10

15

20

25

30

35

40

45

50

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Multithreaded two-pass connected components labelling and particle analysis in ImageJ
Michael Doube!

1. Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong SAR

Abstract

Sequential region labelling, also known as connected components labelling, is a standard image
segmentation problem that joins contiguous foreground pixels into blobs. Despite its long
development history and widespread use across diverse domains such as bone biology, materials
science, and geology, connected components labelling can still form a bottleneck in image
processing pipelines. Here, I describe a multithreaded implementation of classical two-pass
sequential region labelling and introduce an efficient collision resolution step, ‘bucket fountain’.
Code was validated on test images and against commercial software (Avizo). It was performance
tested on images from 2 MB (161 particles) to 6.5 GB (437,508 particles) to determine whether
theoretical linear scaling (O(n)) had been achieved, and on 1 — 40 CPU threads to measure speed
improvements due to multithreading. The new implementation achieves linear scaling (b = 0.905 —
1.052, time o pixels"; R* = 0.985 — 0.996), which improves with increasing thread number up to 8-
10 threads, suggesting that it is memory bandwidth limited. This new implementation of sequential
region labelling reduces the time required from hours to a few tens of seconds for images of several
GB, and is limited only by hardware scale. It is available open source and free of charge in Bonel.

Introduction

Region labelling is a standard segmentation problem in 2D and 3D image processing, in which
groups of pixels that form contiguous domains are identified and each discrete domain is given a
unique label [1]. Region labelling is needed across disciplines, for example to identify pores in
sintered polymers [2], soil [3], rock [4,5], cement [6], noodle dough [7], teeth [8] or bone [9], from
images obtained by modalities such as X-ray microtomography (XMT), confocal microscopy, or
serial sectioning microscopy. It is also useful to perform region labelling to remove small particles
from images prior to calculating the Euler characteristic of a connected structure, for example to
calculate trabecular bone’s connectivity density (Conn.D), a measure of the number of trabecular
struts [10]. XMT images on contemporary instruments are often circa 20483 pixels, or larger after
stitching of projections or image stacks. Parallelised connected components labelling algorithms
have existed for at least the last 30 years [11,12], yet slow region labelling can still be an
obstruction to measuring features of interest in a timely manner, especially on large 3D image data.

Various multithreaded, chunked, single-threaded and mapped region labelling algorithms were
included in BoneJ [13] from its earliest releases and improvements made in subsequent years. The
starting point for these algorithms was the 3D Object Counter ImageJ plugin [14] published open
source by Cordelieres and Jackson (reported in [15]). The 3D Object Counter was a naive and
recursive implementation that scaled as ~O(n?) because every time a label change occurred, all the
image pixels were iterated to update matching labels. For small images of the order a few tens of
MB, processing times were tolerable, but for larger images of hundreds of MB and above,
processing times became prohibitive.

Alternative approaches that avoid recursion such as breadth-first and depth-first flood fill
algorithms [1] record the coordinates of foreground pixels and may function adequately for small
images, but used on large images can consume a prohibitive amount of memory. In these
algorithms, every 1-byte foreground pixel is represented by 12 bytes of coordinate data (3
dimensions X 4-byte integers), which can easily exceed available system memory for larger images.
More complex two-pass approaches record collisions between neighbouring pixel subregions during

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

55

60

65

70

75

80

85

90

95

100

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

the first pass, resolve the collisions in an intermediate step, and merge connected subregions in the
second pass. The network of collisions may be visualised as a graph, with subregion labels as nodes
and the collision as an edge connecting two adjacent subregion labels [1]. Because each pixel is
accessed a fixed number of times, two-pass approaches have the potential to scale linearly (as O(n))
and thus perform well on large data, provided that label collision resolution is efficient.
Improvements to linear speed should also be possible by multithreading the two pass algorithm,
however, collisions between threads during label collision recording and resolution require either
synchronisation of data access or careful design to ensure threads never read and write the same
data at the same time.

This report proposes a multithreaded implementation of two-pass sequential region labelling with
efficient collision resolution and tests the hypotheses 1) that linear scaling (O(n)) is achieved and 2)
that further linear speed improvements may be achieved as number of processor threads increases.

Installation and code availability

The current implementation has been developed in the Java programming language for the popular
scientific image processing platform ImageJ [16]. The simplest and recommended way to install the
software is by installing the Fiji Is Just ImageJ (Fiji) [17] bundle from https://fiji.sc/, and adding the
BoneJ update site to Fiji according to the instructions at https://imagej.github.io/BonelJ. This installs
the command Particle Analyser in the user menus, which can be found using the keyboard shortcut
[L] or using the search bar in the ImageJ GUI.

Code changes are tracked using Git [18], and published at GitHub
(https://github.com/bonej-org/BoneJ2), while release version code is archived at Zenodo under a
BSD 2-clause licence (see Data Availability). In BoneJ1, all methods were contained in a single
class, ParticleCounter. The current release achieves separation of concerns by creating three new
classes: ConnectedComponents (labels regions); ParticleAnalysis (measures region features);
ParticleDisplay (handles graphical output); leaving ParticleCounter as a ‘master’ plugin that
coordinates user input and output with ImageJ’s API and the 3 new classes. ConnectedComponents
is intended to be reused by other ImageJ plugins via its public run() method.

Description of the algorithm

Input data

The algorithm expects a 2D or 3D image that has been segmented into foreground and background.
In Image]J this is an 8-bit binary image that contains only 0 and 255. Other numbers of dimensions
could conceivably work with the current approach, provided that suitable neighbourhoods and
multithreading chunking strategies are devised.

First pass

The first pass proceeds as described in the classical algorithm [1] with some important variations.
An ID value is initialised with a value of 1 to increment region labels. Label 0 is reserved for
background. A neighbourhood that reads only the previously-visited pixels iterates through all the
pixels in a raster pattern, labelling the current foreground pixel with the smallest label value found
among the neighbouring pixels. Only the 4 pixels new to the 13-neighbourhood are read from the
label image and the other 9 pixels are reused by shifting them one to the left in the neighbourhood
array. If no smaller label than ID is found, the current pixel is set to ID and ID incremented by 1.
Label pixels are stored in a primitive integer array that has the same dimensions as the input
image (Fig 1a).

In preparation for later collision resolution, the neighbourhood pixel values are added to a
ArrayList of HashSets, which can be visualised as a column of numbered buckets (Fig. 1b).
Java’s standard ArrayList and HashSet were replaced by the more efficient MutableList and

https://fiji.sc/
https://github.com/bonej-org/BoneJ2
https://imagej.github.io/BoneJ
https://fiji.sc/
https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

105

110

115

120

125

130

135

140

145

150

155

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

IntHashSet implementations from Eclipse Collections [19], and are referred to for the remainder of
this document as ArrayList and HashSet because the functionality is the same as Java’s. The
position (index) of a bucket (HashSet) in the column (ArrayList) relates to a region label. The
contents of each bucket are neighbouring labels. Each bucket is initialised containing one label
matching the bucket’s position in the column. During the first pass, the bucket with its position
matching each neighbour pixel is looked up and the current pixel’s label added to it. An efficiency is
gained by skipping background neighbours, neighbours matching the current pixel, and neighbours
that are the same as the last neighbour to be added . Because the current pixel’s label is always less
than or equal to the neighbours’ labels, buckets receive only labels that have lower values than the
buckets’ positions. Use of HashSets prevents the same label from being added to a bucket more
than once. It is not necessary to store pairs of labels as nodes and edges, as described in the classical
algorithm.

Collision resolution

The presence of labels within a bucket means that all the labels belong to the same region. Although
it helps to consider the underlying graph structure of the labels in a region, there is no need to
reconstruct the specific connections among labels and these individual relations are ignored. If a
label is found in more than one bucket, then the contents of all buckets containing that label can be
aggregated into a single bucket. The first step in this algorithm’s collision resolution allows labels to
flow downwards into lower buckets, merging buckets’ contents on the way, which is somewhat like
the flow of water in the kinetic sculpture Bucket Fountain by Burren & Keen (1969) installed in
Cuba Mall, Wellington, New Zealand. Starting from the highest bucket and proceeding to the lowest
bucket, all the labels in each bucket are checked (Fig 1c-f). If labels are found that are lower than
the bucket’s position, the bucket is emptied into the lower bucket whose position equals the lowest
label in the upper bucket. Later in the iteration the lower bucket will have all its labels checked, and
all of the labels that have accumulated in it from higher buckets may be emptied into another, lower,
bucket. Implementing buckets as HashSets means that each time a bucket pours its labels into
another bucket by the HashSet.addAl11(HashSet) method, redundant labels are eliminated. In the
final state, all the buckets have been checked and the labels in a bucket are all greater than or equal
to the bucket position, which is the opposite to the starting state.

The bucket fountain does not always merge labels that are transitively connected (Fig 1f). A second
step checks consistency by iterating back up through the buckets ensuring that labels are always
bigger than the bucket number, and that each label appears exactly once within the whole set of
buckets. If either condition is not satisfied, the offending bucket is emptied as before, into the
bucket matching the lowest label. Consistency is checked in this manner in a while() loop, until no
inconsistencies are found, typically with two and sometimes three iterations. During this process,
labels are paired with the lowest label in their bucket, and a look-up table (LUT) is constructed that
translates the first-pass label to a final label. Each bucket (HashSet) is paired with its minimum
label in a HashMap. A second HashMap associates first pass labels and the minimum replacement
label. The hashMap’s set of first pass labels is checked against the replacement label stored in the
lutMap to ensure that the first pass label is being minimised. Once the labels are minimised within
buckets, the content of each bucket represents the complete set of first pass labels that represent
each region. Gaps between buckets are removed by assigning consecutive labels to a new HashMap
lutLut, which is then copied to the final LUT, which is implemented as a primitive integer array
for efficient storage and addressing. Making a LUT from the collision resolution diverges from the
Burger & Burge pseudocode, which looks up replacement labels from the HashSet during pixel
iteration.

Second pass
In the second pass, each first pass label is read from the label array and replaced by the value held at
the label’s position in the LUT.

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

a 4 B label b —
1°F o
i1 Integer 6 6 81
CPU core / 30 R
thread bucket
S
Eqv 3 5 5
pixel
neighbourhood HashSet
1] | 4 4 4
0 1 2
ArrayList

image stack Xy

E)COE)COE)EDED

80
78
>
-
@23 3°F - - -
chunk 0 LILIL
@“ . 2 {jzijzﬁj
\'v//)/ 1
chunk 1 L
z ()]
111
N P S I B Y
>)
N B > >
chunk 2 L
111
] 0 0 0 0
@ﬁ/ = IEH = @ “ H
Lo b > O
chunk 3
0 offset 0 1 offset 25 2 offset 50 3 offset 75

6

%

DC0GE0C0C00) ™

COT0T0D

o

COCOC0C 000D

IS

3

E)C) D) E)E0E]

EDEE GO
&))E)E0ED ™

FEDE0 GO0

0

=
=

CCOE)TIED

0 0 0 0 0 0 0 0

COCOCDC0C0C0T)
E)C)E)COE)E0ED
COCOC0C0C0C0T)

COBCOEITD
COEOCOEOC0E0
COECOED
EBCOC000
COCOE)OCOED

E(;

Figure 1: Visual summary of the first pass and of bucket fountain collision resolution. a) half-neighbourhoods, one per
thread and one thread per image chunk, raster over the image pixels b) each thread addresses its own column of buckets,
adding to the bucket that matches the neighbourhood centre pixel the labels of the other neighbours, which always have
lower values than the centre pixel. Each bucket always contains its own label, and is created only once needed. In this
example a total label range of 100 is split over 4 chunks giving each chunk a label range of 25, and offsets of 0, 25, 50
and 75, which keep each chunk’s label range separate from the others’ ranges. c¢) the bucket fountain starts on the
highest valued bucket and descends towards 0, pouring labels into the bucket matching the lowest label contained in the
bucket. Redundant labels [here, 75] are eliminated. Intermediate steps (d, e) demonstrate the state after emptying all
buckets from the 3™ column and down to the first bucket of the first column. f) the state after completion of bucket
fountain. Note the orphaned label 50 with red outline in column 2, which is picked up by the subsequent consistency
and LUT-creation step. In this toy example, bucket fountain results in simplification of 40 labels spread over 19 buckets
into 23 labels in 7 buckets, with one orphan.

9

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

160

165

170

175

180

185

190

195

200

205

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Multithreading

Because this algorithm contains minimal recursion through pixels there is little need for
synchronisation, leading to the ability to implement a multithreading strategy exploiting the
implementation of xy image slices as independent arrays within the 2D image stack array (Fig 1a,b).
In the first pass the label image is considered as a series of chunks, each chunk relating to a discrete
range in z. Each chunk or z-range is processed in a separate thread. To ensure that the label space of
each chunk does not interfere with the label space of the other chunks, each chunk is assigned a
range of labels, calculated as the maximum label divided by the number of chunks. A special
neighbourhood that does not check the previous chunk’s last slice is used on the zeroth slice of each
chunk, then the usual half-neighbourhood is used for the rest of the chunk. After the whole chunk is
processed, the zeroth slice is processed again using the half-neighbourhood, which detects collisions
between particle labels in the last slice of the previous chunk and particle labels in the zeroth slice
of the current chunk.

Each chunk’s collisions are stored in an independent list
(ArrayList<ArrayList<HashSet<Integer>>>) to avoid synchronisation overhead and concurrent
modification of elements (Fig 1b). A label offset equal to the minimum of the chunk’s label space is
used to relate bucket positions, which have zero-based numbering, to labels, which are label offset
indexed. This allows the full range of labels to be used without creating unneeded HashSets.
During collision resolution, labels belonging to the prior chunk are readily recognised because they
are less than the chunk’s label offset. Collision resolution is performed in a single thread, and the
second pass is performed in multiple threads using the same chunked z-range strategy as in the first
pass. The final LUT is a 2D int array, with each chunk having its own 1D LUT, and the index for
the look-up value being calculated by subtracting the chunk label offset from the label being
replaced.

Foreground versus background

This algorithm can work with any neighbourhood configuration. The current implementation
assumes a 26-connected foreground. Its complementary 6-connected background is used during a
particle filtering step prior to calculating connectivity, implemented as Purify in BoneJ [13,20].

Analysis and Display

Analysis and Display options are selected by the user in a single step via a GUI dialog, called on an
open image by a single menu command. All user options are displayed in one setup dialog and no
further user interaction required to generate output images and data. The intention is to minimise
menu clicking and GUI interaction, which can represent a substantial time cost to users.
Reproducibility and efficiency may be enhanced by recording and running a macro script, which
avoids repeated GUI clicking and can be run as a batch over many input images or incorporated into
a larger workflow.

Individual particles are identified by their unique label in the label array and a binary copy, limited
to the particle’s extent in x, y, and z, is used for input to BonelJ’s other analysis methods. These
include connectivity [20], local thickness [21], volume, surface area, moments of inertia, skeleton
branch count and total length [22], and best fit ellipsoids, as described and validated elsewhere for
single structures [13]. Any 3D binary operation available in the ImageJ plugin ecosystem could
readily be applied to each particle. Particles may be displayed in stacks by their label, size,
thickness, or in 3D as voxel volumes or surface meshes. Analysis results, such as best fit ellipsoids,
may also be displayed as stacks or in the 3D Viewer [23].

Validation and Performance Testing
Simple validation was performed with a test script that generated a stack containing cubes, some
with voids. An image of a single spiral in xz passing through multiple image chunks several times

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

210

215

220

225

230

235

240

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

(Fig. 2a) was used to ensure that merging discrete particle subregions across image chunks
completed successfully. A 7 x 10°-pixel XMT image of particles (s10up) was obtained from the
BoneJ user community and cropped into four smaller volumes, of 2, 16, 128 and 1024 MB (Fig 2b),
to cover 4-5 orders of magnitude of pixel number, with which the scaling characteristics of the
algorithm were measured. All test images and scripts are available online (see Data Availability).

Figure 2: Test images. a) a spiral in xz (image dimensions 1024 x 3 x 1024 pixels) passing
through multiple chunks tests the ability of the algorithm to connect subregions that are
connected through multiple transitive steps via multiple chunks. Chunks are indicated by pale
grey and white horizontal stripes. b) s10up, a binarised XMT scan of a particulate material
(2103 x 2103 x 1585 pixels) that contains one large particle and 437,507 smaller particles.
Smaller cubic image stacks of 1024, 512, 256, and 128 pixels wide used to test performance
scaling behaviour are indicated on the parent volume as red squares.

The number of active CPU threads was set using the -XX:ActiveProcessorCount=n Java option
(wheren=1, 2, 4, 8, 16, 32, 40, 20, 10, 5) in combination with the ImageJ Memory & Threads
setting, where the maximum n = 40 was the number of CPU threads present in the test system (Dell
T7910, 282 GB DDR4 2400 MHz RAM in 16 DIMMs, dual Intel Xeon Silver 4114 CPUs at 2.20
GHz x 20 cores / 40 threads, Ubuntu 16.04, OpenJDK 1.8.0_265; Dell Hong Kong). For all tests 2-
3 warm-up runs were performed to allow the just-in-time compiler to optimise code and the mean of
5 subsequent runs was recorded. Time ¢ to complete particle labelling for each number of active
CPU cores was plotted against image size in pixels p, power curves (¢t « p’) fitted and the
coefficient of determination (R?) estimated (LibreOffice Calc v5.1.6.2). For comparison, times were
recorded for the s10up image series with no hardware throttling using BoneJ’s previous release
(v6.1.1) and for the current code (commit 718c7e) on a laptop (Latitude 7370, Dell UK, Ubuntu
20.04, OpenJDK 1.8.0_265).

Running code was sampled with Java VisualVM (Oracle; v. 1.8.0_221) to determine which methods
were most expensive in terms of CPU time.

Each image from the s10up image series was opened in Avizo (v 2020.2, ThermoFisher), and a
Connected Components analysis module attached to the opened data (image.am > Image
Segmentation > Connected Components) with settings as close as possible to the new code’s
conditions (Gray image; Intensity: 20-255; Connectivity: Corner; Size: 1-0; Output: Label image;
Output Type: Label Field (32 bit)). Performance comparisons were made on the 1 and 6.5 GB test
images using BonelJ in Fiji and Avizo’s multithreaded connected components module, ‘Labeling’,
with a 3D 26-connected neighbourhood. Avizo tests and performance comparisons were performed
on a Dell Precision T5820 tower with a single Intel Xeon W-2123 (4 cores, 8 threads) 3.6 GHz
CPU, 64 GB 2666 MHz DDR4 RAM in 4 modules, and an 8 GB NVIDIA Quadro RTX4000
GPGPU, running Java 1.8.0_172 (Oracle) on Windows 10 (Microsoft).

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

245

250

255

260

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Performance results

Particles are all correctly identified with no gaps between label numbers. The total number of
particles in the test images agrees with the number expected, with previously validated versions of
the software (Fig 3a), and with Avizo’s Connected Components module. The xz spiral is labelled as
a single particle, demonstrating correct label collision resolution among chunks. Scaling of the
complete labelling process as a function of image size is approximately linear, i.e. O(n), with b =
0.918 — 1.068 and R? = 0.985 — 0.998 (Table 1; Fig. 3b). First (b = 0.89, R? = 0.982) and second (b
=0.79, R? = 0.972) passes scale as less than O(n), while bucket fountain scales at slightly more than
O(n) (b = 1.03, R?> = 0.993; Fig 4). Scaling exponents < 1 indicate that larger images may be
processed at a greater rate than smaller images.

Sampling indicated that HashSet.add () within addNeighboursToMap() is the biggest single user
of CPU during first labelling pass (5-20%), while ‘self time’ within firstIDAttribution() also
contributes a large fraction (80-95%).

active scaling t o« p° time to complete (s)
th(lz‘f.’:ils b R? 2 MB 16 MB 128 MB 1GB 6.5 GB
1 1.052 0.996 0.107 0.699 6.112 51.12 574.2
2 1.004 0.996 0.090 0.437 4.237 34.27 285.6
4 0.991 0.995 0.057 0.289 2.114 21.81 161.4
5 0.956 0.995 0.055 0.283 1.686 17.05 121.2
8 0.947 0.988 0.051 0.185 1.210 13.13 95.8
10 0.939 0.987 0.050 0.176 1.113 12.08 88.5
16 0.905 0.985 0.058 0.206 1.028 11.38 79.9
20 0.947 0.992 0.040 0.183 1.065 11.32 80.7
32 0.910 0.987 0.053 0.217 1.013 10.94 80.0
40 0.913 0.986 0.051 0.201 0.954 10.78 77.5

Table 1. Scaling exponents (b), coefficients of determination (R*) and completion times, calculated on the five s10up
test images from 2 x 10° pixels (p) to 7 x 10° pixels, where time to complete t = x + ap®. Scaling remains close to or
below the theoretical optimum of O(n) and in general improves as number of active threads increases. For all but the
largest image, performance gains are marginal for more than 8-10 threads.

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

265

270

275

280

285

290

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1000 b
100
2 10t
a
g
8
8
Q
-
0.1F
[J
. 20
active
cpy X 32
threads W 40
0.01 L L L A
1 10 100 1000 10,000

image size (million pixels)
Figure 3: a) Volumetric rendering of the 2 MB s10up test image demonstrating correct labelling of regions, including
those with complex connections that span multiple chunks. b) Performance scaling of two-pass multithreaded approach
with bucket fountain collision resolution. Time to complete increases about linearly (O(n)) with increasing image size,
and decreases with increasing number of active CPU threads. Note the slight decrease in gradient as number of CPU
threads increases, indicating improving scaling to less than linear, but overlapping of regression lines for greater
numbers of CPU threads cores indicating diminishing returns above 8-10 threads.

Processing speed in particles/s and pixels/s and overall finishing time saturates at around 8 - 16
CPUs on the test machine, depending on data size. The 128 MB test image was consistently fastest
in pixels per second, perhaps because the image array size (512 x 512 pixels, 256kB slices) neatly
matches the memory configuration leading to efficient data transfer.

The new implementation is 35 — 60% faster than the previous release (128 MB: 57 s; 1024 MB: 422
s; 6.5 GB: 2,891 s). On the laptop, completion times were tolerable (16 MB 0.322 s; 128 MB 2.6 s;
1024 MB: 21 s), but the 6.5 GB image caused an out of memory exception. Completion times were
about 15% less than Avizo’s multithreaded Labeling module, (1 GB: 9.5 — 11s vs. 165 s; 6.5 GB: 65
- 72s vs. 1220 s).

Discussion

This implementation of sequential region labelling achieves scaling at or better than the theoretical
optimum of O(n). It may be relatively more efficient on larger images than on smaller images,
perhaps through an accelerated rate of complexity reduction in larger more connected particles
during the first pass as it populates the HashSets used by bucket fountain, or due to Java’s just-in-
time (JIT) compiler and adaptive optimisation increasing data throughput of larger arrays during
first and second passes. Alternatively, smaller images may incur a penalty related to constant-time
features of the algorithm, such as setting up threads, which are less well amortised over their shorter
sequential reads during first and second passes. Bucket fountain belongs to a class of algorithms
known as union-find and is similar to the optimised array-based union-find by Wu et al. [24]. Here,
the number of times data is retrieved from or written to RAM is minimised by accessing pixels non-
recursively. Data reduction is achieved early by not storing redundant label collisions, and merging
transitively connected labels efficiently with Java’s HashSet. HashSet.add() is the most
consuming of CPU wall-clock time, which may relate to instantiating and writing new Java
Objects, or calculating hashes. HashSet operations are minimised by the bucket fountain, which
attempts to aggregate labels with the least handling of each HashSet’s contents by merging to the
lowest bucket possible, with the side effect that some transitively linked labels are orphaned and

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

295

300

305

310

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

100
10 +
g ot
a
g
3
2
5}
£ o1t
0.01 | +
+ + first pass —%—
S bucket fountain
second pass —+—
0.001 . L . '
1 10 100 1000 10,000

image size (million pixels)

Figure 4: Timer code on the first pass, bucket fountain, and second

pass sections of the implementation reveals the amount of time

spent in each, tested on 40 threads. First (b = 0.89, R? = 0.982) and

second (b = 0.79, R? = 0.972) passes scale as less than O(n), while

bucket fountain scales at slightly more than O(n) (b = 1.03, R? =

0.993). In the second pass a very simple pixel LUT operation is

applied and may be considered a minimal time to iterate the image

once. The first pass is 10 — 20x slower than the second pass due to

multiple pixel accesses and the expensive operation of adding

HashSet elements to the collision map during iteration through

each pixel neighbourhood. Reducing the cost of building the

collision map during the first pass will be the focus of further

optimisations.
must be recovered by a subsequent consistency check. An alternative, more careful implementation
that joins all sub-regions in a single pass snowballs through consecutive buckets, merging each
bucket’s contents to the next lower (not the lowest) bucket referred to by its labels. The snowball
approach makes completion times 20 — 100% longer than the bucket fountain in practice,
presumably because each label is handled multiple times as the regions are aggregated while they
pass through a larger number of buckets. Fast and sloppy with a small amount of recursive error

correction noticeably outperforms slow and careful with no error correction in this case.

This multithreaded implementation of sequential region labelling displays memory-bound rather
than CPU-bound behaviour and on the test system hits the so-called memory wall [25] at around 8-
10 threads for smaller images of 1 GB and below. Performance would increase most readily as a
function of increasing memory frequency and parallelism, which may require entirely new
hardware architectures [26]. Future optimisations that reduce RAM access, for example by reducing
pixel lookups and HashSet.add () operations with a decision tree [24], and that improve utilisation
of fast CPU cache memory, may ameliorate the current bottleneck. Alternative implementations
exist in programming languages that can be more efficient than Java at accessing large amounts of
array data, such as C and C++ [24,27], or that store particle label collisions in primitive arrays that
can be faster to create and access than the Java (Eclipse) Collections used here. This Java
implementation far exceeds the performance of the commercial C++ implementation included in
Avizo’s Labeling module, with further optimisations still possible such as a kernel decision tree
(after [24,27]). A major goal of this project was to produce an implementation that is trivial to
install and run for users of the popular ImageJ platform [16]. The Fiji distribution makes it

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

315

320

325

330

335

340

345

350

355

360

365

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

convenient for users to install and operate the plugin, and ImageJ is written in Java, hence the
design decision to implement this algorithm in Java.

The redesign of the code to be more modular addresses concerns expressed in previous work, such
as Mader et al. (2013) who complained that the prior implementation in BonelJ “lacks the flexibility
to perform a number of different analyses, necessary for large-scale studies and detailed analysis of
distribution, alignment, and other osteocyte lacunar measures” [28]. Once the label image is
created, any range of analyses could be performed on the labels, by adding analytic methods to
BoneJ’s new ParticleAnalysis class, by obtaining the label image programatically by calling the
ConnectedComponents.run() method from client code, or by running custom analysis code such
as a Python script or ImageJ plugin on the label image that is displayed in the ImageJ GUI. The
label image could also be saved and opened in other software.

Contemporary computers have benefited from algorithms implemented for General Purpose
Graphical Processing Units (GPGPU) via NVIDIA’s CUDA library or the OpenCL library. The
main advantage of GPGPU processing is the large number of parallel data streams that can be
processed and the high transfer rate within video RAM (VRAM; GDDR6 at c. 400 GB/s vs DDR4
RAM at c. 20 GB/s). It is therefore tempting to consider porting the current memory bandwidth-
limited algorithm to exploit the GPGPU’s parallel architecture. Unfortunately, at the time of writing
OpenCL does not have a HashSet implementation, which is a core part of the label collision
recording and resolution strategy. In addition, the time taken to read data from RAM into VRAM
for GPGPU processing is unlikely to be substantially less than to read from RAM during CPU
processing, however, this cost may be mitigated by the multiple pixel accesses during first pass
labelling occurring on VRAM rather than RAM. Finally, available VRAM is typically much less
than system RAM, with contemporary machines being able to hold up to 3 TB of RAM on a single
motherboard (Dell 7920), but GPGPUs typically contain one or two orders of magnitude less
VMRAM (NVIDIA QUADRO TX: 48 GB), limiting the maximum image size that could be
handled by a GPGPU compared to CPU. Given the high performance of the CPU implementation,
the cost:benefit of developing a GPU implementation requires careful consideration.

Java integers are 4-byte signed values. Using 0 as the background label and 1 as the minimum label
gives a range of 2% - 1 = 2,147,483,647 possible labels. It is possible to double the label range if
Integer. MIN_VALUE (-2147483648) was used as the background value, and labels started from
Integer. MIN_VALUE + 1, however in practice there are usually several orders of magnitude fewer
particle labels required than pixels in the image: the 1GB test image contains over 1x10° pixels and
fewer than 1x10° particles (about one particle per 10,000 pixels, which is one particle per cubic box
of 21.5 pixels edge length). A practical consideration is that ImageJ displays integer arrays as RGB,
which is unhelpful for later analysis: to avoid this the label image is converted to a 32-bit float,
which is displayed as raw values with a colour LUT. Unfortunately, float loses integer precision for
values higher than 2%, which dramatically reduces the possible label range to a maximum of
8,388,608. Eight million labels is still sufficient for most images up to around 8x10°x10* or 8x10"
pixels, about 80 GB. Should users have a need to process larger images containing more particles
than these limits, the float precision restriction could be worked around.

Conclusion

This report describes an optimised implementation of sequential region labelling that fully exploits
computational hardware resources and achieves theoretically optimum linear (O(n)) or slightly
better than linear scaling, providing connected components labelling of multi-GB images in a time
scale of seconds to minutes instead of hours to days. It is provided as a working, easy to use
package in BonelJ for ImagelJ, as source code, and has an API for other developers to use.

Data availability

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

370

375

380

385

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

* Bonel source code and changes: https://github.com/bonej-org/BoneJ2

¢ BonelJ release on Zenodo [29] doi:10.5281/zenodo.3726422

» Test images and performance testing results doi:10.6084/m9.figshare.11860542
» Test scripts doi:10.6084/m9.figshare.11860536

Funding
BoneJ?2 infrastructure development was supported by a Wellcome Trust Biomedical Resource and
Technology Development Grant (108442/Z/15/Z).

Competing interests
MD was a member of the Editorial Board of Royal Society Open Science at the time of submission
and was not involved in the assessment of this submission.

Acknowledgements

Thank you to Robert Haase (MPI-CBG) for discussions and encouragement and to Alessandro
Felder (UCL) and Richard Domander (RVC) for help with BoneJ2 engineering. Steve Chai and
Meiji Ma (ThermoFisher) advised on use of Avizo. I would be pleased to credit the (so far)
anonymous originator of the s10up image that was used for testing this algorithm.

References

1. Burger W, Burge M. 2008 Digital Image Processing: An Algorithmic Introduction Using Java.
1st ed. New York: Springer.

2. Salehi A, Pircheraghi G, Foudazi R. 2019 Pore structure evolution during sintering of HDPE
particles. Polymer 183, 121865. (doi:10.1016/j.polymer.2019.121865)

3. Pires LF, Auler AC, Roque WL, Mooney SJ. 2020 X-ray microtomography analysis of soil pore
structure dynamics under wetting and drying cycles. Geoderma 362, 114103.
(doi:10.1016/j.geoderma.2019.114103)

4. Krakowska P, Puskarczyk E, Jedrychowski M, Habrat M, Madejski P, Dohnalik M. 2018
Innovative characterization of tight sandstones from Paleozoic basins in Poland using X-ray

computed tomography supported by nuclear magnetic resonance and mercury porosimetry. J.
Pet. Sci. Eng. 166, 389-405. (doi:10.1016/j.petrol.2018.03.052)

5. Li X, Akbarabadi M, Karpyn ZT, Piri M, Bazilevskaya E. 2015 Experimental investigation of

carbon dioxide trapping due to capillary retention in saline aquifers. Geofluids , n/a-n/a.
(doi:10.1111/gf1.12127)

6. Yio MHN, Wong HS, Buenfeld NR. 2019 3D pore structure and mass transport properties of
blended cementitious materials. Cem. Concr. Res. 117, 23-37.
(doi:10.1016/j.cemconres.2018.12.007)

7. Guillermic R-M, Koksel F, Sun X, Hatcher DW, Nickerson MT, Belev GS, Webb MA, Page JH,
Scanlon MG. 2018 Bubbles in noodle dough: Characterization by X-ray microtomography.
Food Res. Int. 105, 548-555. (doi:10.1016/j.foodres.2017.11.050)

8. Vennat E, Wang W, Genthial R, David B, Dursun E, Gourrier A. 2017 Mesoscale porosity at the
dentin-enamel junction could affect the biomechanical properties of teeth. Acta Biomater. 51,
418-432. (doi:10.1016/j.actbio.2017.01.052)

https://github.com/bonej-org/BoneJ2
https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

9. Wittig NK, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Wendelboe MH, Briiel A, Thomsen
JS, Birkedal H. 2019 No Signature of Osteocytic Osteolysis in Cortical Bone from Lactating
NMRI Mice. Calcif. Tissue Int. 105, 308—-315. (doi:10.1007/s00223-019-00569-2)

10. Odgaard A, Gundersen HJG. 1993 Quantification of connectivity in cancellous bone, with
special emphasis on 3-D reconstructions. Bone 14, 173-182. (doi:10.1016/8756-3282(93)90245-
6)

11.Han Y, Wagner RA. 1990 An efficient and fast parallel-connected component algorithm. J. ACM
37, 626—642. (do0i:10.1145/79147.214077)

12. Bolelli F. 2020 prittt/YACCLAB. See https://github.com/prittt/YACCLAB.

13. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres F, Dougherty RP, Jackson J, Schmid
B, Hutchinson JR, Shefelbine SJ. 2010 BonelJ: free and extensible bone image analysis in
ImagelJ. Bone 47, 1076-1079. (doi:10.1016/j.bone.2010.08.023)

14. Cordelieres FP, Jackson J. 2007 3D Object Counter. See
https://imagej.nih.gov/ij/plugins/track/objects.html (accessed on 10 January 2020).

15. Bolte S, Cordelieres FP. 2006 A guided tour into subcellular colocalization analysis in light
microscopy. J. Microsc. 224, 213-232. (doi:10.1111/j.1365-2818.2006.01706.x)

16. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of image
analysis. Nat. Methods 9, 671-675. (doi:10.1038/nmeth.2089)

17. Schindelin J et al. 2012 Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676-682. (doi:10.1038/nmeth.2019)

18. Torvalds L, Hamano J. 2016 git. See https://git-scm.com/.

19. In press. Eclipse Collections - Features you want with the collections you need. See
http://www.eclipse.org/collections/ (accessed on 23 September 2020).

20. Toriwaki J, Yonekura T. 2002 Euler number and connectivity indexes of a three dimensional
digital picture. Forma 17, 183-2009.

21. Dougherty R, Kunzelmann K-H. 2007 Computing local thickness of 3D structures with ImageJ.
Microsc. Microanal. 13, 1678-1679. (doi:10.1017/51431927607074430)

22. Arganda-Carreras I, Fernandez-Gonzalez R, Mufioz-Barrutia A, Ortiz-De-Solorzano C. 2010 3D
reconstruction of histological sections: Application to mammary gland tissue. Microsc. Res.
Tech. 73, 1019-1029. (doi:10.1002/jemt.20829)

23. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M. 2010 A high-level 3D
visualization API for Java and ImageJ. BMC Bioinformatics 11, 274. (doi:10.1186/1471-2105-
11-274)

24. Wu K, Otoo E, Suzuki K. 2009 Optimizing two-pass connected-component labeling algorithms.
Pattern Anal. Appl. 12, 117-135. (do0i:10.1007/s10044-008-0109-y)

25.McKee SA, Wisniewski RW. 2011 Memory Wall. In Encyclopedia of Parallel Computing (ed D
Padua), pp. 1110-1116. Boston, MA: Springer US. (doi:10.1007/978-0-387-09766-4_234)

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969139; this version posted October 17, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

26. Kingra SK, Parmar V, Chang C-C, Hudec B, Hou T-H, Suri M. 2020 SLIM: Simultaneous
Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices. Sci. Rep. 10, 1-14.
(doi:10.1038/s41598-020-59121-0)

27. Silversmith W, Kemnitz N. 2020 seung-lab/connected-components-3d. seung-lab. See
https://github.com/seung-lab/connected-components-3d.

28. Mader KS, Schneider P, Miiller R, Stampanoni M. 2013 A quantitative framework for the 3D
characterization of the osteocyte lacunar system. Bone 57, 142—154.
(doi:10.1016/j.bone.2013.06.026)

29. Richard Domander, Michael Doube, Curtis Rueden, Alessandro Felder, Mark Hiner, Jan
Eglinger. 2020 bonej-org/BoneJ2: styloid. Zenodo. (doi:10.5281/zenodo.3726422)

https://doi.org/10.1101/2020.02.28.969139
http://creativecommons.org/licenses/by/4.0/

