

1 **ALS-FUS mutation affects the activities of HuD/ELAVL4 and FMRP**
2 **leading to axon phenotypes in motoneurons**

3
4 Maria Giovanna Garone¹, Nicol Birsa^{2,3}, Maria Rosito⁴, Federico Salaris^{1,4}, Michela Mochi¹, Valeria
5 de Turris⁴, Remya R. Nair⁵, Thomas J. Cunningham⁵, Elizabeth M. C. Fisher², Mariangela
6 Morlando⁶, Pietro Fratta² and Alessandro Rosa^{1,4,7,*}

7
8 1. Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le
9 A. Moro 5, 00185 Rome, Italy

10 2. UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG,
11 UK

12 3. UK Dementia Research Institute, University College London, London, WC1E 6BT, UK

13 4. Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT),
14 00161 Rome, Italy

15 5. MRC Harwell Institute, Oxfordshire, OX11 0RD, UK

16 6. Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of
17 Perugia, Perugia, Italy.

18 7. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of
19 Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Viale Regina Elena
20 291, 00161 Rome, Italy

21

22 * Corresponding author: alessandro.rosa@uniroma1.it; Tel: +39-0649255218

1 ABSTRACT

2 Mutations in the RNA-binding protein (RBPs) FUS have been genetically associated with the
3 motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent
4 stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of
5 two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP.
6 Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with
7 FMRP for *HuD* mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript
8 levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show
9 increased axon branching and growth upon injury, which could be rescued by dampening NRN1
10 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant
11 models, increased axonal growth and branching might represent broad early events in the
12 pathogenesis of ALS.

13

14 Keywords

15 Amyotrophic lateral sclerosis; FUS; HuD; ELAVL4; FMR1; FMRP; NRN1; GAP43; iPSC;
16 motoneuron; axon; 3'UTR.

1 INTRODUCTION

2 The motoneuron disease amyotrophic lateral sclerosis (ALS) has been linked to mutations in several
3 RNA binding proteins (RBPs), including the FUS gene, and altered RNA metabolism [1]. Despite a
4 recent increase in our knowledge of the genetics of ALS, the disease mechanisms downstream of
5 mutations in ALS-genes remain largely uncharacterized. In the RBP FUS the most severe ALS
6 mutations, including the P525L, lie within its C-terminal nuclear localization signal (PY-NLS
7 domain), impairing the interaction with the nuclear import receptor Transportin-1 (TNPO1) and
8 reducing nuclear localization [2]. Loss of ALS-linked RBPs nuclear functions, including regulation
9 of alternative splicing and polyadenylation, has been proposed as a pathological ALS mechanism
10 [3-5]. Insoluble cytoplasmatic aggregates containing ALS-linked RBPs are a hallmark of the
11 pathology [6], and gain of toxic cytoplasmic functions may also play important roles in ALS [7].

12

13 We previously observed strong correlation between changes in protein levels and selective binding
14 of mutant FUS to 3'UTR [8], suggesting that aberrant targeting of 3'UTRs by mutant FUS likely
15 represents a broad mechanism underlying proteome alteration in motoneurons (MNs). This is
16 particularly relevant for ALS-linked genes, genes encoding for cytoskeletal proteins and, notably,
17 other RBPs [8,9]. Importantly, cellular levels of ALS-linked RBPs are tightly regulated by both
18 auto-regulation mechanisms [10-12] and cross-regulatory mechanisms [9,12-16]. The neural RBP
19 HuD (encoded by the *ELAVL4* gene), a component of cytoplasmic inclusions in FUS, TDP-43 and
20 sporadic ALS patients [9,14], represents an example of such cross-regulation. We have found
21 aberrantly increased HuD levels in *FUS* mutant MNs due to microRNA-mediated effects, and direct
22 binding of mutant FUS to the *HuD* 3'UTR, by a still uncharacterized mechanism [9,17]. *HuD* is a
23 neural multi-functional RBP and its overexpression induces increased neurite outgrowth in neuronal
24 cell lines and primary neural progenitor cells [18-20], but whether increased levels of *HuD* have
25 functional consequences in *FUS* mutant MNs remains unexplored.

26

1 Axonal degeneration is a key feature in the ALS pathophysiology and occurs prior to the motor
2 phenotype in patients [21-23]. Despite the underlying pathological mechanisms have not been fully
3 elucidated, it has been proposed that axonal alteration, including aberrantly increased branching,
4 can act as a trigger [24]. The levels of cytoskeletal proteins and factors directing neuron projection
5 are changed in *FUS* mutant human pluripotent stem cell (hiPSC)-derived MNs [8], and aberrantly
6 increased branching and axonal outgrowth have been recently identified across ALS mutations and
7 model systems, underlying their importance in early disease pathogenesis [24-28]. Spinal MNs
8 isolated from adult *SOD1* mutant mice at pre-symptomatic stages displayed significant increase in
9 axon outgrowth, in terms of length and branching complexity, and acute expression of mutant
10 *SOD1* in WT MNs was sufficient to increase axonal regeneration [29]. These evidences point to
11 axonal alteration as an early, pre-symptomatic phenotype in ALS.

12

13 In this work we aimed to gain insight into the molecular mechanisms leading to *HuD* upregulation
14 in *FUS* mutant genetic background, and into the functional consequences of *HuD* increase in MNs.
15 We provide a mechanistic link between increased axon branching and growth upon axotomy and
16 alteration of a cross-regulatory circuitry involving three RBPs: *FUS*, *HuD* and the fragile X mental
17 retardation protein (FMRP). We find that FMRP is a negative regulator of *HuD* translation via
18 3'UTR binding. We propose that this function is outcompeted by mutant *FUS* binding to the same
19 regulatory region, leading to an increase in *HuD* protein level, thus providing a mechanistic
20 explanation of *HuD* upregulation in *FUS* mutant MNs. Further, we identify altered axonal growth
21 as a functional consequence of *HuD* upregulation, and finally find it to be mediated by the alteration
22 of the *HuD* target NRN1.

23

24 RESULTS

25 ALS mutant *FUS* competes with FMRP for *HuD* regulation via 3'UTR binding

1 We have previously found mutant FUS expression to lead to an increase in HuD [9,17]. Although
2 miR-375 may play a role [17,30], experiments conducted in the absence of miR-375 indicate that a
3 further regulation mechanism is also present. Interestingly, *HuD* 3'UTR is extensively conserved in
4 vertebrates, with a high phyloP100way score (mean: 4.8; standard deviation: 2.3), approaching that
5 of coding exons (e.g. exon 2, mean: 5.9; standard deviation: 3.2) and not restricted to miR-375
6 binding sites (Supplementary Figure S1), further supporting the existence of another regulatory
7 mechanism.

8

9 In order to gain insights into HuD regulation in ALS, we took advantage of spinal MNs derived
10 from isogenic pairs of FUS WT and P525L hiPSC lines (hereafter FUS^{WT} and FUS^{P525L}) by
11 inducible expression of a “programming module” consisting of the transcription factors Ngn2, Isl1
12 and Lhx3 (NIL) [31,32]. The P525L mutation, localized in the PY-NLS domain (Supplementary
13 Figure S2A), causes severe mislocalization of the FUS protein in the cytoplasm and is often
14 associated to juvenile ALS [2]. In parallel, we used the Fus-Δ14 knock-in mouse model, in which a
15 frameshift mutation leads to the loss of the C-terminal nuclear localization signal (NLS)
16 (Supplementary Figure S2A), causing partial mislocalization to the cytoplasm without altering total
17 Fus protein levels (Supplementary Figure 2B) [33]. In both human *in vitro* MNs (Figure 1A) and
18 mouse spinal cords (post-natal day 81, P81) (Figure 1B), we observed a two-fold increase of HuD
19 protein levels in *FUS* mutant genetic backgrounds. Fluorescence *in situ* hybridization (FISH)
20 analysis showed a significant increase in the number of *HuD* mRNA puncta in FUS^{P525L} human
21 MNs (Figure 1C). We next took advantage of puro-PLA, a technique that couples puromycylation
22 with the proximity-ligation assay to visualize newly synthesized proteins [34]. Puro-PLA was
23 performed on FUS^{P525L} and FUS^{WT} human MNs using an anti-HuD antibody, revealing an increase
24 in newly synthesized HuD in mutant cells (Figure 1D; Supplementary Figure S3). Increased HuD
25 translation was also detected in primary MNs from the Fus-Δ14 mouse model (Figure 1E).

26

1 Together with our previous work [9], these observations suggest that mutant FUS might trigger
2 *HuD* translation upregulation via 3'UTR binding. Mechanistically, this effect could arise from the
3 competition with an inhibitory RBP. We used *catRAPID* [35] to predict the interactors of the *HuD*
4 3'UTR. Several RBPs showed interaction propensity with this sequence (Supplementary Table S1),
5 and we filtered this list for ones involved in the regulation of translation (GO:0006412)
6 (Supplementary Table S2). Among these candidates, we focused on negative regulators of
7 translation and noticed FMRP, encoded by the fragile X mental retardation 1 (*FMR1*) gene. Native
8 RNA immunoprecipitation (RIP) was used to validate the physical association between FMRP and
9 the *HuD* transcript. FMRP was effectively immunoprecipitated from hiPSC-derived MN extracts
10 (Figure 2A). A hemizygous FMRP knock-out human iPSC line (FMRP^{KO}), generated by
11 CRISPR/Cas9-mediated modification of a male line (hereafter FMRP^{WT}) (Supplementary Figure
12 S4) [36], served as a negative control. Quantitative RT-PCR analysis revealed specific enrichment
13 of the *MAP1B* mRNA, a well-characterized FMRP interactor [37,38], and no enrichment of a
14 negative control, the housekeeping *ATP5O* mRNA, in the FMRP immunoprecipitated samples
15 (Figure 2B). Consistent with the *catRAPID* prediction, FMRP immunoprecipitation enriched the
16 *HuD* mRNA (Figure 2B). Both *MAP1B* and *HuD* were negligible in the immunoprecipitated
17 samples from the control FMRP^{KO} line, confirming the RIP specificity (Supplementary Figure
18 S4D). Notably, *HuD* mRNA levels were reduced in FMRP immunoprecipitated samples from
19 FUS^{P525L} MNs (Figure 2B). Consistent with a previous report [14], we also observed reduced
20 interaction between FMRP and *MAP1B* mRNA in FUS mutant cells (Figure 2B). Decreased
21 interaction with its targets was not consequence of lower FMRP protein level in FUS^{P525L} MNs
22 (Supplementary Figure S4E).

23 In order to directly assess whether FMRP and mutant FUS compete for *HuD* 3'UTR binding, we set
24 up an *in vitro* binding and competition assay. Three fragments of about 700 nucleotides each,
25 spanning the long *HuD* 3'UTR (F1-F3 in Figure 2C; Supplementary Figure S1), along with a
26 negative control (a portion of the Renilla luciferase coding sequence) were *in vitro* transcribed as

1 biotinylated RNAs and incubated with HeLa cytoplasmic extract. Upon pull-down with streptavidin
2 beads, western blot analysis revealed strong enrichment of FMRP with F1 and F2, while F3 was not
3 significantly different from the negative control (Figure 2D). We then repeated this experiment for
4 F1 and F2 in presence of the purified recombinant proteins FUS-P525L (RFP-flag-FUS^{P525L},
5 indicated as P525L in Figure 2E) and FUS-P525L 4F-L, a derivative of the FUS-P525L mutant in
6 which 4 aminoacidic changes impair its RNA binding ability [39] (P525L 4F-L in Figure 2E)
7 (Supplementary Figure S5). For both F1 and F2, we observed strong binding of FUS-P525L, while
8 the RNA-binding defective derivative showed reduced enrichment (Figure 2E). Conversely, FMRP
9 binding was reduced in presence of RNA-binding competent FUS, compared to the 4F-L derivative
10 (statistically significant for F1; Figure 2E).

11 We then aimed to assess the consequences of impaired FMRP binding to *HuD* 3'UTR. In MNs
12 obtained from FMRP^{KO} iPSCs, *HuD* protein levels were increased of approximately two-fold
13 (Figure 3A). In the same cells, *HuD* transcript levels were unchanged (Figure 3B), suggesting that
14 absence of FMRP upregulated *HuD* protein without altering its transcription or mRNA stability. In
15 FMRP^{KO} MNs we also observed higher transcript and protein levels of two *HuD* target genes, *NRN1*
16 and *GAP43* (Figure 3A-B). We next took advantage of a reporter assay to study the outcomes of
17 competitive binding of FMRP and mutant FUS to the *HuD* 3'UTR. We have previously described
18 that expression of a RFP-FUS^{P525L} transgene led to increased translation of a luciferase construct
19 carrying the *HuD* 3'UTR when compared to RFP alone or RFP-FUS^{WT} [9]. We repeated the same
20 experiment upon overexpression of FMRP (or eGFP as a control). As shown in Figure 3C, the *HuD*
21 3'UTR reporter activity was strongly reduced when FMRP was overexpressed in presence of RFP
22 alone. Notably, co-expression of RFP-FUS^{P525L}, but not RFP-FUS^{WT}, partially reverted such
23 negative regulation by FMRP.

24 Collectively, these results suggest that FMRP can act as negative regulator of *HuD* translation in
25 MNs by direct 3'UTR binding. Mutant FUS may intrude in this function by competition for 3'UTR
26 binding, resulting in increased *HuD* protein levels.

1

2 **Axon branching and growth phenotypes in FUS mutant MNs**

3 Since HuD protein levels are two- to four-fold higher in human and mouse *FUS* mutant MNs
4 compared to wild-type controls (Figure 1A-B), we wondered if such upregulation could lead to
5 functional consequences. Overexpression of HuD promotes neurite outgrowth in rat PC12 cells (a
6 cell line of neural crest origin) and cortical neurons and, *in vivo*, in mice overexpressing HuD
7 [18,19,40]. We therefore took advantage of multichambered microfluidics devices to study possible
8 neurodevelopmental defects in *FUS* mutant MNs. *FUS*^{WT} and *FUS*^{P525L} human MN progenitors were
9 dissociated and re-plated into one chamber (cell body chamber) of compartmentalized chips with
10 500 μ m microgroove barrier. Such experimental setup allowed us to analyze axons in a separate
11 compartment (axon chamber). Axonal morphology was analyzed after subsequent MN maturation
12 in the device for 7 days. As shown in Figure 4A-B, we found an increased number of axon branches
13 and branch points in the *FUS* mutant compared to WT (see also Supplementary Figure S6A). A
14 similar increase in axon branching was recently reported by Akiyama and colleagues in MNs
15 derived from human iPSCs carrying a different *FUS* mutation (H517D) [28]. We further extended
16 this analysis by evaluating axon regeneration after damage. At the sixth day of maturation, chemical
17 axotomy was induced by applying trypsin to the axonal chamber. MNs were then allowed to
18 regenerate their axons for 30 hours. Immunostaining of the neuronal tubulin TUBB3 showed
19 strikingly increased outgrowth in *FUS*^{P525L} cells (Figure 4C; Supplementary Figure S6B-C). Similar
20 results were obtained when axotomy was induced in the same experimental setup by vacuum
21 application (mechanical injury) or digestion with a different chemical agent, accutase (Figure 4D-
22 E). These results were independently confirmed in the *Fus*- Δ 14 mouse model. Primary embryonic
23 MNs, derived from heterozygous and homozygous mutant mice (E12.5-13.5) and plated in
24 compartmentalized chips, showed increased arborization when compared to WT controls (Figure
25 5A-B). Increased re-growth was also observed for axotomized *Fus* mutant mouse MNs (Figure 5C).

26

1 **Increased NRN1 and GAP43 levels in FUS mutant motoneurons**

2 We next focused on downstream HuD targets, which could be altered as a consequence of increased
3 levels of this RBP in FUS mutant MNs, and that might be involved in the observed axon
4 phenotypes. Among the known HuD targets we prioritized *NRN1* and *GAP43*.

5

6 HuD stabilizes the mRNA encoding the growth promoting protein NRN1 (Neuritin1) by binding its
7 3'UTR [41], and we found *NRN1* mRNA levels to be strongly increased in FUS^{P525L} MNs as
8 assessed by quantitative RT-PCR (Figure 6A) and FISH analyses (Figure 6B). Western blot
9 analysis showed that NRN1 protein levels are negligible in FUS^{WT} MNs and increased in FUS^{P525L}
10 cells (Figure 6C). This observation was confirmed in the mouse model, where P81 spinal cord
11 samples showed increased levels of the mouse Nrn1 homolog in heterozygous and homozygous
12 mutants (Figure 6D). Immunostaining analysis in human MNs showed that NRN1 is expressed at
13 low levels in the WT axons and is upregulated in the FUS mutant axons (Figure 6E). Previous work
14 showed that HuD overexpression increased *GAP43* mRNA levels in rat cortical neurons [19]. In
15 particular, HuD binds to an AU-rich regulatory element (ARE) in the 3'UTR of *GAP43* mRNA and
16 stabilizes this transcript [42,43]. As in the case of *NRN1*, increased levels of *GAP43* mRNA were
17 observed in FUS^{P525L} MNs by quantitative RT-PCR and FISH (Figure 6A and Figure 7A). An
18 increase of GAP43 protein levels in the FUS mutant background was detected by western blot
19 analysis in hiPSC-derived MNs but not in mouse spinal cord (Figure 7B-C). The increase in GAP43
20 protein levels in FUS^{P525L} human MNs was confirmed by immunostaining analysis. Since HuD
21 binding is known to localize GAP43 at growth cones [44], we focused on these structures and found
22 a striking difference: while GAP43 protein was undetectable in FUS^{WT} MNs, a clear punctate signal
23 was present in the FUS^{P525L} mutant (Figure 7D and Supplementary Figure S7A). To a minor extent,
24 difference in GAP43 levels was also found in the MN soma (Supplementary Figure S7B). Increase
25 of *HuD*, *NRN1* and *GAP43* mRNA and protein levels was confirmed in MNs generated from two
26 additional FUS^{P525L} human iPSC lines [45] (Supplementary Figures S8 and S9).

1

2 To directly correlate NRN1 and GAP43 upregulation to increased HuD activity, we generated a
3 HuD overexpressing hiPSC line in a FUS^{WT} background. Overexpression of HuD in
4 undifferentiated iPSCs by a constitutive promoter resulted in cell toxicity. We therefore took
5 advantage of a neuronal-specific human synapsin 1 promoter construct (SYN1::HuD) to drive
6 expression of HuD after induction of MN differentiation (Supplementary Figure S10A). The
7 SYN1::HuD construct was stably integrated in FUS^{WT} hiPSCs (FUS^{WT}+HuD in Figure 6A and in
8 Supplementary Figure S10B-E). As a control, we also generated a FUS^{WT} hiPSC line containing
9 SYN1::RFP construct (FUS^{WT}+RFP). These cells were then induced to differentiate to MNs. Rise of
10 HuD in FUS^{WT} SYN1::HuD MNs was in the range of HuD levels observed in FUS^{P525L} MNs. In
11 these cells, we observed increased levels of *NRN1* and *GAP43* mRNA compared to the parental
12 FUS^{WT} line, while no effect was observed in the FUS^{WT}+RFP control (Figure 6A). In the case of
13 *GAP43*, however, change in mRNA levels between FUS^{WT} and FUS^{WT}+HuD did not reach
14 statistical significance. A stronger effect on *NRN1*, compared to *GAP43*, was observed also in
15 FMRP^{KO} MNs, where HuD protein levels were upregulated (Figure 3A-B).

16 Collectively these data point to increased levels of HuD targets in FUS mutant MNs as a
17 consequence of the disruption of the FMRP-mediated negative regulation of HuD by FUS^{P525L}. In
18 particular, NRN1 is strongly upregulated, while GAP43 is affected in the same direction, although
19 to a minor extent.

20

21 **Increased axon branching and growth upon axotomy in FUS mutant motoneurons are due to
22 NRN1 upregulation**

23 Given the greater changes in NRN1 levels, compared to GAP43, in FUS mutant MNs, we decided
24 to prioritize this candidate for further analysis. Increased levels of NRN1 in FUS mutant MNs
25 prompted us to explore the possibility that the phenotypes described in Figures 4 and 5 are a direct
26 consequence of aberrant activation of this growth promoting protein. We addressed this hypothesis

1 by a rescue approach. Small interfering RNAs (siRNAs), transfected during hiPSC-derived MN
2 maturation, effectively reduced NRN1 levels in the FUS^{P525L} background (Figure 8A). In siRNA-
3 NRN1-treated FUS^{P525L} MNs cultured in microfluidics devices we observed reduced number of
4 axon branches and branch points, compared to non-targeting control siRNAs (Figure 8B-C). We
5 next performed in these cells the trypsin-induced axotomy and regeneration assay as in Figure 4C.
6 TUBB3 immunostaining analysis showed that axon growth after regeneration was strongly reduced
7 in FUS^{P525L} MNs treated with NRN1-siRNAs (Figure 8D-E). These results suggest that increased
8 axon branching and growth observed in FUS mutant MNs are mediated by higher levels of NRN1
9 and that knock-down of NRN1 is sufficient to revert these phenotypes.

10

11 DISCUSSION

12 Here we propose a regulatory mechanism for *HuD* translation in normal MNs and its increase in
13 ALS. A relevant consequence of *HuD* upregulation in FUS mutant MNs is the increase of two *HuD*
14 targets: NRN1 and GAP43. In turn, NRN1 hyperactivation confers aberrantly increased axon
15 branching and growth upon axotomy to FUS mutant MNs.

16

17 According to our model (Figure 9), a mutation that impairs the nuclear localization of FUS may
18 trigger a domino effect onto other RBPs. One of the consequences is the escape of *HuD* from
19 negative regulation by FMRP on its 3'UTR. The highly conserved *HuD* 3'UTR is indeed a relevant
20 regulatory element, with an important role in keeping *HuD* protein levels in check. For this purpose,
21 we propose that at least two distinct mechanisms are in place in MNs. The first one involves the
22 activity of the MN-enriched microRNA, miR-375 [17]. The second one, described in this work,
23 relies on the negative regulation of translation by FMRP. Notably, both mechanisms are impaired
24 by FUS mutations. Since *HuD* mRNA levels are affected by miR-375 [9] but not by FMRP (present
25 work), we can conclude that in mutant FUS MNs increased *HuD/ELAVL4* mRNA levels are due to
26 decreased miR-375 expression [17], while increased *HuD/ELAVL4* protein levels can be due to the

1 double effect of the loss of both miR-375 and of FMRP regulation. Interestingly, impaired miR-375
2 function has been also proposed by others in a mouse model of sporadic ALS [46] and in another
3 MN disease, type1 SMA [47]. In addition to miR-375 and FMRP, our *catRAPID* analysis indicates
4 that the *HuD* 3'UTR might be also a target of the *HuD* protein (Supplementary Table S2), thus
5 suggesting possible conservation in human of the autoregulatory mechanism previously proposed in
6 *Drosophila* and mouse [48,49].

7

8 Impairment of FMRP-mediated repression of *HuD* in ALS FUS mutant MNs might occur in
9 several, non-exclusive, possible ways. First, FMRP might be captured in mutant FUS insoluble
10 aggregates, as proposed by Blokhuis and colleagues [14], who also reported impaired FMRP-
11 mediated translational repression and altered MAP1B protein levels in cells overexpressing mutant
12 FUS. In both FUS^{P525L} hiPSC-derived MNs and Fus-Δ14 mice, however, mutant FUS is expressed
13 at physiological levels and does not form aggregates [9,33,50]. Second, FUS mutations might
14 promote phase separation of FMRP by sequestering it in FUS-containing cytoplasmic
15 ribonucleoprotein complexes (RNPs) [51]. Third, mutant FUS might directly compete with FMRP
16 for 3'UTR binding. *HuD* 3'UTR contains multiple putative regulatory elements and competitive or
17 cooperative 3'UTR binding is a regulatory mechanism extensively used by RBPs [52,53].
18 Interestingly, loss of the FMRP homolog dFXR leads to NMJ defects in *Drosophila* [54], while
19 exogenous FMRP expression rescued NMJ and locomotor defects in a zebrafish FUS ALS model
20 [14]. Recent evidence has also linked FMRP with TDP-43 [55,56], suggesting that FMRP
21 involvement in ALS might extend beyond FUS.

22

23 Increased *HuD* suggested a possible underlying mechanism for the increased axon branching and
24 growth phenotypes that we observed in both human and mouse ALS FUS models. *HuD* has indeed
25 a well-known role in promoting neurogenesis in cell lines and cortical neurons [18,19]. However, to
26 our knowledge, the role of *HuD* in MNs has never been specifically addressed. Here we show that

1 at least two relevant HuD targets are upregulated in FUS mutant MNs as a consequence of loss of
2 HuD repression: GAP43 and NRN1. GAP43 is upregulated downstream of increased HuD during
3 axon regeneration upon sciatic nerve injury [44]. In a transgenic mouse model, overexpression of
4 GAP43 induces prolonged nerve sprouting and causes death of adult MNs [57,58]. Together with
5 our present findings, those observations suggest that GAP43 aberrant increase might in part
6 contribute to the pathogenic effects of FUS mutations in ALS MNs.

7

8 The growth promoting protein NRN1 is one of the primary HuD targets in MNs. HuD stabilizes
9 NRN1 mRNA via AU-rich element (ARE) binding on its 3'UTR [41,59]. Overall, we observed
10 stronger effects on NRN1 compared to GAP43, at both mRNA and protein levels (with the relevant
11 exception of GAP43 at the growth cone). This is in agreement with previous findings showing that
12 the NRN1 ARE has a higher binding affinity for HuD compared to GAP43 ARE [60]. NRN1, also
13 known as CPG15, was first identified as a candidate plasticity-related gene (CPG) induced by the
14 glutamate analogue kainate in the hippocampus dentate gyrus, along with immediate early genes
15 (IEGs) such as c-Fos and c-Jun [61]. It was later demonstrated that NRN1 is an activity-regulated
16 IEG induced by calcium influx through NMDA receptors and L-type voltage-sensitive calcium
17 channels [62]. Its expression in the rat neocortex peaks at 14 days postnatal and then decreases in
18 the adult [63]. In the adult rat, NRN1 mRNA is detected in brain regions characterized for their
19 activity-modulated plasticity (hippocampus, olfactory bulb and Purkinje cells) and can be induced
20 by glutamate analogs, neurotrophins (such as BDNF) and neural activity [64]. In the Human Protein
21 Atlas [65], the spinal cord is reported among the nervous system regions with lowest NRN1
22 expression (Supplementary Figure S11). We found increased NRN1 levels in FUS mutant hiPSC-
23 derived MNs and mouse spinal cord, in the absence of promoting stimuli. NRN1 was also
24 upregulated upon HuD overexpression and FMRP knock-out. When overexpressed in rodent or
25 Xenopus neurons, NRN1 induced neurite outgrowth, elaboration of dendritic and axonal arbors and
26 synaptic maturation by AMPA receptor insertion [64,66,67]. Moreover, axonal localization of *Nrn1*

1 mRNA, which is induced after nerve injury and is mediated by the 3'UTR in central nervous system
2 and by the 5'UTR in peripheral nervous system axons, promotes axon growth [68]. NRN1 is highly
3 expressed in developing MNs, where its overexpression increases axonal outgrowth and neurite
4 branching [69]. This phenotype is remarkably similar to increased neurite outgrowth and branching
5 observed in motor neurons expressing the ALS SOD1-G93A mutant [29]. Consistently, increased
6 axon branching and growth upon axotomy occurring in our mutant FUS models could be rescued by
7 reduction of NRN1 levels with siRNAs. This result suggests that increased NRN1 mRNA stability,
8 downstream of HuD upregulation, may be one of the key aberrant mechanisms underlying the
9 observed axon phenotypes.

10

11 Consistent with our findings, Akiyama and colleagues have recently reported an increased axon
12 branching phenotype in iPSC-derived MNs carrying the FUS^{H517D} mutation [28]. They also showed
13 increased levels of AP-1 components (including members of the FOS family) and reversion of the
14 axon branching phenotype upon FOS-B reduction [28]. AP-1 increase might not directly contribute
15 to NRN1 upregulation in FUS mutant cells. In stimulated cortical neurons, indeed, NRN1
16 upregulation occurred independently from new protein synthesis, indicating that NRN1 induction
17 does not require prior activation of AP-1 [62]. Therefore, the effects observed by Akiyama and
18 colleagues upon modulation of FOS-B are unlikely mediated by NRN1. To the best of our
19 knowledge, NRN1 has been never associated with ALS before. However, by mining published
20 RNA-Seq datasets we found an upregulation trend of the *Nrn1/NRN1* transcript in the soma of MNs
21 dissected from a SOD1 mouse model at a pre-symptomatic stage (3 months) [70] or generated from
22 SOD1 mutant human and mouse stem cells [71]. Pro-regenerative effects on adult MNs upon ALS-
23 mutant SOD1 expression have been recently shown, including increased outgrowth and branching
24 [29]. This is unlikely a compensatory response to mutant SOD1-induced toxicity, as it occurs also
25 upon acute expression of mutant SOD1 in WT adult MNs. Notably, MN axon branching was also
26 increased in zebrafish embryos injected with ALS-mutant TDP-43 proteins, which showed a motor

1 deficit [26]. The importance of aberrant axon branching and growth in ALS pathophysiology
2 deserves more investigation, as it might be detrimental for the normal function of signal
3 transmission in MNs [24]. Notably, recent evidence of HuD upregulation and increased binding
4 activity in sporadic ALS patients' motor cortex [72] suggests that the present findings might extend
5 beyond FUS-ALS. Our work provides insights into the molecular mechanisms underlying such
6 axonal phenotypes in FUS-ALS.

7

8 MATERIALS AND METHODS

9 Plasmids construction

10 The epB-Puro-TT-SYN1-HuD (SYN1::HuD) and epB-Puro-TT-SYN1-RFP (SYN1::RFP) plasmids
11 were generated by inserting the sequences of the human synapsin 1 (SYN1) promoter and,
12 respectively, Flag-HA-HuD and tagRFP in the enhanced piggyBac transposable vector epB-Puro-
13 TT [73]. The SYN1 promoter was isolated from the eMSCL WT plasmid (Addgene, #107454) via
14 PCR with the following primers: hSYN1 FW 5'-
15 CATCTCGAGCAGTGCAAGTGGGTTTAGGAC-3'; hSYN1 RV 5'-
16 CATGGATCCACTGCGCTCTCAGGCACGA-3'. Flag-HA-HuD was obtained by cutting the
17 pFRT-TODestFLAGHA_HuD plasmid (Addgene, #65757) with PaeI and BglII enzymes. Such
18 HuD sequence is devoid of both 5' and 3'UTR. The resulting constructs contain the enhanced
19 piggyBac terminal repeats flanking a constitutive cassette driving the expression of the puromycin
20 resistance gene fused to the rtTA gene and, in the opposite direction, a SYN1 promoter driving the
21 expression of the transgenes (Supplementary Figure S10). The ePB-Bsd-TT-FMR1 and ePB-Bsd-
22 TT-eGFP plasmids were generated by subcloning the FMR1 and eGFP coding sequences,
23 respectively, in the enhanced piggyBac transposable vector epB-Bsd-TT [9]. The epB-NIL vector
24 for spinal MN differentiation, containing the Ngn2, Isl1 and Lhx3 transgenes, is described in [31].

25

26 iPSC culture, differentiation and transfection

1 Generation of the hiPSC lines WT I and FUS-P525L/P525L is described in [50]. KOLF iPSCs WT
2 and P525L16 (LL FUS-eGFP) and T12.9 iPSCs WT15 and P525L17 (SL FUS-eGFP) are a kind
3 gift of J. Sterneckert [45]. The FMR1 KO hiPSC line was generated by CRISPR/Cas9 gene editing
4 from the WT I line, as described in [36] and in Supplementary Figure S4. Maintenance conditions
5 of iPSCs are described in [50]. iPSCs were co-transfected with 4.5 µg of transposable vector (epB-
6 NIL, SYN1::HuD, SYN1::RFP) and 0.5 µg of the piggyBac transposase using the Neon
7 Transfection System (Life Technologies), as described [50]. Selection was carried out in 5 µg/ml
8 blasticidin S (for epB-NIL) and 1 µg/ml puromycin (for SYN1::HuD, SYN1::RFP), giving rise to
9 stable cell lines.

10 The spinal MN differentiation protocol is detailed in [31,32]. Briefly, epB-NIL-containing cells
11 were differentiated upon induction with 1 µg/ml doxycycline (Thermo Fisher Scientific) in
12 DMEM/F12 (Sigma-Aldrich), supplemented with 1X Glutamax (Thermo Fisher Scientific), 1X
13 NEAA (Thermo Fisher Scientific) and 0.5X Penicillin/Streptomycin (Sigma-Aldrich) for 2 days
14 and Neurobasal/B27 medium (Neurobasal Medium, Thermo Fisher Scientific; supplemented with
15 1X B27, Thermo Fisher Scientific; 1X Glutamax, Thermo Fisher Scientific; 1X NEAA, Thermo
16 Fisher Scientific; and 0.5X Penicillin/Streptomycin, Sigma Aldrich), containing 5 µM DAPT and 4
17 µM SU5402 (both from Sigma-Aldrich) for additional 3 days. At day 5, MN progenitors were
18 dissociated with Accutase (Thermo Fisher Scientific) and plated on Matrigel (BD Biosciences)-
19 coated 15 mm diameter dishes or cover glass (0.13-0.17 thick), or bipartite/tripartite microfluidic
20 chambers (MFCs, see below) at the density of 10⁵ cells per cm². 10 µM rock inhibitor was added for
21 the first 24 hours after dissociation. Neuronal cultures were maintained in neuronal medium
22 (Neurobasal/ B27 medium supplemented with 20 ng/ml BDNF and 10 ng/ml GDNF, both from
23 PreproTech; and 20 ng/ml L-ascorbic acid, Sigma-Aldrich). MFCs were made with Sylgard 184
24 silicone elastomer kit (Dow Corning) using epoxy resin molds. Once the MFCs were baked,
25 reservoirs were cut and the MFCs were mounted onto glass-bottom dishes (HBST-5040, WillCo
26 well), pre-coated with 1:200 100X poly-D-Lysine. MFCs were then blocked with 0.8% BSA in ES

1 (Sigma-Aldrich) overnight and then coated with Matrigel (BD Biosciences), before plating MN
2 progenitors. MFCs have 500 μ m long grooves that separate the somatic from the axonal
3 compartment.

4

5 **Mouse primary motoneurons**

6 Fus- Δ 14 mice (B6N;B6J-Fus^{tm1Emcf/H}, MGI: 6100933) were previously described [33]. All
7 applicable international, national, and institutional guidelines, including ARRIVE guidelines, for
8 the care and use of animals were followed. All procedures performed in studies involving animals
9 were in accordance with the ethical standards of the institution at which the studies were conducted
10 (University College London, UK; MRC Harwell Institute, Oxfordshire, UK). All procedures for the
11 care and treatment of animals were in accordance with the Animals (Scientific Procedures) Act
12 1986 Amendment Regulations 2012. Primary MNs (PMNs) were isolated from E12.5-13.5 mouse
13 embryos on a congenic C57BL/6J background. Briefly, embryos were euthanized, spinal cord
14 removed and ventral regions isolated. PMNs were dissociated by incubation with trypsin, followed
15 by mechanical dissociation in combination with DNase treatment. Cells were then centrifuged
16 through a bovine serum albumin (BSA) cushion and resuspended in motor neuron medium
17 (Neurobasal; Thermo Fisher, Waltham, MA), 2% v/v B27 supplement (Thermo Fisher Scientific),
18 2% heat-inactivated horse serum (HRS), 1X GlutaMAX (Thermo Fisher Scientific), 24.8 μ M β -
19 mercaptoethanol, 10 ng/ml rat ciliary neurotrophic factor (CNTF; R&D Systems), 0.1 ng/ml rat
20 glial cell line-derived neurotrophic factor (GDNF; R&D systems), 1 ng/ml human brain-derived
21 neurotrophic factor (BDNF; PeproTech) and 1% penicillin/streptomycin. PMNs were immediately
22 plated on poly-L-ornithine/laminin- coated plates or MFCs and cultured for 6-7 days at 37°C in a
23 5% CO₂ incubator.

24 Adult spinal cord samples were collected from female Fus- Δ 14 mice on a (C57BL/6J x DBA/2J) F1
25 hybrid background, via laminectomy, and snap frozen over liquid nitrogen. The hybrid background

1 was necessary to produce viable homozygotes, which are non-viable on a congenic C57BL/6J
2 background.

3

4 **Western blot**

5 Western blot analysis was carried out using anti-HuD (1:1000; sc-48421, Santa Cruz), anti-
6 NEURITIN (1:200; AF283, R&D Systems), anti-GAP43 (1:500; LS-C356053, Bio-technne) (for
7 human samples), anti-GAP-43 (1:500; 5307, Cell Signaling Technology) (for mouse samples), anti-
8 flag (1:1000; F3165, Sigma-Aldrich), anti-TUBB3 (1:10000; T2200, Sigma-Aldrich), anti-GAPDH
9 (1:2000; MAB-10578 Immunological sciences) primary antibodies and donkey anti-mouse IgG
10 (H+L) (IS20404; Immunological Science) and donkey anti-rabbit IgG (H+L) (IS20405;
11 Immunological Science) secondary antibodies, as previously described [9].

12

13 **Real-time qRT-PCR**

14 Total RNA, extracted with the RNA extract kit (1x10⁶ cells-10mg; VWR International PBI) and
15 retrotranscribed with iScript Supermix (Bio-Rad Laboratories), was analyzed by real-time qRT-
16 PCR with iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories). *ATP5O* was used as the
17 internal calibrator. Primers sequences are listed in Supplementary Table S3.

18

19 **RNA interference (RNAi)**

20 NRN1 RNAi was induced with a synthetic siRNA pool targeting the human NRN1 mRNA (NRN1
21 51299 siRNA-SMARTpool, Dharmacon) or with a non-targeting siRNA control pool with
22 scrambled sequence (ON-TARGETplus Non-targeting Pool; D-001810-10-05, Dharmacon).
23 Lyophilized siRNAs were resuspended in nuclease-free water and stored at -20 °C as 20 µM stocks
24 until use. For transfection, siRNAs were diluted in Optimem (Gibco) and mixed with siLentFect
25 Lipid Reagent (Bio-Rad Laboratories), according to the protocol for transfection of adherent cells.

1 The final siRNA concentration in each MFC was 10 nM. Medium was changed 5 hours post-
2 transfection.

3

4 **Immunofluorescence**

5 Cells were fixed in 4% paraformaldehyde (PFA) in PBS for 10 min at room temperature. Coverslips
6 were washed with PBS, permeabilized and blocked for 15 min using a solution of 0.5% BSA, 10%
7 HRS, 0.2% Triton X-100 in PBS (all from Sigma-Aldrich). Anti-TUJ1 (for TUBB3 detection;
8 1:1000; T2200, Sigma-Aldrich), anti-GAP-43 (1:500; LS-C356053, Bio-technne), anti-MAP2
9 (1:2000; ab5392, Abcam), anti-NEURITIN (1:200; AF283, R&D Systems), anti-488-
10 PHALLOIDIN (1:50; 49429, Sigma-Aldrich), Anti-TYR-TUBULIN clone YL1/2 (1:1000;
11 MAB1864-I, Sigma-Aldrich) antibodies were diluted in a solution of 0.5% BSA, 10% HRS in PBS
12 and incubated with the cells for 1 hour at room temperature. Cells were then washed in PBS and
13 incubated for 1 hour at room temperature with the appropriate fluorescent conjugated secondary
14 antibodies: anti-mouse Alexa Fluor 488 (1:200, Thermo Fisher Scientific), anti-rabbit Alexa Fluor
15 594 (1:200, Immunological Sciences) and anti-goat Alexa Fluor 594 (1:200, Immunological
16 Sciences) produced in donkey; anti-Rat IgG (H+L), highly cross-adsorbed, CFTM 647 secondary
17 antibody (1:500; SAB4600186, Sigma-Aldrich) produced in goat; DAPI (1:2000; Sigma-Aldrich)
18 diluted in 0.5% BSA, 10% HRS in PBS. Finally, cells were washed with PBS, mounted using
19 DAKO mounting media and imaged using inverted Zeiss LSM 780 or 510 confocal microscopes
20 using a 63 \times , 1.4 NA DIC Plan-Apochromat oil-immersion objective, except for images shown in
21 Figure 8D, which have been acquired with an inverted Olympus iX73 equipped with an X-Light V3
22 spinning disc head (Crest Optics), a LDI laser illuminator using 470 nm wavelength (89 North), a
23 CoolSNAP MYO CCD camera (Photometrics) and MetaMorph software (Molecular Devices) with
24 a 10 \times objective.

25

26 **Puro-PLA**

1 Cells were treated with either DMSO or 40 μ M anisomycin for 30 min. Then, 2 μ M puromycin was
2 added to the medium for 7 min at 37°C in a 5% CO₂ incubator, cells were washed 2 times with PBS
3 and fixed in 4% PFA in PBS for 12 min at room temperature. Coverslips were permeabilized with
4 0.2% Triton X-100 in PBS for 15 min and blocked using a solution of 0.5% BSA and 10% HRS in
5 PBS for 30 min. Detection of newly synthesized proteins was carried out by an anti-puromycin
6 antibody (clone 12D10, mouse-monoclonal, MABE343; Merck), an anti-HuD antibody (ab96474,
7 rabbit-monoclonal; Abcam) and Duolink PLA Fluorescence reagents Red (DUO92008, Duolink),
8 according to manufacturer's instructions, using rabbit PLApplus (DUO92002, Duolink) and mouse
9 PLAmminus (DUO92004, Duolink). The anti-TUJ1 antibody was used as a cell marker and to
10 identify axons, as described in the 'Immunofluorescence' section. All samples were mounted in
11 Duolink In Situ Mounting Media with DAPI (DUO82040, Duolink).
12

13 **Fluorescence in situ hybridization (FISH)**

14 Cells were fixed for 15 min with 4% PFA in PBS. FISH was performed with the QuantiGene
15 ViewRNA ISH Cell Assay (Thermo Fisher Scientific) protocol for adherent cells. Briefly, fixed
16 MNs were rinsed 3 times in PBS containing 5 mM MgCl₂ for 5 min. Cells were then dehydrated in
17 ethanol (50%,75%,100%) for 2 min each and stored at -20°C for up to one week, minimum of 2
18 hours. Coverslips were rehydrated (75%, 50%) for 2 min each and washed 3 times in PBS
19 containing 5 mM MgCl₂ for 5 min. Coverslips were permeabilized with Detergent Solution and
20 then treated with Protease QS (1:8000). FISH was carried out following manufacturer's instructions
21 (QVC000; Thermo Fisher Scientific). Cells were mounted using DAKO mounting media or Prolong
22 Gold with DAPI (Invitrogen) and imaged using an inverted Zeiss LSM 780 or 510 confocal
23 microscope using a 63X, 1.4 NA DIC Plan-Apochromat oil-immersion objective and Zeiss LSM
24 880 laser scanning confocal microscope.
25

26 **RNA immunoprecipitation (RIP)**

1 iPSC-derived motor neurons at day 12 of differentiation were lysed with PLB Buffer (5 mM MgCl₂,
2 10 mM HEPES (pH 7.0), 150 mM KCl, 5 mM EDTA (pH 8), 0.5% NP-40, 2 mM DTT, with 100
3 U/ml RNAase inhibitor and 1X protease inhibitor cocktail), incubated for 5 minutes on ice and
4 centrifuged 10 minutes at 4°C at 14000g. Protein concentration of the supernatant was then
5 measured by Bradford assay and a volume containing 1 mg of proteins was diluted in NT2 Buffer
6 (50 mM Tris (pH 7), 150 mM NaCl, 0.5 mM MgCl₂, 0.05% NP-40, 1 mM DTT, 20 mM EDTA (pH
7 8) with 100 U/ml RNAse inhibitor and 1X protease inhibitor cocktail). Protein G-coupled
8 dynabeads (immunoprecipitation kit, Invitrogen) were washed in NT2 Buffer, incubated with 10 µg
9 of anti-FMRP (f4055, Sigma Aldrich), anti-FMRP (ab17722, Abcam) or rabbit monoclonal anti-
10 human IgG antibody (ab109489, Abcam) and left rotating on a wheel for 1 hour at room
11 temperature in NT2 Buffer. Beads were then washed in NT2 Buffer and incubated with the diluted
12 lysates in a final volume of 500 µl. Binding was carried out at 4°C with the samples rotating on a
13 wheel for 2 hours. Beads were then washed 3 times and resuspended in ice-cold NT2. Each sample
14 was split 1/5 for protein and 4/5 for RNA analysis. The protein fraction was resuspended in 1X
15 NuPage LDS (Invitrogen) with 2 mM DTT and left at 70°C for 20 minutes. Proteins were run on a
16 4%–12% polyacrylamide gel for 1 hour at 160 V. An artificial spike RNA, i.e. an *in vitro*
17 transcribed RNA fragment derived from the pcDNA3.1 plasmid, was added to the RNA fraction,
18 which was then lysed with 250 µl of TRIzol (Invitrogen) and extracted according to manufacturer's
19 instructions. RNA was analyzed by real-time qRT-PCR with iTaq Universal SYBR Green
20 Supermix (Bio-Rad Laboratories). RIP data analysis was performed as follows. For each target, the
21 mean Ct value from a technical duplicate was normalized to the input RNA fraction (at a 1/10
22 dilution) Ct value (ΔCt) to account for RNA sample preparation differences, using the equation:
23
$$\Delta Ct = [Ct_{RIP \text{ or } IgG} - Ct_{input} - \log_2 10].$$
 The percentage of input was calculated by linear conversion of
24 the normalized ΔCt as $2^{-\Delta Ct}$. This value was then adjusted to take into account the difference in the
25 amplification between the control IgG and the IP fractions using the artificial spike RNA, as
26 follows. We first calculated the spike RNA ΔCt and percentage of input as described above. Then,

1 we normalized the percentage of input of each target using the percentage of input of the spike
2 RNA.

3

4 **In vitro binding and competition assays**

5 In vitro binding assay was performed using *in vitro* transcribed biotinylated RNA (corresponding to
6 3 regions spanning the *HuD* 3'UTR), HeLa extract (containing FMRP protein), and purified
7 recombinant FUS proteins form HeLa, as follows.

8 For *HuD* 3'UTR fragments, biotinylated RNA preparation was carried out using PCR products
9 generated from hiPSC-FUS^{WT} gDNA. The forward PCR primers contained the T7 RNA polymerase
10 promoter sequence (T7): TAATACGACTCACTATAGGG. Primers sequences are listed in
11 Supplementary Table S3. For the RNA negative control, a DNA fragment containing the T7
12 promoter was obtained by cutting the pSI-Check2 vector with EcoRV and HindIII. These DNA
13 templates were used for *in vitro* RNA transcription with the T7 polymerase MAXIscript kit
14 (Invitrogen), in presence of 0.2 mM Biotin-16-UTP (Roche). RNA was purified by adding one
15 volume per sample of phenol:chloroform:isoamyl alcohol (25:24:1) (Thermo Fisher), followed by
16 centrifugation at 4°C for 10 minutes at 1000 rpm and precipitation of the upper aqueous phase with
17 ethanol at -80°C overnight.

18 For biotin pull-down, Streptavidin MagneSphere paramagnetic particles (Promega) were first
19 washed in EMSA buffer 1X (EMSA buffer 2X: 40 mM Hepes pH 7.9, 150 mM KCl, 3mM MgCl₂,
20 2 mM DTT, 10% glycerol with 100 U/ml RNase inhibitor and 1X protease inhibitor cocktail;
21 Roche) four times. Beads were then incubated in EMSA 1X with 150 µg of E. Coli tRNA at RT for
22 10 minutes. After the treatment, the beads were resuspended in EMSA 1X with 100 U/ml RNase
23 inhibitor and 1X protease inhibitor cocktail (Roche). FMRP binding assay was performed by
24 incubating biotinylated transcripts (250 ng) and 75 µg of HeLa cytoplasmic lysate for 30 minutes on
25 ice in EMSA buffer 1X.

1 FUS protein purification for competition assays was performed as follows. Stable and inducible
2 RFP-flag-FUS^{P525L} and RFP-flag-4FL_FUS^{P525L} HeLa lines were induced with 200 ng/µl
3 doxycycline for 24 hours. Cells were lysed with RIPA buffer (50 mM Tris–HCl pH 7.5, 150 mM
4 NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 1 mM EGTA and 1X
5 protease inhibitor cocktail; Roche). Anti-FLAG M2 Magnetic Beads (Sigma Aldrich) were washed
6 in Tris Buffer Saline (TBS) two times. A volume containing 5 mg of protein extract was incubated
7 with beads and binding was carried out at 4°C on a rotating wheel overnight. Beads were then
8 washed in Low buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 5% glycerol, 0,25%
9 NP40) three times and in High buffer (50 mM Tris HCl pH 7.5, 500 mM NaCl, 1 mM EDTA, 5%
10 glycerol, 0,25% NP40) two times. Beads were then resuspended in TBS with Flag peptide
11 (Millipore) in final volume of 50 µl and left at 4°C on a rotating wheel for 5 minutes. This step was
12 repeated three times, obtaining three different elution samples. Each sample (1/10) was resuspended
13 in 1X NuPage LDS (Invitrogen) with 2 mM DTT and left at 70°C for 10 minutes. Proteins were run
14 on a 4%–12% polyacrylamide gel for 1 hour at 150 V and colored with PageBlue Protein staining
15 solution (Thermo Scientific) overnight.

16 For competition assay between FMRP and FUS, Streptavidin MagneSphere paramagnetic particles
17 (Promega) were first washed in EMSA buffer 1X four times. Beads were then incubated in EMSA
18 1X with 150 µg of E. Coli tRNA at RT for 10 minutes and resuspended in EMSA 1X with 100
19 U/ml RNase inhibitor and 1X protease inhibitor cocktail (Roche). The assay was then performed in
20 presence of 250 ng of biotinylated transcript, 75 µg of HeLa cytoplasmic lysate and 30 ng of
21 purified FUS protein. RNA-protein complexes were then incubated with streptavidin beads in a
22 final volume of 150 µl. Binding was carried out at 4°C with on a rotating wheel for 1 hour. Beads
23 were then washed in 1X EMSA for three times. Each sample was resuspended in 20 µl PBS with
24 1X NuPage LDS (Invitrogen) and 2 mM DTT. Complexes were analyzed by western blotting.

25

26 **Luciferase assay**

1 The pSI-Check2 vector containing HuD 3'UTR (RLuc-HuD 3'UTR) is described in [9]. RLuc-HuD
2 3'UTR was transfected alone or in combination with epB-Bsd-TT-FMR1 or epB-Bsd-TT-eGFP in
3 5x10⁴ pre-seeded HeLa cells expressing RFP-FUS^{P525L} [9] in a 24-well plate using Lipofectamine
4 2000 (Life Technologies), following manufacturer's instructions. Cells were harvested 24 hours
5 post-transfection and RLuc and FLuc activities were measured by Dual Glo luciferase assay
6 (Promega), according to the manufacturer's protocol.

7

8 **Axon branching and growth upon axotomy assays**

9 After dissociation at day 5 of differentiation, hiPSC-derived MNs were grown in microfluidics for 7
10 days. For axon branching analysis, the initial density was 5x10⁴ cells per cm². For axotomy
11 experiments, the initial density was 10⁵ cells per cm². Axotomy was performed using 3 different
12 methods: 1) Trypsin-EDTA 0.25% (Thermo Fisher Scientific) treatment for 15 min (Figure 4C, 5C,
13 8C; Supplementary Figure 5A); 2) repeated vacuum aspirations (Figure 4D); 3) Accutase (Thermo
14 Fisher Scientific) treatment for 15 min (Figure 4E). The axon chamber was reperfused with PBS
15 until effective removal of the damaged axons, without disturbing the cell bodies in the soma
16 compartment.

17 Quantitative analyses of axon branches and branch points were conducted with Skeleton, a plugin
18 of Fiji [74]. 30 hours after axotomy, immunofluorescence staining with an anti-TUJ1 antibody was
19 performed as described in the 'Immunofluorescence' section.

20

21 **Statistics and Reproducibility**

22 Statistical analysis, graphs and plots were generated using GraphPad Prism 6 (GraphPad Software).
23 As indicated in each figure legend, Student's t-test or ordinary one-way ANOVA was performed,
24 and data set are shown in dot plots indicating mean ± standard deviation (st.dev.) or standard error
25 of the mean (s.e.m.). Sample size for each experiment is also indicated in the figure legends.

26

1 **Data availability**

2 All data generated or analyzed during this study are included in this published article and its
3 supplementary information files.

1 **COMPETING INTERESTS**

2 The authors declare that they have no competing interests.

3

4 **FUNDING**

5 This work was partially supported by Sapienza University, Fondazione Istituto Italiano di
6 Tecnologia and a grant from Istituto Pasteur Italia - Fondazione Cenci Bolognetti to A.R. P.F.,
7 T.J.C., R.R.N. and E.M.C.F., were funded by grants from the UK Medical Research Council.

8

9 **AUTHORS' CONTRIBUTIONS**

10 Conceptualization, M.G.G., M.R. and A.R.; Formal analysis, M.G.G., N.B., M.R.; Investigation,
11 M.G.G., N.B., F.S.; Methodology, M.G.G., F.S., Mi.Mo., V.d.T., R.R.N., M.R, Ma.Mo.; Project
12 administration, A.R.; Supervision, A.R., P.F., E.M.C.F. and T.J.C.; Writing – original draft, A.R.
13 All authors read and approved the final manuscript.

14

15 **ACKNOWLEDGMENTS**

16 The authors wish to thank the Imaging Facility at Center for Life Nano Science, Istituto Italiano di
17 Tecnologia, for support and technical advice. We are grateful to Jared Sterneckert (Technische
18 Universität Dresden, Germany) for sharing their human iPSC lines. We thank Riccardo De Santis
19 (The Rockefeller University, NY, USA), Serena Carra (University of Modena and Reggio Emilia,
20 Italy) and Silvia Di Angelantonio and Irene Bozzoni (Sapienza University of Rome, Italy) for
21 helpful discussion.

1 **REFERENCES**

2

3 1. Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. *N Engl J Med* 2017; **377**: 162–
4 172.

5

6 2. Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A *et al.* ALS-associated
7 fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. *EMBO J* 2010; **29**:
8 2841–2857.

9

10 3. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC *et al.*
11 Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-
12 mRNAs. *Nat Neurosci* 2012. doi:10.1038/nn.3230.

13

14 4. Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenberry BN, Mordes DA *et*
15 *al.* ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth
16 and repair. *Nature Publishing Group* 2019; **22**: 167–179.

17

18 5. Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y *et al.* Premature
19 polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration.
20 *Nature Publishing Group* 2019; **22**: 180–190.

21

22 6. Dormann D, Haass C. TDP-43 and FUS: a nuclear affair. *Trends in neurosciences* 2011; **34**:
23 339–348.

24

25 7. Birsa N, Bentham MP, Fratta P. Cytoplasmic functions of TDP-43 and FUS and their role in
26 ALS. *Semin Cell Dev Biol* 2019. doi:10.1016/j.semcdb.2019.05.023.

1

2 8. Garone MG, Alfano V, Salvatori B, Braccia C, Peruzzi G, Colantoni A *et al.* Proteomics

3 analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other

4 ALS-linked proteins via 3'UTR binding. *Sci Rep* 2020; **10**: 11827.

5

6 9. De Santis R, Alfano V, de Turris V, Colantoni A, Santini L, Garone MG *et al.* Mutant FUS

7 and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. *Cell Rep* 2019; **27**:

8 3818–3831.e5.

9

10 10. Ayala YM, De Conti L, Avendaño-Vázquez SE, Dhir A, Romano M, D'Ambrogio A *et al.*

11 TDP-43 regulates its mRNA levels through a negative feedback loop. *EMBO J* 2011; **30**: 277–288.

12

13 11. Zhou Y, Liu S, Liu G, Oztürk A, Hicks GG. ALS-associated FUS mutations result in

14 compromised FUS alternative splicing and autoregulation. *PLoS Genet* 2013; **9**: e1003895.

15

16 12. Humphrey J, Birsa N, Milioto C, McLaughlin M, Ule AM, Robaldo D *et al.* FUS ALS-

17 causative mutations impair FUS autoregulation and splicing factor networks through intron

18 retention. *Nucleic Acids Res* 2020. doi:10.1093/nar/gkaa410.

19

20 13. Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY *et al.* Integrative genome-wide

21 analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. *Cell Rep* 2012; **1**:

22 167–178.

23

24 14. Blokhuis AM, Koppers M, Groen EJN, van den Heuvel DMA, Dini Modigliani S, Anink JJ

25 *et al.* Comparative interactomics analysis of different ALS-associated proteins identifies converging

26 molecular pathways. *Acta Neuropathol* 2016; **132**: 175–196.

1

2 15. Mohagheghi F, Prudencio M, Stuani C, Cook C, Jansen-West K, Dickson DW *et al.* TDP-43

3 functions within a network of hnRNP proteins to inhibit the production of a truncated human

4 SORT1 receptor. *Hum Mol Genet* 2016; **25**: 534–545.

5

6 16. Gueroussov S, Weatheritt RJ, O'Hanlon D, Lin Z-Y, Narula A, Gingras A-C *et al.*

7 Regulatory Expansion in Mammals of Multivalent hnRNP Assemblies that Globally Control

8 Alternative Splicing. *Cell* 2017; **170**: 324–339.e23.

9

10 17. De Santis R, Santini L, Colantoni A, Peruzzi G, de Turris V, Alfano V *et al.* FUS Mutant

11 Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications

12 for ALS Pathogenesis. *Stem Cell Reports* 2017; **9**: 1450–1462.

13

14 18. Anderson KD, Morin MA, Beckel-Mitchener A, Mobarak CD, Neve RL, Furneaux HM *et al.*

15 Overexpression of HuD, but not of its truncated form HuD I+II, promotes GAP-43 gene expression

16 and neurite outgrowth in PC12 cells in the absence of nerve growth factor. *Journal of*

17 *neurochemistry* 2000; **75**: 1103–1114.

18

19 19. Anderson KD, Sengupta J, Morin M, Neve RL, Valenzuela CF, Perrone-Bizzozero NI.

20 Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in

21 cortical neurons and retinoic acid-induced embryonic stem cells in vitro. *Exp Neurol* 2001; **168**:

22 250–258.

23

24 20. Tebaldi T, Zuccotti P, Peroni D, Köhn M, Gasperini L, Potrich V *et al.* HuD Is a Neural

25 Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small

26 Non-coding RNA. *Mol Cell* 2018; **71**: 256–270.e10.

1

2 21. Fischer LR, Culver DG, Tenant P, Davis AA, Wang M, Castellano-Sanchez A *et al.*

3 Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. *Exp Neurol* 2004;

4 **185**: 232–240.

5

6 22. Roy S, Zhang B, Lee VM-Y, Trojanowski JQ. Axonal transport defects: a common theme in

7 neurodegenerative diseases. *Acta Neuropathol* 2005; **109**: 5–13.

8

9 23. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor

10 neuron injury in amyotrophic lateral sclerosis. *Nat Rev Neurol* 2011; **7**: 616–630.

11

12 24. Suzuki N, Akiyama T, Warita H, Aoki M. Omics Approach to Axonal Dysfunction of Motor

13 Neurons in Amyotrophic Lateral Sclerosis (ALS). *Front Neurosci* 2020; **14**: 194.

14

15 25. McWhorter ML, Monani UR, Burghes AHM, Beattie CE. Knockdown of the survival motor

16 neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. *J Cell*

17 *Biol* 2003; **162**: 919–931.

18

19 26. Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P *et al.* Gain and loss of

20 function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. *Hum Mol*

21 *Genet* 2010; **19**: 671–683.

22

23 27. Hogan AL, Don EK, Rayner SL, Lee A, Laird AS, Watchon M *et al.* Expression of

24 ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an

25 aberrant motor phenotype. *Hum Mol Genet* 2017; **26**: 2616–2626.

26

1 28. Akiyama T, Suzuki N, Ishikawa M, Fujimori K, Sone T, Kawada J *et al.* Aberrant axon
2 branching via Fos-B dysregulation in FUS-ALS motor neurons. *EBioMedicine* 2019; **45**: 362–378.

3

4 29. Osking Z, Ayers JI, Hildebrandt R, Skrubel K, Brown H, Ryu D *et al.* ALS-Linked SOD1
5 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. *iScience* 2019; **11**:
6 294–304.

7

8 30. Abdelmohsen K, Hutchison ER, Lee EK, Kuwano Y, Kim MM, Masuda K *et al.* miR-375
9 inhibits differentiation of neurites by lowering HuD levels. *Mol Cell Biol* 2010; **30**: 4197–4210.

10

11 31. De Santis R, Garone MG, Pagani F, de Turris V, Di Angelantonio S, Rosa A. Direct
12 conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector.
13 *Stem Cell Research* 2018; **29**: 189–196.

14

15 32. Garone MG, de Turris V, Soloperto A, Brighi C, De Santis R, Pagani F *et al.* Conversion of
16 Human Induced Pluripotent Stem Cells (iPSCs) into Functional Spinal and Cranial Motor Neurons
17 Using PiggyBac Vectors. *J Vis Exp* 2019. doi:10.3791/59321.

18

19 33. Devoy A, Kalmar B, Stewart M, Park H, Burke B, Noy SJ *et al.* Humanized mutant FUS
20 drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice.
21 *Brain* 2017; **140**: 2797–2805.

22

23 34. tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, Nassim-Assir B *et al.* Direct
24 visualization of newly synthesized target proteins in situ. *Nat Methods* 2015; **12**: 411–414.

25

1 35. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. catRAPID omics: a
2 web server for large-scale prediction of protein-RNA interactions. *Bioinformatics* 2013; **29**: 2928–
3 2930.

4

5 36 Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V *et al.* Novel fragile X
6 syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. *Cell Death and*
7 *Disease* 2021; **12**:498.

8

9 37. Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA *et al.* Microarray
10 identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile
11 X syndrome. *Cell* 2001; **107**: 477–487.

12

13 38. Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental
14 retardation protein targets G quartet mRNAs important for neuronal function. *Cell* 2001; **107**: 489–
15 499.

16

17 39. Daigle, J. G. *et al.* RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic
18 mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked
19 mutations. *Hum Mol Genet* 2013; **22**: 1193–1205.

20

21 40. Perrone-Bizzozero NI, Tanner DC, Mounce J, Bolognani, F. Increased expression of
22 axogenesis-related genes and mossy fibre length in dentate granule cells from adult HuD
23 overexpressor mice. *ASN Neuro* 2011; **3**: 259–270.

24

1 41. Akten B, Kye MJ, Hao LT, Wertz MH, Singh S, Nie D *et al.* Interaction of survival of motor
2 neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. *Proc*
3 *Natl Acad Sci USA* 2011; **108**: 10337–10342.

4

5 42. Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, Furneaux H *et al.*
6 The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression,
7 and PKC-dependent neurite outgrowth in PC12 cells. *Mol Biol Cell* 2000; **11**: 3191–3203.

8

9 43. Beckel-Mitchener AC, Miera A, Keller R, Perrone-Bizzozero NI. Poly(A) tail length-
10 dependent stabilization of GAP-43 mRNA by the RNA-binding protein HuD. *J Biol Chem* 2002;
11 **277**: 27996–28002.

12

13 44. Yoo S, Kim HH, Kim P, Donnelly CJ, Kalinski AL, Vuppalanchi D *et al.* A HuD-ZBP1
14 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region
15 AU-rich regulatory element. *Journal of neurochemistry* 2013; **126**: 792–804.

16

17 45. Marrone L, Poser I, Casci I, Japtok J, Reinhardt P, Janosch A *et al.* Isogenic FUS-eGFP
18 iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by
19 Drugs Inducing Autophagy. *Stem Cell Reports* 2018; **10**: 375–389.

20

21 46. Rohm M, May C, Marcus K, Steinbach S, Theis V, Theiss C *et al.* The microRNA miR-375-
22 3p and the Tumor Suppressor NDRG2 are Involved in Sporadic Amyotrophic Lateral Sclerosis.
23 *Cell Physiol Biochem* 2019; **52**: 1412–1426.

24

1 47. Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW. MiR-375 is
2 Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron
3 Degeneration. *Stem Cells* 2016; **34**: 124–134.

4

5 48. Samson, M. L. Evidence for 3' untranslated region-dependent autoregulation of the
6 Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV. *Genetics* 1998; **150**:
7 723–733 (1998).

8

9 49. Bolognani, F., Contente-Cuomo, T. & Perrone-Bizzozero, N. I. Novel recognition motifs
10 and biological functions of the RNA-binding protein HuD revealed by genome-wide identification
11 of its targets. *Nucleic Acids Res* 2009; **38**, 117–130.

12

13 50. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A *et al.* ALS mutant FUS
14 proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived
15 motoneurons. *Dis Model Mech* 2015; **8**: 755–766.

16

17 51. Birsa N, Ule AM, Garone MG, Tsang B, Mattedi F, Chong PA *et al.* FUS-ALS mutants alter
18 FMRP phase separation equilibrium and impair protein translation. *Science Advances*. *In press*.

19

20 52. Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAV14 gene; implications for
21 neuronal development, function, and dysfunction. *RNA* 2013; **19**: 1019–1037.

22

23 53. García-Mauriño SM, Rivero-Rodríguez F, Velázquez-Cruz A, Hernández-Vellisca M, Díaz-
24 Quintana A, la Rosa De MA *et al.* RNA Binding Protein Regulation and Cross-Talk in the Control
25 of AU-rich mRNA Fate. *Front Mol Biosci* 2017; **4**: 1271.

26

1 54. Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD *et al.* Drosophila
2 fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and
3 function. *Cell* 2001; **107**: 591–603.

4

5 55. Coyne AN, Yamada SB, Siddegowda BB, Estes PS, Zaepfel BL, Johannesmeyer JS *et al.*
6 Fragile X protein mitigates TDP-43 toxicity by remodeling RNA granules and restoring translation.
7 *Hum Mol Genet* 2015; **24**: 6886–6898.

8

9 56. Majumder P, Chu J-F, Chatterjee B, Swamy KBS, Shen C-KJ. Co-regulation of mRNA
10 translation by TDP-43 and Fragile X Syndrome protein FMRP. *Acta Neuropathol* 2016; **132**: 721–
11 738.

12

13 57. Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F *et al.* Overexpression of
14 the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system
15 of transgenic mice. *Cell* 1995; **83**: 269–278.

16

17 58. Harding DI, Greensmith L, Mason M, Anderson PN, Vrbová G. Overexpression of GAP-43
18 induces prolonged sprouting and causes death of adult motoneurons. *Eur J Neurosci* 1999; **11**:
19 2237–2242.

20

21 59. Wang Z-H, Li S-J, Qi Y, Zhao J-J, Liu X-Y, Han Y *et al.* HuD regulates the cpg15
22 expression via the 3'-UTR and AU-rich element. *Neurochem Res* 2011; **36**: 1027–1036.

23

24 60. Gomes C, Lee JS, Gardiner AS, Smith T, Sahoo PK, Patel P, *et al.* Axonal localization of
25 neuritin/CPG15 mRNA is limited by competition for HuD binding. *J Cell Sci* 2017; **130**: 3650–
26 3662.

1

2 61. Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y. Numerous candidate plasticity-related

3 genes revealed by differential cDNA cloning. *Nature* 1993; **363**: 718–722.

4

5 62. Fujino T, Lee W-CA, Nedivi E. Regulation of cpg15 by signaling pathways that mediate

6 synaptic plasticity. *Mol Cell Neurosci* 2003; **24**: 538–554.

7

8 63. Nedivi E, Fieldust S, Theill LE, Hevron D. A set of genes expressed in response to light in

9 the adult cerebral cortex and regulated during development. *Proc Natl Acad Sci USA* 1996; **93**:

10 2048–2053.

11

12 64. Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE. Neuritin: a gene

13 induced by neural activity and neurotrophins that promotes neuritogenesis. *Proc Natl Acad Sci USA*

14 1997; **94**: 2648–2653.

15

16 65. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A *et al.*

17 Proteomics. Tissue-based map of the human proteome. *Science* 2015; **347**: 1260419.

18

19 66. Nedivi E, Wu GY, Cline HT. Promotion of dendritic growth by CPG15, an activity-induced

20 signaling molecule. *Science* 1998; **281**: 1863–1866.

21

22 67. Cantallops I, Haas K, Cline HT. Postsynaptic CPG15 promotes synaptic maturation and

23 presynaptic axon arbor elaboration in vivo. *Nat Neurosci* 2000; **3**: 1004–1011.

24

25

1 68. Merianda TT, Gomes C, Yoo S, Vuppalanchi D, Twiss JL. Axonal localization of
2 neuritin/CPG15 mRNA in neuronal populations through distinct 5' and 3' UTR elements. *J*
3 *Neurosci* 2013; **33**: 13735–13742.

4

5 69. Javaherian A, Cline HT. Coordinated motor neuron axon growth and neuromuscular
6 synaptogenesis are promoted by CPG15 in vivo. *Neuron* 2005; **45**: 505–512.

7

8 70. Bandyopadhyay U, Cotney J, Nagy M, Oh S, Leng J, Mahajan M *et al.* RNA-Seq profiling
9 of spinal cord motor neurons from a presymptomatic SOD1 ALS mouse. *PLoS ONE* 2013; **8**:
10 e53575.

11

12 71. Nijssen J, Aguila J, Hoogstraaten R, Kee N, Hedlund E. Axon-Seq Decodes the Motor Axon
13 Transcriptome and Its Modulation in Response to ALS. *Stem Cell Reports* 2018; **11**: 1565–1578.

14

15 72. Dell'Orco, M. *et al.* HuD regulates SOD1 expression during oxidative stress in differentiated
16 neuroblastoma cells and sporadic ALS motor cortex. *Neurobiology of Disease* 2021; **148**: 105211.

17

18 73. Rosa A, Papaioannou MD, Krzyspiak JE, Brivanlou AH. miR-373 is regulated by TGF β
19 signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells. *Dev Biol*
20 2014. doi:10.1016/j.ydbio.2014.03.020.

21

22 74. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T *et al.* Fiji: an
23 open-source platform for biological-image analysis. *Nat Methods* 2012; **9**: 676–682.

24

1 **FIGURE LEGENDS**

2

3 **Figure 1. Increased HuD levels in human and mouse FUS-mutant MNs.**

4 (A,B) HuD protein levels analysis by western blot in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal
5 MNs (A) and Fus-Δ14 mouse model spinal cord (P81) (B). The molecular weight is indicated on
6 the left. The graphs show the average from 3 independent biological replicates, error bars indicate
7 the standard deviation (panel A: Student's t-test, paired, two tails, *p < 0.05; panel B: ordinary one-
8 way ANOVA, multiple comparisons, **p < 0.01, ns: p > 0.05). TUBB3/Tubb3 signal was used for
9 normalization. (C) HuD mRNA analysis by FISH in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal
10 MNs. The graphs show the average count of *HuD* mRNA puncta per cell from 3 independent
11 differentiation experiments, error bars indicate the standard error of the mean (Student's t-test;
12 paired; two tails; ***p < 0.0001; ns: p > 0.05). (D,E) Combined PURO-PLA (HuD, magenta) and
13 immunostaining (TUBB3, green) analysis in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs (D)
14 and primary MNs from Fus-Δ14 mouse embryos (E12.5-13.5) (E). DAPI (blue) was used for
15 nuclear staining. In panel (D), FUS^{P525L} hiPSC-derived spinal MNs treated with the eukaryotic
16 protein synthesis inhibitor anisomycin (ANISO) were used as negative control of the PURO-PLA.
17 The graphs show the average count of HuD PURO-PLA puncta per cell from 3 independent
18 differentiation experiments (D) and 3 samples (E), error bars indicate the standard error of the mean
19 (panel D: Student's t-test, unpaired, two tails, ***p < 0.0001; panel E: ordinary one-way ANOVA,
20 multiple comparisons, ***p < 0.0001; ns: p > 0.05). Scale bars in panels (C,D,E): 10 μm.

21

22 **Figure 2. FMRP and FUS^{P525L} compete for HuD 3'UTR binding**

23 (A) Western blot analysis of the FMRP RIP assay. In: input; IgG: control immunoprecipitation with
24 rabbit monoclonal anti-human IgG antibody; IP: samples immunoprecipitated with an anti-FMRP
25 antibody. The molecular weight is indicated on the left. (B) Analysis of *MAP1B* (positive control),
26 *ATP5O* (negative control) and *HuD* mRNA levels by real time qRT-PCR in samples from FUS^{WT}

1 (top) or FUS^{P525L} (bottom) hiPSC-derived spinal MNs. The graph shows the relative enrichment of
2 the mRNAs pulled down by FMRP, reported as the percentage of input, in IP or control IgG
3 samples, after normalization with an artificial spike RNA. The graphs show the average from 5
4 independent differentiation experiments and error bars indicate the standard deviation (Student's t-
5 test; unpaired; two tails; *p < 0.05; **p < 0.01). For anti-FMRP IP samples, yellow dots are related
6 to samples immunoprecipitated with the ab17722 antibody and orange dots to samples
7 immunoprecipitated with the f4055 antibody. (C) Schematic representation of the *HuD* transcript.
8 The 3 regions of the 3'UTR (F1, F2, F3) used for in vitro binding assays are shown. (D) The *in*
9 *vitro* binding assay was performed by incubating biotinylated transcripts corresponding to *HuD*
10 3'UTR regions F1, F2 or F3, or a portion of the Renilla luciferase coding sequence used as negative
11 control (Neg. C), with HeLa cytoplasmic extract, followed by pull-down with streptavidin-
12 conjugated beads. Western blot analysis was then performed with anti-FMRP antibody to detect
13 FMRP binding. Anti-GAPDH was used as negative control. Input: 10% of the pull-down input
14 sample. On the right, histogram showing quantification from 3 independent experiments. Values
15 were calculated as fraction of Input (Student's t-test; paired; two tails; **p < 0.01; ns: p > 0.05). (E)
16 The *in vitro* FMRP binding assay was repeated in presence of purified recombinant FUS proteins.
17 F1 and F2 biotinylated transcripts were incubated with HeLa extract and purified RFP-flag-FUS^{P525L}
18 (indicated as P525L) or an RNA-binding deficient mutant derived from RFP-flag-FUS^{P525L}
19 (indicated as P525L 4F-L). Western blot analysis was performed after pull-down with streptavidin-
20 conjugated beads with anti-FMRP, anti-flag or anti-GAPDH antibody. Input: 10% of the pull-down
21 input sample. Bottom: histograms showing quantification from 3 independent experiments. Values
22 were calculated as fraction of Input and normalized to P525L (Student's t-test; paired; two tails; *p
23 < 0.05; **p < 0.01).

24

25 **Figure 3. FMRP is a post-transcriptional repressor of *HuD* expression**

1 (A) Analysis of the protein levels of the indicated genes by western blot in FMRP^{WT} and FMRP^{KO}
2 hiPSC-derived spinal MNs. The molecular weight is indicated on the left. The graphs show the
3 average from 3 independent differentiation experiments, error bars indicate the standard deviation
4 (Student's t-test; paired; two tails; *p < 0.05). TUBB3 signal was used for normalization. (B)
5 Analysis of the mRNA levels of the indicated genes by real-time qRT-PCR in FMRP^{WT} and
6 FMRP^{KO} hiPSC-derived spinal MNs. For each experiment, values are shown as relative to the
7 isogenic FMRP^{WT} control, set to a value of 1. The graph shows the average from 3-5 independent
8 differentiation experiments, error bars indicate the standard deviation (Student's t-test; paired; two
9 tails; p values are indicated; ns: p > 0.05). (C) Luciferase assay in HeLa cells expressing RFP, RFP-
10 FUS^{WT} or RFP-FUS^{P525L} and transfected with the Renilla luciferase reporter construct containing the
11 *HuD* 3'UTR (RLuc-*HuD* 3'UTR) alone (Mock) or in combination with plasmids overexpressing
12 FMRP or eGFP as a control (Student's t-test; paired; two tails; *p < 0.05; ***p < 0.001; ns: p >
13 0.05). The drawing on the right depicts the competition between mutant FUS and FMRP for *HuD*
14 3'UTR binding and its effects on the reporter construct.

15

16 **Figure 4. Axonal phenotypes in hiPSC-derived spinal MNs**

17 (A) Representative images, generated with the Skeleton plugin of ImageJ, showing axons of FUS^{WT}
18 and FUS^{P525L} human iPSC-derived MNs in the axon chamber of compartmentalized chips. Scale
19 bar: 100 μ m. (B) Quantitative analysis of the number of axon branches and branch points in cells
20 shown in (A). The graphs show the average from 3 independent differentiation experiments, error
21 bars indicate the standard error of the mean (Student's t-test; unpaired; two tails; ****p < 0.0001).
22 (C-E) Immunostaining of TUBB3 (green) in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs
23 cultured in compartmentalized chips and allowed to recover for 30 hours after the indicated
24 treatments to induce axotomy in the axon chamber. Scale bar: 50 μ m. Graphs on the right show
25 quantitative analysis of axon length from 3 independent differentiation experiments; error bars
26 indicate the standard error of the mean (Student's t-test; unpaired; two tails; ****p < 0.0001).

1

2 **Figure 5. Axonal phenotypes in primary spinal MNs from Fus-Δ14 mouse models**

3 (A) Representative images, generated with the Skeleton plugin of ImageJ, showing axons of Fus^{+/+},
4 and heterozygous (Fus^{Δ14/+}) or homozygous (Fus^{Δ14/Δ14}) FUS mutant mouse primary MNs in the
5 axon chamber of compartmentalized chips. Scale bar: 100 μ m. (B) Quantitative analysis of the
6 number of axon branches and branch points in cells shown in (A). The graphs show the average
7 from 3 biological replicates, error bars indicate the standard error of the mean (Ordinary one-way
8 ANOVA; multiple comparisons; ***p < 0.0001). (C) Immunostaining of Tubb3 (green) in Fus^{+/+},
9 Fus^{Δ14/+} and Fus^{Δ14/Δ14} mouse primary MNs cultured in compartmentalized chips and allowed to
10 recover for 30 hours after trypsin treatment to induce axotomy in the axon chamber. Scale bar: 100
11 μ m.

12

13 **Figure 6. NRN1 levels are increased in mutant FUS MNs**

14 (A) Analysis of the mRNA levels of the indicated genes by real time qRT-PCR in FUS^{WT}, FUS^{P525L}
15 and FUS^{WT} overexpressing HuD or RFP, as a control, under the SYN1 promoter (FUS^{WT}+HuD and
16 FUS^{WT}+RFP) hiPSC-derived spinal MNs. The graph shows the average from 3 or 4 independent
17 differentiation experiments, error bars indicate the standard deviation (Student's t-test; paired; two
18 tails; *p < 0.05; **p < 0.01; ***p < 0.001; ns: p > 0.05). (B) NRN1 mRNA analysis by FISH (red)
19 in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs. DAPI (blue) was used for nuclear staining.
20 Scale bar: 10 μ m. Graphs show the average count of HuD mRNA puncta per cell and the puncta
21 intensity from 3 independent differentiation experiments, error bars indicate the standard error of
22 the mean (Student's t-test; unpaired; two tails; ***p < 0.0001). (C,D) NRN1 protein levels
23 analysis by western blot in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs (C) and Fus-Δ14 mouse
24 model spinal cord (D). The molecular weight is indicated on the left. The graphs show the average
25 from 3 independent biological replicates, error bars indicate the standard deviation (Ordinary one-
26 way ANOVA; multiple comparisons; *p < 0.05). (E) Immunostaining analysis of NRN1 in axons of

1 FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs. The graph shows the NRN1 signal intensity from 4
2 replicates from 2 differentiation experiments, error bars indicate the standard error of the mean
3 (Student's t-test; unpaired; two tails; ***p < 0.0001).

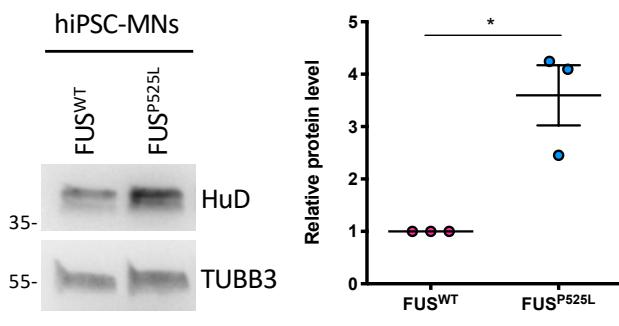
4

5 **Figure 7. GAP43 levels are increased in mutant FUS MNs**

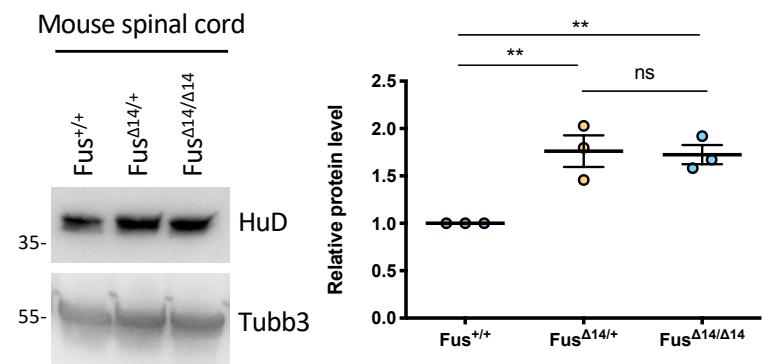
6 (A) GAP43 mRNA analysis by FISH (red) in FUS^{WT}, FUS^{P525L} and FUS^{WT} overexpressing HuD
7 under the Syn1 promoter (FUS^{WT}+HuD) hiPSC-derived spinal MNs. The graphs show the average
8 count of HuD mRNA puncta per cell from 3 independent differentiation experiments, error bars
9 indicate the standard error of the mean (Student's t-test; unpaired; two tails; ***p < 0.0001). DAPI
10 (blue) was used for nuclear staining. Scale bar: 10 μ m. (B) GAP43 protein levels analysis by
11 western blot in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs. The molecular weight is indicated
12 on the left. The graph shows the average from 3 independent differentiation experiments and error
13 bars indicate the standard deviation (Student's t-test; paired; two tails; *p < 0.05). TUBB3 signal
14 was used for normalization. (C) Gap43 protein level analysis by western blot in mouse primary
15 spinal MNs (P81). The molecular weight is indicated on the left. The graphs show the average from
16 3 mice and error bars indicate the standard deviation. The differences are not significant for all pairs
17 (ordinary one-way ANOVA; multiple comparisons). Tubb3 signal was used for normalization. (D)
18 Immunostaining analysis in FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs growth cones. GAP43
19 signal is magenta; PHALLOIDIN signal (marking growth cones) is green, TYR-TUBULIN
20 (tyrosinated alpha-tubulin; marking axons) is white. Scale bar: 10 μ m. The graph shows the GAP43
21 signal intensity from 3 differentiation experiments, error bars indicate the standard error of the
22 mean (Student's t-test; paired; two tails; ***p < 0.0001)

23

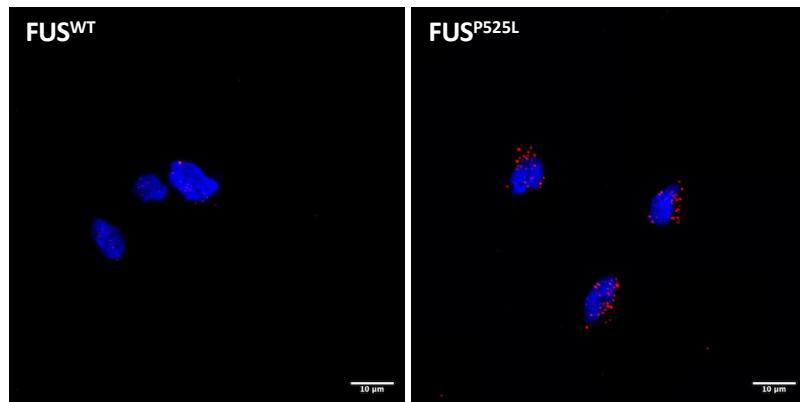
24 **Figure 8. NRN1 knockdown rescues the aberrant axon growth phenotype in mutant FUS MNs**

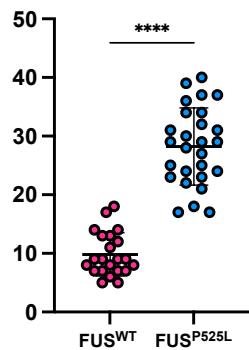

25 (A) Analysis of the mRNA levels of the indicated genes by real time qRT-PCR in untransfected
26 FUS^{WT} and FUS^{P525L} hiPSC-derived spinal MNs and FUS^{P525L} hiPSC-derived spinal MNs transfected

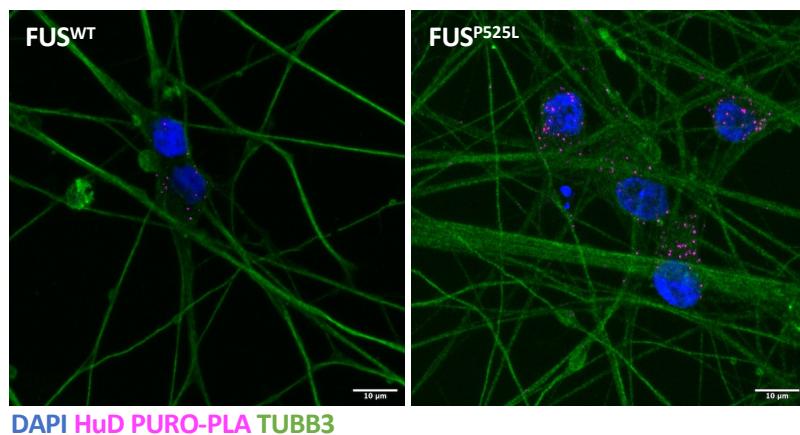
1 with non-targeting control siRNAs or siRNAs targeting NRN1. The graph shows the average from
2 3 independent transfection experiments, error bars indicate the standard deviation (Student's t-test;
3 paired; two tails; *p < 0.05; ns: p > 0.05). (B) Representative images, generated with the Skeleton
4 plugin of ImageJ, showing axons of FUS^{P525L} human iPSC-derived MNs, transfected with the
5 indicated siRNA pools, in the axon chamber of compartmentalized chips. Scale bar: 100 μ m. (C)
6 Quantitative analysis of the number of axon branches and branch points. Immunostaining of
7 TUBB3 was carried out 5 days after transfection of the indicated siRNA pools in FUS^{P525L} human
8 iPSC-derived MNs cultured in compartmentalized chips. The graphs show the average from 5
9 independent transfections of non-targeting or NRN1 siRNAs from 3 differentiation experiments,
10 error bars indicate the standard error of the mean (Student's t-test; unpaired; two tails; ****p <
11 0.0001). (D) Immunostaining of TUBB3 (green) in FUS^{P525L} hiPSC-derived spinal MNs cultured in
12 compartmentalized chips, transfected with non-targeting control siRNAs or siRNAs targeting
13 NRN1, treated with trypsin in the axon chamber to induce axotomy after 24 hours, and allowed to
14 recover for 24 hours. DAPI (blue) was used for nuclear staining. Scale bar: 100 μ m. (E) Graph
15 showing quantitative analysis of axon length in MNs treated as in (D) from 7 independent
16 transfections of non-targeting or NRN1 siRNAs from 2 differentiation experiments, error bars
17 indicate the standard error of the mean (Student's t-test; unpaired; two tails; ****p < 0.0001).
18

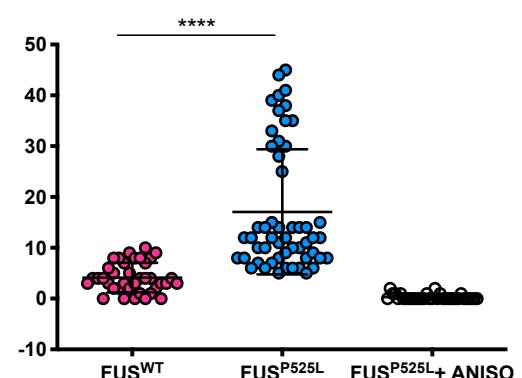

19 **Figure 9. Model**

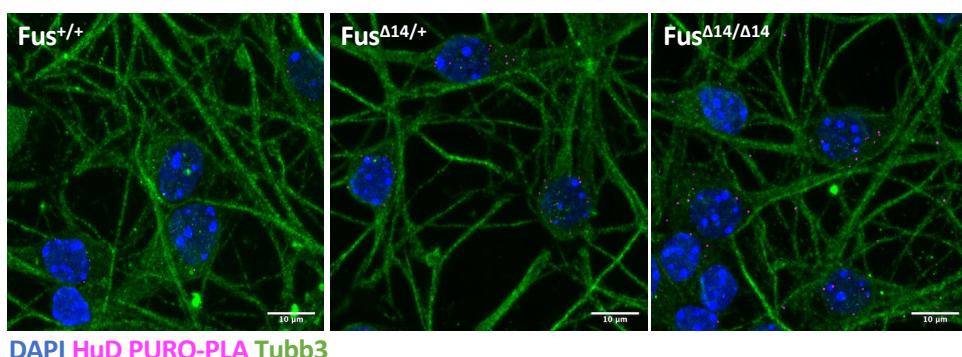
20 The figure depicts a model of the competition between mutant FUS and FMRP for HuD 3'UTR
21 binding. In FUS^{WT} MNs (top), the FUS protein is predominantly localized in the nucleus. In the
22 cytoplasm, FMRP binds HuD 3'UTR repressing its translation. NRN1 mRNAs are destabilized. In
23 FUS^{P525L} MNs, mutant FUS is partially delocalized to the cytoplasm and outcompetes FMRP
24 binding on the HuD 3'UTR. As a consequence, increased HuD protein levels accumulate in FUS
25 mutant MNs. HuD binding to NRN1 and GAP43 3'UTR leads to stabilization of these transcripts
26 and higher protein levels. NRN1 increase underlies the aberrant axonal growth phenotypes.

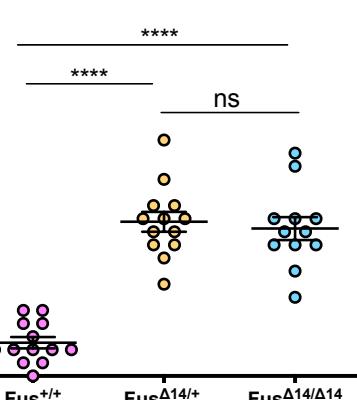

A


B

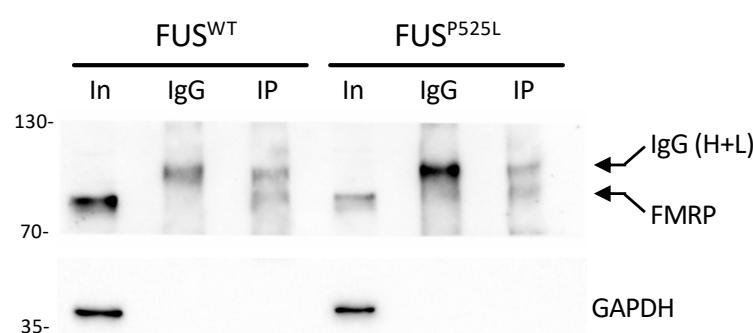

C


HuD mRNA puncta/cell

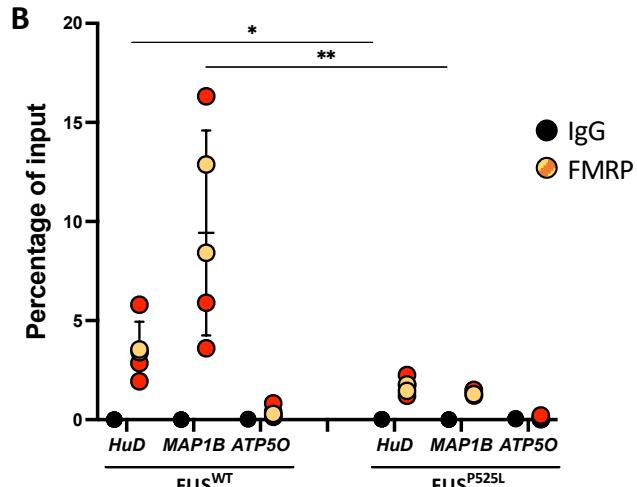

D


PURO-PLA puncta/cell

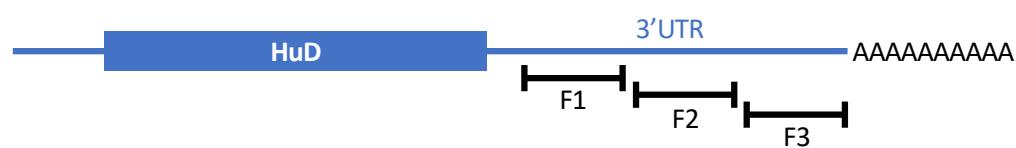
E

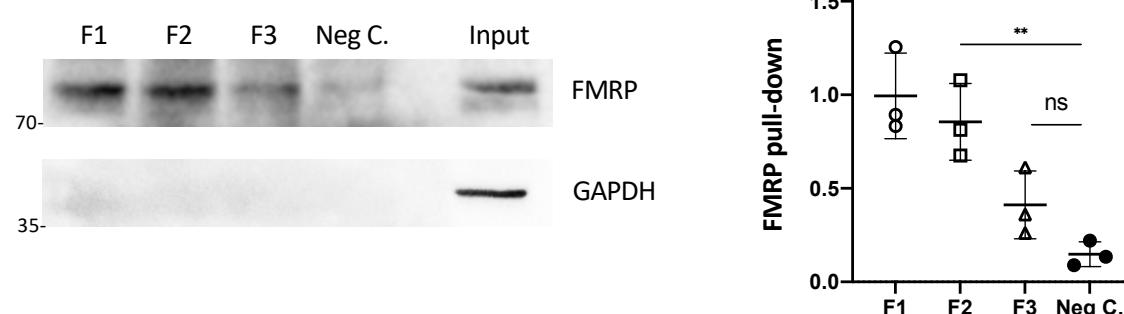


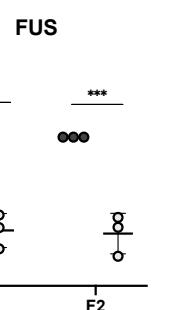
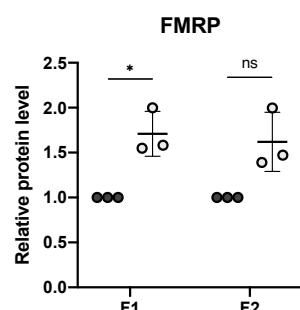
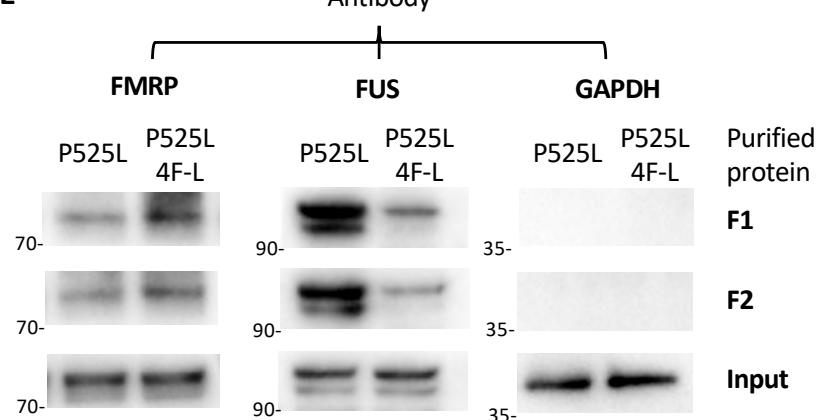
PURO-PLA puncta/cell

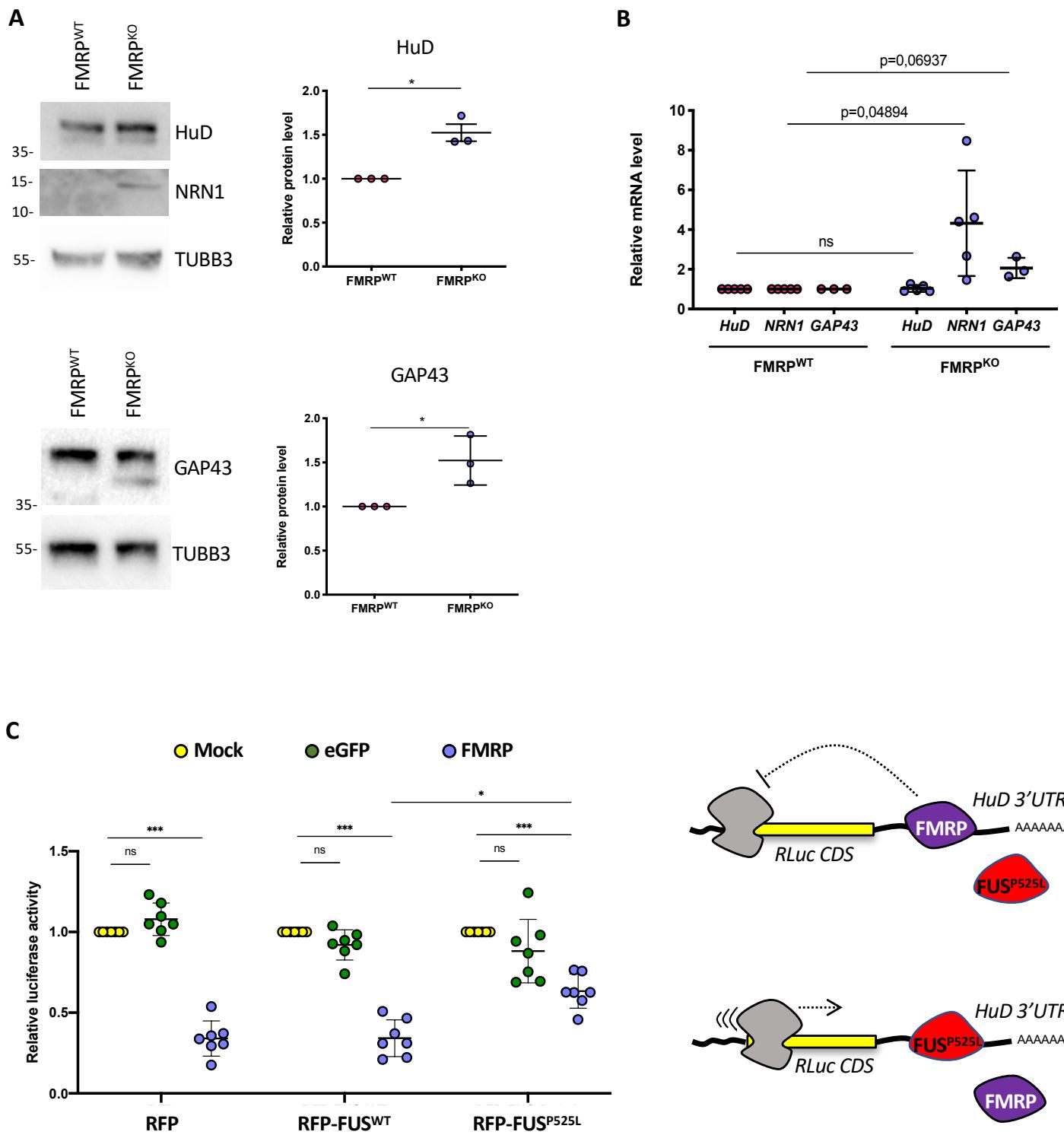


Garone et al. 2021_R2

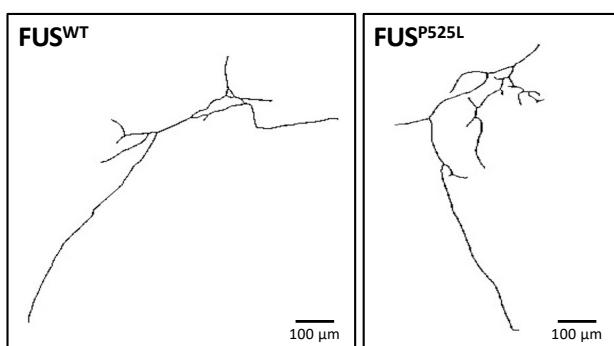

A


B

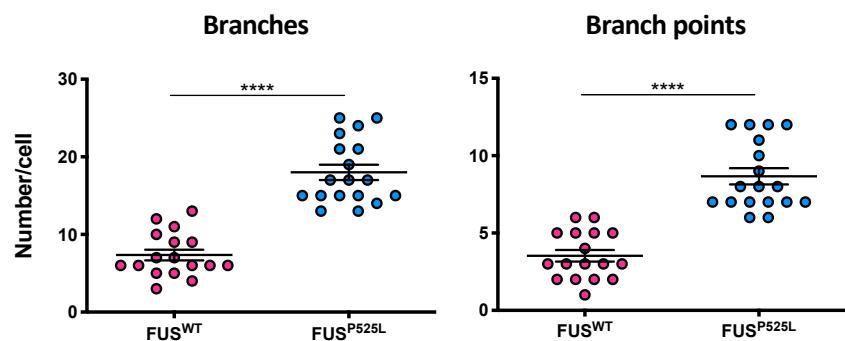



C


D

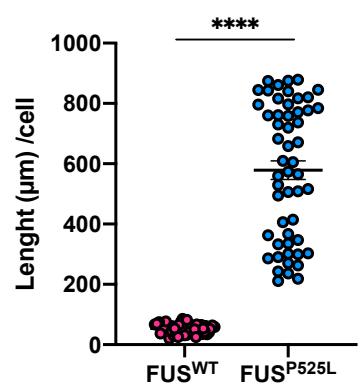
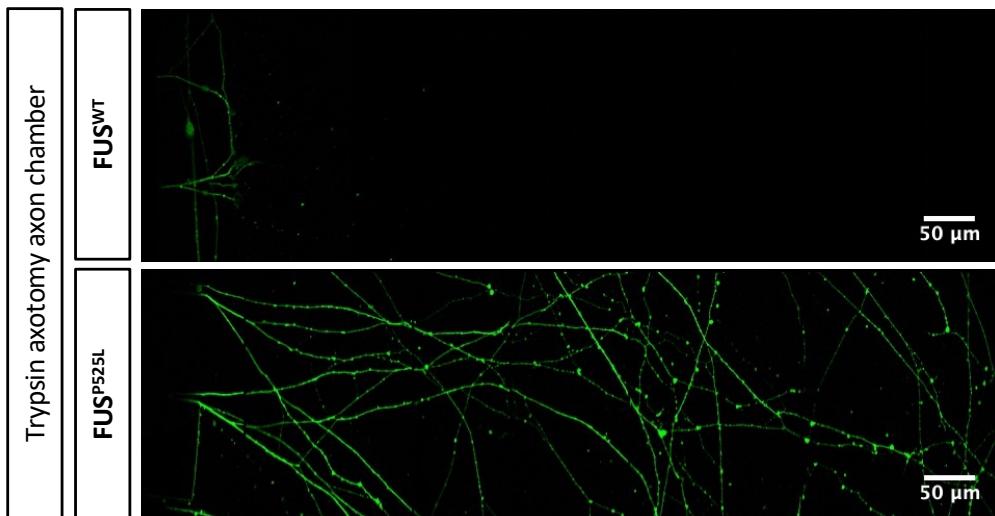
E

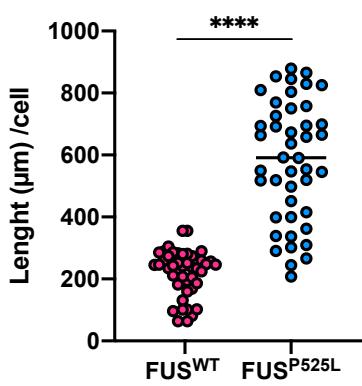
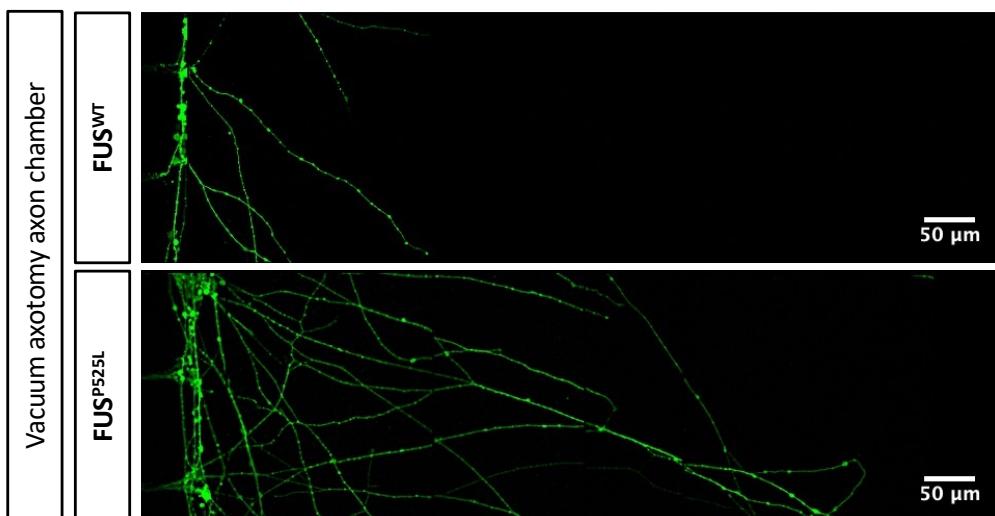


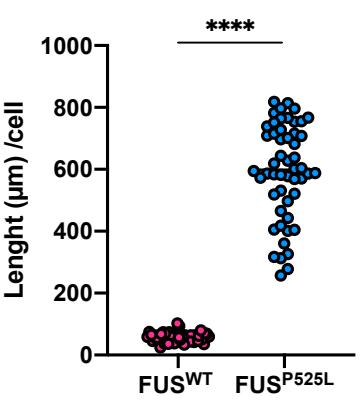
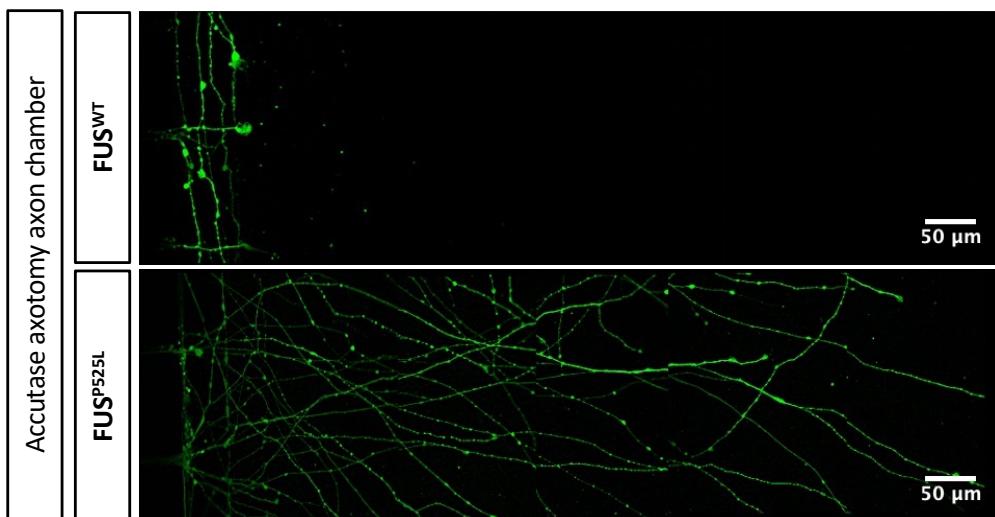
Garone et al. 2021_R2



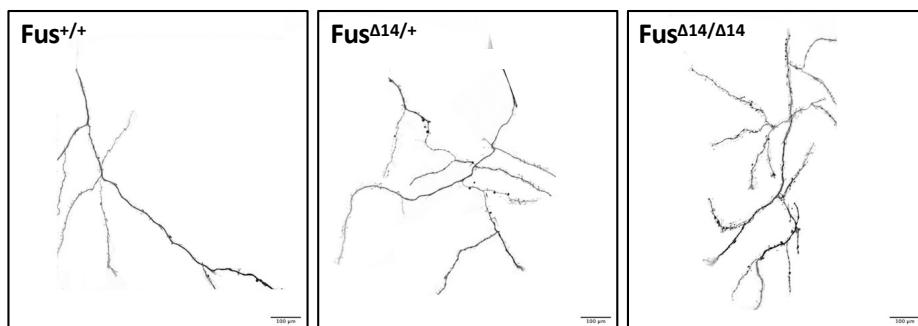
Garone et al. 2021_R2



A

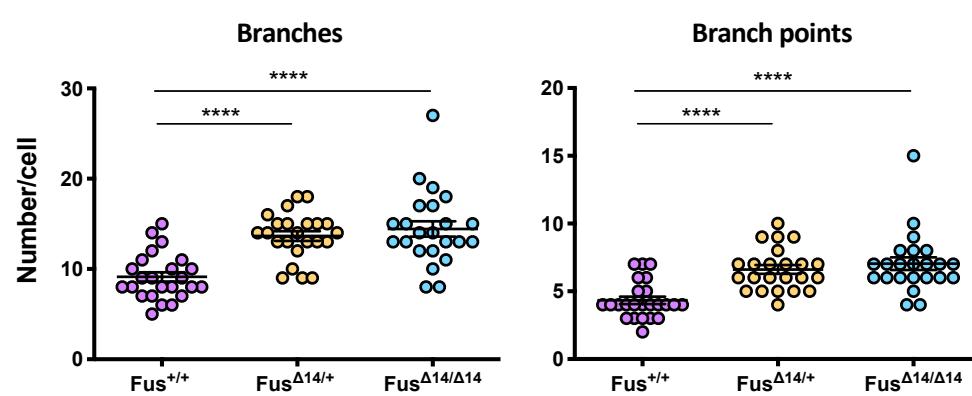


B



C

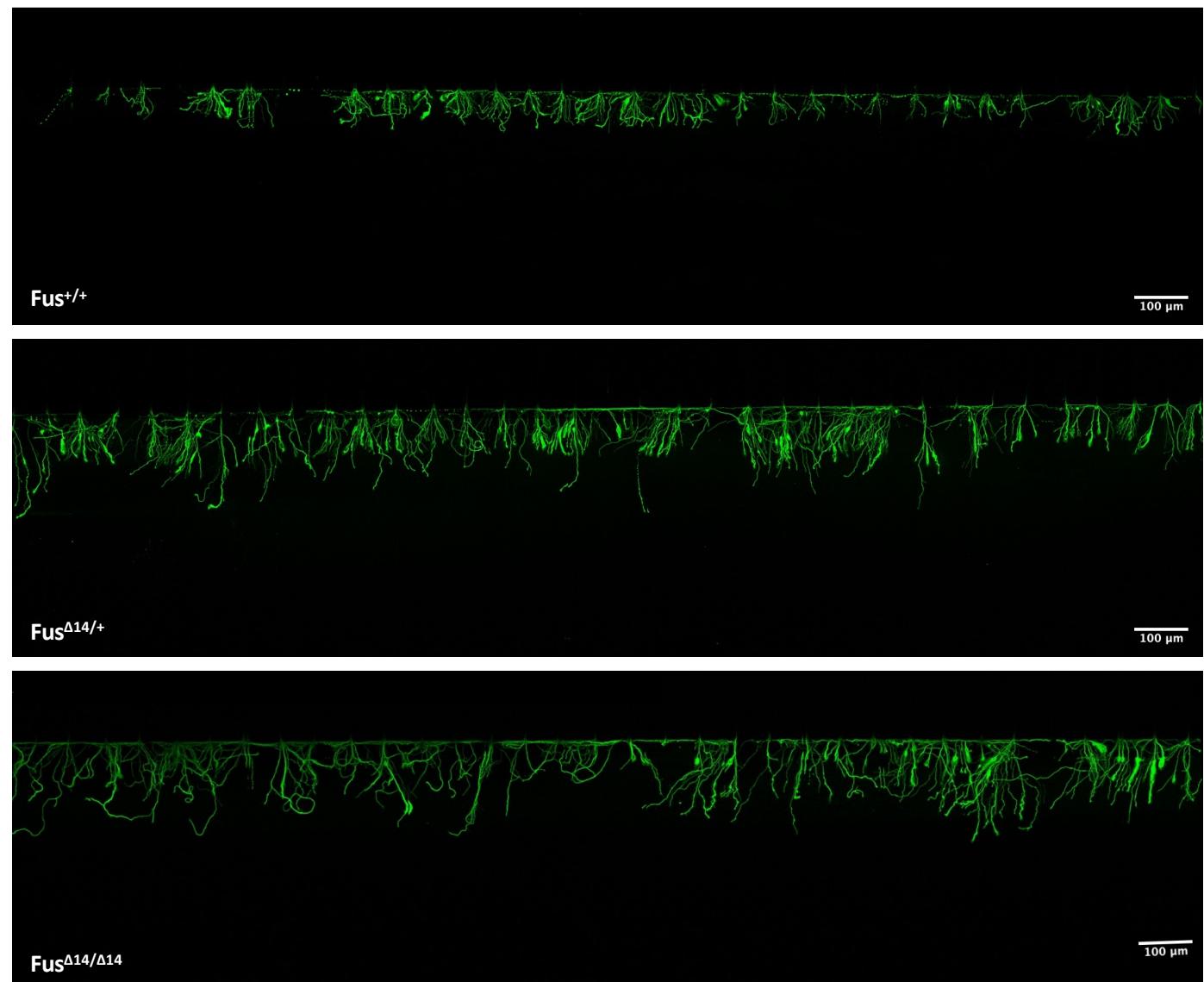
D

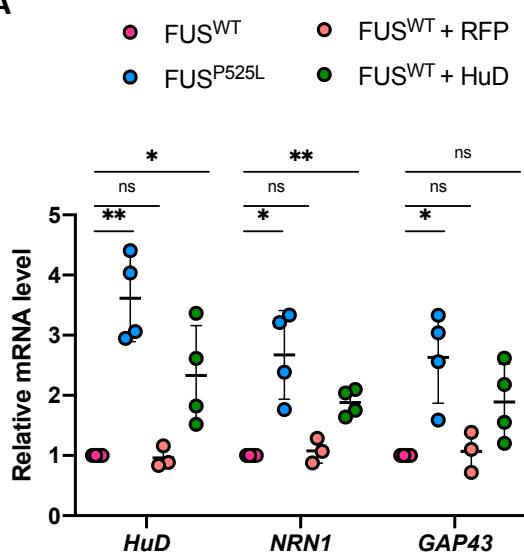


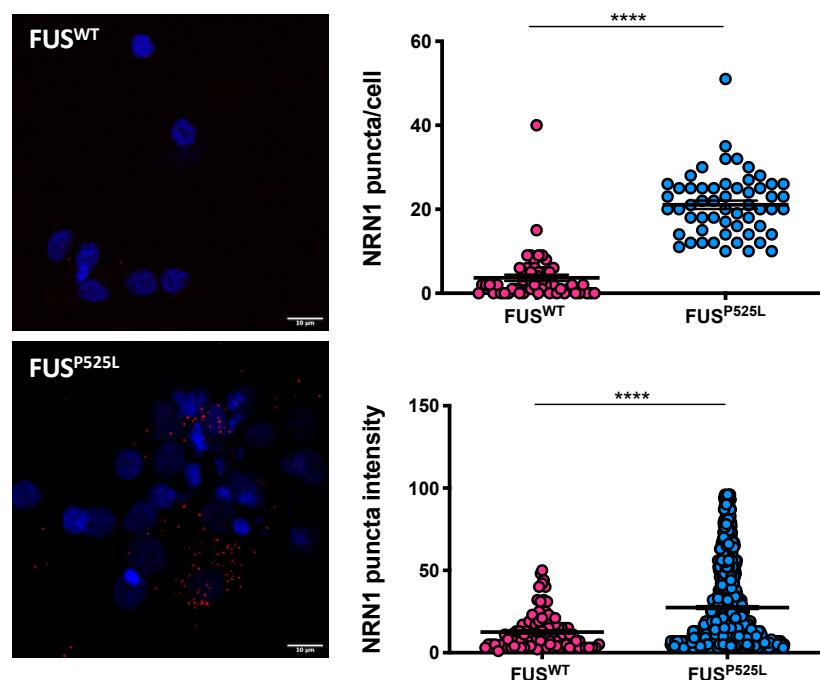
E

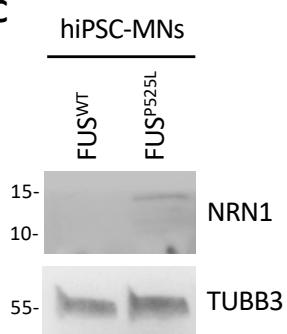


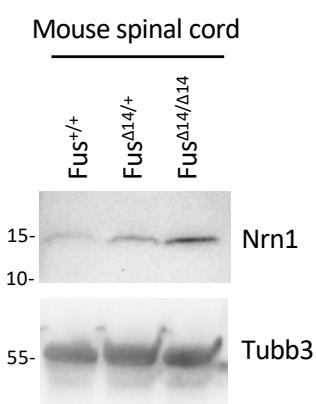
Garone et al. 2021_R2

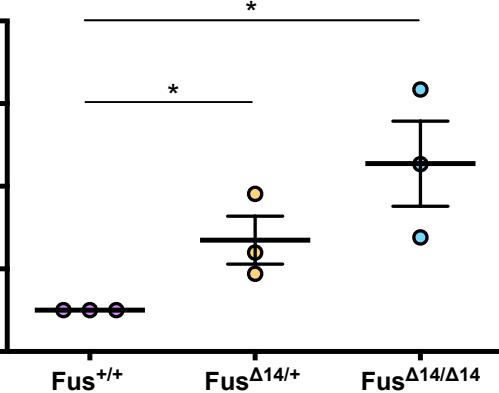

A

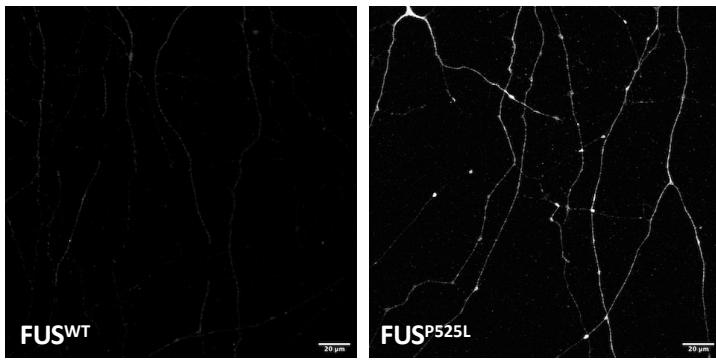

B

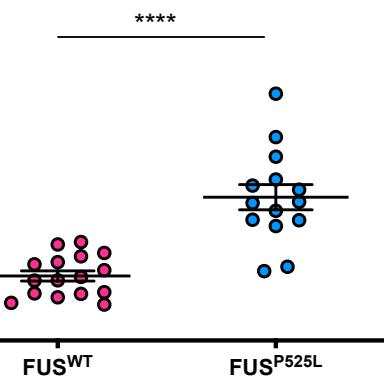

C


A

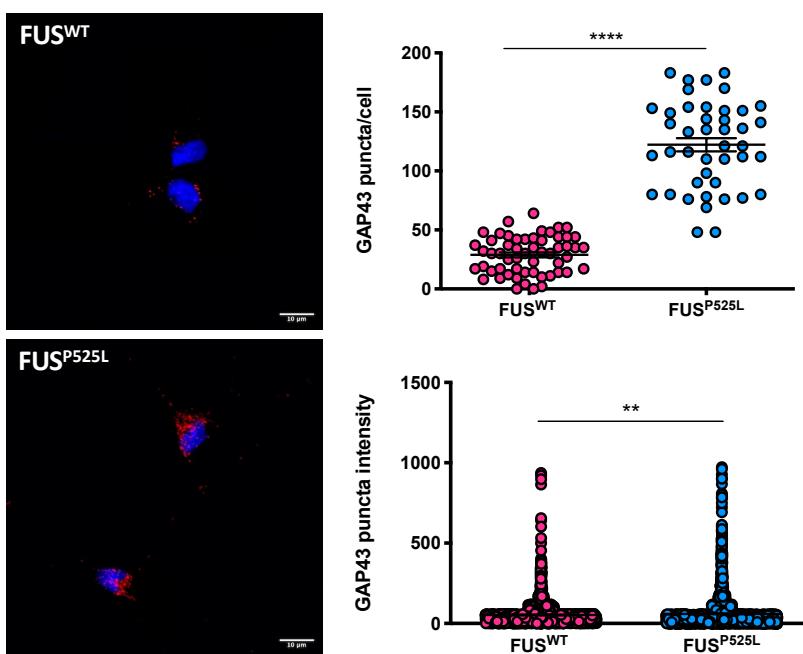

B


C

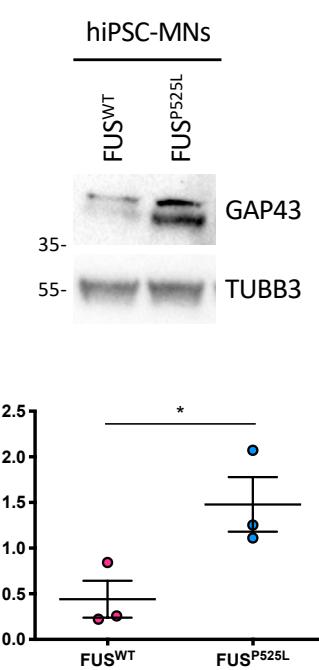

D


Relative protein level

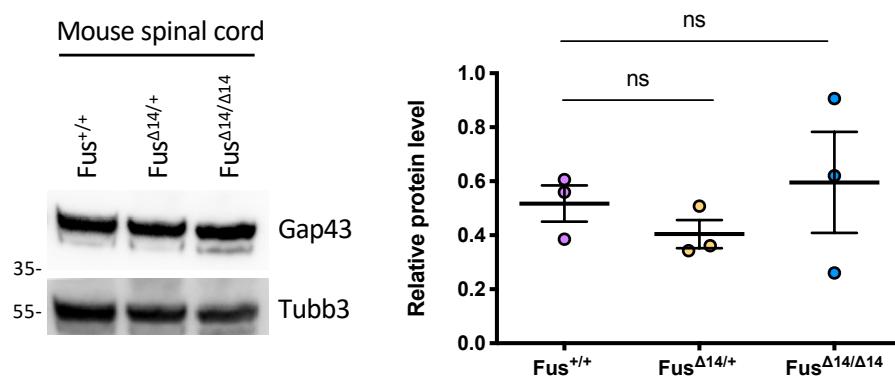
E

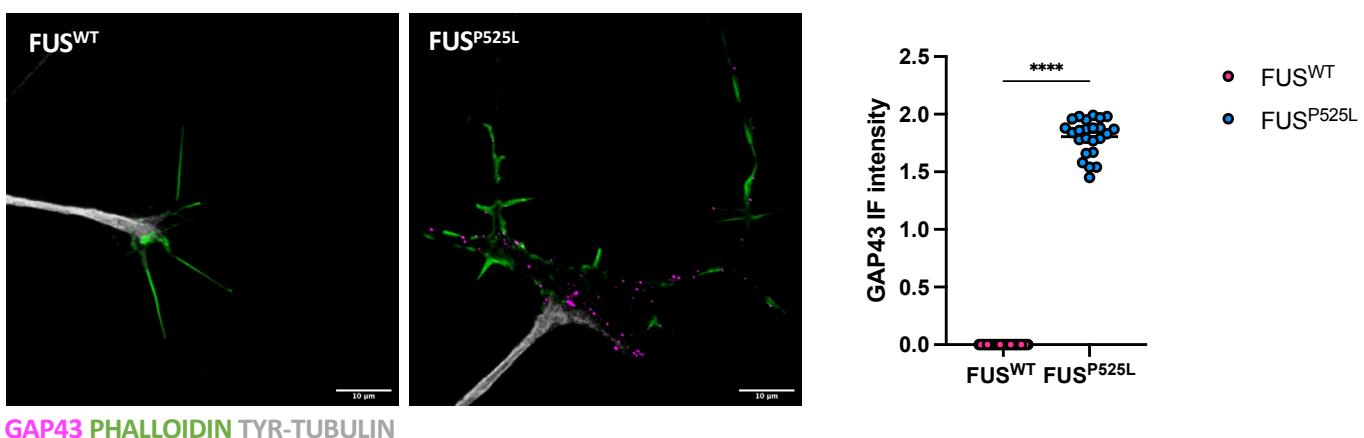


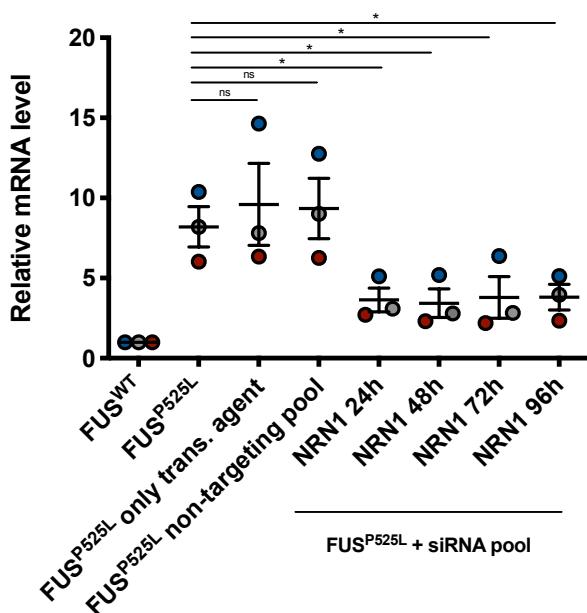
NRN1 IF intensity

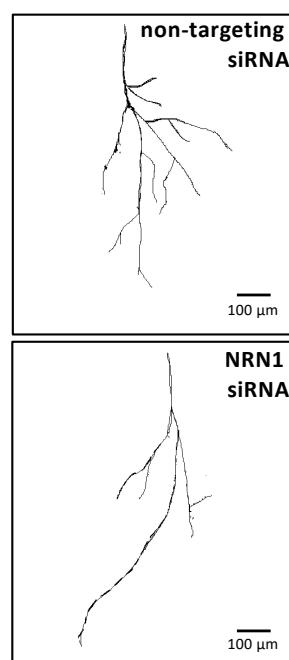


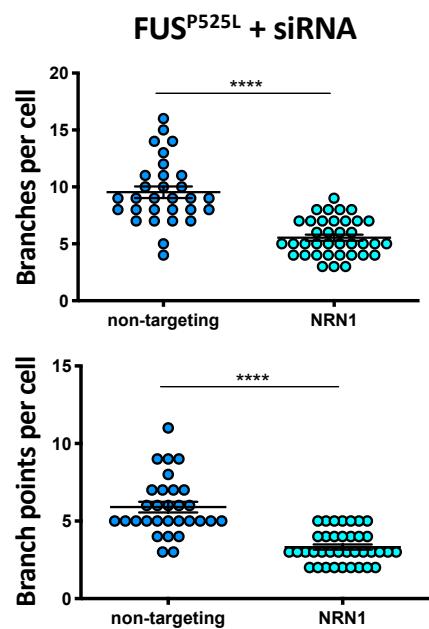
Garone et al. 2021_R2

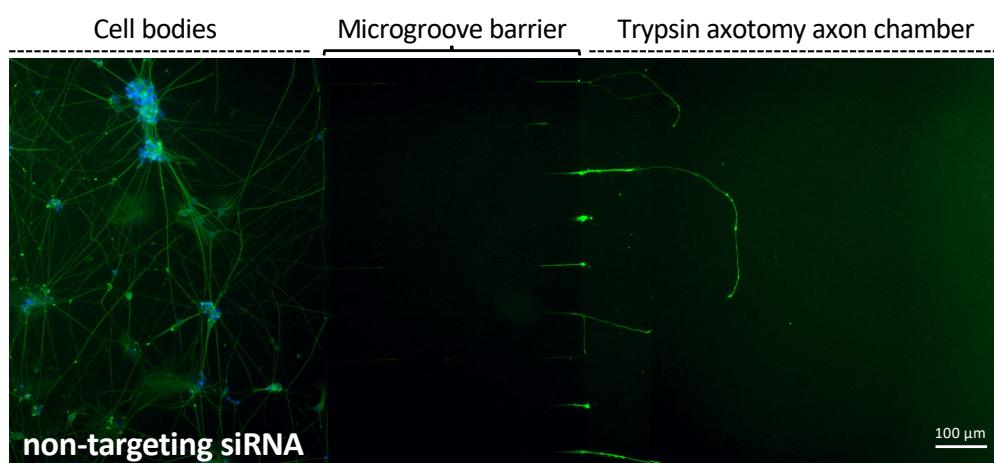

A

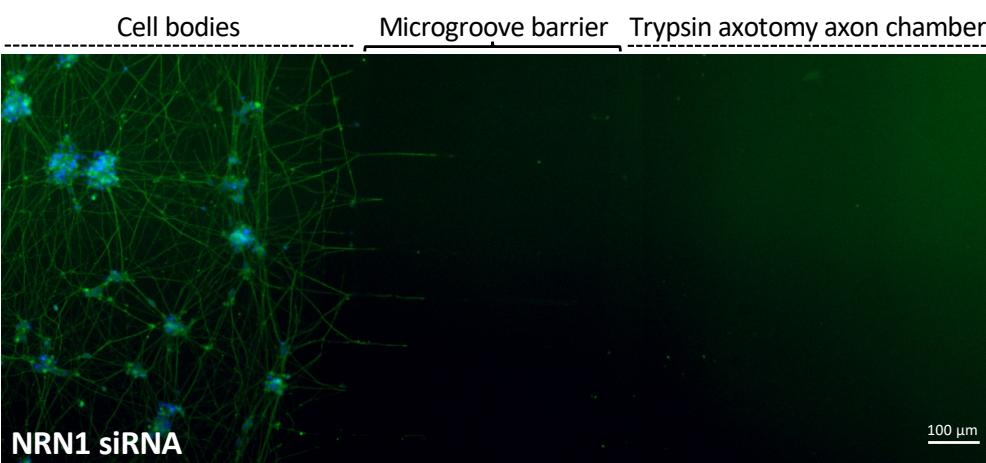
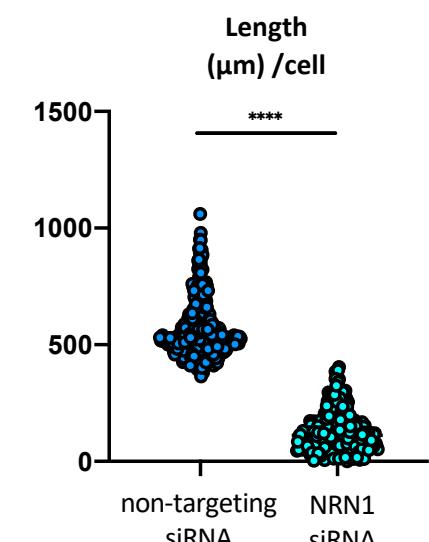

B

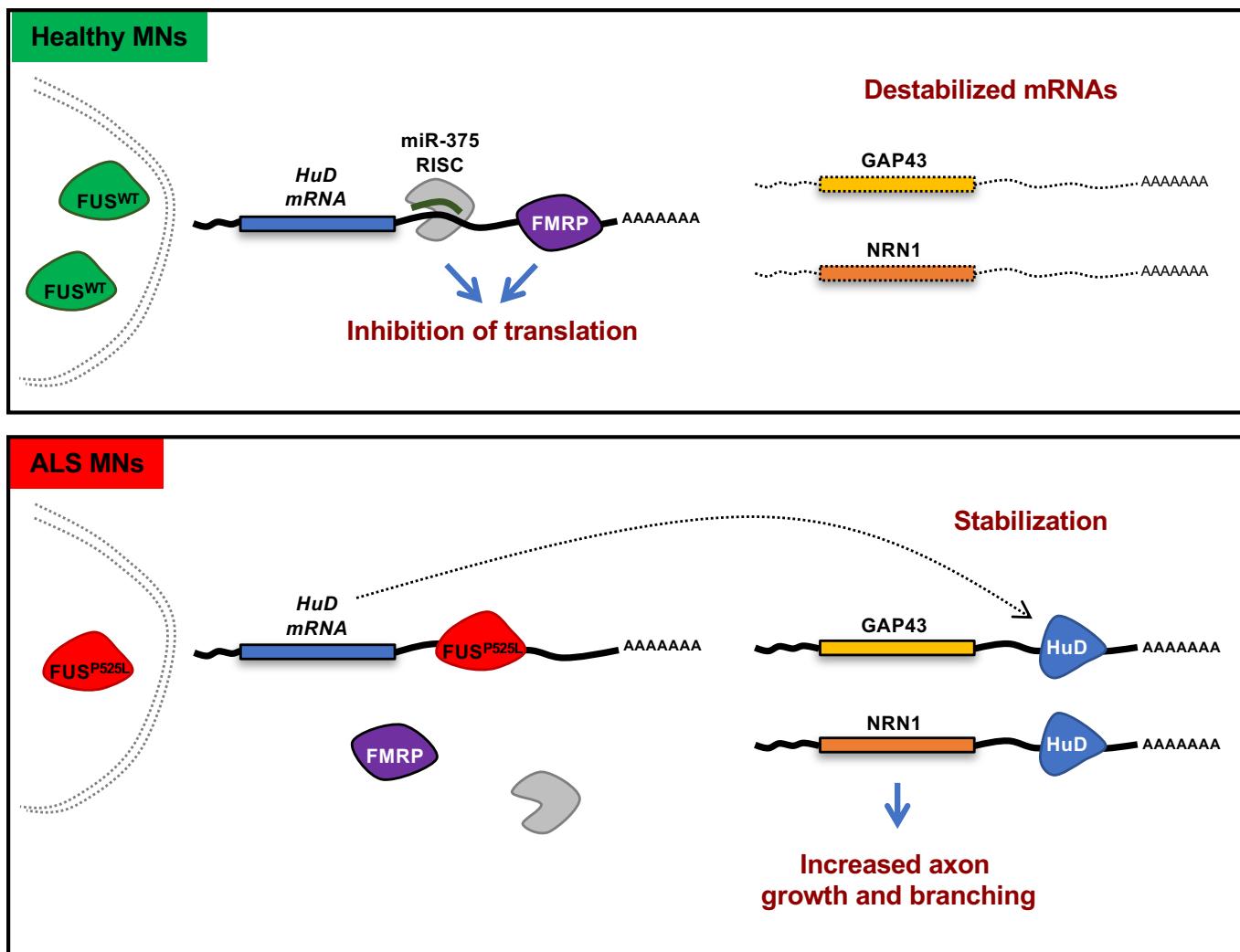

C


D


A


B



C



D

E

