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Full-length SMART-Seq single-cell RNA-seq can be used to measure gene expression at 
isoform resolution, making possible the identification of isoform markers for cell types and 
for an isoform atlas. In a comprehensive analysis of 6,160 mouse primary motor cortex 
cells assayed with SMART-Seq, we find numerous examples of isoform specificity in cell 
types, including isoform shifts between cell types that are masked in gene-level analysis. 
These findings can be used to refine spatial gene expression information to isoform 
resolution. Our results highlight the utility of full-length single-cell RNA-seq when used in 
conjunction with other single-cell RNA-seq technologies.  

Introduction 
Transcriptional and post-transcriptional control of individual isoforms of genes is crucial for 
neuronal differentiation​1–5​, and isoforms of genes have been shown to be specific to cell types in 
mouse and human brains​6–11​. It is therefore not surprising that dysregulation of splicing has been 
shown to be associated with several neurodevelopmental and neuropsychiatric diseases​3,12,13​. As 
such, it is of interest to study gene expression in the brain at single-cell and isoform resolution. 
 
Nevertheless, current single-cell studies aiming to characterize cell types in the brain via 
single-cell RNA-seq (scRNA-seq) have relied mostly on gene-level analysis. This is, in part, due 
to the nature of the data produced by the highest throughput single-cell methods. Popular 
high-throughput assays such as Drop-seq, 10x Genomics’ Chromium, and inDrops, produce 
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3’-end reads which are, in initial pre-processing, collated by gene to produce per-cell gene 
counts. The SMART-Seq scRNA-seq method introduced in 2012​14​ is a full-length scRNA-seq 
method, allowing for quantification of individual isoforms of genes with the 
expectation-maximization algorithm​15​. However, such increased resolution comes at the cost of 
throughput; SMART-Seq requires cells to be deposited in wells, thus limiting the throughput of 
the assay. In addition, SMART-Seq requires more sequencing per cell. 
 
These tradeoffs are evident in scRNA-seq data from the primary motor cortex (MOp) produced 
by the BRAIN Initiative Cell Census Network (BICCN). An analysis of 6,160 (filtered) 
SMART-Seq v4 cells and 90,031 (filtered) 10x Genomics Chromium (10xv3) cells (Figure 1a,b 
and Extended Data Fig. 1) shows that while 10xv3 and SMART-Seq are equivalent in defining 
broad classes of cell types, 3’-end technology that can assay more cells can identify some rare 
cell types that are missed at lower cell coverage  (Extended Data Fig. 2a). Overall 125 clusters 
with gene markers could be identified in the 10xv3 data but not in the SMART-Seq data while 
only 40 clusters with gene markers could be identified in the SMART-Seq data and not the 
10xv3 data, and this differential is consistent with prior comparisons of the technologies​16​. 
However, while SMART-Seq has lower throughput than some other technologies, it has a 
significant advantage: by virtue of  probing transcripts across their full length, SMART-Seq 
makes possible isoform quantification and the detection of isoform markers for cell types that 
cannot be detected with 3’-end technologies (Extended Data Figs. 2b,c). Moreover, SMART-Seq 
has higher sensitivity than many other methods, which can make possible refined cell type 
classification. 
 
By leveraging the isoform resolution of SMART-Seq, we are able to identify isoform-specific 
markers for dozens of cell types characterized by the BICCN consortium​17​, and find isoform 
shifts between cell types that are masked in standard analyses. In addition to revealing extensive 
isoform diversity and cell type specificity in the MOp, our work highlights the complementary 
value of full-length scRNA-seq to droplet based and spatial transcriptomic methods. Our 
methods are open-source, reproducible, easy-to-use and constitute an effective workflow for 
leveraging full-length scRNA-seq data. 

Results  
Isoforms markers for cell types 
 
To identify isoform markers of cell types, we first sought to visualize our SMART-Seq data 
using gene derived cluster labels from the BICCN analysis​17​. Rather than layering cluster labels 
on cells mapped to 2-D with an unsupervised dimensionality reduction technique such as t-SNE​18 
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or UMAP​19​, we projected cells with neighborhood component analysis (NCA). NCA takes as 
input not just a collection of cells with their associated abundances, but also cluster labels for 
those cells, and seeks to find a projection that minimizes leave-one-out k-nearest neighbor 
error​20​. Thus, while the method outputs a dimension reducing linear map much like principal 
component analysis (PCA), it takes advantage of cluster labels to find a biologically relevant 
representation. Visualization with this approach produces meaningful representation of the 
global structure of the data (Figure 1b), without overfitting (Extended Data Fig. 3a). Moreover, 
t-SNE applied to PCA (Extended Data Fig. 3b) scrambles the proximity of glutamatergic and 
GABAergic cell types, while t-SNE of NCA appears to respect global structure of the cells. 
While UMAP applied to PCA of the data (Extended Data Fig. 3c) appears to be better than 
t-SNE in terms of preserving global structure, it still does not separate out the cell types as well 
as NCA (Extended Data Fig. 3d). 
 
Next, motivated by the discovery of genes exhibiting differential exon usage between 
glutamatergic and GABAergic neurons in the primary visual cortex​11​, we performed a 
differential analysis between these two classes of neurons. We searched for significant shifts in 
isoform abundances in genes whose expression was stable across cell types (for details see 
Methods). We discovered 312 such isoform markers belonging to 260 genes (Supplementary 
Table 1, [​Code​]). Figure 1c shows an example of such an isoform from the H3 histone family 3b 
(H3f3b) gene. The gene has an isoform that is highly expressed in glutamatergic neurons, but the 
gene undergoes an isoform shift in GABAergic neurons where the expression of the H3f3b-204 
isoform is much lower. A gene-level analysis is blind to this isoform shift (top panel, right). 
 
We hypothesized that there exist genes exhibiting cell type isoform specificity at all levels of the 
MOp cell ontology. However, detection of such genes and their associated isoforms requires 
meaningful cell type assignments and accurate isoform quantifications. To assess the reliability 
of the SMART-Seq clusters produced by the BICCN​21​, we examined the correlation in gene 
expression by cluster with another single-cell RNA-seq technology, the 10xv3 3’-end assay. 
90,031 10xv3 cells, also derived from the MOp, were clustered using the same method as the 
SMART-Seq cells (see Methods). We found high correlation of gene expression between the two 
assays at the subclass and cluster levels (Extended Data Fig. 4). However, we noted a low 
correlation in one case, the L5 IT subclass. The low correlation was also observed in a 
comparison between SMART-Seq and MERFISH gene expression data (Extended Data Fig. 5a), 
and 10xv3 and MERFISH data (Extended Data Fig. 5b). We hypothesize that this low correlation 
stems from distinct cell types being clustered together (Extended Data Fig. 5c). To avoid bias, 
we decided not to search for markers for the L5 IT subclass. 
 
To validate the SMART-Seq isoform quantifications we examined correlations between 
SMART-Seq and 10xv3 for isoforms containing some unique 3’ UTR sequence. This allowed 
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for a validation of isoform quantifications with a different technology (see Methods). To extract 
isoform quantifications from 10xv3 data in cases where there was a unique 3’ sequence, we 
relied on transcript compatibility counts​22​ produced by pseudoalignment with kallisto​23​. We were 
able to validate the SMART-Seq isoform shift predictions at both the subclass and cluster levels 
(Extended Data Fig. 6). The isoform abundance correlations are slightly lower than those of gene 
abundance estimates (Extended Data Fig. 4), but sufficiently accurate to identify significant 
isoform shifts, consistent with benchmarks showing that isoforms can be quantified accurately 
from full-length bulk RNA-seq​24​. This is surprisingly accurate considering the underlying 
differences in the 10xv3 and SMART-Seq technologies.  
 
Having validated the cluster assignments and isoform abundance estimates, we tested for isoform 
switches for 17 cell subclasses (example in Figure 1d), and then for 54 distinct clusters (example 
in Figure 1e); see Methods. At the higher level of 17 cell subclasses, we found a total of 913 
genes exhibiting isoform shifts among the 18 cell subclasses despite constant gene abundance 
(Supplementary Table 2, [​Code​]). We found 40 genes exhibiting isoform shifts among clusters 
within the L6 CT subclass despite constant gene abundance (Supplementary Table 3, [​Code​]).  
 
Along with isoforms detectable as differential between cell types without change in gene 
abundance, we identified isoform markers for the classes, subclasses, and clusters in the MOp 
ontology that are differential regardless of gene expression. We found 3,911 isoforms belonging 
to 3,120 genes that are specific to the glutamatergic and GABAergic classes (Figure 2, 
Supplementary Table 4, [​Code​]), 2,480 isoforms belonging to 2,146 genes exhibiting isoform 
shifts specific to subclasses (Supplementary Table 5, [​Code​]), and for the cluster shown in Figure 
1d, L6 CT, 324 isoforms belonging to 286 genes exhibiting isoform shifts in clusters 
(Supplementary Table 6, [​Code​]). Together, these form an isoform atlas for the MOp. 
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Figure 1: Isoform specificity in the absence of gene specificity ​. a) Overview of data analyzed. b) A 
t-SNE map of 10 neighborhood components of 6,160 SMART-Seq cells colored according to cell type. c) 
The H3f3b gene abundance distribution across cells (left), H3f3b-204 isoform distribution across cells 
(middle), and violin plots of the gene and isoform distributions. d) Example of a gene with an isoform 
specific to the L5/6 NP subclass. The Unc5c-208 isoform is highly expressed in L5/6 NP relative to the 
other subclasses. e) Example of a gene with an isoform specific to the Grp_1 cluster of the L6 CT 
subclass. The Homer1-204 isoform is highly expressed in L6 CT Grp_1 relative to the other subtypes of 
L6 CT. [​Code a​, ​Code b​, ​Code c​, ​Code d​]  
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Figure 2: Isoform atlas ​. A sample from an isoform atlas displaying isoform markers differential with 
respect to subclasses. Each row corresponds to one subclass, and each column corresponds to one 
isoform. SMART-Seq isoform abundance estimates are in TPM units, and each column is scaled so that 
the maximum TPM is 4 times the mean of the isoform specific for that row’s cluster. [​Code​] 
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Spatial isoform specificity 
 
While spatial single-cell RNA-seq methods are not currently well-suited to directly probing 
isoforms of genes due to the number and lengths of probes required, spatial analysis at the 
gene-level can be refined to yield isoform-level results by extrapolating SMART-Seq isoform 
quantifications.  
 
Figure 3a,b shows an example of a gene, Pvalb, where the SMART-Seq quantifications reveal 
that of the two isoforms of the gene, only one, Pvalb-201, is expressed.  Moreover it can be seen 
to be specific to the Pvalb cell subclass (Figure 2). In an examination of MERFISH spatial 
single-cell RNA-seq, derived from 64 slices from the MOp region (Extended Data Fig. 7a), the 
Pvalb subclass, of which Pvalb is a marker, can be seen to be dispersed throughout the motor 
cortex spanning all layers (Extended Data Fig. 7b). While the MERFISH probes only measure 
abundance of Pvalb at the gene level (Figure 3c),  extrapolation from the SMART-Seq 
quantifications can be used to refine the MERFISH result to reveal the spatial expression pattern 
of the Pvalb-201 isoform. This extrapolation can be done systematically. To build a spatial 
isoform atlas of the MOp, we identified differentially expressed genes from the MERFISH data 
(Supplementary Table 7, [​Code​]) and for each of them checked whether there were SMART-seq 
isoform markers (from Supplementary Table 5, [​Code​]). An example of the result is shown in 
Extended Data Fig. 8a, which displays one gene for each cluster, together with the isoform label 
specific to that cluster.  
 
While direct measurement of isoform abundance may be possible with spatial RNA-seq 
technologies such as SEQFISH​25​ or MERFISH ​26​, such resolution would require dozens of probes 
to be assayed per gene (Extended Data Fig. 8b), each of which is typically tens of base-pairs in 
length. Thus, while isoforms can in theory be detected in cases where they contain large stretches 
of unique sequence, the technology is prohibitive for assaying most isoforms, making the 
extrapolation procedure described here of practical relevance. 
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Figure 3: Spatial extrapolation of isoform expression ​. a) Spatial expression of the Pvalb-201 isoform 
across 64 slices from the MOp, as extrapolated from probes for the Pvalb gene. b) Expression of the 
Pvalb-201 isoform and c) expression of the Pvalb-202 isoform. [​Code a​, ​Code b/c​] 
 
Splicing markers 
 
Isoform quantification of RNA-seq can be used to distinguish shifts in expression between 
transcripts that share transcriptional start sites, and shifts due to the use of distinct transcription 
start sites. Investigating such differences can, in principle, shed light on transcriptional versus 
post-transcriptional regulation of detected isoform shifts​27,28​. Figure 4a shows an example of a 
gene, Rtn1, in which both GABAergic and glutamatergic classes exhibit similar preferential 
expression of transcripts at a specific start site (Figure 4b,c). However when examining the 
expression profile for the two isoforms within the highly expressed transcription start site, we 
observe that the glutamatergic class exhibits preferential expression of Rtn1-201, previously 
shown to be expressed in grey matter​29​, whereas the GABAergic class does not. We identified 29 
isoforms that are preferentially expressed in either GABAergic, glutamatergic and Non-Neuronal 
classes, even when the expression of isoforms grouped by the same transcription start sites is 
constant among them (Supplementary Table 8, [​Code​]). Such cases are likely instances where 
the isoform shifts between cell types are a result of differential splicing, i.e. the result of a 
post-transcriptional program. 
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Figure 4: Isoform shifts reflecting splicing changes ​. a) Expression patterns of groups of transcript 
sharing the same TSS from the reticulon 1 (Rtn1) gene. b) Expression patterns of isoforms within TSS 
groups from the Rtn1 gene. c) The four isoforms of the Rtn1 gene. The 3rd and 4th isoforms from the top 
have the same transcription start site at the 5’ end of the transcript. [​Code a/b​, ​Source c​] 

Discussion 
 
Comparisons of different scRNA-seq technologies have tended to focus on throughput, cost, and 
gene-level accuracy​30​. Our results shed some light on the latter: it has been previously shown that 
quantification of isoform abundance is necessary for gene-level estimates​31​, and we verified that 
this is the case for SMART-Seq data. We found many examples of both false positive (Extended 
Data Fig. 9a) and false negative (Extended Data Fig. 9b) gene marker predictions at the subclass 
level (Supplementary Table 9, [​Code​] and Supplementary Table 10, [ ​Code​]). This highlights the 
importance of isoform quantification of SMART-Seq data, even for gene-centric analysis. In 
terms of accuracy compared to other technologies, we found slightly better agreement between 
SMART-Seq and MERFISH, two very different technologies, than between 10xv3 and 
MERFISH, for cell types where SMART-Seq assayed more than a handful of cells (Extended 
Data Fig. 10). This suggests that perhaps the “full-length” measurements of MERFISH and 
SMART-Seq confer an advantage over 3’-end based quantification, although more investigation 
is warranted. 
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While cost, throughput, and accuracy are important, we found the resolution of different 
technologies to be more fundamental in assessing their comparative advantages. Our results 
confirm that 10xv3 3’-end technology is better at detecting small cell populations than 
SMART-Seq (Extended Data Fig. 2a) due to the higher number of cells assayed. However 
SMART-seq has other advantages. The higher sensitivity of SMART-Seq leads to the 
identification of some cell types not detected by 10xv3, and we find that SMART-Seq’s 
full-length capture facilitates the identification of cell markers that cannot be detected from gene 
expression estimates produced with 3’-end methods (Figure 1, Extended Data Figs. 2b,c). 
Similarly, while spatial single-cell RNA-seq methods are, for the most part, currently limited to 
gene detection, refinement of expression signatures is possible by extrapolating SMART-Seq 
isoform quantification. In addition, isoform expression may result from transcriptional and 
post-transcriptional regulation within specific cell types that would be otherwise masked at the 
gene level.Thus, SMART-Seq is an important and powerful assay that can provide unique 
information not accessible with gene-centric technologies.  Moreover, the recent development of 
a SMART-Seq protocol (SMART-Seq3), which can produce full-length and 5’-end reads 
simultaneously from single-cells​32​ may further improve the ability to register SMART-Seq cells 
with cells assayed using other technologies, thereby further increasing the possibilities for 
combining SMART-Seq with our scRNA-seq data. This perspective argues for using 
SMART-Seq data beyond naïve integration with other modalities at the gene level. The 
technology should be viewed as a complement, rather than competitor, to droplet or spatial 
single-cell RNA-seq. Our analyses suggest that a workflow consisting of droplet-based 
single-cell RNA-seq to identify cell types, then SMART-seq for isoform analysis, and finally 
spatial RNA-seq with a panel based on isoform-specific markers identified by SMART-seq, 
would effectively leverage different technologies’ strengths. 
 
Our approach should be useful not only prospectively, but also for studies such as Kim et al. 
2019 ​25​ which collected data using multiple scRNA-seq technologies but focused primarily on 
cell type identification using gene-level analyses. Our quantification of 6,160 SMART-Seq cells 
with kallisto​23​ shows that it is straightforward to produce accurate, reproducible quantifications 
efficiently for any SMART-Seq dataset. Moreover, our analysis, fully reproducible via python 
notebooks, can be used for a comprehensive analysis of any 10x Genomics Chromium, 
SMART-Seq and spatial scRNA-seq data. This should be useful not only for biological 
discovery of isoform functions related to cell types, but also as a form of validation of the 
clusters, since isoform markers are unlikely to be discovered within a cluster of cells by chance. 
Similarly, isoform markers can validate isoform quantification, because it is unlikely by chance 
that highly expressed isoforms, if produced by error, would cluster in a single group of cells. 
 
The next step after assembling a single-cell isoform atlas is to probe the functional significance 
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of cell type isoform specificity. Recently developed experimental methods for this purpose, e.g. 
isoforms screens​33​, are a promising direction and will be key to understanding the significance of 
the vast isoform diversity in the brain​34​. 
 

Supplementary Tables 
Supplementary Table 1: Class level differential analysis with constant gene 
Supplementary Table 2: Subclass level differential analysis with constant gene 
Supplementary Table 3: Cluster level differential analysis with constant gene 
Supplementary Table 4: Class level differential analysis with non-constant gene 
Supplementary Table 5: Subclass level differential analysis with non-constant gene 
Supplementary Table 6: Cluster level differential analysis with non-constant gene 
Supplementary Table 7: Merfish gene level differential analysis 
Supplementary Table 8: TSS level differential analysis 
Supplementary Table 9: Naïve quantification gene level differential analysis 
Supplementary Table 10: Valid quantification gene level differential analysis 

Methods 
All of the results and figures in the paper are reproducible starting with the raw reads using 
scripts and code downloadable from ​https://github.com/pachterlab/BYVSTZP_2020​. The 
repository makes the method choices completely transparent, including all parameters and 
thresholds used. 

Tissue collection and isolation of cells 
Mouse breeding and husbandry: All procedures were carried out in accordance with Institutional 
Animal Care and Use Committee protocols at the Allen Institute for Brain Science. Mice were 
provided food and water ad libitum and were maintained on a regular 12-h day/night cycle at no 
more than five adult animals per cage. For this study, we enriched for neurons by using 
Snap25-IRES2-Cre mice​35​ (MGI:J:220523) crossed to Ai14 ​36​ (MGI: J:220523), which were 
maintained on the C57BL/6J background (RRID:IMSR_JAX:000664). Animals were euthanized 
at 53−59 days of postnatal age. Tissue was collected from both males and females (scRNA 
SMART, scRNA 10x v3). 

Single-cell isolation: We isolated single cells by adapting previously described procedures​11,21​. 
The brain was dissected, submerged in ACSF​21​, embedded in 2% agarose, and sliced into 
250-μm (SMART-Seq) or 350-μm (10x Genomics) coronal sections on a compresstome 
(Precisionary Instruments). The Allen Mouse Brain Common Coordinate Framework version 3 
(CCFv3, RRID:SCR_002978) ​37​ ontology was used to define MOp for dissections.  
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For SMART-Seq, MOp was microdissected from the slices and dissociated into single cells with 
1 mg/ml pronase (Sigma P6911-1G) and processed as previously described​5​. For 10x Genomics, 
tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30 mins at 30 
°C. Enzymatic digestion was quenched by exchanging the papain solution three times with 
quenching buffer (ACSF with 1% FBS and 0.2% BSA). The tissue pieces in the quenching 
buffer were triturated through a fire-polished pipette with 600-µm diameter opening 
approximately 20 times. The solution was allowed to settle and supernatant containing single 
cells was transferred to a new tube. Fresh quenching buffer was added to the settled tissue pieces, 
and trituration and supernatant transfer were repeated using 300-µm and 150-µm fire polished 
pipettes. The single cell suspension was passed through a 70-µm filter into a 15-ml conical tube 
with 500 ul of high BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help cushion 
the cells during centrifugation at 100xg in a swinging bucket centrifuge for 10 minutes. The 
supernatant was discarded, and the cell pellet was resuspended in quenching buffer. 

All cells were collected by fluorescence-activated cell sorting (FACS, BD Aria II, RRID: 
SCR_018091) using a 130-μm nozzle. Cells were prepared for sorting by passing the suspension 
through a 70-µm filter and adding DAPI (to the final concentration of 2 ng/ml). Sorting strategy 
was as previously described​21​, with most cells collected using the tdTomato-positive label. For 
SMART-Seq, single cells were sorted into individual wells of 8-well PCR strips containing lysis 
buffer from the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara 634894) with 
RNase inhibitor (0.17 U/μl), immediately frozen on dry ice, and stored at −80 °C. For 10x 
Genomics, 30,000 cells were sorted within 10 minutes into a tube containing 500 µl of 
quenching buffer. Each aliquot of 30,000 sorted cells was gently layered on top of 200 µl of high 
BSA buffer and immediately centrifuged at 230xg for 10 minutes in a swinging bucket 
centrifuge. Supernatant was removed and 35 µl of buffer was left behind, in which the cell pellet 
was resuspended. The cell concentration was quantified, and immediately loaded onto the 10x 
Genomics Chromium controller. 

Genomic library preparation and sequencing 

For SMART-Seq library preparation, we performed the procedures with positive and negative 
controls as previously described​21​. The SMART-Seq v4 (SSv4) Ultra Low Input RNA Kit for 
Sequencing (Takara Cat# 634894) was used to reverse transcribe poly(A) RNA and amplify 
full-length cDNA. Samples were amplified for 18 cycles in 8-well strips, in sets of 12–24 strips 
at a time. All samples proceeded through Nextera XT DNA Library Preparation (Illumina Cat# 
FC-131-1096) using Nextera XT Index Kit V2 (Illumina Cat# FC-131-2001) and a custom index 
set (Integrated DNA Technologies). Nextera XT DNA Library prep was performed according to 
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manufacturer’s instructions, with a modification to reduce the volumes of all reagents and cDNA 
input to 0.4x or 0.5x of the original protocol. 

For 10x v3 library preparation, we used the Chromium Single Cell 3’ Reagent Kit v3 (10x 
Genomics Cat# 1000075). We followed the manufacturer’s instructions for cell capture, 
barcoding, reverse transcription, cDNA amplification, and library construction. We targeted 
sequencing depth of 120,000 reads per cell.  

Sequencing of SMART-Seq v4 libraries was performed as described previously​21​. Briefly, 
libraries were sequenced on an Illumina HiSeq2500 platform (paired-end with read lengths of 50 
bp). 10x v3 libraries were sequenced on Illumina NovaSeq 6000 (RRID:SCR_016387). 

Pre-processing single-cell RNA-seq data 
The 6,295 SMART-Seq cells were processed using kallisto with the `kallisto pseudo` 
command​23​. The 94,162 10x Genomics v3 cells were pre-processed with kallisto and bustools​38​. 
Gene count matrices were made by using the --genecounts flag and TCC matrices were made by 
omitting it. The mouse transcriptome reference used was GRCm38.p3 (mm10) RefSeq 
annotation gff file retrieved from NCBI on 18 January 2016 
( ​https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/​), for consistency with the reference 
used by the BICCN consortium​17​.  
 
The GTF and the GRCm38 genome fasta [​Source to both​], provided by the consortium, were 
used to create a transcriptome fasta, transcripts to genes map [​Source​], and kallisto index using 
kb ref -i index.idx, -g t2g.txt -f1 transcriptome.fa genome.fa genes.gtf.  
 
Isoform and gene count matrices were generated for the Smart-seq2 data using the kallisto 
pseudo command. Cluster assignments were associated with cells using cluster labels generated 
by the BICCN consortium​17​. The labels are organized in a hierarchy of three levels: classes, 
subclasses and clusters. The cluster labels for the cells can be downloaded from 
https://github.com/pachterlab/BYVSTZP_2020​. 

Normalization and filtering of SMART-Seq data 
Isoform counts were first divided by the length of transcript to obtain abundance estimates 
proportional to molecule copy numbers. We then removed isoforms that had fewer than one 
count and that were in fewer than one cell. We also removed genes and their corresponding 
isoforms that had a dispersion of less than 0.001.  
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To generate the cell by gene matrix we summed the isoforms that correspond to the same gene. 
Cells with less than 250 gene counts and with greater than 10% mitochondrial content were 
removed. Cells were normalized to transcripts per million (TPM) by dividing the counts in each 
cell by the sum of the counts for that cell, then multiplying by 1,000,000. The count matrices 
were then transformed with log1p and the columns scaled to unit variance and zero mean. The 
resulting gene and isoform matrix contained 6,160 cells and 19,190 genes corresponding to 
69,172 isoforms.  
 
Highly variable isoforms and genes were identified by first computing the dispersion for each 
feature, and then binning all of the features into 20 bins. The dispersion for each feature was 
normalized by subtracting the mean dispersion and dividing by the variance of the dispersions 
within each bin. Then the top 5000 features were retained based on the normalized dispersion. 
This was computed by using the scanpy.pp.highly_variable_genes with n_top_genes = 5000, 
flavor=seurat, and n_bins=20​39​. 

Normalization and filtering of 10xv3 data 
Isoform counts were first divided by the length of transcript to obtain abundance estimates 
proportional to molecule copy numbers. We then removed isoforms that had fewer than one 
count and that were in fewer than one cell. We also removed genes and their corresponding 
isoforms that had a dispersion of less than 1.  
 
To generate the cell by gene matrix we summed the isoforms that correspond to the same gene. 
Cells with less than 250 gene counts and with greater than 21.5% mitochondrial content were 
removed. Cells were normalized to counts per million (CPM) by dividing the counts in each cell 
by the sum of the counts for that cell, then multiplying by 1,000,000. The count matrices were 
then transformed with log1p and the columns scaled to unit variance and zero mean. The 
resulting gene matrix contained 90,031 cells and 24,709 genes.  
 
Highly variable isoforms and genes were identified by first computing the dispersion for each 
feature, and then binning all of the features into 20 bins. The dispersion for each feature was 
normalized by subtracting the mean dispersion and dividing by the variance of the dispersions 
within each bin. Then the top 5000 features were retained based on the normalized dispersion. 
This was computed by using the scanpy.pp.highly_variable_genes with n_top_genes = 5000, 
flavor=seurat, and n_bins=20​39​. 
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Dimensionality reduction and visualization 
Neighborhood component analysis​20​ (NCA) was performed on the full scaled log(TPM +1) 
matrix using the subcluster labels, to ten components. t-distributed stochastic neighbor 
embedding (t-SNE)​18​ was then performed on the 10 NCA components. t-SNE was computed 
using sklearn.manifold. t-SNE with default parameters and random state 42. Similarly uniform 
manifold approximation was performed on the 10 NCA components and the 50 truncated SVD 
components. Uniform Manifold Approximation and Projection (UMAP)​19​ was computed with 
the umap package with default parameters. 
 
To ensure that NCA was not overfitting cells to their corresponding subclasses, we randomly 
permuted all of the subclasses labels and reran the NCA to t-SNE dimensionality reduction 
method. We observed uniform mixing of the permuted subclass labels, indicating that NCA was 
not overfitting the cells to their corresponding subclasses. 
 
For the Louvain clustering displayed in Extended Data Fig. 5c, truncated SVD was performed on 
the 5000 top highly variable features and the first 50 SVD components were retained for the 
clustering. The random seed for all sklearn functions was 42, and default parameters were used 
for scanpy.pp.neighbors and scanpy.tl.louvain. The L5 IT subclass contains seven clusters in the 
SMART-Seq data, four clusters in the 10xv3 data, and three clusters in the MERFISH data. 

Measuring number of isoforms per gene 
We parsed the transcripts to genes map, grouping together transcripts that had the same end site that were 
in the same gene. We then counted the number of these end site sets within a gene and plotted them 
against the number of isoforms within that gene.  

Cross-technology cluster correlation 
The correlation between 10xv3-Smart-seq, 10xv3-MERFISH, and Smart-seq-MERFISH, was 
performed at the gene level and between cells grouped by subclasses for all three pairs of 
technologies, and at the isoform level and between cells grouped by cluster for only the 10xv3 
and SMART-Seq. For each pair we started with two raw matrices and restricted to the set of 
genes/isoforms common to the two. Then we normalized the counts for each matrix per cell to 
one million, log1p transformed the entire matrix, and scaled the features to zero mean and unit 
variance. Within each cluster we restricted the features to those present in at least 50% of the 
cells. We then found the mean cell within the respective clusters in the two matrices, and 
computed the Pearson correlation between them. These methods were implemented for Extended 
Data Figs. 4--6. 
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Isoform atlas 
For each level of clustering: class, subclass, cluster, we performed a t-test for each gene/isoform 
between the cluster and its complement, on the log1p counts. To identify isoform enrichment that 
is masked at a gene level analysis, we looked for isoforms that were upregulated by checking 
that the gene containing that isoform was not significantly expressed in that cluster, relative to 
the complement of that cluster. Isoforms that were expressed in less than 90% of the cells in that 
cluster were ignored. All t-tests used a significance level of 0.01 and all p-values were corrected 
for multiple testing using Bonferroni correction. 

MERFISH isoform extrapolation 

First we identified the genes that mark the specific subclass within the MERFISH data. The 
Pvalb gene is a marker for the Pvalb subclass. Then we performed differential analysis on the 
SMART-Seq data at the isoform level on the subclasses to identify the isoforms that mark each 
of the SMART-Seq subclasses. Only one of the two isoforms for Pvalb marked the Pvalb cluster. 
This allowed us to extrapolate the fact that the specific Pvalb isoform is being detected in the 
MERFISH data. 
 
Additionally, we identified all of the genes that mark the specific subclasses in the MERFISH 
data through differential analysis and checked if their underlying isoforms were also 
differentially expressed. We then noted which isoforms were differentially expressed for the 
spatial isoform atlas. 

Grouping transcripts by start site 
Using the transcripts to genes map and the filtered isoform matrix generated before, we grouped 
isoforms by their transcription start site into TSS classes and summed the raw counts for the 
isoforms within each TSS class to create a ​cell x TSS​ matrix. Differential analysis was then 
performed in exactly the same way as above. For each cluster and each TSS/isoform, a t-test was 
performed between the cells in that cluster and the cells in the complement of that cluster. All 
statistical tests used a significance level of 0.01 and all p-values were corrected for multiple 
testing using Bonferroni correction.  
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Comparison of naïve and valid quantification 

Naïve gene count matrices were constructed from the SMART-Seq data by summing the counts 
corresponding to a single gene. Valid gene count matrices were made with SMART-Seq by first 
dividing isoform abundances by the length of their transcripts, and then summing the abundances 
of isoforms by gene. Differential analysis was performed independently on these two gene count 
matrices. and the resultant differential genes were compared. Subsequently false-positive and 
false-negative detections of differentially abundant genes were reported. 

Software versions 
Anndata 0.7.1  
bustools 0.39.4 
awk (GNU awk) 4.1.4 
grep (GNU grep) 3.1 
kallisto 0.46.1 
kb_python 0.24.4 
Matplotlib 3.0.3 
Numpy 1.18.1 
Pandas 0.25.3 
Scanpy 1.4.5.post3 
Scipy 1.4.1 
sed (GNU sed) 4.4 
sklearn 0.22.1 
tar (GNU tar) 1.29 
umap 0.3.10 

Data and Software Availability 

The software used to generate the results and figures of the paper is available at 
https://github.com/pachterlab/BYVSTZP_2020​. The single-cell RNA-seq data used in this study 
was generated as part of the BICCN consortium​17​. The 10xv3 and SMART-Seq data can be 
downloaded from ​http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/scell/ ​. The 
MERFISH data was generated as part of the BICCN consortium but is not currently available 
due to restrictions by Xiaowei Zhuang; requests for the data can be made directly to her by 
emailing ​zhuang@chemistry.harvard.edu​. 
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