (Fig. S4). However, it could still be the case that the chemical identity 
of the tRNA pairs, and the interactions between them, are driving the speed changes. To 
qualitatively assess whether it is amino acid identity or tRNA identity that is driving the changes 
we projected the same ribosome profiling data in Fig. 1b onto the 64-by-61 matrix of the codons 
that can reside in the P- and A-sites. To retain statistical power, we relaxed our gene filtering 
criteria to include genes that have at least one read at 95% of codon positions in each coding 
sequence. We then calculated this codon pair matrix for all the 6 datasets and identified the robust 
codon pairs (Fig. S10a, Data S3) based on the same criteria we used to identify the robust amino 
acid pairs shown in Fig. 1b (i.e., the colored boxes). We find that 93% of the robust codon pairs 
in Fig. S10a have the same sign of the percent change as observed for the robust amino acid 
pairs they encode in Fig. 1b. Specifically, for each amino acid pair that is significant and robust in 
Fig. 1b, we asked ‘for those codon pairs that encode a given amino acid pair, and exhibit a 
statistically significant difference from the average ribosome density, how many of these exhibit 
the same sign of the speed change as the amino acid pair’? For example, for amino acid pair (D, 
T), which slows down translation, 7-out-of-8 codon pairs also slow down translation, while the 8th 
codon pair also slows down translation but is not statistically significant (Fig. S10b). We count this 
example as being consistent between the amino acid pair and codon pairs, because the loss of 
statistical power is to be expected when we switch from projecting the data of a 420-element 
matrix (Fig. 1b) to a 3,904-element matrix (Fig. S10a).  Thus, in the vast majority of instances, the 
amino acid pair translation rate change (Fig. 1b) and codon pair translation rate change (Fig. 
S10a) are consistent. This indicates that for these instances, it is the amino acid identity primarily 
driving the speed change because it is consistent across all of the different synonymous codons 
that are decoded by different tRNA molecules. 

For 7% of the codon pairs, however, one or more of the codon pairs exhibit a translation 
rate change in the opposite direction from the others. For example, for amino acid pair (R,G) in 
Fig. S10c, the codon pairs with a CGA codon in the P-site leads to slower-than-average translation 
when GGU and GGA codons are in the A-site, but when CGC and AGG codons are in the P-site 
there is faster than average translation when GGU is in the A-site. Hence, it seems likely that the 
interaction of different tRNAs in the P- and A-site for these 12 amino acid pairs primarily drive the 
translation rate change. 
          Taken together, the results from this analysis supports the qualitative conclusion that the 
amino acid pairs often contribute to the sign of the speed change in Fig. 1b, but there are 
situations where tRNA pairs predominantly drive the speed change.  

 
A qualitative experimental assessment of amino acid versus tRNA contributions. To 
experimentally estimate the contribution of amino acid identity versus tRNA identity we took the 
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three mutations that we previously incorporated into the gene YOL109W (Table S2) and created 
a new gene construct with the same three amino acid mutations but that used synonymous 
codons that are decoded by different tRNA molecules (Table S4). There is a strong correlation 
between the mutant strains created for this comparison and hence we can compare the 
normalized ribosome densities at the A-site when these mutations are in the P-site locations of 
the ribosomes (Fig. S11). For the mutation (N,R) to (S,R), for example, we previously used the 
codon UCC to mutate N to S. In the new strain, we used the synonymous codon UCG, which is 
decoded by a different tRNA molecule [37] (Fig. 3a). For the mutants (G,G) to (S,G) and (Q,D) to 
(P,D), there was a change in normalized ribosome density that was in the same direction and 
similar in magnitude regardless of the tRNA molecule used (Figs. 3b, c). This indicates that for 
these mutations, the change in amino acid identity in the P-site is the primary cause of the change 
in translation rate in the A-site (Fig. 3b, c). In contrast, for the mutation (N,R) to (S,R), we observed 
a change in ribosome density when one tRNA molecule was used but no change in ribosome 
density when another tRNA molecule was used (Fig. 3d), indicating that the tRNA identity was 
the primary cause. Thus, these experimental results support the conclusion that in some cases it 
is the amino acid identity that causes the change in speed and in others it is the tRNA identity. 

 
Signatures of evolutionary selection for fast and slow translating amino acid pairs. 
Translation is an energy-intensive process [38] and the efficiency of translation and protein 
production are influenced by how quickly ribosomes are released from transcripts. Several studies 
have suggested that evolution has favored codon optimality in highly expressed genes to enable 
faster translation and quicker release of ribosomes to increase translation efficiency [8,39,40]. It 
is possible that evolution can also select for faster translation through mechanisms other than 
codon optimality. If evolutionary selection pressures have acted to encode translation rate 
information in the primary structures of proteins through pairs of amino acids, then there should 
be a non-random distribution of fast and slow-translating pairs of amino acids across the 
proteome. To test this hypothesis, we calculated the enrichment and depletion of all 400 pairs of 
amino acids across the S. cerevisiae proteome relative to the occurrence expected from a random 
pairing. We selected the top 20% of the amino acid pairs that were enriched across the proteome 
and the bottom 20% that were depleted and determined how many of the 86 fast-translating and 
81 slow-translating amino acid pairs were present in either of these quintiles (Table S5). The odds 
ratio of fast-translating pairs being enriched across the proteome and slow-translating pairs being 
depleted was 4.3 (Eq. S4, 𝑝 = 0.0098, Fisher’s exact test), indicating that selection pressures 
have indeed selected for the presence of fast-translating pairs and selected against slow-
translating pairs (Fig. 4a) across the proteome. This result is consistent with the hypothesis [8,39] 
that evolution selects for molecular factors that increase the global rate of translation.  

Despite the preference for fast-translating pairs, we found that the slow-translating amino 
acid pairs were locally enriched by 18% (95% CI: [10%, 27%], p=7.9x10-6, n=170 domains, linker 
size=30, Fisher’s exact test) in protein segments that are translated after domains have emerged 
from the ribosome exit tunnel.  (Figs. 4b, c). For simplicity, we refer to these segments as linkers. 
In those linker regions that start 30 residues downstream of domain boundaries, one-fifth of the 
amino acid pairs, on average, are slow-translating pairs, and in the extreme cases of genes 
YDR432W and YGL203C, there are 18 slow pairs in a 30 residue stretch. Codon usage does not 
explain this enrichment of slow-translating pairs, as we found no difference in the frequency of 
non-optimal codon usage between linker and domain regions (Fig. S12). These results indicate 
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that a number of slow-translating pairs exist in linker regions that can cumulatively lead to a 
slowdown of translation as domains fully emerge from the ribosome exit tunnel, which may aid in 
co-translational folding by providing more time for domains to fold outside of the ribosome exit 
tunnel.    

When the Hsp70 chaperone Ssb is bound to ribosome-nascent chain complexes 
translation is faster than when Ssb is not bound, possibly because chaperone binding prevents 
nascent chain folding and hence allows translation to become uncoupled from folding and to 
proceed faster [41]. We examined if the fast-translating amino acid pairs we identified contributed 
to this speedup. We found that the fast-translating amino acid pairs were enriched by at least 4% 
(95% CI: [2.3%, 6.1%], p=0.0001, n=425, random permutation test) in regions translated while 
Ssb is bound, suggesting that these pairs do make a contribution (Fig. S13). Taken together, 
these results indicate that across the primary structures of proteins, evolutionary pressures have 
selected for amino acid pairs that exhibit faster translation, and along a transcript, fast- and slow-
translating pairs are enriched locally in regions that are associated with co-translational folding 
and chaperone binding. 

 
DISCUSSION 

We have demonstrated that independent of known confounding factors the chemical identity of 
some pairs of amino acids and tRNA molecules, when present in the P- and A-sites, can 
predictably and causally result in a speedup or slowdown of translation in the A-site of S. 
cerevisiae ribosomes. An essential and unique feature of our analyses of ribosome profiling data 
is Eq. 1, which holds fixed the amino acid identity in the A-site while varying the amino acid in the 
P-site. This approach controls for variation in tRNA concentration and accommodation rates in 
the A-site, and measures the relative difference in ribosome density when a particular amino acid 
pair is present in the A- and P-sites compared to when any other amino acid is in the P-site while 
holding the A-site constant. A recent study [42] estimated the effect of codon and amino acid 
identity in the P-site but they did not find any effect since they do not control for the other 
confounding factors that can influence translation rate at the A-site. Hence, our approach (Eq. 1) 
allows us to isolate the effect of the P-site amino acid on the overall translation rate at the A-site. 
In total, we identified 167 amino acid pairs that exhibit above average or below average translation 
speeds (Fig. 1b) and verified these predictions experimentally for 10 of these pairs. These speed 
changes are not explained by alternative hypotheses concerning the presence of mRNA structure, 
wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, 
variation in cognate tRNA concentration, differences in expression level, nor other aspects of the 
analysis (Figs. S3-S4). These speed changes are also robust to changes in thresholds for gene 
selection criteria as well as choosing instances of amino acid pairs from different regions of the 
gene transcripts (Fig. S5-S7). As an important, naturally occurring internal control, these results 
are consistent with the commonly seen translational slow-down effect of proline [16,32] evidenced 
by the vertical stripe of red-shifted colors in Fig. 1b.  
 Changes in elongation rate can influence protein structure, function, and cellular 
phenotype without altering protein expression levels. A variety of studies [4,6,43–50]   have 
demonstrated for different proteins that the total amount of soluble protein produced in a cell, and 
the total amount of soluble, functional protein produced can be very different. The influence of 
elongation rate on protein structure and function arises in part on the impact translation speed 
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changes have on co-translational processes including domain folding [8]. Thus, the translation 
elongation speed differences we observe between pairs of amino acids are more likely to 
influence co-translational processes than expression level.  

Over- or under-representation of particular pairs of codons, compared to random chance, 
occurs across the transcriptome of many organisms in a phenomenon referred to as “codon pair 
utilization bias” [51]. Some codon pairs occur less frequently as they can result in negative 
functional consequences. For example, codon pairs with the pattern of nnUAnn [52]  can cause 
a frameshift resulting in a premature stop codon. Hence, evolution has selected against codon 
pairs that have this motif. The biological importance of codon pair bias is also highlighted in 
bioengineering applications where de-optimization of codon pairs across the coding sequences 
of viruses has been used to attenuate their virulence [53]. A biochemical study found that 
synonymously changing codon pairs results in a change in protein expression level – indicating 
these pairs are influencing elongation speed [54]. This, and other studies [55–57], hypothesized 
that synonymous codon pairs translate at different speeds due to differences in the molecular 
interactions between neighboring tRNAs when they are co-located at the A- and P-sites of the 
ribosome. The results of this study find that indeed, a change in translation speed upon a change 
in codon pair in some cases is due to a change in the identity of the tRNA at the P-site, but also 
that there are many other cases where the change of translation speed is due to the change in 
identity of the amino-acid at the P-site (Fig. 3b, c). Thus, the results from this study indicate that 
there is a greater richness of molecular mechanisms that can contribute to codon pair utilization 
bias and identify a large number of amino-acid pairs where systematic speed differences are 
observed. 
 Most studies on the relationship between translation kinetics and nascent peptide 
sequence features at the A- and P-site have involved the presence of proline, often in the context 
of ‘XPPZ’ peptide motifs [15,58,59], where X and Z can be any amino acid. To observe an effect 
of these motifs on translation, engineered bacterial cells must be used that lack elongation-factor 
P because its presence eliminates proline-induced stalling [17,18,60]. In vitro enzymology studies 
involving proline have focused only on the kinetics of the tRNA accommodation and peptide bond 
formation sub-steps of the translation cycle [16,32]. In contrast, this study used wild-type S. 
cerevisiae cells in which we discovered predictable changes in speed in 138 pairs of amino acids 
that do not involve proline. The ribosome profiling signal we analyze is proportional to the dwell 
time of the ribosome at the A-site [23,61], and thus the effects we observe reflect what happens 
to the overall rate of one cycle of translation elongation rather than just the effect on individual 
steps of accommodation, peptide bond formation, or translocation. Thus, in contrast to an in vitro 
enzymology study that concluded that although the P-site amino acid can alter the peptide bond 
formation rate it has little effect on elongation due to the slower tRNA accommodation step [62], 
we observe wide spread P-site identity effects on overall codon translation rates in vivo. This 
suggests the possibility that for some of these pairs accommodation is not always rate limiting in 
vivo and that the effects of peptide bond formation rates may constitute a larger proportion of the 
dwell of a ribosome than previously thought. One promising approach to measure this proportion 
comes from the use of three different antibiotics that can trap S. cerevisiae ribosomes in different 
states of elongation [63]. The depth of coverage in the datasets from that study, with 7 million 
mapped reads on average compared to 87 million mapped reads in this study, are too sparse for 
us to test this hypothesis. 
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We observe consistent and robust influences of the amino-acid at the P-site. The effect of 
the P-site amino acid on translation speed tends to be consistent in either speeding up/slowing 
down translation, or having no effect at all, regardless of the amino acid in the A-site. Out the 
twenty amino acids that can reside in the P-site, nine (A,E,F,I,M,S,T,V,Y) speed up translation 
(green-shifted colors in Fig. 1b) or have little effect (gray colors); six (D,G,H,K,N,P) slow down 
translation (red-shifted colors) or have little effect; and three (L,R,W) can either speed up, slow 
down, or have no effect relative to the average translation speed. For example, Ala in the P-site 
speeds up translation when A, G, P or Q is in the A-site, Lys in the P-site slows down translation 
when A, D, E, or Q is in the A-site, whereas Leu in the P-site slows down translation when G or 
Q is in the A-site but speeds up translation when D, K or N is in the A-site. Thus, 15-out-of-20 
amino acids, when present in the P-site, consistently change translation speed in one direction. 
Pro, Glu, Ser, Gly and Asp are the most robust in terms of changing speed for the largest number 
of possible A-site amino acids, as evidenced by their vertical stripes of colors in Fig. 1b. Consistent 
with our findings, an in vitro enzymology study [62] that measured peptide bond formation rates 
of puromycin with eight different types of amino acids in the P-site found that Asp was the second 
slowest amino acid to form a peptide bond with puromycin after proline, and serine was the 
second fastest.  

We find that when the P-site amino acid is mutated in many cases it is the amino acid 
identity change that drives the translation speed change, but we also find instances where it is 
the tRNA change that is the driver. Pairs whose effect arise primarily due to tRNA identity could 
influence steps in the translation-elongation cycle other than peptide bond formation, including 
hybrid state formation and translocation as these steps structurally alter the intermolecular 
interactions between tRNA molecules, and between tRNA molecules and the ribosome. 
Disentangling the detailed molecular causes of the speed changes identified in Fig. 1b is likely to 
be a fruitful area of future research. Furthermore, in our analyses we averaged out the effect of 
the tRNAs that reside in the E-site, as Eq. 1 is only conditioned on what is in the A- and P-sites. 
Two kinetic studies [64,65] demonstrated that a small number of tRNA’s in the E-site can slow 
mRNA translocation through the ribosome and contribute to frameshifting and stop codon read-
through. Thus, exploring the influence of the E-site tRNA on translation at A-site using ribosome 
profiling data is an exciting area for future research. 

Our evolutionary analyses indicate a proteome-wide selection for fast-translating amino 
acid pairs, potentially to increase the efficiency of energy-intensive process of translation [66] 
while locally enriching slow-translation pairs that might aid in co-translational processes important 
for a protein to attain its structural and functional form. Evolutionary selection pressures select 
only against phenotypic traits, not genotype. Therefore, the enrichment of fast-translating amino 
acid pairs across the S. cerevisiae transcriptome and the clusters of slow- and fast-translating 
pairs along transcripts that are correlated with co-translational processes suggest that the 
elongation kinetics encoded by these pairs influence organismal phenotype and fitness. More 
speculatively, these results open up the possibility that there may exist disease-causing amino 
acid mutations that do not alter the final folded structures of proteins but instead alter the co-
translational behavior and processing of the nascent proteins via altered elongation kinetics.  

In summary, separate from other molecular factors known to influence translation speed, 
elongation kinetics are causally and predictably encoded in protein primary structures through the 
identity of particular pairs of amino acids and the tRNAs they are attached to, with broad 
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implications for protein and mRNA sequence evolution, and translational control of gene 
expression. 
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Figure 1. Bioinformatic analyses of ribosome profiling data indicate that the identity of amino 
acids in the P- and A-sites can predictably alter the translation speed of the A-site codon. (a) A 
ribosome with the amino acids N and R in the P- and A-sites, respectively. From ribosome profiling data, 
we calculated the distribution of ribosome densities in the A-site from all instances of (N, R) in our dataset 
and compared the result to the distributions of all other instances of R in the A-site when N is not present 
in the P-site, denoted [(~N, R)] (top panel). (b) Each box in the matrix indicates, for a pair of amino acids 
in the P- and A-sites, the percent change in median normalized ribosome density ρ when that particular 
amino acid is in P-site compared to any other amino acid in the P-site, keeping the A-site amino acid 
unchanged (Eq. 1). The sign of the percent change must be consistent in all 6 analyzed ribosome 
profiling datasets and statistically significant in at least 4 out of the 6 datasets, otherwise the box is 
colored gray. * corresponds to any of the stop codons being present in the A-site. (c) Comparison of 
distributions of amino acid pairs where R is kept constant at the A-site while the P-site is mutated from 
N to S. The distributions of normalized ribosome densities for P- and A-site pairs (N, R) and (S, R), which 
differ significantly from each other, are shown (Mann-Whitney U test,	𝑝 = 4.45 × 10/23). The median 
normalized ribosome densities of the two distributions differ by 53.4%, and the odds of a change in 
translation speed when (N, R) is mutated to (S, R) or vice versa is 2.98 (Eq. S3). (d) The estimated 
percent difference values for all 7,980 mutations of amino acid pairs with a constant A-site are plotted 
with respect to the statistical significance of the difference between the distributions (see Methods). We 
estimate that mutating the P-site will lead to significant changes in translation speed in 4,254 (53%) of 
these mutations. (e) For the significant combinations of amino acids pairs, the distribution of the odds of 
mutating any instance of the pair resulting in a change in speed is plotted. 
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Figure 2: Experiments demonstrate that the identity of amino acids in the P- and A-sites can 
predictably alter the translation speed of the A-site codon, consistent with the predictions from Fig. 
1b. Normalized ribosome density (Eq. S1) upon mutation at five pairs of residues that are predicted to slow 
down translation (a), five other pairs that are predicted to speed up translation (b), and two negative control 
mutations that are predicted to have little to no effect on translation speed (c) were measured in S. cerevisiae. 
The gene name and pair of amino acids before and after mutation are listed above the panels in (a) through 
(c). Full details concerning the mutations are provided in Table S2. In each panel, the normalized ribosome 
density measured at the A-site residue is reported for the wild-type sequence transcript (blue data points) 
and mutated sequence (orange data points). Each data point corresponds to one biological replicate; the 
horizontal bar indicates the mean value. The difference between the medians in each panel is statistically 
significant (one-sided Mann-Whitney U test, 𝑝	 = 	0.036 for all subpanels in (a) and for mutations in YOL*, 
YKL* and YLR* in (b). 𝑝 = 0.002 for two mutations in YHR* in (b). 𝑝 = 0.002 and 𝑝 = 0.004  for the two 
subpanels in (c), respectively). The distribution of percent differences in ribosome density between the 
mutant and wild-type sequences for the data in panels (a) and (b) is shown as a blue box plot in panel (d), 
and for the negative control sequences in panel (c), the distribution is shown as an orange box plot in panel 
(d). The mutations in the negative controls do show a statistically significant difference in normalized 
densities compared to wild-type (one-sided Mann-Whitney U test, 𝑝 = 0.002	 and 𝑝 = 0.004). However, these 
mutations exhibit a 2.5-fold reduction in effect size (d), consistent with the predictions from Fig. 1b. 
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Figure 3: Depending on the amino acid pair, translation speed is influenced by either the identity 
of the tRNA pair, the amino acid pair, or both. (a) For the same amino acid mutation, two mutants are 
created using synonymous codons decoded by different tRNAs. (b-d) To experimentally measure the 
contribution of amino acid identity, a given non-synonymous mutation in the P-site was encoded using 
two different synonymous codons, each resulting in the same amino acid mutation but decoded by 
different tRNA molecules (see (a)). For the mutations YOL109W (G,G)à(S,G) (b) and YOL109W 
(Q,D)à(P,D) (c), the change in ribosome density from wild-type was similar for both synonymous mutants 
(Mutant 1 vs Mutant 2, one-sided Mann-Whitney U test, 𝑝 = 0.1715 and 𝑝 = 0.443, respectively), and 
hence, the amino acid is the predominant cause for the change in translation speed. For the mutation 
YOL109W (N,R)à (S,R) (d), the speedup was seen for only one mutant while the other mutant exhibits 
a normalized ribosome density indistinguishable from that of the wild-type (Wild type vs. Mutant 2, one-
sided Mann-Whitney U test, 𝑝 = 0.243), indicating in this case that the tRNA identity is the predominant 
cause for the change in speed up mutation. 
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Figure 4: Evolution selects for fast-translating pairs across the proteome but enriches 
slow-translating pairs across inter-domain linker regions. (a) The enrichment and 
depletion of amino acid pairs across the S. cerevisiae proteome is plotted against the percent 
change in median normalized ribosome densities (ρ) of amino acid pairs taken from Fig. 1b. 
Among the top 20% enriched and top 20% depleted set, the odds ratio of fast-translating pairs 
being enriched and slow-translating pairs being depleted is 4.3 (Eq. S4, Fisher’s exact test, 𝑝 =
0.0098). (b) The enrichment of fast- and slow-translating pairs in linker (L) regions relative to 
domain (D) regions. The odds ratio (Eq. S5) gives us a measure of the likelihood of finding 
either slow or fast pairs in the linker region relative to domain regions compared to the odds of 
non-slow or non-fast pairs in the linker region relative to domain regions, respectively. An odds 
ratio greater than 1 would indicate an enrichment in the linker region, while a negative value 
would indicate a depletion. As a test of robustness, the odds ratio was computed over different 
window sizes in the linker region, discarding the first 30 residues after the domain to account 
for those residues being in the ribosome exit tunnel, as illustrated in panel (c). 𝑛	 = 	170	for a 
window size of 30 residues. For all window sizes, the odds ratio was significant 
(Fisher4s	exact	test, 𝑝	 < 	0.005 for all linker sizes for slow-translating pairs and insignificant 
(Fisher4s	exact	test,			𝑝	 > 	0.25	 for all linker sizes) for fast-translating pairs.  

 


