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Abstract

Populations of bacteria often undergo a lag in growth when switching conditions.
Because growth lags can be large compared to typical doubling times, variations in
growth lag are an important but often overlooked component of bacterial fitness in
fluctuating environments. We here explore how growth lag variation is determined for
the archetypical switch from glucose to lactose as a carbon source in E. coli. First, we
show that single-cell lags are bimodally distributed and controlled by a single-molecule
trigger. That is, gene expression noise causes the population before the switch to divide
into subpopulations with zero and nonzero lac operon expression. While ’sensorless’
cells with zero pre-existing lac expression at the switch have long lags because they are
unable to sense the lactose signal, any nonzero lac operon expression suffices to ensure a
short lag. Second, we show that the growth lag at the population level depends crucially
on the fraction of sensorless cells, and that this fraction in turn depends sensitively on
the growth condition before the switch. Consequently, even small changes in basal
expression affecting the fraction of sensorless cells can significantly affect population
lags and fitness under switching conditions, and may thus be subject to significant
natural selection. Indeed, we show that condition-dependent population lags vary across
wild E. coli isolates. Since many sensory genes are naturally low expressed in conditions
where their inducer is not present, bimodal responses due to subpopulations of sensorless
cells may be a general mechanism inducing phenotypic heterogeneity and controlling
population lags in switching environments. This mechanism also illustrates how gene
expression noise can turn even simple sensory gene circuits into a bet-hedging module,
and underlines the profound role of gene expression noise in regulatory responses.

Introduction

Most unicellular organisms live in variable environments that require them to adapt to,
among other things, changes in available nutrients. Already in the early 1940s Monod
observed that during diauxic growth, when bacteria switch from consuming one sugar to
another, there is typically a lag period in growth [1]. Reasoning that this lag is somehow
associated with the need for cells to ’adapt’ to the alternative sugar, subsequent
investigations into the origin of this lag eventually led to the discovery of gene
regulation [2]. Monod also observed that the length of the lag can vary strongly for
different sugars, suggesting that the amount of time cells need to adapt depends on the
type of the switch, but at the time it was not clear why certain switches would require
more adaptation time than others.
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It is currently widely believed that lag times depend on which of two types of general
strategies cells employ to adapt to a particular environmental change. If, like in the lac
operon studied by Monod, cells have dedicated machinery for sensing the nutrient and
up-regulating the appropriate target genes in response, lags are generally expected to be
short. Alternatively, in the absence of sensory machinery, cells can employ a bet
hedging strategy where, through stochastic gene expression, small subsets of the
population of cells are already pre-adapted to other environments [3]. In this case, long
lags can result from the time required for the rare subset of pre-adapted cells to expand.

However, as it has become well appreciated that essentially all genes are subject to
substantial stochastic fluctuations in expression, there may well be no clean dichotomy
between sensing and stochastic bet hedging strategies [4]. That is, even when cells
possess dedicated sensing and regulatory machinery for responding to a switch in
nutrients, stochastic gene expression will cause phenotypes to vary across cells, and this
may well lead to a significant variations in lags across single cells.

The archetypical example of a nutrient switch, which led to the discovery of gene
regulation, involves exposing Escherichia coli bacteria that were growing on glucose to
lactose. In response, the three genes of the lac operon will be expressed, including the
lactose transporter LacY and the galactosidase LacZ, which hydrolyses lactose and
isomerizes it into allolactose (Fig. 1A). The expression of the lac operon is controlled by
a dedicated transcription factor, LacI, which is inhibited by allolactose. In the absence
of lactose the repressor LacI keeps the operon at low expression, whereas in the presence
of lactose a positive feedback loop between import of lactose by lacY, production of
allolactose by LacZ, and inhibition of LacI by allolactose, causes the operon to switch to
a high induced state.

We recently reported a preliminary investigation into the distribution of single-cell
lags in the induction dynamics of the lac operon and observed that lags are bimodally
distributed [5]. Here we characterise the molecular mechanisms underlying this
bimodality, the determinants of the fractions of the population in each of the modes,
and the resulting impact on population lag and fitness when bacteria are switching
between nutrients.

Using a combination of experiments that perturb the state of cells before the first
induction and detailed analysis of transcriptional memory in lineages of single cells after
induction, as well as independent single-molecule fluorescence experiments, we show
that cells with short and long lags correspond to cells with either nonzero or zero
pre-existing lac expression at the time of the switch. That is, we find that the lac
operon constitutes a single-molecule trigger where any nonzero expression of LacY/Z
proteins suffices to ensure a quick response. In contrast, long lags occur because cells
with zero lac expression cannot sense lactose and have to wait for a spontaneous
stochastic burst of lac operon expression before they induce. We show that the
population lag is determined by the fraction of ’sensorless’ cells with zero lac expression
and that this fraction can sensitively depend on the precise growth conditions before the
switch. Using simulations to infer population growth lags from single-cell lags we show
that subtle changes in the fraction of sensorless cells can have substantial consequences
for population lag and fitness. Diauxie experiments with both laboratory strains and a
diverse set of wild E. coli isolates validate our predictions on population lags and show
that wild E. coli strains also exhibit highly context-dependent lags in lac operon
induction.

In summary, for the lac operon, a sub-population of sensorless cells causes a bimodal
response to lactose and the population growth lag is largely determined by the fraction
of sensorless cells at the time of the switch, which in turn sensitively depends on the
growth conditions before the switch. This raises the question as to what extent the
occurrence of sensorless cells is a general mechanism for generating bimodal responses
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and determining population lag to an inducing signal. Using existing proteomic data we
show that a large fraction of sensory systems in E. coli are expressed at such low levels
in many conditions that substantial fractions of sensorless cells are expected to
generically occur for many sensory systems. Thus, population lags may well be
controlled by fractions of sensorless cells for many environmental switches.

Results

In order to study the stochastic induction dynamics of the lac operon, we used a
recently developed integrated setup that combines microfluidics, quantitative time-lapse
microscopy, and automated image analysis [5] Fig. S1. We monitored growth and gene
expression of single E. coli cells expressing a LacZ-GFPmut2 fusion from their native
lac operon locus (Fig. 1A) while growing in Dual Input Mother Machine chips, where
the growth medium alternated between glucose and lactose, starting from a glucose
phase (Fig. 1B). As we already reported in our preliminary study based on a much
smaller sample [5], GFP levels are below autofluorescence levels in all cells during the
initial glucose phase and upon the switch to lactose all cells immediately enter growth
arrest for a stochastic period of time, after which growth recommences approximately at
the same time as LacZ-GFP expression is first detected (Fig. 1B). Notably, although we
do not observe bistability in the sense that almost all cells eventually induce their lac
operon, the distribution of lag times until induction is clearly bimodal (Fig. 1C;
Fig. S3): 30% of cells induce their lac operon in less than 50 min while the other 70%
take between 1 and 3 h. The bimodality of single-cell lags is not dependent on the
abrupt nature of the switch, because an almost identical bimodal distribution was
observed for experiments in which cells are exposed to a gradual transition from glucose
to lactose over 40 min (Fig. S4). Another striking feature of this regulatory response is
that, for virtually all cells, the resumption of growth occurs almost exactly when lac
expression becomes detectable (Fig. 1B). In order to rigorously quantify the correlation
between lac induction and growth lags we devised a Bayesian inference procedure to
estimate the growth lag of single cells from their (noisy) elongation curves (see
Methods). We observe that growth lags and induction lags are very tightly correlated
(Pearson correlation coefficient r2 = 0.87, Fig. 1D; Fig. S3), with the exception of rare
cells (≈ 6%) which did not restart growing despite having induced their lac operon.
Consequently, the distribution of induction lags shapes the population growth response
when cells are exposed to lactose.

The fact that the growth lags closely track the lac induction lags of individual cells,
together with the fact that we did not observe any correlation between lags and basic
physiological parameters such as the growth rate of the cells or their cell cycle stage at
the switch (Fig. S5), strongly suggests that the lac induction dynamics is the main
determinant of growth after the switch. These observations led us to hypothesize that
the lag time of a cell may be controlled by its pre-existing lac expression before the
switch. To test whether the fractions of long and short lags can be altered using a
perturbation that only affects lac expression before the switch, we added a minute
amount of the artificial inducer IPTG (5 µM) to the glucose media before the switch.
Although this amount of IPTG is far too small to cause induction of the lac operon
(Fig. S6), it should inhibit some of the LacI proteins, thereby decreasing the repression
and increasing pre-existing lac expression. Indeed, we observe that this amount of
IPTG is sufficient to increase the fraction of short lags by 2.4-fold (Fig. 1E). In contrast,
when the LacI repressor is over-expressed approximately 5-fold from a low copy number
plasmid, leading to a stronger repression of the lac operon, virtually all naive cells have
long lags (Fig. 1E). Moreover, LacI overexpression can be compensated by IPTG
supplementation, indicating that these perturbations are indeed counteracting each
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Fig 1. lac operon induction lags are bimodally distributed and controlled
by LacI activity before the switch.
A. Summary of the lac gene circuit. We use a LacZ-GFPmut2 translational fusion
integrated at the native genetic locus to monitor lac expression in single cells. B. Time
courses of cell length and number of LacZ-GFP molecules (on log scales; calibration as
described in [5]) for a subset of cells from a typical experiment where cells are grown in
a Dual Input Mother Machine Fig. S1 and exposed to two consecutive 4 hour lactose
episodes interspersed by a glucose period (which is 8 h in this experiment); for clarity,
only the 4 cells near the closed end in one representative growth channel are shown using
random colours to distinguish cells, and LacZ-GFP levels are offset by 100 molecules.
C. Histogram of single-cell induction lags for the lac operon at the first lactose exposure
(’short’ lags under 50 min, ’long’ lags above 50 min) lac induction lags were defined as
the delay after the switch until cells increase their LacZ-GFP by 200 molecules and were
estimated from time series of LacZ-GFP expression (shown in B) for 1633 cells in 9
independent replicates (Fig. S2, Fig. S3). D. A scatter of growth lags versus lac
induction lags in individual cells shows that these two lags are tightly correlated (the
solid line is a guide for the eye with y = x). E. Violin plots of the distribution of
single-cell induction lags for populations of cells whose LacI activity during growth in
glucose was perturbed either by overexpression from a plasmid or by titration with
sub-induction concentrations of IPTG. The fraction of cells with short lags is reported
for each treatment; each contour corresponds to an independent replicate (with ≈ 150
cells) and the dotted line corresponds to 50 min separating long and short lags.
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Fig 2. Transcriptional memory analysis indicates that the critical lac
expression threshold for inducing the lac operon is on the order of a single
molecule.
A. Distributions of initial fluorescence in cells with short (orange) and long(blue) lac
induction lags; the grey line is a control showing the distribution of autofluorescence in
a wild-type strain without GFP (fluorescence is centered per experiment, see
supplementary methods). Note that the standard deviation of autofluorescence
intensities corresponds to ∼ 20 LacZ-GFP molecules, while the shift in fluorescence
between cells with short and long lags corresponds to ∼ 5 LacZ-GFP molecules only.
B. Reverse cumulative distributions of lac induction lags for cells that first grew in
lactose and fully induced their lac operon, and then grew in glucose for different lengths
of time (shown in colours; 1 or 2 replicates per condition); the distribution for naive
cells is shown as a reference (dotted dark gray, corresponding to the histogram of
Fig. 1C) along with a control where cells are first exposed to lactose after 26 h in the
microfluidic chip (light gray). C. Fraction of short lags (<50 min) for cells pre-exposed
to lactose as a function of the estimated number of inherited LacZ-GFP molecules. The
dashed horizontal line shows the overall fraction of short lags in naive cells as a
reference and semi-transparent gray rectangles show the mean ± s.e. for each replicate.

other (Fig. 1E). Since LacI only targets the lac operon [6], it seems highly unlikely that
these perturbations in LacI activity alter anything in the state of the cells besides the
strength of lac operon repression. These results thus strongly support that single-cell
lag times are controlled by pre-existing lac operon expression. The fact that we observe
a bimodal distribution of lag times thus suggests that there exists a threshold of
pre-existing lac expression that controls whether a cell has a short or long induction lag.
In this interpretation, this threshold expression level would correspond to the critical
level of pre-existing lac expression required for the positive feedback of the lac system
to quickly drive cells to the induced state, whereas cells with pre-existing lac expression
below this threshold would have to wait until a stochastic burst of lac expression would
drive the system over this threshold.

We next set out to quantify this critical lac expression threshold value.
Unfortunately, in our system the fluorescence of pre-existing LacZ-GFP molecules is
small compared to autofluorescence levels which fluctuate significantly from cell to cell
(± 20 GFP molecules; Fig. 2A). In addition, small uncontrolled day-to-day variations in
illumination contribute additional uncertainty on LacZ-GFP measurements. Altogether
this masks any correlation between pre-existing LacZ-GFP levels and induction lags of
individual cells (Fig. S5). However, by partitioning cells at the switch into those that
exhibited either long lags or short lags, we find that cells with short lags have on
average ≈ 5 LacZ-GFP molecules more than cells with long lags (p-value = 5.6e-06
using a one-sided t-test; Fig. 2A), indicating that the presence of only a few molecules
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may be enough to ensure short lags.
In addition, we were able to perform an independent and more precise quantification

of the pre-existing lac expression threshold using systematic dilution experiments.
During the period of growth in glucose that intercedes the two lactose periods, the lac
operon is fully repressed and, because LacZ-GFP is sufficiently stable that protein decay
can be neglected [7], LacZ-GFP levels divide in half at each cell division (Fig. 1B). For
any cell at the second switch to lactose, we can thus estimate its LacZ-GFP level from
the LacZ-GFP level of its ancestor at the end of the first lactose phase, and the number
of cell divisions in the intervening period. By modulating the length of the interceding
glucose phase, we can thus systematically vary the distribution of remaining lac
expression at the second switch to lactose, and measure the fractions of long and short
lags as a function of the level of remaining lac expression. We observe that even for
surprisingly long lags of up to 12 h, virtually all lags are short, and that it takes ca. 20 h
(corresponding to circa 16 divisions) to relax back to the distribution of induction lags
observed in naive cells (Fig. 2B). Moreover, there is a very strong correlation between
the observed lag times and the estimated number of remaining LacZ-GFP molecules
(Fig. S7). Virtually all cells that are estimated to have at least 10 remaining LacZ-GFP
molecules exhibit short lags, and only cells with one or fewer remaining LacZ-GFP
molecules exhibit the same fraction of long lags as naive cells (Fig. 2C). Together, these
dilution experiments and direct fluorescence measurements (Fig. 2A) indicate that the
critical threshold of pre-existing lac expression is on the order of one molecule.

Both the small shift in the distribution of fluorescence levels and the dilution
experiments suggest a critical LacZ-GFP level on the order of a single molecule. To
confirm this low threshold using a third independent method, we employed a
combination of single-molecule fluorescence correlation spectroscopy (FCS) in single
cells and picosecond time-resolved, time-correlated single photon counting (TCSPC) in
order to distinguish weak GFP fluorescence from autofluorescence of the cells. This
method, coined fluorescence lifetime correlation spectroscopy (FLCS), allows
distinguishing spectrally overlapping fluorescent species by their characteristic
fluorescence lifetime distribution, i.e. the distribution of delay times between excitation
and emission [8]. To characterize the lifetime distribution of GFP we used TCSPC
measurements of LacZ-GFPmut2 bacteria induced with 200 µM IPTG and found a
single-exponential decay with characteristic lifetime τ ≈ 2.7 ns. Similarly, to
characterize the lifetime distribution of autofluorescence, we used wild-type bacteria not
carrying GFP and found a double-exponential decay (τ1 ≈ 0.75 ns, τ2 ≈ 3.8 ns; Fig. 3A).
Using these lifetime distributions we were able to separate the individual fluorescence
contributions in point FLCS measurements of uninduced LacZ-GFPmut2 bacteria and
determine which cells had a nonzero presence of LacZ-GFP (see methods; Fig. S8).

First, we measured snapshots of 150 uninduced bacteria cells from 5 independent
liquid cultures, whose LacZ-GFP content is expected to be the same as in mother
machine experiments before the first switch from glucose to lactose. Indeed, the
proportion of cells where LacZ-GFP is detectable by point FLCS (28 ± 4 %) is similar
to the proportion of cells with short lags in microfluidic experiments determined by
imaging (30 ± 1 %; Fig. 3B). Notably, this is consistent with previous single-molecule
experiments which observed that ≈65% of cells have no LacZ [9], and ≈50% no
LacY [10]. Second, we performed three independent microfluidic experiments where we
acquired FLCS data for one to two cells per growth channel at the onset of the switch
from glucose to lactose. Additionally, we monitored the bacterial growth and the
LacZ-GFP expression for 270 min by fluorescence lifetime imaging (FLIM) in order to
resolve the induction lag in these cells. In line with our expectations, we found that only
1 out of 37 cells with a long lag had been measured to contain nonzero LacZ-GFP
before the switch (Fig. 3C). Conversely, we detected low but nonzero molecular levels of
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Fig 3. Fluorescence lifetime analysis supports that the critical lac
expression threshold for inducing the lac operon is on the order of a single
molecule.
A. Distribution of decay times measured on induced bacteria (LacZ-GFPmut2) and on
bacteria without GFP (autofluorescence in GFP channel). The peak at 2.5 ns
correspond to the laser pulse, hence the fluorescence lifetime is the delay after this peak.
B. Fraction of cells where LacZ-GFP is detected by FLCS in a liquid culture of
uninduced cells (n=150). The fraction of cells with short lags in microfluidic experiment
(Fig. 1C) is shown for comparison. C. Distribution of lac induction lags during
experiments where the presence of LacZ-GFP before the switch (shown in color) is
assessed by FLCS (66 cells from 3 independent replicates). The dotted vertical line
indicates the threshold between short and long lags.

LacZ-GFP (fitted number of fluorescent particles <20) in the majority of cells with
short lags (13 out of 22). The fact that not all cells with short lags were detected to
contain nonzero LacZ-GFP likely reflects that our methods lacks sufficient sensitivity to
reliably detect a single LacZ-GFP tetramer, and that our data analysis is conservative
in calling nonzero LacZ-GFP levels.

FLCS measurements in snapshot and time course experiments therefore support that
the critical threshold of pre-existing lac expression is on the order of one molecule.
While single-cell FCS studies in bacteria are not uncommon, this is to our knowledge
the first report where gene expression noise is studied by assessing the presence/absence
of freely diffusing fluorescent proteins in live bacteria by FLCS. Taking these results
together, the following picture of a single-molecule trigger emerges: when exposed to
lactose, those cells that have at least one molecule of both LacY and LacZ present are
able to respond fast, whereas all other cells cannot sense the lactose and have to wait
for the next stochastic burst of expression (Fig. 4A).

One implication of the single-molecule trigger mechanism is that the fractions of
short and long lags depend sensitively on the strength of the lac operon repression
before the switch, i.e. on the fraction of cells that have precisely zero expression. This
suggests that even subtle changes in the strength of lac operon repression due to
changes in growth conditions before the switch, may substantially affect the distribution
of single-cell lags. To investigate the context-dependence of the distribution of
single-cell lags we used different nutrients before the switch that we reasoned would
alter the strength of repression. In particular, besides being repressed by LacI, the lac
operon is also positively regulated by CRP [11], and the activity of CRP can be
increased by, for example, replacing glucose with glycerol as a carbon source [12]. Since
the strength of the lac repression should thus be weakened when growing in glycerol,
the fraction of short lags should increase, and this is indeed what we observe, i.e. the
fraction of naive cells inducing fast increases 2.1-fold to 58% (Fig. 4B). In addition, we
also measured single-cell lags when growing cells on a mixture of glucose and lactose
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Fig 4. The response of single cells to lactose is context-dependent and
shapes the population fitness after the switch.
A. Cartoon depicting how the lac induction of a given cell is determined by the
stochastic expression in the repressed state, and hence depends on the conditions before
the switch. Green dots depict Lac proteins. B. Violin plots of the single-cell lag
distributions for switches to lactose from growth conditions in which the lac operon is
slightly less repressed than in pure glucose, i.e. 0.4% glycerol (blue) and 0.2% glucose +
0.2% lactose (green). Each contour corresponds to a separate replicate with ≈150 cells);
the fraction of short lags (<50 min, indicated by the dotted line) is indicated below the
plots. C. Simulated population growth curves for different distributions of single-cell
lags, as observed for different switches (different colors; with semi-log scale). The
simulations assume deterministic exponential growth of each cell before and after the
switch, and complete growth arrest during the lag. The pink and light blue curves show
the population growth that would be obtained with only short and long lags,
respectively. D. Population growth lags as inferred from the simulated population
growth (vertical axis) as a function of the fraction of short lags (horizontal axis). The
lag is measured as a delay compared to a population with no arrest (yellow), and
reported in number of doublings in lactose (i.e. the number of divisions lost due to
growth arrest); the vertical arrow indicates the lag for ”short lags only” and corresponds
to the delay shown by the horizontal arrow in panel C.
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before the switch, i.e. as in diauxie experiments. Although lac expression remains low
on such a mixture [13], whenever the lac expression is nonzero, the presence of lactose
will cause some of it to be transported into the cells and metabolized into allolactose,
inhibiting some fraction of the LacI repressors. Thus, compared to growth on glucose,
we expect the repression of the lac operon to be slightly weakened on a mixture of
glucose and lactose. Note that the direct inhibition of LacY permeases due to the
ongoing glucose import (”inducer exclusion”) is not complete and should thus not
prevent this effect from occuring [11]. Indeed, we find that under these conditions the
fraction of short lags is increased 1.8-fold to 48% (Fig. 4B). These results confirm that,
because induction depends on a single-molecule trigger, the fraction of cells with short
lags is highly sensitive to the precise growth conditions before the switch.

The sensitive dependence of the single-cell lags to environmental conditions will
translate into differences in population lags, and thus potentially in fitness. However,
the magnitude of these potential effects on fitness are not a priori clear. In order to
infer population growth lags from distributions of single-cell growth lags, we simulated
population growth curves during a switch to lactose using the observed distribution of
single-cell lags in a given condition (Fig. 4C). By comparing these to the growth curve
of a population where all cells grow immediately at their maximum growth rate on
lactose (yellow line in Fig. 4C) we can calculate a population lag for each of the
conditions described above (Fig. 4D). In addition, we calculate population lags for
hypothetical populations where cells would have only short lags or only long lags.
Remarkably, while a population where all cells switch fast will have a lag on the order of
half a division time (due to the time necessary to initiate the positive feedback), a
population of naive cells will be retarded by ∼ 1.2 divisions compared to a population
without lag, and the population lag can be as long as 1.5 division times if no cells have
Lac proteins at the switch. Thus, we find that, by affecting the fraction of sensorless
cells with zero lac expression, even subtle changes in growth conditions before the
switch can have a strong impact on population lag.

Our measurements of the single-cell lags suggest that population lags, and thus
fitness in response to a switch of the available nutrients to lactose, can sensitively
depend on the growth conditions before the switch. To test this in real populations, and
to investigate to what extent this behavior extends beyond lab strains, we performed
classic diauxie experiments with both lab strains and a diverse set of natural E. coli
isolates [14,15]. As is well known, when E. coli is grown on a combination of glucose
and lactose, cells first consume the glucose and naturally switch to consuming lactose
when the glucose runs out. To test the context-dependence of population lags, we
performed diauxie experiments with two different lactose concentrations.

Based on our previous observations with experiments in the DIMM (Fig. 4B), we
reasoned that higher external concentrations of lactose would lead to more lactose being
imported into the cells during growth on glucose, thereby weakening the lac repression
more. Thus, we expect shorter population lags in the higher lactose concentration. To
calculate growth lags, we compared the observed diauxic growth curves with population
growth in the same conditions supplemented with large amounts of IPTG (200 µM),
such that cells express their lac operon during the whole experiment and can readily
metabolise lactose when they exhaust glucose (Fig. 5A). Across all strains, we find that
population lags are indeed shorter for higher lactose concentrations, even though the
absolute value of the lags and the size of the difference between the two lactose
concentrations varies substantially across strains (Fig. 5B, Fig. S9).

Although, based on our single-cell experiments, we interpret these changes in
population lags to result from changes in the fractions of cells with nonzero lac
expression at the time that the glucose is exhausted, a higher lactose concentration may
also reduce lags by increasing the rate of lactose import in cells with nonzero lac operon

June 15, 2020 9/35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.01.04.894766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.04.894766
http://creativecommons.org/licenses/by-nc/4.0/


la
g

0

50

0.01 0.03 0.10
optical density

de
la

y 
(m

in
)

0.01

0.03

0.10

0 2 4 6 8
time (h)

op
tic

al
 d

en
si

ty
 (A

U
)

[IPTG] 0µM 200µMA

0
20
40
60
80

MG16
55

ASC66
2
SC30

3
SC30

5
SC34

7
SC35

5
SC36

6

strain

po
pu

la
tio

n 
gr

ow
th

 la
g 

(m
in

) [lactose] 0.02% 0.2%B

Fig 5. Single-molecule triggering is observed across a diverse set of E. coli
strains.
A. Estimation of the population growth lag from diauxie experiments. Population
growth curves of strain ASC662 during diauxie experiments with 0.02% lactose and
0.005% glucose (blue) and controls where the lac operon is expressed throughout with
supplemented ITPG (gray). Each line corresponds to one replicate. The delay between
the blue growth curve and gray control to reach a given optical density features a long
plateau which corresponds to the population lag (inset). B. Population lag in diauxie
experiments with medium (0.02%, blue) and high (0.2%, orange) lactose concentrations
for both lab strains and a diverse set of natural E. coli isolates. Points and error bars
correspond to mean and standard error over at least 3 replicates with 0.005% glucose;
the circled dot correspond to the growth curves shown in panel A. Note that the lag is
reduced in all strains when more lactose is provided.

expression, i.e. shortening the time of the induction process itself. To disentangle these
effects, we performed experiments in which cells where grown on a mixture of glucose
and lactose (at a given concentration), and where then transferred to media with only
lactose at varying concentrations. Despite the less precise measurement of the
population lag with this protocol than in diauxie experiments, we observe that the
growth lag after the switch is impacted both by the lactose concentrations before and
after the switch, and that these two parameters have effects of similar magnitude on the
population lag (Fig. S10).

Our experiments have shown that population lag times, and thus fitness under an
environmental switch to lactose, are to a large extent determined by the frequency of
sensorless cells with zero lac operon expression. This observation raises the question if
other sensory systems in E. coli are also repressed to the point that substantial
fractions of sensorless cells will be unable to respond when the signal appears. We are
aware of only one other system that has been shown to exhibit very similar behavior
and that is the regulatory response protecting E. coli against the toxic and mutagenic
effects of DNA alkylation damage. In this system a single-molecule trigger leads to fast
or slow expression of Ada proteins, which transiently creates two subpopulations with
different phenotypes, in this case mutation rates [16]. In order to address how
ubiquitous single-molecule triggers are in bacteria, we focused on two-component
systems. Two-components systems all feature a kinase sensor located at the cell
envelope whose activation by environmental signals lead to phosphorylation of a cognate
response regulator, typically a transcription factor. In many cases the activation of the
response regulator upregulates the expression of the kinase, thereby implementing a
positive feedback. Thus, two-components systems with very low basal expression of the
kinase could exhibit single-molecule trigger dynamics. But even without single-molecule
trigger behavior, sufficiently low basal expression of the kinase will cause sensorless cells
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Fig 6. Sensorless cells are expected to occur for many two-component
systems in E. coli.
Distributions of expression levels of sensor kinases across 28 conditions for 9 of the 28
annotated two-components systems in E. coli . The vertical dashed lines correspond to
an average of 3 proteins per cell which is the threshold below which more than 5% of
the cells is expected to be sensorless. Note that 4 out of 9 two-components systems
(highlighted in orange) feature sensorless cells in 6 conditions or more.

to appear and they will be unable to respond to the corresponding signal.
Using quantitative proteomics data obtained for E. coli in 28 conditions [17], we

could query the expression levels for 9 kinase-TF pairs and for another 12 TFs
(Fig. S11), out of 27 two-components systems annotated on ecocyc.org. Remarkably
for 4 of the 9 pairs, cells carry less than 3 copies of the kinase on average in many
conditions (Fig. 6). If we conservatively assume Poisson expression fluctuations across
cells, then proteins with less than 3 copies on average imply a fraction of at least
e−3 ≈ 0.05 sensorless cells. It is also remarkable that for all 9 pairs, the kinase is
expressed at a lower level than the TF (typically 200-1000 fold less); since 6 out of the
12 additional TFs are expressed at 10 copies or less per cell (Fig. S11), we expect
several of these two-components systems to have sensorless cells as well. This limited
exploration of sensory gene circuits in E. coli illustrates that the occurrence of
sensorless cells and single-molecule triggers may in fact be common in bacteria.

Discussion

In this study of the lac operon induction by lactose in single cells, we uncovered that it
is governed by a single-molecule trigger: while cells that have at least one of each Lac
protein expressed at the moment of the switch will respond readily, cells lacking Lac
proteins are unable to sense lactose and have to wait for the next stochastic burst of lac
expression, which can delay the response for as long as several divisions. This
mechanism, where a positive feedback involved in the response is combined with a very
low basal expression level of its sensor such that a fraction of cells is effectively
sensorless, gives rise to transiently coexisting induced and uninduced subpopulations.
Importantly, despite involving a positive feedback, this molecular mechanism underlying
phenotypic variability does not require bistability of the gene circuit, as highlighted by
the fact that all cells eventually switch on.

The lac operon is one of the most widely studied regulatory systems, which raises
the question why this single-molecule trigger has not been observed previously. In most
previous quantitative studies of the lac operon, artificial inducers such as IPTG and
TMG were used in order to measure lac expression when cells are in a steady state of
growth that is not perturbed by the induction [11,18]. In these conditions, true
bistability has been reported, with a critical threshold on the order of hundreds of
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molecules [10]. We note two previous studies of the lac induction dynamics that are
most closely related to our current study where the inducer is lactose. Lambert and
Kussell studied lac induction by lactose in small populations of E. coli cells in a
microfluidic setup where bacteria are directly exposed to switching growth media [7].
However, in contrast to our study where growth and gene expression is followed at the
single-cell level, growth is only tracked for the entire population. This study established
the long-lived memory of lac operon induction, i.e. that a population of cells is able to
respond rapidly as long as Lac proteins have not been diluted below a threshold.
However, the setup was not calibrated to measure lac expression in number of proteins
so that this threshold could not be quantified, and the bimodality of induction lags could
not be uncovered because of the lack of single-cell measurements. In a second study lac
operon induction was studied in single cells by growing cells in microfluidic devices in
which media were dispensed by diffusion through a gel, and growth lag upon a switch to
lactose was measured in single cells [19]. Because no growth arrest was observed for the
large majority of cells in this study, lags were defined as the delay until growth-rate
fully recovered, and no bimodality of this recovery time was observed. We hypothesize
that, due to the different method of nutrient switching, cells may have been exposed to
remaining low levels of glucose for sufficiently long to avoid growth-arrest in this study.

Thus, the fact that our DIMM setup allows not only precise temporal control of the
growth media that cells experience, but also accurate quantitative tracking of growth
and gene expression in lineages of single cells, were essential for uncovering that a
single-molecule trigger underlies the bimodal behavior of lac operon induction, and that
it also constitutes the molecular basis of cellular memory after exposure to lactose. In
addition, we showed that the population lag is determined by the fractions of slow and
fast responding cells and these fractions are highly sensitive to growth conditions before
the switch. Overall, we provide here the first example of how a gene circuit with
positive feedback that implements a sense-and-response strategy, can also effectively
implement a bet-hedging strategy in response to environmental changes because of the
occurrence of a fraction of sensorless cells.

The occurrence of a subpopulation of sensorless cells can have major consequences
for fitness under switching environments, as they may cause substantial population lags,
delaying growth by more than an entire division. Moreover, substantial population
growth lags as a result of a subpopulation of sensorless cells may be a fairly common
feature of bacterial sensory systems as our survey of two-component systems shows that,
for a large fraction of them, sensors are so low expressed that a sizable fraction of cells
with zero expression is to be expected. This observation, in combination with the
observation that the fraction of sensorless cells is highly sensitive to the strength of
repression of the system, raises the question as to how natural selection has acted on the
expression levels of sensory systems. Indeed, as our experiments with sub-inducing
amounts of IPTG demonstrate, even very modest derepression of the system would
dramatically lower the fraction of sensorless cells, and it seems that bacteria could easily
evolve to do so.

However we observed that substantial population lags occurs in all strains of a
diverse set of natural E. coli isolates. This suggests that, quite generally, there must be
a cost to the expression of a sensory system in the absence of its cognate signal. These
costs may derive from toxicity (e.g. due to biochemical or transport activity of the
sensor) [16,20] or from energetic costs associated with the sensing [21]. It is tempting to
speculate that natural selection may have tuned the sensor’s expression to ensure the
co-occurrence of a small subpopulation in which the sensor is present with a majority of
sensorless cells, thereby providing an effective bet-hedging strategy for limiting
population lags under a sudden appearance of the signal, while at the same time
relieving the majority of the population from the costs associated with expressing the
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sensor. Finally, we have seen that the fraction of sensorless cells is highly sensitive to
the precise growth conditions. Speculating even further, this raises the possibility that
natural selection might be able to tune the sensor’s expression in a condition-dependent
manner, so as to effectively anticipate the appearance of the signal in some conditions
more than in others. For example, it has been observed that mal operons have higher
basal expression on lactose than on other sugars, leading to a shorter population lag
after a switch to lactose [22]. Similarly, in the case of the lac operon, because CRP
activity increases whenever carbon flux is limiting [23], this will cause a slight
derepression of not only the lac operons, but all operons of alternative carbon sources
regulated by CRP, thereby effectively anticipating appearance of any of these
alternative carbon sources. Further studies will be required to establish to what extent
such stochastic anticipatory strategies implemented by tuning of the fractions of
sensorless cells are widespread among bacteria.

Materials and Methods

1 Bacterial strains and media

The E. coli strain used in the microfluidics experiments is ASC662 (MG1655
lacZ-GFPmut2) [24]. We confirmed by sequencing that this strain has no mutation in
the lac operon apart from the lacZ-GFP translational fusion, and identified the GFP
sequence as a GFPmut2 lacking the monomeric substitution A206K; fortunately this
doesn’t affect its spectrum nor its maturation time [25].

Diauxie experiments were done with this strain ASC662 and with its parent strain
MG1655 (CGSC #7740) as well as with 6 natural isolates of E. coli [14]: SC303, SC305,
SC330, SC347, SC355, SC366.

All experiments were done using M9 minimal media (Sigma-Aldrich) supplemented
with 2 mM MgSO4, 0.1 mM CaCl2, and sugars as indicated (typically 0.2% for glucose
or lactose and 0.4% for glycerol). TMG and IPTG were diluted from frozen stocks in
water (at 0.1 M and 1 M respectively).

All experiments were carried out at 37ºC. Note that the melAB operon is not
expressed at this temperature [26] so that it should not interfere with the regulation of
the lac operon.

In order to increase LacI activity in the repressed state (Fig. 1E), plasmid
p lacI SC101 was transformed into ASC662. It was obtained by restriction-ligation
cloning of MG1655’s native lacI promoter and gene (amplified by PCR between
positions 366,428 and 367,601) into a pSC101 vector (pUA66; using XbaI and XhoI,
hence removing the plasmid’s promoter and GFP loci). In order to make cloning easier,
we used a high copy number derivative of pUA66 where the GFP locus is replaced with
pUC19 origin (produced by restriction-ligation cloning with BamHI and XbaI).

2 Microfluidics experiments

2.1 Microfluidic device fabrication

The Dual Input Mother Machine (DIMM) microfluidic design used in this study has
been described elsewhere [5] and is freely available online [27]: in brief it combines
comb-like structures enabling to grow bacteria in steady state conditions over long times
with a special type of junction allowing fast and accurate mixing of two input media
Fig. S1. Several microfluidics masters were produced using soft lithography by
micro-resist Gmbh; one master with regular growth channels of suitable size (0.7 µm
width × 0.9 µm height) was used for all experiments.
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For each experiment, a new chip was produced by pouring PDMS (Sylgard 184 with
1:9w/w ratio of curing agent) on the master and baking it for 4 h or more at 80ºC.
After cutting the chip and punching inlets, the chip was bonded to a #1.5 glass
coverslip as follows: the coverslip was sonicated 3 to 5 min in acetone, rinsed in
isopropanol then water; the chip cleaned from dust using MagicTape, rinsed in
isopropanol then water; surfaces were activated with air plasma (40 sec at 1500 µm of
Hg) before being put in contact; the assembled chip was cooked 1 h or more at 80ºC.

Before running the experiment, the chip was primed and incubated 1 h at 37ºC
using passivation buffer (2.5 mg/mL salmon sperm DNA, 7.5 mg/mL bovine serum
albumin) for the mother machine channels and water for the overflow channels.

2.2 Culture conditions and flow control

Bacteria were streaked onto LB agar plates from frozen glycerol stocks thawed from
−80ºC. Overnight precultures were grown from single colonies in M9 minimal medium
supplemented with the same sugar that the cells were to experience in the initial
condition of the experiment. The next day, cells were diluted 100-fold into fresh medium
with the same sugar and harvested after 4–6 h.

The experimental apparatus was initialized, pre-warmed and equilibrated. Flow
control was achieved using a syringe pump for early experiments and using a pressure
controller later on. A total flow of ≈3 µL/min was used in all cases (corresponding to a
pressure of ≈2000 mbar on both inlets). Polystyrene beads (Polybead 1 µm) were
added to one of the two media to allow observing the flow ratio at the mixing junction.

The primed microfluidic chip was mounted, connected to media supply and flushed
with running media for 30 min or more to rinse passivation buffer. The grown cell
culture was centrifuged at 4000×g for 5 min, and the pellet resuspended in a few µL
supernatant and injected into the device using a syringe. Since flow was running, the
pressure had to be continuously adjusted to make sure the cells stopped flowing in the
main channel and could enter the growth channels (typically 10 to 40 min).

After loading, bacteria were incubated during 2 h before starting image acquisition.
Every 3 min phase contrast and fluorescence images were acquired for several positions
in parallel (typically 6), including the dial-a-wave junction with short phase contrast
exposure (10 ms) so as to monitor the flow ratio between the two inputs.

All conditions used in this project are summarized in Table 5. The default protocol
consists of 6 h in M9 + 0.2% glucose followed by 4 h in M9 + 0.2% lactose.

2.3 Microscopy and image analysis

An inverted Nikon Ti-E microscope, equipped with a motorized xy-stage and enclosed
in a temperature incubator (TheCube, Life Imaging Systems) was used to perform all
experiments. The sample was fixed on the stage using metal clamps and focus was
maintained using hardware autofocus (Perfect Focus System, Nikon). Images were
recorded using a CFI Plan Apochromat Lambda DM ×100 objective (NA 1.45,
WD 0.13 mm) and a CMOS camera (Hamamatsu Orca-Flash 4.0). The setup was
controlled using µManager [28] and timelapse movies were recorded with its
Multi-Dimensional Acquisition engine (customized using runnables). Phase contrast
images were acquired using 100 ms exposure (CoolLED pE-100, full power). Images of
GFP fluorescence (ex 475/35 nm; em 525/50 nm; bs 495 nm) were acquired using 2 s
exposure (Lumencor SpectraX, Cyan LED at 17% with ND4).

Image analysis was performed using MoMA [5] as described in its
documentation [29]. Raw image datasets were transferred to a centralised storage and
preprocessed in batch. For each experiment, 30 growth channels were picked randomly
(after discarding channels with structural defects or no cells growing at the first switch
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of condition) and curated manually in MoMA. MoMA’s default post-processing was
used in order to refine the measurements of cell length and total fluorescence.
Fluorescence arbitrary units were converted to number of GFP molecules using the
procedure and conversion factors described previously [5].

2.4 Quality control and data filtering

We established previously that cells slightly decrease their growth rate (∼ 10− 15%) in
response to our illumination conditions and reach a steady state of growth after 2
hours [5]. Accordingly, the first 2 hours were discarded from further analysis in all
experiments.

Given the design of the DIMM microfluidic chip, only one strain and one condition
can be used in each experiment. As a result this study is based on more than 30
independent experiments performed over almost 3 years (Table 5). In order to minimize
the confounding effect that the initial state of cells might affect their response to
environmental change, we discarded experiments showing atypical growth patterns
(used as a proxy for physiological state) before the switch of condition occurred. For
each full cell cycle observed before the first switch, we fit a linear model to log(length)
as a function of time and extract from this fit the growth rate, the Pearson correlation
coefficient of the fit, and the predicted initial cell length. The distributions of
correlation coefficients did not exhibit systematic changes across dates. However, the
growth rate and initial cell length showed some variability across dates and, as expected,
there was a clear correlation between cell size and growth rate in each condition
(Fig. S2). The figure shows that 3 experiments appear as obvious outliers with slow
growing cells and these were discarded (20151218, 20161021, 20180313); in addition, we
discarded 2 more experiments with slow growing cells (20160526, 20170108). Finally, we
also examined the reproducibility of the lac induction lags distributions between
replicates and closely-related conditions and discarded 2 additional experiments because
of their aberrant distributions of lags (20180123, 20180615). No reason could be found
for these last two experiments to be qualitatively different from our expectations
(leaving the door opened to an undocumented protocol mistake).

In addition, since our study focuses on the response of growing cells to changes of
environmental conditions, we checked that the fraction of cells not growing before the
switch in the analyzed growth channels is small in all experiments (< 5%, typically
∼ 1%).

2.5 Estimation of lac induction lags

The time until the lac operon is induced in a given cell after a switch to lactose is
estimated from the time series of LacZ-GFP level as follows: we compute the
pre-induction level computed as the mean value in the 9 min following the switch (for
which we checked visually that no induction occurred) and measure the delay after the
switch until the cell has increased its level by 200 molecules (which is a conservative
threshold since the fluctuations of background level have a standard deviation of ≈ 20);
hence we need to observe a cell for at least 4 time points after the switch to be able to
successfully detect an induction. In order to successfully estimate a lag for as many cells
as possible, if a cell divided before inducing, the total GFP of its two daughters was
summed and their cell traces considered until the induction threshold was passed, or one
of the two daughters was lost (because it left the channel). At the first switch to lactose,
a finite induction lag was measured for 90% of the 1633 cells, while 7% exited the
growth channels before inducing and 3% did not induce during the 4h in lactose. We
note that this lac induction lag will include the maturation time of the LacZ-GFP fusion
proteins (half time = 5.6 ± 0.4 min [25]). Since we established previously that the fact
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that rare cells exit the growth channels before inducing does not affect significantly the
probability distribution of lags [5], we report here the raw distribution of measured lags.

2.6 Estimation of growth lags

When bacteria are exposed to lactose for the first time, they all transiently stop growing.
In order to estimate the growth lag τ , i.e. the time until growth restarts after the
switch to lactose, from noisy time series of cell length, we devised a Bayesian inference
procedure. Let L(t) be the estimated log-sizes across the time points t in the cell-cycle
from the nutrient switch until the next cell division (after growth has recommenced).
The model we imagine for the log-length assumes no growth until time τ and perfect
linear growth with some constant rate λ from time τ to division. By defining the
function

Λτ (t) = (t− τ)Θ(t− τ)

where Θ is the Heaviside step function, and by assuming deviations from our model are
only due to Gaussian measurement noise ε ∼ N (0, σ2) we can write

L(t) = λΛτ (t) + Λ0 + ε

where the constants Λ0 and λ are the log-size at the growth arrest and the growth-rate
respectively. Let a dataset D = {L1, L2, ..., LT } correspond to the log-sizes of a cell
from the time of the nutrient switch until the cell’s next division. The probability of the
data D given the parameters (Λ0, σ

2, λ, τ) is then given by

P
(
D
∣∣Λ0, σ

2, λ, τ
)

=

(
1

2πσ2

)T
2

exp

− 1

2σ2

T∑
j=1

(
Lj − λΛτj − Λ0

)2.
We are ultimately interested in inferring the delay τ only and thus want to marginalize

over the other parameters. First, using a uniform prior for Λ0 and the Jeffreys prior for
the measurement error p(σ)dσ = dσ

σ we can easily marginalize over these two
parameters and find

P (D |λ, τ ) ∝ (Var [L− λΛτ ])
1−T

2 ,

where Var [L− λΛτ ] corresponds to the average squared-deviation between the
measured log-sizes Li and the predicted log-sizes λΛτi .

As far as we can tell, marginalizing over the growth-rate λ cannot be done
analytically and we therefore used the Laplace method to approximate the
corresponding integral over λ. That is, for a given value of τ we first determined the
optimal value of the growth-rate λτ which is given by

λτ =
Cov [L,Λτ ]

Var[Λτ ]
. (1)

Expanding the log-likelihood to second order around this optimum in order to
approximate the integral over λ by a Gaussian integral then leads to the following
log-likelihood function as a function of τ only

log [p (D |τ)] =
(2− T )

2
log [Var [L− λτΛτ ]]− 1

2
log [Var [Λτ ]] + const.

We then compute this log-likelihood numerically for different values of τ and select
τ? to be the one with the highest log-likelihood value. Once we know τ? the other
optimal quantities follow directly from the previous calculations and read

λ? =
Cov

[
L,Λτ

?]
Var[Λτ? ]

, L?0 = L̄− λ?Λ̄τ? , σ2? = Var
[
L− L?0 − λ?~Λτ?

]
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where the bar stands for arithmetic mean as usual.
We applied this procedure to the time series of log-length measured after the switch

for each cell. Similarly to the induction lags, in order to successfully estimate a lag for
as many cells as possible, if a cell divided before inducing, the total length of its two
daughters was summed and their cell traces considered until the total length had tripled
since the switch, or one of the two daughters was lost (because it left the channel). At
the first switch to lactose, a finite growth lag was measured for 85% of the 1633 cells,
while 9% exited the growth channels before resuming growth and 6% remain arrested
during the 4 h in lactose.

2.7 Estimating LacZ-GFP levels before the switch

To compare the initial LacZ-GFP levels between cells with short and long lags (Fig. 2A),
we used the average over the 3 time points after the switch. Since autofluorescence is
large relative to LacZ-GFP fluorescence in uninduced cells, it is not possible to detect
any correlation between LacZ-GFP levels and the lac induction lag (Fig. S5) Another
confounding factor is that every experiment has a slightly different offset for
fluorescence levels (data not shown); when pooling observations from different
experiments, this difference is larger than the difference of LacZ-GFP levels.
Consequently, we compared the distribution of pre-existing LacZ-GFP levels in cells
with short and long lags after correcting each cell by subtracting the mean in the same
experiment (Fig. 2A). As a control, we measured the autofluorescence of wild-type cells
(grey line in the lower panel) and noticed that the variability of the fluorescence is the
same in uninduced cells (blue line), which confirms that it is dominated by
autofluorescence (Fig. 2A). Comparing the distributions of corrected LacZ-GFP levels
revealed that cells with short lags (orange line) have on average 5 LacZ-GFP molecules
more than cells with long lags (blue line; Fig. 2A).

In order to analyze the sensitivity of the lac operon, we would like to know the
number of β-galactosidase molecules in each bacterium at the onset of the switch to
lactose. However, the combination of limited camera sensitivity and spontaneous
autofluorescence (with fluctuations on the order of ±20 GFP per cell), prevents us from
accurately measuring levels lower than 100 molecules. In addition, repeated illumination
induces bleaching so that not all GFP molecules are fluorescent (which we previously
quantified to correspond to ≈20% per cell cycle) [5]. However, at the second switch, the
number of β-galactosidases inherited from the ancestors’ induction during the first
exposure can be computed as follows: the lineage is traced backed in time and both Lm,
the maximum LacZ-GFP level during the first exposure, as well as nd, the number of
divisions since this time, are recorded; the expected number of inherited molecules
equals Lm/2

nd . Note that this formula assumes no degradation (which is reasonable
since the longest delay is 24 h and β-galactosidase is stable over this time scale) and
even partitioning at every division, and that this constitutes a lower bound for the
number of β-galactosidase molecules in the cell since neither bleaching nor stochastic
expression happening during the delay period are accounted for.

3 Fluorescence lifetime experiments

3.1 Using FLCS for single molecule threshold estimation

The combination of picosecond time-resolved TCSPC detection and FCS allows to
separate different FCS contributions via their fluorescence lifetime. The principle and
mathematical foundations of this lifetime-filtered method called fluorescence lifetime
correlation spectroscopy (FLCS) can be found elsewhere [8]. Here, the acquisition and
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analysis procedure for the single molecule threshold estimation via FLCS performed
with SymphoTime64 comprised the following steps:

• The lifetime distributions of both GFP and the autofluorescence of cellular
compounds were obtained by acquisition of arrival times histograms in point
FLCS from induced LacZ-GFPmut2 cells (where fluorescence is dominated by
GFP) and from cells of the background strain without GFP (where fluorescence
derives solely from autofluorescence) (Fig. 3A).

• Subsequently, point FLCS was measured in uninduced LacZ-GFPmut2 cells.
Photon arrival time histograms from these uninduced cells are composed of a
superposition of the contributions from autofluorescence components and from
GFP, to the extent that GFP molecules are present due to stochastic gene
expression.

• Using the previously determined lifetime distribution of the autofluorescence
components and GFP, we deconvolve the decaying fluorescence signal by ”pattern
matching” into mixture of autofluorescence and GFP contributions.

• Lifetime-specific autocorrelation curves calculated from assigned GFP
contributions are fitted to a three-dimensional purely diffusional model with
fitting parameters N , the average number of molecules within the detection
volume, and τ , the diffusion time across the detection volume. Note than N
corresponds to the number of fluorescent particles which in the case of
LacZ-GFPmut2 are expected to be predominantly tetramers.

• The overall photon count is normalized by N to obtain the apparent photon
counts per GFP molecule (CPM). The distribution of CPMs was normalized by
its median and the respective frequency distribution fitted to a Gaussian,
assuming a random distribution of the error occurring during deconvolution.

• Finally, three different criteria had to be met concurrently to categorize an
individual cell as having nonzero LacZ-GFP expression: First, 5 σ, corresponding
to 2.375 fold the median of the CPM distribution, was used as statistical
threshold for the lower limit of number of photons truly originating from GFP
fluorescence. Second, the physically meaningful range of LacZ-GFP diffusion time
was set between 3 ms - 30 ms based on the values obtained from the positive
control of induced LacZ-GFPmut2 cells. Third, measurements leading to N > 20
were discarded under the assumption that more than 20 fluorescent particles
would have been detected with FLIM already. Overall, only 5 out of 66 cells
analysed in mother machine experiments with FLCS were classified as dubious for
not passing one or several of those criteria (Fig. S8).

3.2 Time-Correlated Single Photon Counting setup

A detailed description of the time-resolved fluorescence microscopy setup can be found
elsewhere [30]. In short, FLIM images and lifetime-filtered point FLCS measurements
were performed on an Olympus IX73 inverted microscope stand equipped with a
1.4 N.A. oil-immersion 100x superapochromat objective (UplanSApo; Olympus) and
suitable emission and excitation bandpass filters (Semrock and AHF). A pulsed diode
laser (LDH-D-C-485; PicoQuant) was operated at 20 MHz with laser powers set between
25 nW and 100 nW for point FLCS measurements and between 0.25 µW and 1 µW for
laser scanning imaging. Emitted photons were detected with a SPAD detector (SPCM
CD3516H; Excelitas) and a time-correlated single-photon counting unit (HydraHarp 400;
PicoQuant) was used to generate picosecond histograms (16 ps resolution) from the
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photon arrival times. A galvo scanner (FlimBee, PicoQuant) allowed to record confocal
images and to park the confocal volume at an arbitrary xy-location within the field of
view to perform single-cell point FLCS measurements. Setup control, data acquisition
and raw data analysis was performed with SymPho Time 64 v.2.4 (PicoQuant).

The entire microscope stand was placed in a temperature incubator (The IceCube,
Life Imaging Systems) with the temperature kept constant at 37°C throughout all
experiments. The samples were fixed on a z-piezo stage (Nano-ZL 100 Mad City Labs)
on top of a none-motorized micro screw xy-stage using metal clamps.

3.3 Culture conditions and data acquisition

For snapshot experiments (Fig. 3B), bacteria were grown in M9 minimal media
supplemented with 0.2 % glucose as described above. Exponentially growing cultures
were harvested at OD between 0.05 and 0.3, washed by centrifugation and concentrated
in M9 without sugar. Bacteria were then spread on agarose slabs prepared on glass
slides and sealed with a coverslip, and kept on ice until imaging. Prior to point FLCS
measurements, images were averaged from 20 to 100 frames of 15x15 µm sized scans
with 128x128 pseudo-pixels and a pixel dwell time of 10 µs. Per image, point FLCS of
multiple cells was measured by parking the confocal volume in the center of a cell. Per
cell, fluorescence time traces and photon arrival time were recorded for 45 s. Focus
stability was monitored from the laser reflection pattern with a separate CCD camera
(ZC-F11C4; Ganz).

Mother machine experiments (Fig. 3C) were performed as described above (Sections
2.1 and 2.2) with the following modifications that allowed to perform the experiment
within one day due to the lack of autofocus system: preculture was done during 12-14 h,
such that cells could be collected in the morning. After inoculation in M9 + 0.2%
glucose, cells were allowed 1 to 2 h to recover before starting timelapse acquisition.
Timelapse acquisition consisted of 40 images every 3 min during the M9 + 0.2% glucose
phase and a minimum of 60 images every 3 min after the switch, during the M9 + 0.2%
lactose phase. Each image was averaged from 30 frames of 150x37.5 µm sized scans with
1200x300 pseudo-pixels and a pixel dwell time of 5 µs. Due to the lack of motorised
stage and nosepiece, only one position could be acquired during each experiment and
the focus was adjusted manually every 5 to 10 min during the entire timelapse
acquisition. Before the switch, point FLCS of up to two cells per channel was measured
by parking the confocal volume in the center of the cell. Per cell, fluorescence time
traces and photon arrival times were recorded for 45 s. Focus stability was monitored
from the laser reflection pattern with a separate CCD camera (ZC-F11C4; Ganz).

Using intensity images computed for LacZ-GFP, lag times were recorded manually
for each cell measured with FLCS before the switch, as the delay until the cell becomes
brighter than uninduced neighbouring cells (i.e. until the intensity becomes higher than
the background). We note that this criterion differs from the increase by 200 LacZ-GFP
molecules used in the epifluorescence experiments, which explains why the cutoff
between short and long induction lags is here 35 min instead of 50 min in the former.
Only 5 cells exited their growth channel before expressing detectable LacZ-GFP so that
their induction lag could not be measured and one cell was discarded for not growing
before the switch.

4 Diauxie experiments

4.1 Culture conditions

All diauxie experiments were performed in 96-well plates (Greiner #655090) incubated
with 600 rpm shaking. Glycerol stocks were prepared in a single plate for the 8 strains
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of interest (with 2 replicates for each strain coming from independent clones) and stored
at -80ºC. A preculture was inoculated with a pin replicator in M9 + 0.2% glucose and
grown overnight to saturation. These cultures were diluted (1600 to 10000×, using 2
serial dilutions) to the appropriate growth media, covered with 50 µL mineral oil (to
prevent evaporation), and OD was measured approx. every 2 min during 24 to 36 h in a
spectrophotometer (Synergy 2, Biotek) with temperature control and shaking (fast
continuous setting). At least 2 independent replicates were measured per condition.

4.2 Growth curves analysis

Wells were inoculated at very low cell concentration so that at least 2 h were recorded
with OD below the detection limit. The background absorbance was estimated in each
well as follows: the average absorbance was computed in sliding windows of 10
consecutive measurements and the lowest value of all windows with coefficient of
variation below 0.02 was taken as background. For each condition, all growth curves
were aligned so that OD = 0.01 at t = 0 where OD = absorbance− background. A few
wells showing aberrant records (e.g. discontinuous growth curve) or outlier growth
patterns were discarded from further analysis. In addition strain SC330 displayed very
variable growth between replicates (in particular variable lags) and could not be
analysed further since too many growth curves were truncated.

To estimate the population lag for a given condition, we analyse the delay between
the corresponding growth curves and the growth curves in the same condition
supplemented with 200 µM IPTG. In particular, using simple linear interpolation
between the time points at which OD was measured, we determined for each growth
curve a continuous function t = f(OD) of the time t for which a particular OD was first
reached. Using these, a mean delay and its standard error was computed as a function
of OD using all replicates for a given condition (Fig. 5). The population lag was then
estimated visually as the time at which a plateau occurs in the delay, i.e. the delay
value with smallest derivative.

4.3 Diauxie control

In order to disentangle the effects of the lactose concentration on lac expression in the
glucose-lactose mixture but also the initial rate of lactose import when glucose gets
exhausted, we performed additional experiments where cultures grown on mixture of
glucose and lactose were transferred manually to fresh growth medium with lactose only.
Transferring cells between media after washing them required to use larger volumes; we
hence adapted the diauxie protocol to 15 mL Falcon tubes and used only strain ASC662.

Overnight cultures in 2 mL M9 + 0.2% glucose were inoculated from frozen glycerol
stocks and grown to saturation with 200 rpm shaking. After 200×dilution to 2 mL fresh
media with 0.2% glucose and variable lactose concentrations (no lactose, 0.02%, 0.2%),
bacteria were grown until OD reached 0.08-0.2. 1 mL of each culture was then sampled
and washed twice in M9 + 0.02% lactose. Each sample was used to start four 150 µL
cultures in a 96-wells plate, two of which were supplemented with 20% lactose to reach
a concentration of 0.2%. All wells were covered with 50 µL mineral oil and OD was
measured approx. every 2 min during 12 h as described above.

5 Population lag simulations

Bacterial growth was simulated in discrete time (with 1 min steps) assuming
deterministic exponential growth in glucose + lactose and in lactose media, with
doubling time 49 min and 58 min respectively. Since the effect of nutrient concentration
on growth rate was not taken into account, the population size at the start or at the
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switch to lactose are irrelevant. For a given empirical distribution of single-cell lags, the
distribution was discretized into a 100 subpopulations with different lag values. For
each subpopulation growth was simulated by keeping a constant population until its lag
time was reached, followed by simple exponential growth. The population growth curve
after the switch was obtained by summing the growth curves of all 100 subpopulations.
Finally the population lag was inferred as the delay compared to the simulation where
all cells immediately grow after the switch to lactose, measured once all cells have
resumed growth.

Data and code availability

Data obtained from mother machine experiments are available at
https://doi.org/10.5281/zenodo.3894719. Analysis scripts, as well as growth
curves data and FLIM data, are available at
https://github.com/julou/MoM_lacInduction/releases/tag/biorxiv-v2.
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Supporting information

Table S1 List of experiments used in this study with summary statistics.
Experiments that have been discarded from further analysis are greyed out. For
experiments acquired before November 2015, data are taken from [5].

condition date #
growth

chan-
nels

# full
cell

cycles

#
observa-

tions

# cells
at

switch

#
estimated

lags

# arrested
cells at
switch

mg1655 20150812 6 364 17283 NA NA NA
glucose 20150616 31 2021 92270 NA NA NA
glucose 20150617 30 1920 91276 NA NA NA
lactose 20150624 30 1649 86776 NA NA NA
lactose 20150630 30 1671 85949 NA NA NA

memory 4h 20150703 28 1431 76295 462 445 3
memory 4h 20150708 30 1600 88410 536 511 6
memory 6h 20151204 30 1848 107195 548 524 10
memory 8h 20151218 29 1821 115062 NA NA NA
memory 8h 20180206 31 NA 66894 332 312 1

memory 12h 20180207 30 1517 84568 353 340 3
memory 12h 20180216 30 1633 82626 344 329 4
memory 12h (old) 20160526 31 1178 83954 NA NA NA
memory 16h 20160912 39 2437 134488 444 419 8
memory 20h 20161014 34 2224 133238 382 355 10

memory 24h 20161007 31 2343 135928 350 334 6
memory 24h 20180313 9 57 9192 NA NA NA
late 20161021 22 865 83093 NA NA NA
late 20170108 30 1789 103600 NA NA NA
late 20180516 30 2370 104792 166 155 0

late 20180615 10 794 34532 NA NA NA
ramp40min 20171121 30 371 29252 164 154 1
ramp40min 20180319 32 496 33684 195 185 1
preIPTG5uM 20180514 31 385 28585 178 167 0
preIPTG5uM 20180531 29 410 26780 170 161 0

lacIoe 20180116 31 796 55447 177 161 0
lacIoe 20180123 29 758 49517 NA NA NA
lacIoe 20180214 31 761 46967 157 142 1
lacIoe preIPTG10uM 20180604 33 410 28272 174 160 1
glyc to lac 20170919 26 139 28832 137 123 NA

glyc to lac 20170920 29 NA 32475 142 132 NA
glcLac lac 20171114 31 842 47798 180 171 0
glcLac lac 20180108 31 804 50630 174 170 4
glcLac lac 20180606 9 579 25851 NA NA NA
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Fig. S1 Schematic of the Dual Input Mother Machine (DIMM)
microfluidic device. The DIMM combines a dial-a-wave mixing junction for precise
and fast control of the media dispensed to the cells (the left inset shows 3 typical flow
regimes: 100/0, 50/50 and 0/100 respectively) and mother machine channels for
long-term monitoring of growing bacteria (right inset); adapted from [5].
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Fig. S2 Physiological state of the cells during the initial growth
conditions. For each experiment, the medians and 95% posterior intervals are plotted
of both growth rate and cell length at birth.
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Fig. S3 Controls on the statistics of the lac operon single-cell lags. A.
Distribution of induction lags for the lac operon in naive cells, coloured per day. Due to
the limited sample size in each experiment, the bin width was increased to 6 min. Note
that the bimodality of lac induction lags distributions is a robust feature. B.
Distribution of induction lags for the lac operon in naive cells, stratified per position in
the growth channels. Position is indicated as cell rank, counted from the cell closest to
the channel open end in the upper panel and closest to the closed end in the lower panel.
Note that cells close to the open end tend to exit the channel before inducing their lac
operon, hence the distributions are noisier due to smaller sample size. C. Distribution
of growth lags in naive cells. The bin width is the same as the experimental acquisition
frequency (3 min). The corresponding distribution of lac induction lags (Fig. 1C) is
shown for comparison. Note that the distribution of growth lags shows a less marked
bimodality, which might result from a combination of less accurate estimation of the
growth lag and additional sources of noise being involved in restarting growth once the
lac operon is expressed.
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Fig. S4 lac induction lags for a gradual transition from 0.2% glucose to
0.2% lactose over 40 min. Comparison of the distribution of induction lags for the
lac operon in naive cells exposed to a gradual transition from 0.2% glucose to 0.2%
lactose over 40 min (2 independent replicates, blue curve) with the distribution of lags
under a sudden switch (orange curve, Fig. 1C). Note that, since we do not know at what
point in the 40 minute transition the critical concentrations of glucose/lactose are
reached, the lags for each replicate with a gradual transition were offset by a delay that
maximized the overlay with the lags under a sudden switch. The fact that the
distribution of lags under the gradual transition is almost identical to the distribution
under a sudden switch shows that the stochastic single-cell responses remain equally
synchronized under the gradual transition, suggesting that there is a common critical
concentration of glucose/lactose across all cells. Due to the limited sample size for the
gradual transition, the bin width was increased to 6 min.
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Fig. S5 Induction lag does not correlate with physiological traits at the
time of the switch. Neither cell cycle progression (measured either as the time since
birth normalised to the average division time in this condition, or as length added since
birth as suggested by the ”adder” model of cell cycle control), nor fluorescence at the
switch (measured in units of LacZ-GFP molecules), nor growth rate correlate with lac
induction time. Note that fast switching cells are indicated in orange and slow switching
cells in blue.
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Fig. S6 LacZ-GFP level before exposure to lactose when LacI activity is
reduced by low level of IPTG. Note that this measurements are imprecise due to
relatively large fluctuations in autofluorescence (between cells) and in illumination
intensity (between replicates). Although this treatment increases the fraction of
fast-switching cells, no detectable change of LacZ-GFP levels can be measured which
supports that the increase of basal expression is less than 50 molecules. In comparison,
bacteria carry 3000-6000 LacZ-GFP molecules at full induction (Fig. 1B).
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Fig. S7 lac induction lag at the second switch as a function of the
estimated number of inherited LacZ-GFP. Each dot corresponds to a cell with its
estimated lag shown along the vertical axis, its estimated number of remaining
LacZ-GFP molecules along the horizontal axis, and its color corresponding to the
amount of time the cell spend in glucose between the two lactose phases. The dotted
line corresponds to the 50 min. threshold that separates short from long lags. We
stratified the cells into 8 groups depending on their estimated numbers of inherited
LacZ-GFP molecules remaining at the second switch and the violin plots show the
distributions of lag times of each group, with its horizontal position centered on the
average of the group. Note that long lags only reappear for cells with less than 10
inherited molecules of LacZ-GFP.
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Fig. S8 Detection of LacZ-GFP in FLIM experiments. For each cell analysed
with FLCS before the switch in mother machine experiments, three criteria must be met
concurrently to classify it as GFP positive. Only 5 out of 66 cells where classified as
dubious.
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Fig. S9 Population growth curves during diauxie experiments. All growth
curves used to compute population lags reported in Fig. 5B are shown. For each
mixture of glucose and lactose (orange lines), the corresponding control with
constitutive lac operon expression was obtained by supplementing IPTG (blue lines).
Each line corresponds to a biological replicate; delays were computed for OD below the
carrying capacity (solid sections).
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Fig. S10 Lactose concentration during growth in glucose determines the
population lag at the diauxic switch. The strain ASC662 was manually
transferred from a mixture of glucose (0.005%) and lactose of a given concentration
after 4 to 5 h of growth to media with lactose only (OD≈0.1-0.15), at a given
concentration. Experiments were performed with three different lactose concentrations
before the switch and two after the switch, for a total of 6 combinations. For each
combination, the population lag after the transfer was measured as the delay until OD
increased by 0.001 (corresponding to an approx. 10% increase of population size).
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Fig. S11 Many two-components systems in E. coli have expression levels
so low that no proteins will occur in a substantial number of cell.
Distributions of expression levels of sensor kinases (blue) and response regulator
transcription factors (orange) across 28 conditions as measured using quantitative
proteomics [17] for 21 of the 28 two-components systems annotated on ecocyc.org.
Each line shows the reverse cumulative distribution of average number of proteins per
cell measured across the 28 conditions. The vertical dashed lines correspond to an
average of 3 proteins per cell which is the threshold below which more than 5% of the
cells is expected not to have any of the corresponding protein (assuming a Poisson
distribution for the abundance of low expressed proteins, i.e. e−3 ≈ 0.05).
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