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Abstract 

We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell 

RNA sequencing within the regions of spatially-resolved gene expression studies. It obtains cell 

abundance estimates that are spatially-resolved, granular, and paired with highly multiplexed 

gene expression data.  

SpatialDecon incorporates several advancements in the field of gene expression deconvolution. 

We propose an algorithm based in log-normal regression, attaining sometimes dramatic 

performance improvements over classical least-squares methods. We compile cell profile 

matrices for 27 tissue types. We identify genes whose minimal expression by cancer cells 

makes them suitable for immune deconvolution in tumors. And we provide a lung tumor dataset 

for benchmarking immune deconvolution methods.  

In a lung tumor GeoMx DSP experiment, we observe a spatially heterogeneous immune 

response in intricate detail and identify 7 distinct phenotypes of the localized immune response. 

We then demonstrate how cell abundance estimates give crucial context for interpreting gene 

expression results. 
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Introduction 

Single-cell RNA sequencing defines the cell populations present within a tissue. But this catalog 

of cell types begs a question that scRNA-seq cannot answer: how are these cell types arranged 

within tissues? Spatial gene expression technologies1,2, measure gene expression within minute 

regions of a tissue, but do not report abundance of cell types within these regions.  

Here we introduce SpatialDecon, a method to quantify cell populations within the regions of 

spatially-resolved gene expression studies. SpatialDecon obtains cell type abundance 

measurements that discriminate closely related cell populations and are paired with expression 

levels of hundreds to thousands of genes. These measurements reveal the spatial organization 

of cell types defined by scRNA-seq, and they give context to gene-level results, resolving 

whether a gene’s expression pattern reflects differential expression within a cell type or merely 

differences in cell type abundance.  

Our method employs gene expression deconvolution, a class of algorithms designed to estimate 

the abundance of cell populations in bulk gene expression data. Figure 1 summarizes the 

workflow of these algorithms. Given the inputs of gene expression data and pre-specified cell 

type expression profiles, deconvolution algorithms seek the cell abundances that best fit the 

data. The deconvolution field is still developing, and existing algorithms developed for use in 

bulk expression data3,4,5 are not optimized for spatial gene expression platforms. We have 

developed algorithms and data resources to make deconvolution more robust and widely-

applicable. These advances enable accurate deconvolution in spatially-resolved expression 

data.  

 

Figure 1: Overview of algorithm and advancements to the deconvolution field. The image summarizes the deconvolution 

workflow. Text boxes summarize new developments described in this manuscript.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.08.04.235168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.235168
http://creativecommons.org/licenses/by-nd/4.0/


Results 

A novel algorithm achieves accurate deconvolution in spatially-resolved gene expression 

data 

Gene expression data has extreme skewness and inconsistent variance, but most existing 

deconvolution algorithms are based in least-squares regression and implicitly assume 

unskewed data with constant variance3,4,5. The skewness and unequal variance of gene 

expression are corrected by log-transformation (Supplementary Figure 1). We therefore propose 

to replace the least-squares regression at the heart of classical deconvolution with log-normal 

regression6. This approach retains the mean model of least-squares regression while modelling 

variability on the log-scale. SpatialDecon, the algorithm implementing this procedure, is 

described in the Online Methods.  

To evaluate the performance of log-normal vs. least-squares deconvolution, two cell lines, 

HEK293T and CCRF-CEM (Acepix Biosciences, Inc.), were mixed in varying proportions, and 

aliquoted into a FFPE cell pellet array. Expression of 1414 genes in 700 µm diameter circular 

regions from the cell pellets were measured with the GeoMx platform.  

Three deconvolution methods were run: non-negative least squares (NNLS), v-support vector 

regression (v-SVR), and constrained log-normal regression (Algorithm 1 in Online Methods). 

Four gene subsets were used: the most informative genes, the least informative genes, all 

genes, and the genes with low-to-moderate expression (Fig 2a).  

Deconvolution accuracy was evaluated by comparing the cell lines’ estimated vs. true mixing 

proportions. Log-normal deconvolution was accurate in all gene sets, with estimated proportions 

always differing less than 0.19 from true proportions (Fig 2b). In contrast, the least-squares-

based algorithms (NNLS and v-SVR) failed in the “least informative” and “all genes” gene sets, 

with estimated cell proportions differing from true proportions by as much as 0.50 for NNLS and 

0.73 for v-SVR. The gene sets in which least-squares methods failed are distinguished by the 

presence of high-expression genes.   
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Classical deconvolution methods based in least-squares regression assign excessive 

influence to small subsets of genes 

To investigate the poor performance of least-squares-based methods, we measured the 

influence of each gene on deconvolution results from a single cell pellet with an equal mix of 

HEK293T and CCRF-CEM. Each gene’s influence was measured as the difference in estimated 

HEK293T proportion using the complete gene set vs. a leave-one-out set omitting the gene in 

question.   

The least-squares methods NNLS and v-SVR both had genes with excessive influence on 

deconvolution results, while the log-normal method was not subject to outsize influence from 

any genes (fig 2c). For NNLS, a single high-expression gene changed the model’s estimated 

mixing proportion from 66% to 22%, a remarkable impact on a fit derived from 1414 genes. In v-

SVR, genes across all expression levels showed excessive influence; the most influential gene 

changed the estimated proportion from 31% to 83%. Removing the highest-influence gene from 

the log-normal deconvolution changed the estimate from 54.6% to 54.3%.  

Pan-cancer screen for genes with negligible expression in cancer cells identifies genes 

safe for immune deconvolution in tumors  

Deconvolution of immune cells in tumors encounters another complication: genes expressed by 

cancer cells contaminate the data, causing over-estimation of the immune populations also 

expressing those genes. We analyzed 10,377 TCGA samples to identify a list of genes with 

minimal contaminating expression by cancer cells. We used marker genes7,8 (Supplementary 

Table 1) to score abundance of immune and stromal cell populations in each sample, and we 

modelled each gene as a function of these cell scores. For each gene, these models estimated 

the proportion of transcripts derived from cancer cells vs. immune and stromal cells in the 

average tumor (Supplementary Table 2) 

Genes exhibited a wide range of cancer-derived expression (Figure 3A). Across all non-immune 

cancers, 5844 genes had less than 20% of transcripts attributed to cancer cells. Confirming the 

stability of this analysis, estimates of cancer-derived expression were largely consistent across 

TCGA datasets (Figure 3B). Confirming the specificity of this analysis, canonical marker genes 

were consistently estimated to have low percentages of transcripts from cancer cells. Gene lists 

used in many popular immune deconvolution algorithms3,8,9,10,11,12, most of which were designed 

for use in PBMCs and not in tumors, include substantial proportions of cancer-expressed genes 

(Figure 3C).  
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Figure 2: Comparison of deconvolution algorithms in mixtures of two cell lines. The cell lines HEK293T and CCRF-CEM were 

mixed in varying proportions, the GeoMx platform was used to profile each mixture’s gene expression, and 3 deconvolution methods 

were used to estimate the cell lines’ mixing proportions from the gene expression data. a. Expression profiles of the two cell lines. 

Colors denote subsets of genes used in separate deconvolution runs. b. Accuracy of deconvolution algorithms. Horizontal position 

shows each sample’s true proportion of HEK293T; vertical position shows estimated proportion. Each column of panels shows 

results from a single gene set; each row of panels shows results from a single deconvolution algorithm. c. Influence of each gene on 

the deconvolution result from a single mixed sample. Point size shows how much removing each gene changes the estimated 

mixing proportion. Each panel reports genes’ influence under a different deconvolution algorithm.   
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Figure 3: genes’ rates of cancer cell-derived vs. total expression in tumors. a. For each cancer type, density of 

genes’ percent of transcripts attributed to cancer cells. b. For all genes in all cancer types, estimated percent of transcripts 

attributed to cancer cells. c. Averaged across all non-immune tumors, genes’ mean expression vs. percent of transcripts 

attributed to cancer cells. Panels show gene lists from CIBERSORT, EPIC, MCP-counter, quanTIseq, Timer, xCELL, 

Danaher (2017), and SafeTME, the tumor-immune deconvolution cell profile matrix developed here.  
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SafeTME: a cell profile matrix for deconvolution of the tumor microenvironment 

To support deconvolution of the tumor microenvironment, we assembled the SafeTME matrix, a 

cell profile matrix for the immune and stromal cell types found in tumors. This matrix combines 

cell profiles derived from flow-sorted PBMCs5, scRNA-seq of tumors13 and RNA-seq of flow-

sorted stromal cells14. It includes only genes estimated by the above pan-cancer analysis to 

have less than 20% of transcripts attributed to cancer cells.  

A library of scRNA-seq-derived cell profile matrices from diverse tissue types 

To facilitate cell type deconvolution in diverse tissue types, we derived cell profile matrices from 

27 publicly-available scRNA-seq datasets15,16,17 (Supplemental Table 3). In each dataset, we 

derived cell clusters, and we calculated the mean expression profile of each cluster. We named 

cell clusters using a combination of published marker genes18 and domain knowledge. 

Supplementary Table 4 details these cell profile matrices and the marker genes used to classify 

clusters.  

Harnessing the GeoMx platform to improve deconvolution’s capabilities 

The GeoMx DSP platform extracts gene or protein expression readouts from precisely targeted 

regions of a tissue. First, the tissue is stained with up to four visualization markers, and a high-

resolution image of the tissue is captured. Using this image, precisely-defined segments of the 

tissue can be selected for expression profiling; regions can be as small as a single cell or as 

large as a 700 µm x 800 µm region, and they can have arbitrarily complex boundaries. This 

flexibility in defining areas to be sampled is often used to split regions of a tissue into two 

segments, e.g. a PanCK+ cancer cell segment and a PanCK- microenvironment segment.  

Two features of the GeoMx platform expand the abilities of mixed cell deconvolution. First, the 

platform counts the nuclei in every tissue segment it profiles. This nuclei count lets 

SpatialDecon estimate not just proportions but absolute counts of cell populations. The results 

of Figure 5 show cell population count estimates derived in this manner.  

Second, the GeoMx platform can profile and model cell types that are absent in the pre-defined 

cell profile matrix. For example, when performing immune deconvolution in tumors, the 

expression profile of the cancer cells is often unknown. In such cases, the GeoMx platform can 

be used to select and profile regions of pure cancer cells, and this newly-derived cancer cell 

profile can be merged with the pre-defined cell profile matrix. This method is used to account for 

cancer cell expression in the deconvolution analyses of Figures 4 and 5.  
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Paired spatially-resolved RNA and protein readouts provide a resource for benchmarking 

tumor-immune deconvolution methods in tissue 

Due to practical limitations, most experiments benchmarking the performance of immune cell 

deconvolution methods rely on simulated data, generated either by in silico mixing of cell 

expression profiles19 or by in vitro mixing of purified cell populations20. However, simulations 

cannot faithfully represent performance in tumor samples: immune cell expression differs 

between blood and tumors13, and cancer cells can express putative immune genes. To 

benchmark deconvolution performance in real tumor samples, we used the GeoMx platform to 

collect paired measurements of gene expression and of canonical marker proteins.  

From 5 FFPE lung tumors, we took two adjacent slides. We selected 48 700 µm regions from 

the first slide, and we identified their corresponding regions in the second slide. The selected 

regions in the first slide were profiled with the GeoMx protein assay, and the corresponding 

regions in the second slide were profiled with the GeoMx RNA assay, measuring 544 genes 

from the SafeTME matrix. Within each region, the GeoMx system’s flexible segmentation 

capabilities were used to collect separate profiles for tumor cells and for microenvironment cells.  

To validate our algorithm, we compared deconvolution-derived cell estimates with the 

abundance of canonical marker proteins (Figure 4, Supplementary Table 5). In the average 

tissue, the correlation between protein expression and estimated cell abundance was 0.93 for 

CD3 protein vs. T-cells; 0.84 for CD8 protein vs. CD8 T-cells; 0.72 for CD68 protein vs. 

macrophages; 0.80 for CD20 protein vs. B-cells; and 0.80 for SMA protein vs. fibroblasts. 

Neutrophils, whose low abundance in many tissues limited the range over which correlation 

could be observed, achieved an average correlation of just 0.43 with CD66b protein. However, 

in the two samples with the highest estimated neutrophils, this correlation rose to 0.86 (Tumor 

1) and 0.84 (Tumor 4).  
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Figure 4: benchmarking of immune 

deconvolution vs. expression of canonical 

marker proteins. Each panel plots expression of a 

marker protein (horizontal axis) against a cell 

population’s abundance estimates from gene 

expression deconvolution (vertical axis). Tumor 

segments are in blue; microenvironment segments 

are in red. Each column of panels shows results from 

a single protein/cell pair; each row shows results 

from a different lung tumor.  

 

 

Mapping the immune infiltrate in a NSCLC tumor 

As a demonstration of spatially-resolved gene expression deconvolution, immune cell 

abundances were estimated across a grid of 191 regions of a NSCLC tumor. The GeoMx RNA 

assay was used to measure 1700 genes, including 544 genes from the SafeTME matrix. The 

tissue was stained with fluorescent markers for PanCK (tumor and epithelial cells), CD45 

(immune cells), CD3e (T cells) and DNA. 191 300 x 300 µm regions of interest were arrayed in 

a grid across the 7.8 x 6.7 mm span of the tumor. Within each region of interest, the flexible 

illumination capability of the GeoMx platform was used to separately assay two segments: 

tumor segments, defined by PanCK+ stain, and microenvironment segments, defined as the 

tumor segments’ complement (Figure 5A).  

The SpatialDecon algorithm was applied to all segments in the dataset using the SafeTME 

matrix along with tumor-specific profiles derived from the study’s PanCK+ segments. On a 

1.9Ghz laptop, deconvoluting 376 segments took 29 seconds. Using just the microenvironment 

segments, we assem led a map of the tumor’s immune infiltrate (figure 5B). The most abundant 

cell types were CD8 T-cells (11,003 across all segments), CD4 T-cells (10,014), and 

macrophages (10,170). The algorithm estimated very low immune cell content in the tumor 

segments, with a mean of 7 immune and stromal cells per tumor segment, compared to a mean 

of 216 immune and stromal cells per microenvironment segment.  
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Figure 5: immune cell deconvolution in 191 microenvironment segments of a NSCLC tumor. a. Image of the tumor, with 

segments superimposed. Green = PanCK+ (tumor) segments; red = PanCK- (microenvironment) segments. b. Color key for panels 

c,d,f,g. c. Abundance estimates of 18 cell types in the microenvironment segments within 191 regions of the tumor. Wedge size is 

proportional to estimated cell counts. d. Abundance estimates of 12 cell populations in microenvironment segments. Point size is 

proportional to estimated cell counts within each panel; scale of point size is not consistent across panels. e. Dendrogram showing 

clustering of microenvironment segments’ abundance estimates. f. Proportions of cell populations in microenvironment segments. 

g,h. Estimated absolute numbers of cell populations in microenvironment segments. i. Spatial distribution of microenvironment 

segment clusters. Point color indicates cluster from (e); point size is proportional to total estimated immune and stromal cells in 

microenvironment segments.   
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Cell populations had distinct spatial distributions. Naïve and Memory B-cells had the most 

concentrated spatial distributions (Gini coefficients = 0.84, 0.85), localizing primarily within a 

band of regions on the left side of the tumor. Naïve, memory and regulatory CD4 T-cell 

populations (Gini = 0.70, 0.64, and 0.57) had many dense foci near the B-cell-enriched regions 

and sporadic foci elsewhere in the tumor. Naïve CD8 T-cells (Gini = 0.52) concentrated in the 

top-right of the tumor, while memory CD8 cells were present throughout the tumor. 

Macrophages (Gini = 0.48) and non-conventional/intermediate monocytes (Gini = 0.45, 0.39) 

were enriched in the lower-right of the tumor, away from the B-cells and T-cells, while 

conventional monocytes (Gini = 0.41) were enriched in the upper-right. Neutrophil-enriched 

segments (Gini = 0.41) appeared in both lymphoid-rich and myeloid-rich areas.  

Hierarchical clustering on cell abundances identified 7 subtypes of tumor microenvironment 

regions (Fig 5e). The largest cluster, Subtype O, was defined by low total numbers of immune 

cells and consisted primarily of macrophages, memory CD8 T-cells, monocytes and fibroblasts. 

Subtype M was dominated by macrophages. Subtype T8 was dominated by memory CD8 T-

cells, with less abundant memory CD4 T-cells. Subtype T4 was dominated by memory CD4 T-

cells, with less abundant memory CD8 T-cells. Subtype LT consistent almost entirely of 

lymphoid cells, with majority T-cells but also abundant memory B-cells. Subtype LB also 

consistent almost entirely of lymphoid cells but had higher proportions of B-cells, both memory 

and naïve. Subtype LM was lymphoid-dominated but had as much as 15% macrophages. Each 

subtype was concentrated within, but not confined to, a distinct area of the tumor.  

Reverse deconvolution from cell abundances gives context to gene expression results 

Variability in gene expression is driven both by changing abundance of cell populations and by 

differential regulation within cells. These two sources of variability can be decomposed via 

“reverse deconvolution”, in which each gene’s expression is predicted from cell abundance 

estimates. Outputs of this reverse deconvolution include genes’ fitted expression values based 

on cell abundances, and their residuals, calculated as the log2 ratio between observed and 

fitted expression (Fig 6a). These residuals measure genes’ up- or down-regulation within cells, 

independent of cell abundance.  

To interpret our gene expression data in the face of highly variable cell mixing, we fit reverse 

deconvolution models over the microenvironment segments of the NSCLC tumor from Figure 5. 

Each gene’s dependency on cell mixing was measured with two metrics: the correlation 

between observed and fitted expression, and the standard deviation of the residuals. Based on 
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these metrics, genes fell into 4 categories, each with a different implication for analysis and 

interpretation of genes’ data (Figure 6b). Genes with low correlations and high residual SDs, 

e.g. MT1M, are mostly independent of cell type mixing and can be understood without reference 

to cell abundances (Figure 6c). Genes with low correlations and low residual SDs, e.g. ARG1, 

have little variability to analyze. Genes with high correlations and low residual SDs, e.g. PDCD1, 

merely provide an obtuse readout of cell type abundance. Genes with high correlations and high 

residual SDs, e.g. CCL19, have substantial variability unexplained by cell mixing, but this 

variability is concealed by even greater variability driven by cell mixing. Analysis of these genes’ 

residuals reveals the full complexity of their behavior. For example, CXCL13 expression was 

over 2-fold higher or lower than expected in some regions (Figure 6d). LYZ expression, 84% of 

which was attributed to macrophages and monocytes, was highest in a corner of the tumor 

where those cell populations had relatively low abundance (Figure 6e). CCL17 was highly 

expressed in sporadic regions across the tumor, and in most of these regions the high 

expression was beyond what cell abundance alone could explain (Figure 6f).   

Correlation in residuals of reverse deconvolution reveals modules of co-regulated genes 

Cell mixing induces correlation between genes that are expressed by the same cell type but that 

are not otherwise co-regulated. In the residuals of reverse deconvolution, this unwanted 

correlation abates, leaving only correlation induced by co-regulation (Fig 6g). For example, the 

correlation between CD8A and CD8B was 0.75 in the log2-scale data from microenvironment 

segments; in residual space, their correlation was -0.03. Correlation between MS4A1 and CD19 

was 0.82 in the normalized data and 0.06 in residual space.  

To identify candidate co-regulated genes, we identified gene clusters with high correlation in 

residual space. A cluster of CD74 and 5 HLA genes varied smoothly across the tissue, weakly 

correlated with macrophage abundance but also elevated in many macrophage-poor regions 

(Fig 6h). In the two regions with the most macrophages, these genes all had negative residuals, 

suggesting suppressed antigen presentation by macrophages in those regions. Another cluster 

consisted of lipid metabolism and small molecule transport genes (ACP5, APOC1, ATP6V0D2, 

CYP27A1, LIPA). Absolute expression of these genes was elevated in the tissue’s lower-right 

corner. Analysis of residuals reveals additional spatial expression dynamics, including a region 

of up-regulation in the upper-left side of the tissue and a region of down-regulation the lower-left 

(Fig 6i).  
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Figure 6: results of reverse deconvolution in a NSLCL tumor. a. Schematic of reverse deconvolution approach: gene 

expression is predicted from cell abundance estimates using the SpatialDecon algorithm, obtained fitted values and residuals. b. 

Genes’ dependence on cell mixing. Horizontal axis shows correlation between observed expression and fitted expression based on 

cell abundance. Vertical axis shows the standard deviation of the log2-scale residuals from the reverse deconvolution fit. c. Example 

genes from the extremes of the space of panel (b) are shown, with observed expression (vertical axis) plotted against fitted 

expression (horizontal axis). d-f. For CXCL13, LYZ and CCL17, observed expression is plotted against fitted expression (left), and 

observed expression is plotted in the space of the tissue (right). In all panels, point color indicates residuals. In panels on the right, 

point size is proportional to observed expression level. g. Correlation matrices of genes in log-scale normalized data (top) and in 

residual space (below). h,i. Spatial expression of gene clusters defined by high correlation in residuals of reverse deconvolution. 

Wedge color shows genes’ residual values; wedge size is proportional to genes’ expression levels. 
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Discussion 

Cell deconvolution promises to be a linchpin of spatial gene expression analysis. Cell 

abundance estimates offer a functional significance and ease of interpretation unmatched by 

gene expression values. Cell abundance also gives context to gene expression results, 

disam iguating whether a gene’s expression pattern results from differential cell type 

abundance or differential expression within cell types.  

The methods described here enable spatial studies as a natural follow-on to scRNA-seq: given 

cell populations defined by scRNA-seq, deconvolution in spatial gene expression data reveals 

how those cells are arranged within tissues, obtaining a region-by-region accounting of their 

abundance. This allows new questions to be asked: How are cell types arranged and mixed with 

each other? Which cell types repel or attract each other? Which cell types explain the 

expression pattern of a gene of interest? How does a cell population’s behavior change when it 

is co-localized with another cell population?  

The methods and data resources described here promise to improve deconvolution not just in 

spatial expression data but also in bulk gene expression. Log-normal regression has the same 

theoretical benefits in bulk expression deconvolution. Our library of cell profile matrices for 

diverse tissues directly supports deconvolution in bulk gene expression experiments. And future 

attempts to deconvolve immune cells in bulk tumor expression data should confine analysis to 

our list of genes not expressed by cancer cells.  

Based on cell abundances, we identified 7 microenvironment subtypes within one NSCLC 

tumor. This heterogeneity raises the prospect that tumors could be classified not just by their 

overall cell abundance, but by the localized microenvironment subtypes they contain.  

SpatialDecon, an R library implementing these methods, is available at 

https://github.com/Nanostring-Biostats/SpatialDecon. The library of cell profile matrices is 

available at https://github.com/Nanostring-Biostats/CellProfileLibrary. The in-situ benchmarking 

dataset is available at https://github.com/Nanostring-Biostats/ImmuneDeconBenchmark. 
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Methods 

The SpatialDecon algorithm: 

Notation: 

Let Xp∙K be the cell profile matrix giving the linear-scale expression of p genes over K cell types.  

Let Yp∙n be the observed expression matrix of p genes over n observations.  

Let βK∙n be the unobserved matrix of cell type abundances of K cell types over n observations.  

Let Bp∙n be the matrix of expected background counts corresponding to each data point in Y. 

Let ||x|| denote the L2 norm operator of x such that ||x|| = mean(x2).  

The core log-normal deconvolution algorithm proceeds as follows: 

Algorithm 1: 

1. To avoid negative-infinity values when log-transforming Y, define ε equal to the minimum 

non- ero value in Y, and threshold Y  elow so that its smallest value is ε.  

2. Take β̂ = argminβ∙i
‖log(Y) − log(B +  Xβ)‖, subject to the constraint that β∙𝑖 ≥ 0.  his 

constrained optimization is performed separately for each column of Y using the R 

package logNormReg6.   

3. For i in {1, …, n}, calculate the covariance matrix of β∙î by inverting the hessian matrix 

returned by logNormReg. Call this covariance matrix ∑(𝑖)̂ . Then the standard error for βj,î 

is ∑𝑗,𝑗
(𝑖)̂

.  

4. Calculate the p-value for each βi,j with p = 2 (1 – F(t = βj,î/∑j,j
(i)̂

, df = p – K – 1)), where F 

is the cumulative distribution function of the t distribution.  

  

The SpatialDecon algorithm, which incorporates outlier removal into algorithm 1, proceeds as 

follows: 

Algorithm 2 (SpatialDecon): 

1. Run Algorithm 1. 

2. Choose δ as the expression level  elow which technical noise predominates. For GeoMx 

data normalized to have expected background = 1, we use δ = 0.5. 

3. Define the residuals of the algorithm fit as R = log2(pmax(Y, δ)) – log2(pmax(B + Xβ̂, δ)), 

where pmax(x, δ) is the function replacing all elements of x  elow δ with δ. 
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4. For all {i,j} with |Ri,j| > 3, set Yi,j to NA.  

5. Re-run Algorithm 1 using the updated Y matrix.  

 

Using the GeoMx platform to derive cell profiles for new cell types 

The procedure for using GeoMx to derive the profiles of unmodelled cells and merge them into 

the cell profile matrix X proceeds as follows: 

Algorithm 3: 

1. Specify columns of Y corresponding to segments selected to contain a pure cell type 

that is missing from X. For example, for immune deconvolution in tumors, select 

segments targeting purely PanCK+ cells to derive a cancer cell profile. 

2. Collapse the segments into 10 clusters by applying the R functions hclust and cutree to 

their log-transformed expression profiles.  

3.  efine each cluster’s expression profile  y taking each gene’s geometric mean across 

the observations in the cluster. Scale this profile so its 90th percentile value is equal to 

the average 90th percentile value of the columns of the cell profile matrix.  

4. Append the cluster expression profiles to the cell profile matrix.  

The NanoString GeoMx® Digital Spatial Profiler and GeoMx assays are for research use only 

and not for use in diagnostic procedures. 

 

Using the GeoMx platform to convert cell abundance scores to cell counts 

When the GeoMx system’s per-region nuclei counts are available, the below procedures are 

used to convert cell abundance scores to estimates of absolute cell counts.  

Case 1: all cell types in the tissue are modelled in the cell profile matrix: Here we estimate the 

number of each cell type in a region by the product of the nucleus count in the region and the 

cell type’s estimated proportion in the region: estimated cell counts = nuclei ∙ β̂/ ∑ β̂. 

Case 2: the tissue contains cell types that are not modelled by the cell profile matrix. The 

motivating case here is immune cell deconvolution in tumors, where cancer cell profiles are 

often omitted from the model. If it is reasonable to assume that at least one profiled region 

consists of entirely cells modelled by the cell profile matrix, then call the sum of its cell 

a undance scores βmax. Then for all regions, take estimated cell counts = nuclei ∙ β̂/βmax. 
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Analysis of cell pellet array study 

Reference genes for normalization were selected by applying the geNorm algorithm21 to the 50 

highest-expressing genes. Each segment’s expression profile was normalized using the 

geometric mean of the resulting list of 27 reference genes. The expression profiles of the pure 

cell lines were estimated using the median expression profile of the 4 unmixed replicates from 

each cell line. These two profiles were then scaled to have the same median expression level.  

Gene sets were defined as follows.  he “most informative” gene set had a log2 fold-change 

 etween the cell lines of > 1.5, for a total of 1 3 genes.  he “least informative” gene set had a 

log2 fold-change < 1.5, for 1231 genes.  he “complete” gene set was 1 1  genes, and the “low-

to-moderate expression” genes had <1000 counts in each cell line, for 1362 genes.  

Log-normal deconvolution was run using Algorithm 1. Non-negative least squared deconvolution 

was run by taking 𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑌 − (𝐵 +  𝑋𝛽)‖, su ject to the constraint that β ≥ 0. 

Optimization was performed using the R function optim. The background term B was included 

because ignoring background would disadvantage NNLS in the comparison. Nu support vector 

regression was run using svm function from   package e1071, with ν set to 0.75, a linear 

kernel, and without scaling. v-SVR does not allow for explicit modelling of background signal, so 

normalized expression data was background-subtracted before entry into v-SVR. 

 o compute each gene’s influence on a deconvolution result, deconvolution was run once with 

the complete gene set and once with each gene omitted. Each gene’s influence was reported as 

the absolute value difference in estimated HEK293T proportion between deconvolution with the 

complete gene set and deconvolution with the leave-one-out gene set.  

 

Analysis of TCGA for identifying genes suitable for use in immune deconvolution in 

tumor samples 

Each TCGA sample was scored for abundance of diverse immune and stromal cells using the 

geometric mean of previously reported marker genes7,8. Then, in each cancer type, we used 

lognormal regression to model each gene as follows: 

log(y) = log(β0 + XTcellβTcell + XBcellβBcell + Xmacrophageβmacrophage + …) + ε, 

where y is the vector of the gene’s (linear-scale) expression across all samples in a cancer type, 

Xcell is the vector of a cell type’s estimated a undance across all samples, and ε is a vector of 
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normally-distri uted noise. We additionally apply the constrains that all β terms are ≥ 0.  he use 

of lognormal regression is motivated by the same considerations used in our deconvolution 

method: expression from mixed cell types compounds additively, but noise in gene expression 

is a log-scale phenomenon.  

In this model, the β0 term represents the gene’s average expression in a tumor when no 

immune cells are present.  hen we can measure a gene’s proportion of tumor-intrinsic 

expression with β0 / mean(y). Ideal genes for deconvolution will have β0 / mean(y) very close to 

0; genes with su stantial contamination from cancer cells will have β0 / mean(y) near 1. 

 

Derivation of the SafeTME cell profile matrix for deconvolution in the tumor 

microenvironment 

Three datasets were used to define the SafeTME cell profile matrix for deconvolution of the 

tumor microenvironment: expression profiles of flow-sorted PBMCs for use in deconvolution of 

blood samples5, scRNA-seq of finely clustered immune cell types13, and RNAseq profiles of 6 

cell populations flow-sorted from lung tumors14.  

Cell type profiles from PBMCs were used whenever possible, since flow-sorting on surface 

markers is the gold standard for classifying immune cells. Specifically, profiles were taken for 

naïve B cells, memory B cells, plasmablasts, naïve CD4 T-cells, memory CD4 T-cells, naïve 

CD8 T-cells, memory CD8 T-cells, T-regulatory cells, NK cells, plasmacytoid DCs, myeloid DCs, 

conventional monocytes, non-conventional/intermediate monocytes, and neutrophils. We 

omitted profiles of PMBC cell populations expected to be vanishingly infrequent in tumors: 

basophils, MAIT cells, and T gamma delta cells.    

From the tumor scRNA-seq dataset, we took the profiles for macrophages and mast cells, which 

are not present in PBMCs. We defined a mast cell profile as the average of the 2 reported mast 

cell clusters’ profiles, and the macrophage profile as the average of the 9 reported macrophage 

cluster profiles13. The mast cell profile was scaled to have the same 80th percentile and the 

average 80th percentile of the PMBC cell profiles; the macrophage profile was scaled to have 

the same 80th percentile as the PBMC conventional monocytes profile.  

From the flow-sorted lung tumor dataset14, we derived profiles for endothelial cells and 

fibroblasts. Four endothelial cell samples with low signal were removed, as were 8 fibroblast 

samples with low signal. The remaining replicate samples were normalized using their 90th 
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percentiles, and endothelial cell and fibroblast profiles were defined by the median expression 

profiles of the corresponding samples.  The cell profiles extracted from the 3 datasets then were 

combined into a single matrix, which was reduced to a subset of 1180 highly-informative genes.  

It is inevitable that the combined matrix contains numerous systematic biases, such as platform 

effects, noise in the experimental results of the original cell profile matrices, and gene 

expression differences in blood vs. tumor. To reduce these effects, we employed the following 

procedure. First, we performed deconvolution on 3 TCGA datasets: colon adenocarcinoma 

(COAD), lung adenocarcinoma (LUAD), and melanoma (SKCM). Most genes were consistently 

over- or under-estimated by the deconvolution fits, and these biases were consistent across 

datasets. Each gene’s  ias was estimated with the geometric mean of the ratios between its 

observed expression values and its predicted expression values from the deconvolution fits. 

Finally, each gene’s row in the cell profile matrix was then rescaled  y its expected  ias.  

We removed genes estimated by our TCGA analysis to have more than 20% of transcripts 

derived from tumor cells. The final SafeTME cell profile matrix, from 18 cell types and 906 

genes, is reported in the Supplementary data.  

 

Derivation of cell profile matrices from public scRNA-seq datasets 

27 single cell RNA-seq studies were downloaded from The Broad Institute Single Cell Portal. 

For raw gene expression (GE) matrices, cells were removed if they fell below the inflection 

point, were considered empty by emptyDrops22, had a gene count above 2.5x average gene 

count, or had a percentage of mitochondrial genes > 0.05. Genes were removed if they 

appeared in less than 2 cells or had low biological significance as measured by scran23. Cells 

were clustered and marker genes identified using Seurat24. Clustered marker genes were 

compared to PanglaoDB18 marker genes (ubiquitousness index < 0.1, sensitivity > 0.6, 

specificity < 0.4, canonical marker). Cell clusters were named according to the PanglaoDB cell 

type with the most overlapping marker genes. All cell cluster names were manually reviewed for 

correctness. When data sets had already been annotated with cell type calls, the existing cell 

type calls were retained. Only cell clusters with more than 10 cells were reported. Each cell 

cluster’s profile was reported as the arithmetic mean of its cells’ expression profiles. 
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Protein Slide Preparation  

 

For GeoMx DSP slide preparation, we followed GeoMx DSP slide prep user manual (MAN-

10087-04). 5 µm FFPE microtome sections of non-small-cell-lung cancers (NSCLC) 

(ProteoGenex) or cell pellet arrays (Acepix Biosciences, Inc.) were mounted onto SuperFrost 

Plus slides (Fisher Scientific, 12-550-15) and air dried overnight. Slides were prepared by 

baking in a drying oven at 60°C for 1 hour; then the paraffin was removed with CitriSolv (Fisher 

Scientific, 04-355-121). The samples were rehydrated in an ethanol gradient and final wash in 

DEPC-treated water (ThermoFisher, AM992). Target retrieval was performed by placing slides 

in staining jars containing 1x citrate buffer pH6 (Sigma Aldrich SKU C9999-1000ML) and heated 

in a pressure cooker on high temperature setting for 15 minutes. Slides were allowed to cool to 

room temperature and blocked at room temperature for one hour with Buffer W (NanoString 

Technologies). The primary antibody mix was made by combining the detection antibody 

modules (NanoString Technologies) at 1:25 and the visualization markers in Buffer W. The 

NSCLC were visualized with CD3-647 at 1:400 (Abcam, ab196147), CD45-594 at 1:40 

(NanoString Technologies) and PanCK-532 at 1:40 (NanoString Technologies. Slides were 

incubated overnight at 4°C. Slides were fixed with 4% paraformaldehyde (Thermo Scientific 

28908) and the nuclei were stained with SYTO 13 (Thermo Scientific S7575) at 1:10 for 15 

minutes.  

 

 

RNA/NGS Slide Preparation:  

For GeoMx DSP slide preparation, we followed GeoMx DSP slide prep user manual (MAN-

10087-04). 5 µm FFPE microtome sections of both non-small-cell-lung cancers (NSCLC) 

(ProteoGenex) were mounted onto SuperFrost Plus slides (Fisher Scientific, 12-550-15) and air 

dried overnight. Slides were prepared by baking in a drying oven at 60°C for 1 hour. Slides were 

then processed with a Leica Biosystems BOND RXm (Leica Biosystems) as specified by the 

NanoString GeoMx DSP Slide Preparation User Manual (NanoString Technologies, MAN-

100 7).  riefly, slides were processed with the  taining protocol “*GeoMx  NA   P slide prep”, 

the Preparation protocol “* ake and  ewax”, HIE  protocol “*HIE  20 min with E 2 @ 100°C, 

and Enzyme protocol “*En yme 1 for 15 minutes”. For En yme 1 a 1 ug/mL concentration of 

Proteinase K (Ambion, 2546) was used. This program included target retrieval, Proteinase K 

digestion, and post fixation. Once the Leica run had finished slides were immediate removed 

and placed in 1x PBS. One at a time, slides were placed in a prepared HybEZ Slide Rack in a 
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HybEZ Humidity Control Tray (ADC Bio, 310012) with Kimwipes damped with 2xSSC lining the 

bottom. 200uL of a custom RNA probe Mix at a concentration of 4nM per probe in 1x Buffer R 

(NanoString Technologies), was applied to each slide. A Hybridslip (Grace Biolabs, 714022) 

was immediate applied over each sample. Slides were incubated in a HybEZ over (ACDBio 

321720) at 37°C for 16-24 hours. After hybridization slides were briefly dipped into a 2x SSC + 

0.1% Tween-20 (Teknova, T0710) to allow the coverslips to slide off then washed twice into a 

2x SSC/50% formamide (ThermoFisher AM9342) solution at 37°C for 25 minutes each, followed 

by two washes in 2x SSC for 5 minutes each at room temperature. Slides were then blocked in 

Buffer W (NanoString Technologies) at room temperature for 30 minutes. 200uL of a 

morphology marker mix was them applied to each sample for 1 hour. The tumors were 

visualized with CD3-647 at 1:400 (Abcam, ab196147), CD45-594 at 1:10 (NanoString 

Technologies), PanCK-532 at 1:20 (NanoString Technologies) and SYTO 13 at 1:10 (Thermo 

Scientific S7575).   

 

 

GeoMx DSP sample collection 

For GeoMx DSP sample collection, we followed GeoMx DSP instrument user manual (MAN-

10088-03). Briefly, tissue slides were loaded to GeoMx DSP instrument and then scanned to 

visualize whole tissue images. For cell pellet array samples, 300um ROIs in diameter were 

placed. For each tissue sample, we placed ROIs and segmented into two regions: PanCK-high 

tumor region and PanCK-low TME regions.   

 

 

GeoMx DSP NGS Library Preparation and Sequencing 

Each GeoMx   P sample was uniquely indexed using Illumina’s i5 x i7 dual-indexing system. 4 

uL of a GeoMx DSP sample was used in a PCR reaction with 1 uM of i5 primer, 1 uM i7 primer, 

and 1X NSTG PCR Master Mix. Thermocycler conditions were 37°C for 30 min, 50°C for 10 

min, 95°C for 3 min, 18 cycles of 95°C for 15 sec, 65°C for 60 sec, 68°C for 30 sec, and final 

extension of 68°C for 5 min. PCR reactions were purified with two rounds of AMPure XP beads 

(Beckman Coulter) at 1.2x bead-to-sample ratio. Libraries were paired-end sequenced (2x75) 

on a NextSeq550 up to 400M total aligned reads.   
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Analysis of GeoMx protein and RNA benchmarking data.  

Twelve segments with very low signal in either the protein or RNA results were excluded. The 

protein assay data was normalized with the geometric mean of the negative control antibodies, 

and the RNA data was normalized with the geometric mean of the negative control probes. Prior 

to deconvolution, Algorithm 3 was used to append tumor-specific profiles to the SafeTME 

matrix. Deconvolution was run using the resulting profile matrix and the SpatialDecon algorithm.  

 

Analysis of GeoMx RNA data from a grid over a NSCLC tumor  

Raw counts from each gene in each tissue region were extracted from the NanoString GeoMx 

NGS processing pipeline. For each region, the expected background for each gene was 

estimated with the mean of the panel’s 100 negative control pro es. Each region’s signal 

strength was measured with the 85th percentile of its expression vector. Three PanCK+ regions 

with outlier low signal strength were removed from the analysis. Each region’s data was 

normali ed with the “signal-to- ackground” method, scaling each region such that its negative 

control pro e mean was 1. ( his method is one of the manufacturer’s recommended 

approaches for normalizing GeoMx data; it is successful because the negative control probes 

respond to technical factors like region size, region-specific RNA binding efficiency, and region-

specific density of material to which oligos might bind.)  

Prior to deconvolution, the study’s pure PanCK+/tumor segments were input into Algorithm 3, 

resulting in 10 tumor-specific expression profiles. These profiles were then appended to the 

SafeTME profile matrix. Deconvolution was then run using the SpatialDecon algorithm.  

To derive microenvironment subtypes, clustering was performed on the matrix of estimated cell 

counts using the R library pheatmap.  

 

Methods: calculation of residuals from cell scores in NSCLC study 

Reverse deconvolution was run as follows. Cell abundance estimates were taken from the 

SpatialDecon run described above. In only the stroma segments, each gene’s linear-scale 

expression was predicted from the cell abundance estimates, including an intercept term. All 

estimates were constrained to be non-negative.  
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Reverse deconvolution residuals were calculated for each gene as the log2 fold-change 

between observed expression and fitted expression, with both terms thresholded below at 1, the 

expected background in the normalized data.  hat is, if y.o served is a gene’s normali ed 

expression, and y.fitted is its predicted expression based on the reverse deconvolution fit, then 

residuals = log2(max(y.observed, 1)) – log2(max(y.fitted, 1)). 

 he following metrics were used to measure genes’ dependency on cell mixing. “Correlation” 

was calculated as cor(y.observed, y.fitted). “ esidual   ” was calculated as sd(residuals).  

To identify clusters of co-regulated genes, the correlation matrix of all genes’ reverse 

deconvolution residuals was clustered using the R function hclust. Gene modules were 

identified by applying the R function cutree to the resulting hierarchical clustering results. 
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Supplementary Table 5: Correlations between canonical marker proteins and deconvolution 
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Supplementary material 

Supplementary results: lognormal regression is a more appropriate model for mixed cell expression 

data    

Least-squares-based deconvolution algorithms solve extensions of the optimization problem ||y – Xβ||, 

where yp∙1 is a sample’s (linear-scale) expression levels of p genes, Xp∙K is the cell profile matrix containing 

the expected expression of p genes in K cell types, and βK∙1 is the vector of the K cell types’ abundances, 

and ||*|| is the L2 norm operator.  

Implicit in any deconvolution technique is a mean model, specifying how cell types’ expression profiles 

add up to create a mixed profile; and a variance model, describing the noise between expected and 

observed expression. Least squares regression’s mean model assumes E(y) = Xβ. This mean model is 

appropriate, as the gene expression profiles of different cell types should add atop each other in a mixed 

sample. But least squares regression’s variance model is inconsistent with the gene expression data.  

Least squares regression’s variance model assumes that every gene’s residuals (y – Xβ) are normally 

distributed with equal variance. This model is inappropriate for gene expression data for two reasons. 

First, gene expression data is right-skewed, strongly violating the assumption of normality (Supp. Fig. 1 

a,b). Second, gene expression data is heteroscedastic, with high-expressing genes having standard 

deviations thousands of folds above low expressing genes (Supp. Fig. 1 c). Log-transforming gene 

expression data largely corrects both its skew and its heteroscedasticity.  

Supplementary Figure 1 uses data from the TCGA LUAD (lung adenocarcinoma) RNAseq dataset to 

demonstrate gene expression’s skewness and heteroscedasticity on the linear-scale and its relative 

normality and homoscedasticity on the log-scale. Panel (a) shows the distribution of CD274 (PD-L1), a 

gene with typical skewness. On the linear scale its skewness is 2.8; after log-transformation its skewness 

is 0.1 (the normal distribution has skewness of 0). Panel (b) shows the distribution of the skewness 

statistics from all genes in the transcriptome in TCGA LUAD. On the linear-scale, all but one of the 20243 

genes measured was right-skewed, and 68% have extreme skewness > 2. On the log-scale, the average 

gene has skewness close to 0, and only 0.4% of genes have skewness outside of (-2, 2). Panel (c) 

demonstrates the heteroscedasticity of gene expression, plotting each gene’s SD against its mean. In 

linear-scale data, SD increases proportional to a gene’s mean expression level, and the range of SDs 

spans 9.6∙10-3 to 1.9∙105 (20004870-fold). In log-scale data, low-expression genes are only slightly more 

variable than high-expressors, and the range of SDs is only 16.5-fold. 
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Supplementary Figure 1: skewness and heteroscedasticity of gene expression data. All figures are 

generated from the TCGA LUAD dataset. a. Histograms of CD274 (PD-L1) expression on the log and linear 

scale. b. Distribution of skewness statistics calculated for each of 20531 genes across the TCGA LUAD 

samples. Grey: skewness of linear-scale genes. Orange: skewness of log-scale genes. c. Genes’ mean vs. 

standard deviation, calculated from linear-scale and from log-scale data.  
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Supplementary Figure 2: Stroma cell abundance estimates from segments of a NSCLC tumor, with and 

without modelling tumor-specific expression. Horizontal axis: Estimates from deconvolution using only 

stroma cell profiles. Vertical axis: Estimated from deconvolution using both stroma cell profiles and 10 

tumor cell profiles derived from pure tumor segments.  
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