

1 **Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror
2 signaling**

3
4 Sara E. Konopelski Snavely¹, Michael W. Susman², Ryan C. Kunz³, Jia Tan¹, Srisathya Srinivasan¹, Michael D.
5 Cohen¹, Kyoko Okada¹, Helen Lamb¹, Shannon S. Choi¹, Edith P. Karuna¹, Michael K. Scales¹, Steven P.
6 Gygi³, Michael E. Greenberg², and Hsin-Yi Henry Ho^{1,2,*}

7
8 ¹Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis,
9 CA, USA

10 ²Department of Neurobiology, Harvard Medical School, Boston, MA, USA

11 ³Department of Cell Biology, Harvard Medical School, Boston, MA, USA

12 *For correspondence: hyhho@ucdavis.edu

13
14 **Abstract**

15 Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate
16 development, but its downstream signaling events remain poorly understood. Through a large-scale proteomic
17 screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of
18 the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β -catenin-independent, ubiquitin-
19 proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3
20 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, CK1, and GSK3 that regulates
21 Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-
22 dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-
23 terminal LNX3H domain, which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-
24 dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work
25 establishes a new Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.

26
27 **Introduction**

28 Embryonic development in vertebrates is a highly stereotyped and coordinated process that depends
29 on a handful of core signaling pathways. One major mode of signaling involves Wnt ligands, a diverse and
30 highly conserved family of glycoproteins that signal in many spatiotemporal contexts, including tissue
31 specification and tissue morphogenesis in addition to tissue homeostasis in adult organisms (Clevers & Nusse,
32 2012; Nusse & Varmus, 2012; Steinhart & Angers, 2018). Thus, Wnts play unique and critical roles in both
33 developing and adult organisms.

34 Traditionally, Wnt pathways have been classified as either canonical or non-canonical. Canonical Wnt
35 signaling utilizes β -catenin as a transcriptional co-activator to regulate cell fate and proliferation, and canonical
36 Wnt's mechanism of action and biological functions are relatively well understood. In contrast, non-canonical
37 Wnt signaling, which regulates tissue morphogenetic processes in a β -catenin-independent manner, remains
38 poorly characterized (Clevers & Nusse, 2012; Nusse & Varmus, 2012; Steinhart & Angers, 2018; Veeman,
39 Axelrod, & Moon, 2003). Numerous studies in a variety of model organisms have demonstrated that alterations
40 to the expression of Wnt5a, the prototypic non-canonical Wnt ligand, can cause drastic morphogenesis defects
41 such as body axis truncations, shortened limbs and tails, and craniofacial malformations (Hikasa, Shibata,
42 Hiratani, & Taira, 2002; Moon et al., 1993; Yamaguchi, Bradley, McMahon, & Jones, 1999). These phenotypic
43 abnormalities closely mirror those of Ror1 and Ror2 double knockout mice, further underscoring the growing
44 evidence that Ror receptors mediate Wnt5a signals to orchestrate tissue morphogenetic events (Ho et al.,
45 2012; Nomi et al., 2001).

46 Importantly, the phenotypic characteristics observed in *WNT5A* and *ROR1*; *ROR2* double mutants,
47 namely body axis and limb truncations plus craniofacial malformations, have also been observed in human
48 Robinow syndrome patients, and several recent publications have reported that many Robinow syndrome
49 patients possess mutations in various components of the Wnt5a-Ror signaling pathway, including *WNT5A*,
50 *ROR2*, *FRIZZLED2* (*FZD2*), *DISHEVELLED1* (*DVL1*), and *DISHEVELLED3* (*DVL3*) (Afzal & Jeffery, 2003;
51 Afzal et al., 2000; Bunn et al., 2015; Person et al., 2010; J. White et al., 2015; J. J. White et al., 2018; J. J.
52 White et al., 2016). Further, bulldogs and other closely related dog breeds possess a mutation in
53 *DISHEVELLED2* (*DVL2*) that is highly analogous to the human Robinow syndrome mutations in *DVL1* and
54 *DVL3*, and these breeds exhibit skeletal and craniofacial features that are reminiscent of human Robinow
55 syndrome (Mansour et al., 2018). Collectively, these recent findings strongly support the idea that Wnt5a-Ror
56 signaling is conserved and critical to tissue morphogenesis in a variety of vertebrates. However, despite the
57 significance of Wnt5a-Ror signaling in both normal development and disease contexts, the mechanisms by
58 which Wnt5a signals are transmitted and processed within the cell remain unclear. Progress within the field is
59 further hampered by a lack of consensus regarding the number of non-canonical pathways, the biochemical
60 nature of their regulation, and variability in the methods used to measure signaling (Veeman et al., 2003).

61 To deepen our understanding of Wnt5a-Ror signaling, we have taken systematic approaches to identify

62 downstream cellular events that occur in response to pathway activation. In a previous study, we genetically

63 ablated Ror1 and Ror2 receptors in primary mouse embryonic fibroblast (MEF) cultures and used a proteomic

64 approach to uncover downstream signaling events that are misregulated in these cells. From this analysis, we

65 identified the atypical kinesin Kif26b as a downstream component of Wnt5a-Ror signaling that is targeted for

66 degradation upon pathway activation (Susman et al., 2017).

67 In this follow-up study, we hypothesized that additional downstream regulatory targets likely exist, and

68 the identification of such factors would augment our mechanistic understanding of Wnt5a-Ror signaling. To that

69 end, we conducted a second large-scale proteomic screen to identify additional cellular proteins whose

70 abundance and phosphorylation state are altered by *acute* stimulation of Wnt5a-Ror signaling and identified

71 the E3 ubiquitin ligase Pdzrn3 as a downstream target. Pdzrn3 has been implicated in non-canonical Wnt

72 signaling previously (Sewduth et al., 2014). Pdzrn3 has been shown to interact with Dvl3 and influence its

73 intracellular trafficking, and genetic loss of *PDZRN3* in human umbilical vein endothelial cells (HUVECs)

74 decreases their cell migration in the presence of Wnt5a conditioned medium, suggesting that Pdzrn3 functions

75 as a promigratory factor (Sewduth et al., 2014). These findings correlate with other studies that demonstrate a

76 role for Pdzrn3 in a variety of other morphogenetic cell behaviors, including synaptic growth and maturation,

77 vascular morphogenesis, and neuronal positioning (Baizabal et al., 2018; Lu et al., 2007; Sewduth et al.,

78 2014). However, despite its clear involvement in modulating cell movement and positioning, how Pdzrn3 is

79 regulated by non-canonical Wnt signaling at a biochemical level still remains unknown. We discovered that

80 Pdzrn3 is degraded in response to Wnt5a-Ror signaling by a mechanism that is independent of β -catenin but

81 dependent on the ubiquitin-proteasome system (UPS). This regulation is mediated by a signaling cascade

82 involving Frizzled (Fzd), Dishevelled (Dvl), Casein kinase 1 (CK1), and Glycogen synthase kinase 3 (GSK3),

83 which is remarkably similar to the cascade used to regulate Kif26b. Despite these similarities, we find that

84 Wnt5a-induced degradation of Pdzrn3 is not dependent on Kif26b and vice versa, although some cross-talk

85 exists between the two effectors. Further, Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of

86 three specific amino acid residues on its C-terminal LNX3H domain. Critically, the phosphorylation and

87 degradation of Pdzrn3 serves as a mechanism through which Wnt5a-Ror signaling can regulate cell migration.

88 Lastly, we demonstrated that the LNX3H domain is required for Wnt5a-dependent degradation of not only

89 Pdzn3 but also its structural homolog Lnx4, suggesting that the LNX3H domain may generally function as a
90 Wnt5a-responsive domain. Together, these findings establish the mechanisms through which the Wnt5a-Ror
91 pathway regulates Pdzn3 abundance to facilitate signal transduction, thus providing a platform from which a
92 deeper mechanistic and cell morphogenetic understanding of non-canonical Wnt signaling can be attained.
93

94 **Results**

95 **Large-scale proteomic screen identifies the E3 ubiquitin ligase Pdzn3 as a downstream regulatory 96 target of Wnt5a-Ror signaling**

97 To profile both early and late molecular events driven by Wnt5a-Ror signaling, we conducted a large-
98 scale proteomic screen in which we acutely stimulated E12.5 primary *Wnt5a* KO MEFs (Ho et al., 2012;
99 Susman et al., 2017; Yamaguchi et al., 1999) with purified recombinant Wnt5a (rWnt5a) for 0, 1 or 6 hours,
100 and then used quantitative tandem mass tag (TMT) mass spectrometry to globally assess changes in the
101 abundance and phosphorylation state of cellular proteins over time (Figure 1A) (Ting, Rad, Gygi, & Haas,
102 2011). For rigor and reproducibility, two independent replicates of *Wnt5a* KO MEF cultures were stimulated
103 with rWnt5a and analyzed.

104 In both analyses of protein level and phosphorylation changes, we defined potential proteins of interest
105 as those with tryptic peptides or phospho-tryptic peptides that exhibited (1) a negative or positive change of >
106 1.5-fold in abundance and (2) a change with a p-value < 0.05 across the two experimental replicates. Based on
107 these criteria, our top candidate was Pdzn3, an E3 ubiquitin ligase, which exhibited significant changes in both
108 steady-state protein abundance and phosphorylation state after rWnt5a stimulation. Although 1 hour of rWnt5a
109 stimulation did not result in detectable changes in Pdzn3 abundance (Figure 1B), after 6 hours of rWnt5a
110 stimulation we observed that Pdzn3 abundance was significantly downregulated by 1.72-fold (p= 0.013,
111 Figure 1C and 1F; Table 1). Additionally, we identified multiple phospho-tryptic peptides derived from two
112 different regions of Pdzn3 that exhibited significant changes after rWnt5a stimulation (Figure 1D and 1E). A
113 phospho-tryptic peptide containing S843 and S845 (dotted line, Figure 1G) and another one containing T955,
114 T956 and S962 (dashed line, Figure 1G) both showed an initial increase at 1 hour, followed by a decrease at 6
115 hours. Likewise, a third phospho-tryptic peptide containing S775 (dot dashed line, Figure 1G), though not
116 scored initially based on its significance value (p=0.076), also exhibited a similar pattern of change. Lastly, a

117 phospho-tryptic peptide containing S845 (solid line, Figure 1G) decreased gradually after 1 hour and more
118 extensively after 6 hours. Importantly, all phospho-tryptic peptides decrease by 6 hours to a similar extent as
119 that of the non-phosphorylated tryptic peptide (Figure 1F). This overall pattern thus raised the hypothesis that
120 Wnt5a signaling first induces the phosphorylation of Pdzn3 at specific sites at 1 hour, followed by
121 downregulation of Pdzn3 protein abundance at 6 hours, and these two biochemical events are kinetically and
122 mechanistically coupled.

123 In addition to Pdzn3, the proteomic screen also identified several other known components of the
124 Wnt5a-Ror signaling pathway (Table 1). At both the 1 hour and 6 hour timepoints, a phospho-tryptic peptide
125 from Kif26b was scored as a “hit” (1.70- and 2.03-fold decrease, respectively). At the 6 hour timepoint, a
126 phospho-tryptic peptide from CK1 isoform gamma-3 was also scored as a “hit” (1.52-fold increase). In addition,
127 a phospho-tryptic peptide from Dvl2 exhibited a 1.49-fold increase in abundance after 6 hours of rWnt5a
128 stimulation. The identification of these previously described Wnt5a signaling targets further validates the
129 selectivity and sensitivity of the proteomic screening approach.

130 To independently confirm that Pdzn3 abundance is indeed regulated by Wnt5a signals, we generated
131 rabbit polyclonal antibodies against Pdzn3 and used western blotting to analyze the steady-state cellular
132 levels of Pdzn3 after rWnt5a stimulation. Consistent with our proteomic screening results, we observed that
133 the abundance of Pdzn3 significantly decreased after 6 hours of rWnt5a stimulation (Figure 2A and 2B). This
134 change parallels other previously described responses of Wnt5a-Ror signaling, including an increase in the
135 phosphorylation of Ror1, Ror2 and Dvl2, and a decrease in Kif26b abundance (Figure 2A and 2B) (Ho et al.,
136 2012; Susman et al., 2017).

137 To test whether Ror receptors are required for Wnt5a signaling to Pdzn3, we took advantage of
138 conditional Ror receptor family knockout MEFs derived from E12.5 *Ror1^{floxed}*; *Ror2^{floxed}*; CAG-CreER embryos.
139 These MEFs undergo robust autocrine/paracrine Wnt5a-Ror signaling even in the absence of exogenously
140 added Wnt5a (Ho et al., 2012). To genetically ablate *Ror1* and *Ror2* expression in these MEFs, we treated the
141 cells with 4-hydroxytamoxifen (4OHT) to induce CreER-mediated deletion of the *Ror1^{floxed}* and *Ror2^{floxed}* alleles. We
142 observed that loss of Ror receptor expression resulted in a significant increase in Pdzn3 levels, which
143 correlated with a decrease in Dvl2 phosphorylation as well as an increase in Kif26b abundance (Figure 2C and

144 2D). Thus, these results indicate that, indeed, Ror receptors are required to facilitate Wnt5a-driven regulation
145 of Pdzrn3 abundance, and that this regulation is a genuine endogenous Wnt5a-Ror signaling event.

146 To test whether Wnt5a regulation of Pdzrn3 protein abundance occurs transcriptionally or post-
147 transcriptionally, we treated *Wnt5a* knockout MEFs with rWnt5a for 1 or 6 hours and analyzed the levels of
148 *Pdzrn3* mRNA by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Unlike Pdzrn3
149 protein, *Pdzrn3* transcripts do not change significantly after 1 or 6 hours of rWnt5a stimulation (Figure 2E).
150 Thus, Wnt5a-Ror signaling regulates Pdzrn3 protein abundance through a post-transcriptional mechanism.
151 Overall, these experiments establish that regulation of Pdzrn3 protein abundance is a physiological response
152 of Wnt5a-Ror signaling.

153

154 **A non-canonical Wnt signaling cascade involving Fzd, Dvl, CK1, GSK3 and the ubiquitin-proteasome 155 system regulates Pdzrn3 degradation**

156 To dissect the molecular mechanisms that mediate Wnt5a regulation of Pdzrn3, we designed a flow
157 cytometry-based reporter in which we stably expressed GFP-Pdzrn3 in NIH/3T3 cells (referred to as WRP
158 reporter cells for Wnt5a-Ror-Pdzrn3). Consistent with our observations in primary *Wnt5a* knockout MEFs,
159 treatment of the WRP reporter cells with rWnt5a for 6 hours, under conditions in which endogenous Wnt
160 signaling is inhibited with the small molecule PORCN inhibitor Wnt-C59, resulted in a significant
161 downregulation of GFP-Pdzrn3 reporter signal, thereby demonstrating the fidelity of this reporter assay (Figure
162 3A). Moreover, we established that a saturable dose-dependent relationship exists between rWnt5a
163 concentrations and GFP-Pdzrn3 downregulation, with a calculated EC₅₀ of 77.1 ng/mL, which is similar to other
164 Wnt induced responses (Figure 3B) (Bryja, Schulte, Rawal, Grahn, & Arenas, 2007; Connacher, Tay, & Ahn,
165 2017; Ho et al., 2012; Park et al., 2015; Witze et al., 2013; Witze, Litman, Argast, Moon, & Ahn, 2008). This
166 supports the physiological relevance of Pdzrn3 downregulation.

167 We next used the WRP reporter cells to investigate the biochemical nature of Pdzrn3 downregulation.
168 We pharmacologically tested the role of the ubiquitin-proteasome system (UPS) in Pdzrn3 downregulation as
169 the UPS is a major regulatory pathway involved in many signaling systems, and our previous study
170 demonstrated that it is required for Wnt5a-dependent degradation of Kif26b (Susman et al., 2017). We treated
171 WRP cells with a panel of small-molecule inhibitors that block different components of the UPS: epoxomicin,

172 which targets the proteasome (Meng et al., 1999); PYR-41, which targets the ubiquitin-activating enzyme E1
173 (Yang et al., 2007); and MLN4924, which targets Cullin E3 ligases (Tong et al., 2017). Each of these drugs
174 significantly inhibited Wnt5a-dependent Pdzn3 downregulation (Figure 3C), indicating that the UPS and the
175 Cullin family of E3 ligases are required for Wnt5a-dependent degradation of Pdzn3.

176 To test whether Wnt5a-Ror-dependent Pdzn3 degradation occurs via a non-canonical Wnt signaling
177 mechanism independent of the Wnt/β-catenin pathway, we treated WRP reporter cells with Dkk-1 and IWR-1-
178 endo, which block canonical Wnt/β-catenin signaling at the receptor and destruction complex level,
179 respectively (Bafico, Liu, Yaniv, Gazit, & Aaronson, 2001; Huang et al., 2009; E. Lee, Salic, Kruger, Heinrich, &
180 Kirschner, 2003). We observed that neither inhibitor blocked Wnt5a-induced degradation of GFP-Pdzn3,
181 indicating that this regulation occurs independently of the canonical Wnt pathway (Figure 3D). However, we
182 noted that both inhibitors, in the absence of Wnt5a treatment, slightly increased the basal fluorescence of the
183 GFP-Pdzn3 reporter; the mechanism behind this regulation is currently unclear. Nevertheless, our data
184 demonstrate that Wnt5a-Ror-Pdzn3 signaling is a bona fide non-canonical Wnt pathway.

185 We next investigated if other established Wnt signaling mediators are also involved in Pdzn3
186 degradation. We focused our analysis on the Fzd1, Fzd2, and Fzd7 subfamily of Fzd receptors and all three
187 members of the family of Dvl scaffolding proteins based on their emerging connection to Robinow syndrome
188 (Afzal & Jeffery, 2003; Afzal et al., 2000; Bunn et al., 2015; Person et al., 2010; J. White et al., 2015; J. J.
189 White et al., 2018; J. J. White et al., 2016). We overexpressed mouse Fzd1, Fzd2, or Fzd7 and human DVL1,
190 DVL2 or DVL3 in WRP reporter cells via lentivirus-mediated transduction and observed that overexpression of
191 each Fzd and DVL protein mimicked the effect of Wnt5a by decreasing the WRP reporter signal significantly,
192 whereas overexpression of the Myc epitope tag as a negative control did not decrease WRP reporter
193 fluorescence (Figure 3E and 3F). These findings suggest that Fzd and DVL family proteins function
194 downstream of Wnt5a to regulate Pdzn3 degradation.

195 In addition to Fzd and DVL proteins, several kinases are known to be involved in both canonical and
196 non-canonical Wnt signaling; specifically, GSK3 and CK1 have been reported to phosphorylate Ror receptors
197 (Yamamoto et al., 2007; Grumolato et al., 2010), and Dvl2 and Dvl3 (Bryja, Schulte, & Arenas, 2007; Bryja,
198 Schulte, Rawal, et al., 2007), respectively. Whether these phosphorylation events are required for Wnt5a-
199 dependent regulation of Pdzn3, however, remains unknown. To address this question, we treated WRP

200 reporter cells with small-molecule inhibitors targeting CK1 (D4476) or GSK3 (CHIR99021). We observed that
201 both treatments significantly reduced Wnt5a-induced GFP-Pdzn3 degradation (Figure 3G), thus
202 demonstrating a functional role of both CK1 and GSK3 in Wnt5a-Ror-Pdzn3 signal transduction.

203 We previously reported that the atypical kinesin Kif26b is another downstream regulatory target of
204 Wnt5a-Ror signaling (Karuna, Susman, & Ho, 2018; Susman et al., 2017). Because Pdzn3 and Kif26b are
205 both regulated by the Wnt5a-Ror-Dvl axis, we sought to define the epistatic relationship between Pdzn3 and
206 Kif26b (i.e., whether these two proteins functions in a linear cascade or in parallel branches). To distinguish
207 between these possibilities, we used CRISPR/Cas9 gene editing to generate cells lacking Kif26b and its
208 homolog Kif26a (Kif26a/b dKO cells; sequences in Supplemental Figure 3A), which we previously showed is
209 also a target of Wnt5a-Ror signaling (Karuna et al., 2018), and tested whether the GFP-Pdzn3 reporter is still
210 degraded upon rWnt5a stimulation. We observed that genetic deletion of *Kif26a* and *Kif26b* does not hinder the
211 ability of rWnt5a to induce GFP-Pdzn3 degradation; however, there is a slight but significant increase in GFP-
212 Pdzn3 degradation in the Kif26a/b dKO cells that can be reversed upon re-expression of Kif26b (Figure 3H).
213 In the converse experiment, we again used CRISPR/Cas9 to generate cells lacking *Pdzn3* and its homolog
214 *Lnx4* (Pdzn3/4 dKO cells; sequences in Supplemental Figure 3B and 3C), which is structurally very similar to
215 Pdzn3 (see Figure 6A). We observed that rWnt5a-induced GFP-Kif26b degradation can still occur (Figure 3I)
216 to a large extent. However, deletion of *Pdzn3* and *Lnx4* did have a slight but significant effect on reducing
217 GFP-Kif26b degradation, which can be alleviated upon re-expression of Pdzn3. Taken together, these data
218 indicate that Wnt5a regulation of Pdzn3 does not require Kif26b and vice versa, suggesting that these two
219 targets are epistatically parallel to each other. However, there may be some degree of cross-talk through a
220 currently unknown mechanism.

221

222 **Pdzn3 phosphorylation is required for its Wnt5a-mediated degradation**

223 We next sought to define the structural elements within Pdzn3 required for its degradation and explore
224 the possible role of phosphorylation in this regulation. Pdzn3 is a cytosolic protein that contains an N-terminal
225 RING domain that confers its putative E3 ligase activity, two internal PDZ domains that mediate protein-protein
226 interactions, a C-terminal LNX3 homology (LNX3H) domain with no known function, and a C-terminus PDZ
227 domain binding motif (Figure 4A) (Flynn, Saha, & Young, 2011; Sewduth et al., 2014). The six phosphorylation

228 sites identified in our phosphoproteomic analysis cluster into two groups: Group 1 phosphorylation sites (S775,
229 S843, and S845) reside within the linker region between the second PDZ domain and the LNX3H domain, and
230 Group 2 phosphorylation sites (T955, T956, and S962) are located within the LNX3H domain itself.
231 Interestingly, while phosphorylation of Group 1 sites showed only a slight increase at 1 hour and then
232 decreased after 6 hours (compare Figure 1F with dot dashed, dotted, and solid lines in 1G), phosphorylation of
233 Group 2 sites increased significantly after 1 hour of rWnt5a stimulation, prior to Pdzn3 degradation, and then
234 decreased after 6 hours of rWnt5a stimulation (compare Figure 1F with dashed line in 1G), raising the
235 hypothesis that phosphorylation of these sites, particularly those in Group 2, may be required for Wnt5a-
236 regulation of Pdzn3 degradation.

237 To test this hypothesis, we systematically generated phosphoinhibitory mutants (T or S to A
238 substitutions) of all three sites in either Group 1 or Group 2 and examined the effects of these mutations on
239 rWnt5a-induced Pdzn3 degradation. We observed that while mutation of Group 1 sites had no effect on
240 rWnt5a-induced Pdzn3 degradation, mutation of Group 2 sites strongly abolished GFP-Pdzn3 degradation
241 (Figure 4B). To further dissect which specific sites within Group 2 are required for Pdzn3 degradation, we
242 individually mutated each of the three sites and observed that any of the three single mutations significantly
243 reduced rWnt5a-induced GFP-Pdzn3 degradation (Figure 4C). To further test whether phosphorylation of
244 these three residues is sufficient to mimic the effect of Wnt5a-Ror signaling on Pdzn3 degradation, we
245 generated a triple phosphomimetic mutant (T or S to E) and observed that these mutations, in the absence of
246 exogenous rWnt5a stimulation, constitutively decreased the Pdzn3 reporter signal to a level comparable to
247 that of wild-type Pdzn3 upon rWnt5a stimulation, and no further degradation was induced by rWnt5 stimulation
248 (Figure 4D). These experiments establish that Wnt5a-dependent phosphorylation of the three Group 2 sites in
249 the LNX3H domain is both required and sufficient to drive Pdzn3 degradation.

250

251 **Wnt5a-directed cell migration requires Pdzn3 phosphorylation and degradation**

252 We next investigated what the cell biological consequences of Pdzn3 phosphorylation and degradation
253 might be. Our previous work demonstrated that Wnt5a-Ror signaling can modulate cell migration through
254 regulation of Kif26b abundance (Susman et al., 2017). We wondered if Wnt5a-Ror regulation of effector
255 abundance might be a general paradigm through which Pdzn3 is similarly controlled. This possibility seemed

256 particularly salient given that others have demonstrated that Pdzn3 can function as a promigratory factor in
257 cell morphogenetic events, including HUVEC cell migration *in vitro* and neuronal cell positioning *in vivo*
258 (Baizabal et al., 2018; Sewduth et al., 2014). Thus, we hypothesized that Pdzn3 abundance, directly regulated
259 by Wnt5a-induced phosphorylation, might ultimately serve to regulate cell migration.

260 To evaluate our hypothesis, we used real-time single cell tracking to first assess the role of the Pdzn3
261 protein itself on cell migration. We took advantage of the Pdzn3 and Lnx4 double knockout cells (Pdzn3/4
262 dKO cells), which provided a platform in which we could directly compare the function and regulation of wild-
263 type Pdzn3 (Pdzn3 WT cells) and Group 2 phosphoinhibitory site mutant Pdzn3 (Pdzn3 phosphoinhibitory
264 cells) through expression of these proteins without potential influence from the structural homolog Lnx4. First,
265 we observed that cells expressing WT Pdzn3 cells migrated significantly greater distances than Pdzn3/4 dKO
266 cells (Figure 5A, quantified in Figure 5B), thereby confirming that Pdzn3 functions as a promigratory factor
267 (Baizabal et al., 2018; Sewduth et al., 2014). Interestingly, we noticed that Pdzn3 phosphoinhibitory cells
268 migrated not only significantly further than Pdzn3/4 dKO cells but also significantly further than Pdzn3 WT
269 cells as well, suggesting that inhibiting Pdzn3 phosphorylation could potentially enhance cell migration.

270 We next assayed for the influence of the Wnt5a-Ror-Pdzn3 axis on cell migration. We observed that
271 while rWnt5a stimulation had no effect on the distance traveled by Pdzn3/4 dKO cells, it strongly reduced the
272 distance travelled by WT Pdzn3 cells (Figure 5C, quantified in Figure 5D). Importantly, this Wnt5a effect on
273 cell migration was completely abolished in Pdzn3 phosphoinhibitory cells. Taken together, these results
274 establish that phosphorylation-dependent degradation of Pdzn3 is required for Wnt5a to exert its effect on
275 modulation of cell migration.

276

277 **The C-terminal LNX3H domain functions as a Wnt5a-responsive domain to regulate protein abundance**
278 **of Pdzn3 and related homologs**

279 Pdzn3 belongs to the Ligand of Numb-X or Lnx family of E3 ligases (Figure 6A). Like Pdzn3, each Lnx
280 family member possesses an N-terminal RING domain (with the exception of Lnx5) and one to four internal
281 PDZ binding domains. Like Pdzn3, Lnx4 and Lnx5 each additionally possess a C-terminal LNX3H domain and
282 a C-terminus PDZ domain binding motif (Flynn et al., 2011; Sewduth et al., 2014). Notably, the LNX3H
283 domains of Lnx4 and Lnx5 possess homologous Group 2 phosphorylation sites found in Pdzn3 (Figure 6B).

284 Based on our finding that these sites regulate Wnt5a-induced Pdzn3 degradation, we hypothesized that Lnx4
285 and possibly Lnx5 may also be regulated by Wnt5a signals and that the LNX3H domain may generally function
286 as a Wnt5a-responsive domain. To test this hypothesis, we generated reporter cell lines stably expressing
287 GFP-Lnx1, -Lnx2, -Lnx4, or -Lnx5 fusion proteins and assessed their ability to undergo degradation in
288 response to rWnt5a stimulation. As predicted, when stimulated with rWnt5a, GFP-Lnx1 and GFP-Lnx2, which
289 lack an LNX3H domain, did not degrade, whereas GFP-Lnx4, which has an LNX3H domain, exhibited a
290 modest but significant degradation response (Figure 6C). Interestingly, GFP-Lnx5, which also has an LNX3H
291 domain but lacks a RING domain, was not degraded after rWnt5a stimulation (Figure 6C). We therefore
292 conclude that, like Pdzn3, Lnx4 is also a target of Wnt5a signaling. Moreover, the Wnt5a responsiveness of
293 Lnx family members correlates with the presence of both LNX3H and RING domains, as the primary difference
294 between Lnx5 and Pdzn3/Lnx4 is the N-terminal RING domain.

295 To further test the idea that the LNX3H domain might act as a Wnt5a-responsive domain, we generated
296 truncation mutants of GFP-Pdzn3 and GFP-Lnx4 lacking this domain. We observed that rWnt5a-induced
297 degradation was completely abolished in these mutant cells (Figure 6D and 6E). In addition, the steady-state
298 fluorescence of unstimulated reporter cells was also substantially reduced (Figure 6D and 6E). These
299 observations suggest that the LNX3H domain of Pdzn3 and Lnx4 acts not only as a Wnt5a-responsive domain
300 but may do so by regulating overall protein stability, possibly by inhibiting the N-terminal RING domain to
301 prevent auto-ubiquitination and degradation. While the precise mechanism by which the LNX3H domain
302 responds to Wnt5a signals remains unknown and is beyond the scope of this study, our finding defines the
303 LNX3H domain as a bona fide Wnt5a-responsive domain that regulates Pdzn3 and Lnx4 stability.

304

305 **Discussion**

306 In this study, we conducted a whole proteome-scale mass spectrometry screen in primary *Wnt5a*
307 knockout MEFs to identify early and late downstream events driven by Wnt5a-Ror signaling and identified the
308 E3 ubiquitin ligase Pdzn3 as a regulatory target. Activation of Wnt5a-Ror signaling results in the regulation of
309 Pdzn3 abundance in a β -catenin-independent manner mediated by a signaling cascade involving Fzd
310 receptors, Dvl scaffolding proteins, GSK3, and CK1 that culminates in UPS-dependent degradation of Pdzn3.
311 We find that Kif26b is not required for Wnt5a-mediated Pdzn3 degradation nor is Pdzn3 required for Kif26b

312 degradation, although there is some potential cross-talk between the two effectors (Figure 6F). Importantly, we
313 determined that the Wnt5a-Ror-Pdzn3 signaling axis serves to modulate cell migration. Wnt5a-induced
314 Pdzn3 phosphorylation at three residues on its C-terminal LNX3H domain is required for its subsequent
315 degradation, which is also required for Wnt5a-Ror signaling to reduce cell migration in NIH/3T3 cells. Thus, the
316 biochemical changes observed in our Wnt5a-Ror signaling cascade connect to a distinct cell biological
317 behavior. Finally, we note that truncation of the LNX3H domain results in constitutive destabilization of Pdzn3
318 even in the absence of Wnt5a, suggesting that the LNX3H domain may function as both a Wnt5a-responsive
319 domain and an intrinsic regulator of Pdzn3 stability. Based on these findings, we propose that the LNX3H
320 domain of Pdzn3 may function to prevent Pdzn3 auto-ubiquitination and self-degradation mediated by its
321 RING domain. Prior to Wnt5a stimulation, Pdzn3 may adopt a “closed” conformation as its C-terminal PDZ
322 domain binding motif interacts with one of its internal PDZ domains to block its E3 ligase activity. Upon Wnt5a
323 stimulation, Pdzn3 is C-terminally phosphorylated on its LNX3H domain by a yet unidentified kinase to switch
324 the “closed” conformation into an “open” conformation, allowing Pdzn3 to catalyze the ubiquitination of
325 relevant substrates as well as itself. Notably, this “opened/closed” conformation paradigm has been previously
326 described in other components of Wnt signaling, including Axin and Dvl (Kim et al., 2013; H. J. Lee, Shi, &
327 Zheng, 2015; Qi et al., 2017). Conceivably, the equilibrium between the “closed” and “open” Pdzn3 could be
328 modulated through either intramolecular interactions within a single Pdzn3 molecule or through intermolecular
329 interactions between Pdzn3 dimers or multimers. Future detailed biochemical experiments are required to
330 directly dissect these possibilities as well as evaluate whether Pdzn3 is phosphorylated by a kinase known to
331 be involved in non-canonical Wnt signaling (such as CK1 or GSK3) or another one, as well as how the kinase
332 itself is regulated by Wnt5a-Ror signaling.

333 It is well established that several core components of canonical Wnt signaling (e.g., β -catenin,
334 adenomatous polyposis coli (APC), and Axin) are regulated by proteasomal degradation (Choi, Park,
335 Costantini, Jho, & Joo, 2004; Huang et al., 2009; Papkoff, Rubinfeld, Schryver, & Polakis, 1996). The present
336 work, together with other recent studies, establishes that multiple effectors of non-canonical Wnt pathways,
337 including Pdzn3, Kif26a, Kif26b and Syndecan4, are also subject to regulation by the ubiquitin-proteasome
338 pathway (Carvallo et al., 2010; Karuna et al., 2018; Susman et al., 2017). Collectively, these findings suggest
339 that regulated proteolysis to tune the abundance of downstream effectors and thus, signaling outcomes, may

340 be a conserved paradigm common to both canonical and non-canonical Wnt signaling pathways. This concept
341 will continue to evolve as additional Wnt signaling components are discovered and characterized.

342 While our study dissects the biochemical regulation of Pdzrn3 by Wnt5a-Ror signaling, previous work
343 by others supports the physiological importance of Pdzrn3 in non-canonical Wnt signaling. One particularly
344 notable study focuses on the role of Pdzrn3 in vascular morphogenesis during embryonic development
345 (Sewduth et al., 2014). In this study, Sewduth et al. identified a binding interaction between Pdzrn3 and Dvl3
346 via a yeast 2-hybrid screen and a subsequent co-immunoprecipitation, going on to demonstrate that loss of
347 Pdzrn3 *in vivo* results in increased vasculature disorganization in both the embryonic yolk sac and the
348 developing mouse brain. Furthermore, deletion of Pdzrn3 led to decreased persistent directional migration in
349 HUVECs *in vitro*. Importantly, our findings further build upon this model by demonstrating that Wnt5a-Ror
350 signaling can modulate cell migration through Pdzrn3 by triggering its phosphorylation and subsequent
351 degradation. Our study, taken together with existing Pdzrn3 literature, indicates that changes in Pdzrn3
352 abundance results in non-canonical Wnt signaling defects that can be observed at the molecular, cell, and
353 organismal levels, and supports a physiologically relevant role for Pdzrn3 in Wnt5a-dependent morphogenetic
354 regulation.

355 The similar means by which Pdzrn3 and Kif26b are regulated indicate that the Wnt5a-Ror pathway has
356 evolved multiple effectors to exert appropriate biological outcomes. Pdzrn3 and Kif26b are regulated by highly
357 similar signaling cascades that utilize known Wnt signaling components, including Ror receptors, Dvl
358 scaffolding proteins, and GSK3, culminating in UPS-dependent degradation of both effectors. Further, both
359 Pdzrn3 and Kif26b perform related functions at the cell behavioral level. In this study, we describe the
360 mechanism by which Wnt5a-Ror signaling utilizes Pdzrn3 phosphorylation and degradation to modulate
361 NIH/3T3 cell migration. This paradigm is remarkably similar to the one we reported previously, wherein Wnt5a-
362 mediated Kif26b degradation also results in decreases in cell migration as assayed via wound closure in
363 scratch assays (Susman et al., 2017). Our genetic epistasis experiments indicate that Pdzrn3 and Kif26b
364 reside neither upstream nor downstream of each other but do influence each other's Wnt5a-driven
365 degradation, further suggesting that these two components work in parallel to properly execute signaling
366 functions. Thus, Wnt5a-Ror signaling appears to have evolved multiple effectors to ensure tightly coordinated

367 cell biological outcomes. Individual roles for Pdzn3 and Kif26b, including potential substrates and co-effectors,
368 should be examined in future studies.

369 The lack of quantitative and reliable readouts for Wnt5a-Ror signaling has been a major limitation in the
370 field. We leveraged our discovery of Pdzn3 and its regulation by Wnt5a-Ror signaling to develop a new flow
371 cytometry-based reporter that enables sensitive and quantitative detection of pathway activity in live cells. In
372 addition to dissecting the mechanisms that mediate Pdzn3 degradation, this reporter assay could also be
373 utilized to interrogate other biochemical steps in the pathway upstream of Pdzn3, understand various disease-
374 associated mutations, and serve as an important platform for high throughput screening of small molecules
375 that target Wnt5a-Ror-driven developmental disorders and cancers.

376

377 **Materials and methods**

378 **Cell lines**

379 Primary MEFs were isolated directly from mouse embryos as described (Ho et al., 2012) and used within 3
380 passages. NIH/3T3 Flp-In (R76107, Thermo Fisher Scientific) cells were purchased and were not re-
381 authenticated; cells tested negative for mycoplasma contamination using the Universal Mycoplasma Detection
382 Kit (30-1012K, ATCC). All cell lines were cultured at 37C and 5% CO₂ in Dulbecco's Modified Eagles Medium
383 (MT15017CV, Corning) supplemented with 1x glutamine (25-005-CI, Corning), 1x penicillin-streptomycin (30-
384 002-CI, Corning) and 10% fetal bovine serum (16000069, Thermo Fisher Scientific).

385

386 **TMT/MS3 proteomic screen**

387 Primary *Wnt5a*^{-/-} MEFs (derived and pooled from three different E12.5 *Wnt5a*^{-/-} embryos) were seeded in six
388 10-cm plates at 50% confluency 3 days before rWnt5a stimulation (day 0), such that cells would be fully
389 confluent for 2 days. On the day of stimulation (day 3), cells in each 10-cm plate were treated either with
390 rWnt5a (100ng/mL final concentration) for 1h or 6hr, or with the control buffer (1x PBS, 0.1% bovine serum
391 albumin, 0.5% w/v CHAPS) for 6hr. The entire stimulation experiment was conducted in two independent
392 replicates. At the end of the Wnt5a stimulation time course, cells were washed once with ice-cold PBS and
393 plates were scraped into 1 mL of ice-cold lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris pH 8.2, 1 mM NaF, 1
394 mM β-glycerophosphate, 1 mM Na₃VO₄, 10 mM Na₄P₂O₇, 1 mM PMSF, and Complete protease inhibitor (-

395 EDTA, Roche)). Cells were homogenized by pipetting up and down using a P-1000 and then sonicated in a
396 Bioruptor (17 x 30s ON/OFF cycles). Cell lysates were then centrifuged at 40,000 RPM for 20 min at 4C. The
397 clarified high-speed supernatants were collected, snap frozen in liquid nitrogen and stored at -80C until the
398 TMT/MS3 analysis was performed. Protein concentrations were determined using BCA reagents (Pierce) and
399 normalized.

400 To perform the TMT/MS3 screen, tryptic peptides were prepared from whole cell lysates and the
401 peptide mixtures from the different experimental conditions were labeled with the six TMT reagents, such that
402 reporter ions at m/z of 126, 127, 128, 129, 130 and 131 would be generated in the tandem spectrometry.
403 Phosphopeptides were enriched by TiO₂ chromatography. Liquid chromatography, MS3 tandem mass
404 spectrometry and data analysis were carried out as previously described (McAlister et al., 2014; Paulo et al.,
405 2015; Ting et al., 2011).

406

407 **Cloning of mouse *Pdzn3*, *Lnx1*, *Lnx2*, *Lnx4*, and *Lnx5* cDNA**

408 For cloning of mouse *Pdzn3* cDNA, a first strand cDNA pool was generated from MEF total RNA Maxima H
409 Minus reverse transcriptase and oligo dT primers according to manufacturer's instructions (EP0751,
410 ThermoFisher Scientific). This cDNA library was then used as template for PCR amplification of the *Pdzn3*
411 open reading frame with the following primers, forward: gatcGGCCGGCCtACCAcatgggttcgagttggatcgc; reverse:
412 gatcGGCGCGCCTTATACAGTAGTCACCGACAGGAA. The PCR product was subcloned into a modified
413 pCS2+ vector using the FseI and Ascl restriction sites. The entire *Pdzn3* open reading frame was confirmed
414 by Sanger sequencing.

415 For cloning the *Lnx1*, *Lnx2*, *Lnx4*, and *Lnx5* cDNAs, the same workflow was used, except that E14.5
416 mouse brain RNA was used to generate the first strand cDNA pool. The following primers were used to PCR
417 amplify and subclone the respective cDNAs: mLnx1 forward,
418 gatcGGCCGGccTACCAcatgaaccaaccggacccgtcagat; mLnx1 reverse,
419 gatcGGCGCGCCTATAAAAAAGTACCAGGCCAAGAAG; mLnx2 forward,
420 gatcGGCCGGccTACCAcatggaaacaaccaggatgcgagatgg; mLnx2 reverse,
421 gatcGGCGCGCCCTATACGAGGCTGCCTGGCCAGCAG; mLnx4 forward,
422 gatccggccggccTaccATGGGCTTCGCTTGGAGCGTCTC; mLnx4 reverse,

423 gatcGGCGCGCCtcaTACGGTGGTCACCGACAGAAAGGC; mLn5 forward,
424 gatcGGCCGgCCTACCatggatgtatgtgtggtc; mLn5 reverse,
425 gatcGGCGCGCCTCAGACAGTGGTGACAGAGAGCAG. All constructs were confirmed by Sanger sequencing.
426

427 **Antibodies**

428 Antibodies against Ror1, Ror2, and Kif26b were described previously (Ho et al., 2012; Susman et al., 2017).
429 The following antibodies were purchased: rabbit anti-Dvl2 (#3216, Cell Signaling) and mouse anti- α -tubulin
430 (clone DM1A, #ab7291, Abcam).

431 Initial analyses of Pdzn3 were conducted using a commercial antibody (SC-99507, Santa Cruz
432 Biotechnology); however, the antibody was discontinued and all subsequent analyses (including all data
433 presented in this paper) were conducted using anti-Pdzn3 antibodies produced in-house. To generate anti-
434 Pdzn3 antisera, rabbits were immunizing with a mixture of two different antigens: 1) a synthetic peptide with
435 the sequence LLTHGTTKSPDGTRVYNSFLSVC, conjugated to keyhole limpet hemocyanin (77600,
436 ThermoFisher Scientific), and 2) a maltose binding protein N-terminally fused to a Pdzn3 protein fragment
437 extending from amino acids 902 to 1063, recombinantly expressed in and purified from *E. coli*. Antibodies were
438 affinity purified from antisera over a column with a full-length recombinant Pdzn3 protein covalently
439 immobilized to Sepharose beads (AminoLink Plus, 20501, ThermoFisher Scientific). Full length Pdzn3 was
440 expressed in insect cells using the Bac-to-Bac baculovirus expression system (10359016, ThermoFisher
441 Scientific); the protein was insoluble and was purified under denatured conditions using 5.5M guanidinium
442 hydrochloride, coupled to AminoLink Plus Resin, and renatured by gradually removing guanidinium
443 hydrochloride.

444

445 **Western blotting**

446 Protein lysates for SDS-PAGE and western blotting were prepared in 1x - 2x Laemmli sample buffer or LDS
447 sample buffer (Life Technologies). Protein lysates used for Kif26b western blotting were not heated, as the
448 Kif26b signal weakens substantially after heating, likely due to heat-induced protein aggregation (Susman et
449 al., 2017). All other protein lysates were heated at 90C for 5 min before SDS-PAGE and western blotting.

450 Quantitative western blotting was performed using the Odyssey infrared imaging system (Li-Cor

451 Biosciences) according to the manufacturer's instructions. The median background method was used with a
452 border width of two pixels on all sides around the perimeter of the area being quantified. Non-saturated protein
453 bands were quantified by using Odyssey software with the gamma level set at 1.

454

455 **Generation of stable NIH/3T3 cell lines**

456 To construct the GFP-Pdzn3 expression plasmid, the eGFP open reading frame was first subcloned into
457 pENTR-2B (Life Technologies), and the full-length mouse Pdzn3 open reading frame was subcloned in frame
458 to the C-terminus of GFP. The resulting construct was verified by sequencing and then recombined with the
459 pEF5-FRT-V5 vector (Life Technologies) using LR Clonase (Life Technologies) to create pEF5-GFP-Pdzn3-
460 FRT. The pEF5-GFP-Pdzn3-FRT plasmid was used to generate stable isogenic cell lines using the Flp-In
461 system and Flp-In NIH/3T3 cell line (Life Technologies). DNA transfection was performed in 10-cm plates with
462 GenJet In Vitro Transfection Reagent (SL100488; SignaGen Laboratories). Cells that stably integrate the Flp-
463 In constructs were selected using 200µg/ml hygromycin B and expanded. Cell lines expressing
464 phosphoinhibitory or phosphomimetic Pdzn3, Lnx1, Lnx2, Lnx4, Lnx5, Pdzn3 Δ LNX3H, and Lnx4 Δ LNX3H
465 were similarly created by cloning the open reading frame to the C-terminus of GFP in frame and conducting the
466 workflow described above.

467

468 **Lentivirus-mediated protein overexpression**

469 Recombinant lentiviruses were generated using the pLEX_307 (for all Fzd and DVL constructs) vectors, which
470 uses the EF1 promoter to drive transgene expression. pLEX_307 was a gift from David Root (Addgene
471 plasmid # 41392). The human DVL1 and DVL3 open reading frames were cloned by PCR from a HeLa cell
472 cDNA pool using the following primers; hDVL1 forward, gatcGAATTCCACCATggcgagaccaagattatctac; hDVL1
473 reverse, gatcGGCGCGCCTCACATGATGTCCACGAAGAACTC; hDVL3 forward,
474 TTCAGGCCGGCCTACCATGGCGAGACCAAGATCATCTAC; hDVL3 reverse,
475 GAGGCAGCGCCTCACATCACATCCACAAAGAACTC. Similarly, the human DVL2 open reading frame was
476 cloned by PCR from a separate HeLa cDNA pool. The following primers were used: hDvl2 forward,
477 gcggcggcgGcCgGccaatggcggtagcagcactgggg; hDVL2 reverse,

478 gtgcacGgCGccatcacataacatccacaaagaactcg. The mouse Fzd1 and Fzd7 open reading frames were PCR
479 amplified from Addgene plasmids #42253 and 42259 (gifts from Jeremy Nathans), respectively, using the
480 following primers: mFzd1 forward, gatcgccggcctaccatggctgaggaggcggcgcctag; mFzd1 reverse,
481 gatcgccgcgccTCAGACGGTAGTCTCCCCCTGTTG; mFzd7 forward,
482 gatcgccggcctaccatgcggggccggcacggcggcg; mFzd7 reverse,
483 gatcgccgcgccTCATACCGCAGTTCCCCCTTGC. The mFzd2 open reading frame was cloned via PCR from
484 mouse brain via the following primers: mFzd2 forward, gatcgccggcctaccatgcggcccgcagcgccctg; mFzd2
485 reverse, gatcgccgcgccTCACACAGTGGTCTGCCATGC. The open reading frames of all lentiviral constructs
486 were verified by sequencing. Lentiviruses were packaged and produced in HEK293T cells by co-transfection of
487 the lentiviral vectors with the following packaging plasmids: pRSV-REV, pMD-2-G and pMD-Lg1-pRRE (gifts
488 from Thomas Vierbuchen). 0.75ml or 0.25 ml of the viral supernatants was used to infect GFP-Pdzrn3 reporter
489 cells seeded at 20% confluence in 24-well plates. Puromycin selection (0.002 mg/ml) was carried out for three
490 days. Cells from the viral titer that killed a large proportion of cells (60-90%) were expanded and used for flow
491 cytometry; this ensured that the multiplicity of infection (MOI) is ~1 for all cell lines used in the experiments.
492 This same workflow was utilized to establish GFP-Pdzrn3 and GFP-Kif26b reporters in Kif26a/b dKO cells and
493 Pdzrn3/4 dKO cells, respectively; in lieu of puromycin selection, GFP-positive cells were sorted (MoFlo Astrios
494 Cell Sorter, Beckman Coulter, 488nm laser) and expanded prior to degradation analysis.
495

496 **Generation of double knockout cell lines**

497 *Kif26b* knockout cells were previously described (the mutant clone with +1 and -13 frameshifts, generated
498 using sgRNA 1; (Susman et al., 2017)). This *Kif26b* mutant clone was subject to a second round of
499 mutagenesis to knock out *Kif26a* via CRISPR/Cas9-mediated genome editing according to (Ran et al., 2013).
500 Briefly, a modified version of LentiCRISPR V2 (Addgene #52961), in which the puromycin selection cassette
501 was modified with a blasticidin selection cassette, was used to generate lentiviruses expressing small guide
502 RNAs (sgRNAs) with the following sequence: GCTCGTGGAGCTAAACGAC. In wild-type NIH/3T3 cells,
503 Pdzrn3 was similarly targeted using the following sequence: AGCTGCCCGCGCGTTGTCG. Following
504 lentivirus infection, cells were passaged for 5 days to allow time for mutagenesis to occur. Cells were
505 subsequently selected using blasticidin (0.002mg/mL) in the case of *Kif26a* mutagenesis, or puromycin

506 (0.002mg/mL) in the case of *Pdzn3* mutagenesis. Individual cell clones were picked from cell populations
507 targeted with each of these sgRNAs, expanded and then validated by deep sequencing the relevant genomic
508 regions amplified by PCR.

509 To generate *Pdzn3/Lnx4* double knockout cells, *Pdzn3* knockout NIH/3T3 cells were electroporated
510 with CRISPR/Cas9 ribonucleoprotein complexes targeting *Lnx4* using the following gRNA sequence:
511 GCCAACAUCAUCGGCAUGACUCGUUUUAGAGCUAUGC. 24 hours after electroporation, cells were subjected
512 to fluorescence activated cell sorting (MoFlo Astrios Cell Sorter, Beckman Coulter, 561nm laser) to plate
513 individual cells in 96-well plates; cells were allowed to recover for two weeks prior to expansion and validation
514 of mutations via deep sequencing the relevant genomic regions amplified by PCR.

515

516 **Recombinant proteins and inhibitors**

517 The following recombinant proteins and drugs were purchased: human/mouse Wnt5a (654-WN-010, R&D
518 Systems); Wnt-C59 (C7641-2s; Cellagen Technology); epoxomicin (A2606, ApexBio); PYR-41 (B1492,
519 ApexBio); MLN4924 (I50201M, R&D systems); mouse Dkk-1 (5897-DK-010, R&D Systems); IWR-1-endo
520 (B2306, ApexBio); D4476 (A3342, ApexBio); and CHIR99021 (A3011, ApexBio).

521

522 **Reverse transcription and qPCR**

523 Total RNA was isolated from *Wnt5a* KO MEFs stimulated with rWnt5a for 0, 1, or 6 hours using the RNeasy
524 Plus Mini Kit (Qiagen, #74134), and cDNA was synthesized using QuantiNova Reverse Transcription Kit
525 (Qiagen, #205411), both according to the manufacturer's instructions. The cDNA was the source of input for
526 qPCR, using QuantiNova SYBR Green PCR Kit (Qiagen, #208054). The following qPCR primer pairs were
527 used: mPdzn3 forward, CTGCGCTACCAGAAGAAGTTC; mPdzn3 reverse,
528 TCCATCTTGATTGTCCACACAG; mGapdh forward, AGGTCGGTGTGAACGGATTTG; mGapdh reverse,
529 TGTAGACCATGTAGTTGAGGTCA.

530

531 **Flow cytometry**

532 NIH/3T3 cells were plated at a density of 0.09-0.095M/well in 48-well plates either directly in complete media
533 containing Wnt-C59 (10nM) or in complete media and later changed to complete media containing Wnt-C59 24

534 hours after plating; all rWnt5a stimulations and inhibitor pretreatments and treatments were conducted in the
535 presence of Wnt-C59. 48 hours after plating, cells were stimulated with rWnt5a for 6 hours. For inhibitor
536 treatments, cells were pretreated with the appropriate inhibitor for 1 hour prior to rWnt5a treatment for 6 hours
537 in the presence of the same inhibitor. Cells were then harvested, resuspended in PBS + 0.5% FBS and
538 analyzed using a flow cytometer (Becton Dickinson FACScan, 488nm laser). Raw data were acquired with
539 CellQuest (Becton Dickinson) and processed in FlowJoX (Treestar, Inc). Processing entailed gating out dead
540 cells, calculation of median fluorescence, percent change of medians, and overlay of histograms. Dose-
541 response curves based on percent change were fitted in Prism (GraphPad Software).

542

543 **Live cell imaging and 2D cell migration**

544 Pdzrn3/Lnx4 knockout cells, Pdzrn3 WT cells, and Pdzrn3 phosphoinhibitory cells (all NIH/3T3 cells) were
545 cultured in complete media or in Wnt-C59 containing media for 72 hours (for experiments involving rWnt5a
546 stimulation). Cells were subsequently plated at a density of approximately 0.01M cells per 24 well plate for live
547 cell imaging. rWnt5a treatment was initiated immediately prior to imaging. Multipoint time lapse images were
548 collected every 10 minutes for 20 hours on an Andor Dragonfly spinning disc confocal system in a humidity
549 controlled chamber at room temperature (37C). Cell migration was tracked using the ImageJ manual tracking
550 plugin, and cells that divided, moved out of frame, or died were excluded from further analysis. Total distance
551 traversed was calculated using the ImageJ Chemotaxis tool plugin. Statistical analysis was done using Prism 8
552 (GraphPad Software).

553

554 **Acknowledgements**

555 We thank the members of the Ho and Jao labs at UC Davis for their input and discussions. We thank Karl
556 Willert for careful reading of the manuscript. We acknowledge Bridget McLaughlin and Jonathan Van Dyke at
557 the UC Davis Cancer Center Flow Cytometry core for their training and technical assistance (supported by NCI
558 P30 CA093373). We thank Mikaela Louie and Alec Konopelski Snavely for their assistance with MatLab. We
559 also thank Ryan Toedebusch and Christine Toedebusch for discussions about CRISPR targeting strategies as
560 well as Xueer Jiang, Jose Uribe Salazar, and Megan Dennis for their assistance with CRISPR mutation
561 analysis. This work was supported by National Institutes of Health grant 1R35GM119574 and American

562 Cancer Society grant IRG-95-125-13 to H.H. Ho, and National Institutes of Health grant GM67945 to S. P.

563 Gygi.

564

565 **Figure legends**

566 **Figure 1. Identification of the E3 ubiquitin ligase Pdzrn3 as a downstream regulatory target of Wnt5a-**

567 **Ror signaling. A)** Workflow of whole cell proteomics screen. Primary MEF cultures were generated from

568 *Wnt5a* knockout E12.5 mouse embryos and stimulated with rWnt5a (0.1 μ g/mL) for 0, 1, or 6 hours. After

569 rWnt5a stimulation, whole cell lysates were collected and processed for LC/MS3 tryptic/phospho-tryptic peptide

570 identification and quantification, as described in the main text and Materials and Methods. The rWnt5a

571 stimulation and proteomic analysis were conducted in two independent technical replicates. **B and C)** Volcano

572 plots showing changes in the abundance of detected tryptic peptides in response to rWnt5a stimulation

573 (0.1 μ g/mL) after 1 hour (B) or 6 hours (C). The abundance of a tryptic peptide from Pdzrn3 (orange dots)

574 changed strongly after 6 hours of rWnt5a stimulation. **D and E)** Volcano plots showing changes in the

575 abundance of detected phospho-tryptic peptides after 1 hour (D) or 6 hours (E) of rWnt5a stimulation

576 (0.1 μ g/mL). A total of five phosphosites from Pdzrn3 (S843, S845, T955, T956, and S962), grouped in two

577 clusters based on their location in the protein, were detected and exhibited distinct patterns of change after

578 rWnt5a stimulation (orange dots). **F and G)** Line plots showing Wnt5a-induced changes in the abundance of

579 individual tryptic (F) or phospho-tryptic peptides (G) from Pdzrn3 after 1 hour or 6 hours of rWnt5a stimulation.

580 A sixth phospho-tryptic peptide site (S775) in did not pass the initial filter (p-value = 0.076), but also showed

581 clear changes with rWnt5a stimulation. Error bars represent \pm SEM calculated from two technical replicates.

582

583 **Figure 2. Validation of Pdzrn3 as a downstream regulatory target of Wnt5a-Ror signaling. A)** Western

584 blot showing downregulation of Pdzrn3 steady-state levels in response to rWnt5a stimulation. Primary *Wnt5a*

585 knockout MEF cultures (n=3, biological replicates) were stimulated with rWnt5a (0.2 μ g/mL) for 0, 1, or 6 hours,

586 and membranes were blotted with antibodies against Kif26b, Pdzrn3, Ror1, Ror2, Dvl2 and Tubulin. The

587 decrease in Pdzrn3 abundance correlated with other known indicators of Wnt5a-Ror signaling, including

588 phosphorylation changes in Ror1, Ror2, and Dvl2 and a decrease in Kif26b abundance. Experiments from two

589 representative biological replicates are shown. **B)** Quantification of the western blotting experiments shown in

590 (A). Error bars represent \pm SEM calculated from three biological replicates. t-test (unpaired) was performed to
591 determine statistical significance for the following comparisons: 1hr vs. 0hr; 6hr vs. 0hr. **C)** Western blots
592 showing the requirement of endogenous Ror receptors for Pdzn3 regulation. Primary MEFs derived from
593 *Ror1*^{f/f}; *Ror2*^{f/f}; *ER-cre* embryos were treated with 4-hydroxytamoxifen (4-OHT) to induce genetic ablation of
594 *Ror1* and *Ror2*. Protein lysates were analyzed by western blotting using antibodies against Kif26b, Pdzn3,
595 Ror1, Ror2, Dvl2 and Tubulin. An increase in Pdzn3 and Kif26b steady-state abundance along with a
596 decrease in Dvl2 phosphorylation correlated with the genetic loss of Ror1 and Ror2 expression. **D)**
597 Quantification of the western blotting experiments shown in (C). Error bars represent \pm SEM calculated from
598 three biological replicates. t-test (unpaired) was performed to determine statistical significance for the following
599 comparisons: +4OHT vs. -4OHT. **E)** Plot showing the effect of Wnt5a stimulation on *Pdzn3* transcript levels.
600 Primary *Wnt5a* knockout MEFs were stimulated with rWnt5a (0.2 μ g/mL) for 0, 1, or 6 hours, and the relative
601 abundance of *Pdzn3* mRNA were determine by RT-qPCR. Error bars represent \pm SEM calculated from three
602 technical replicates. t-test (unpaired) was performed to determine statistical significance for the following
603 comparisons: 1hr vs. 0hr; 6hr vs. 0hr. P-values: * = p<0.05, ** = p<0.01, *** = p<0.001.

604

605 **Figure 3. A signaling cascade links non-canonical Wnt5a-Ror signaling to Pdzn3 degradation. A)**
606 Representative histogram showing the effect of rWnt5a treatment on NIH/3T3 GFP-Pdzn3 (WRP) reporter
607 cells. WRP cells were treated with rWnt5a (0.2 μ g/mL) for 6 hours, and GFP-Pdzn3 fluorescence was
608 measured by flow cytometry. **B)** Dose-response curve showing GFP-Pdzn3 downregulation as a function of
609 rWnt5a concentration in the WRP reporter assay. An EC₅₀ of 77.1ng/mL was calculated. **C)** Quantification of
610 the effects of proteasome inhibitor (epoxomicin, 10 μ M), ubiquitin-activating enzyme E1 inhibitor (PYR41,
611 10 μ M) and Cullin inhibitor (MLN4924, 10 μ M) on rWnt5a-induced Pdzn3 downregulation in the WRP reporter
612 cells. Error bars represent \pm SEM calculated from three technical replicates. t-test (unpaired) was performed to
613 determine statistical significance for the following comparisons: inhibitors vs. the vehicle control DMSO. **D)**
614 Quantification of the effects of canonical Wnt inhibitors, Dkk-1 (2 μ g/ μ L) and IWR-1-endo (10 μ M) on rWnt5a-
615 induced Pdzn3 degradation in the WRP reporter cells. Error bars represent \pm SEM calculated from three
616 technical replicates. t-test (unpaired) was performed to determine statistical significance for the following
617 comparisons: inhibitors vs. the vehicle control DMSO. **E)** Quantification of the effects of Fzd1, Fzd2 and Fzd7

618 overexpression on the median fluorescence of WRP reporter cells. Error bars represent \pm SEM calculated from
619 two cell lines and three technical replicates per line. t-test (unpaired) was performed to determine statistical
620 significance for the following comparisons: Fzd overexpression vs. the Myc epitope tag overexpression. **F**
621 Quantification of the effects of DVL1, DVL2 and DVL3 overexpression on the median fluorescence of WRP
622 reporter cells. Error bars represent \pm SEM calculated from two cell lines and three technical replicates per line.
623 t-test (unpaired) was performed to determine statistical significance for the following comparisons: DVL
624 overexpression vs. the Myc epitope tag overexpression. **G**) Quantification of the effects of CK1 inhibitor
625 (D4476, 100 μ M) and GSK inhibitor (CHIR99021, 100 μ M) on rWnt5a-induced Pdzrn3 downregulation in the
626 WRP reporter cells. Error bars represent \pm SEM calculated from three technical replicates. t-test (unpaired)
627 was performed to determine statistical significance for the following comparisons: inhibitors vs. the vehicle
628 control DMSO. **H**) Quantification of the effect of genetically ablating *Kif26a* and *Kif26b* on rWnt5a-induced
629 GFP-Pdzrn3 reporter degradation. Error bars represent \pm SEM calculated from three technical replicates. t-test
630 (unpaired) was performed to determine statistical significance for the following comparisons: GFP-Pdzrn3
631 reporter in *Kif26a/Kif26b* double KO cells vs. GFP-Pdzrn3 reporter in WT cells; GFP-Pdzrn3 reporter in *Kif26b*
632 rescue cells vs. GFP-Pdzrn3 reporter in WT cells; GFP-Pdzrn3 reporter in *Kif26a/Kif26b* double KO cells vs.
633 GFP-Pdzrn3 reporter in *Kif26b* rescue cells. **I**) Quantification of the effect of genetically ablating *Pdzrn3* and
634 *Lnx4* on rWnt5a-induced GFP-Kif26b reporter (WRK) degradation. Error bars represent \pm SEM calculated from
635 three technical replicates per line. t-test (unpaired) was performed to determine statistical significance for the
636 following comparisons: GFP-Kif26b reporter in *Pdzrn3/Lnx4* double KO cells vs. GFP-Kif26b reporter in WT
637 cells; GFP-Kif26b reporter in *Pdzrn3* rescue cells vs. GFP-Kif26b reporter in WT cells; GFP-Kif26b reporter in
638 *Pdzrn3/Lnx4* double KO cells vs. GFP-Kif26b reporter in *Pdzrn3* rescue cells. P-values: * = p<0.05, ** =
639 p<0.01, *** = p<0.001.
640

641 **Figure 3 Supplement. CRISPR/Cas9 mediated genetic deletions of *Kif26a*, *Pdzrn3*, and *Lnx4*.** Reference
642 sequences for *Kif26a* (A), *Pdzrn3* (B), and *Lnx4* (C) aligned to mutant alleles generated via targeting with short
643 guide RNAs (sgRNAs) (underlined in reference, green refers to PAM sequence) unique to each gene. Multiple
644 deep sequencing results indicate that *Lnx4* is triploid, which is consistent with previous karyotyping of NIH/3T3
645 cells (Leibiger et al., 2013).

646

647 **Figure 4. Pdzn3 phosphorylation is required for its degradation. A)** Schematic of domains and identified
648 phosphorylation sites of Pdzn3. **B)** Quantification of the effects of mutating Group 1 and Group 2 sites on
649 Wnt5a-induced Pdzn3 degradation. Error bars represent \pm SEM calculated from two cell lines and three
650 technical replicates per line. t-test (unpaired) was performed to determine statistical significance for the
651 following comparisons: mutant Pdzn3 vs. WT Pdzn3. **C)** Quantification of the effects of mutating individual
652 Group 2 sites on Wnt5a-induced Pdzn3 degradation. Error bars represent \pm SEM calculated from two cell
653 lines and three technical replicates per line. t-test (unpaired) was performed to determine statistical
654 significance for the following comparisons: mutant Pdzn3 vs. WT Pdzn3. **D)** Quantification of the effects of
655 Group 2 phosphomimetic mutations on Pdzn3 reporter signals. Error bars represent \pm SEM calculated from
656 two cell lines and three technical replicates per line. t-test (unpaired) was performed to determine statistical
657 significance for the following comparisons: WT Pdzn3 – rWnt5a vs. WT Pdzn3 + rWnt5a; phosphomimetic
658 Pdzn3 mutant – rWnt5a vs. WT Pdzn3 -rWnt5a; phosphomimetic Pdzn3 mutant -rWnt5a vs. WT Pdzn3
659 +rWnt5a; phosphomimetic Pdzn3 mutant + rWnt5a vs. –rWnt5a. P-values: * = p<0.05, ** = p<0.01, *** =
660 p<0.001.

661

662 **Figure 5. Wnt5a-dependent cell migration is regulated through Pdzn3 phosphorylation and**
663 **degradation. A)** Single cell tracking plots of Pdzn3 and Lnx4 double knockout cells (Pdzn3/4 dKO cells),
664 Pdzn3/4 dKO cells re-expressing wild-type Pdzn3 (Pdzn3 WT cells), or Pdzn3/4 dKO cells re-expressing
665 Pdzn3 with phosphoinhibitory mutations at Group 2 sites (Pdzn3 phosphoinhibitory cells) without any Wnt-
666 C59 or rWnt5a treatments. X and Y axes extend to 600 microns. **B)** Quantification of distance traversed during
667 cell migration by Pdzn3/4 dKO cells, Pdzn3 WT cells, and Pdzn3 phosphoinhibitory cells. Error bars
668 represent \pm SEM calculated from one (Pdzn3/4 dKO cells) or two (Pdzn3 WT cells and Pdzn3
669 phosphoinhibitory cells) independent cell lines and two technical replicates per line. t-test (unpaired) was
670 performed via Prism 8 (GraphPad Software) to determine statistical significance for the following comparisons:
671 Pdzn3/4 dKO cells vs. Pdzn3 WT cells; Pdzn3/4 dKO cells vs. Pdzn3 phosphoinhibitory cells; Pdzn3 WT
672 cells vs. Pdzn3 phosphoinhibitory cells. **C)** Single cell tracking plots of Pdzn3/4 dKO cells, Pdzn3 WT cells,
673 and Pdzn3 phosphoinhibitory cells treated with or without rWnt5a in the presence of Wnt-C59. X and Y axes

674 extend to 600 microns. **D)** Quantification of distance traversed during cell migration by Pdzn3/4 dKO cells,
675 Pdzn3 WT cells, or Pdzn3 phosphoinhibitory cells treated with or without rWnt5a. Error bars represent \pm SEM
676 calculated from one (Pdzn3/4 dKO cells) or two independent (Pdzn3 WT cells and Pdzn3 phosphoinhibitory
677 cells) cell lines and two technical replicates per line. t-test (unpaired) was performed via Prism 8 (GraphPad
678 Software) to determine statistical significance for the following comparisons: Pdzn3/4 dKO cells -rWnt5a vs.
679 Pdzn3/4 dKO cells +rWnt5a; Pdzn3 WT cells -rWnt5a vs. Pdzn3 WT cells +rWnt5a; Pdzn3
680 phosphoinhibitory cells -rWnt5a vs. Pdzn3 phosphoinhibitory cells +rWnt5a; Pdzn3/4 dKO cells -rWnt5a vs.
681 Pdzn3 WT cells -rWnt5a; Pdzn3/4 dKO cells -rWnt5a vs. Pdzn3 phosphoinhibitory cells -rWnt5a; Pdzn3 WT
682 cells +rWnt5a vs. Pdzn3 phosphoinhibitory cells +rWnt5a. P-values: * = p<0.05, ** = p<0.01, *** = p<0.001.
683

684 **Figure 6. The C-terminal LNX3H domain acts as a general Wnt5a-responsive domain for Pdzn3 and its**
685 **homologs. A)** Schematic of Lnx family members and their conserved domains. Pdzn3 is structurally most
686 homologous to Lnx4. **B)** Alignment of a portion of the LNX3H domain shared by Pdzn3, Lnx4, and Lnx5. The
687 Pdzn3 Group 2 phosphorylation sites identified through our MS screen are conserved (red stars and boxes).
688 **C)** Quantification of the effects of Wnt5a on the steady-state abundance of GFP-Lnx family member reporter
689 cell lines. For clarity and ease of comparison across family members, the median reporter signal for the
690 +Wnt5a condition was normalized to the -Wnt5a condition within the individual Lnx reporter. Error bars
691 represent \pm SEM calculated from two (Lnx1, Lnx2, and Lnx5), four (Pdzn3), or six (Lnx4) cell lines and three
692 technical replicates per line. t-test (unpaired) was performed to determine statistical significance for the
693 following comparisons: +Wnt5a vs. -Wnt5a for each Lnx family member. **D)** Quantification of the effect of
694 LNX3H truncation mutation on Pdzn3 steady-state abundance. Error bars represent \pm SEM calculated from
695 two (Pdzn3 Δ LNX3H) or four (Pdzn3) cell lines and three technical replicates per line. t-test (unpaired) was
696 performed to determine statistical significance for the following comparisons: WT Pdzn3 -rWnt5a vs. WT
697 Pdzn3 + rWnt5a; Pdzn3 Δ LNX3H -rWnt5a vs. WT Pdzn3 -rWnt5a; Pdzn3 Δ LNX3H -rWnt5a vs.
698 Pdzn3 Δ LNX3H +rWnt5a. **E)** Quantification of the effect of LNX3H truncation mutation on Lnx4 steady-state
699 abundance. Error bars represent \pm SEM calculated from two (Lnx4 Δ LNX3H) or six (Lnx4) cell lines and three
700 technical replicates per line. t-test (unpaired) was performed to determine statistical significance for the
701 following comparisons: WT Lnx4 -rWnt5a vs. WT Lnx4 + rWnt5a; Lnx4 Δ LNX3H -rWnt5a vs. WT Lnx4 -

702 rWnt5a; Lnx4ΔLNX3H –rWnt5a vs. Lnx4ΔLNX3H +rWnt5a. **F**) Model of Wnt5a-Ror-Dvl-Pdzrn3 signaling. P-
703 values: * = p<0.05, ** = p<0.01, *** = p<0.001.

704

705

706 Afzal, A. R., & Jeffery, S. (2003). One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow
707 syndrome and autosomal dominant brachydactyly type B. *Hum Mutat*, 22(1), 1-11.
708 doi:10.1002/humu.10233

709 Afzal, A. R., Rajab, A., Fenske, C. D., Oldridge, M., Elanko, N., Ternes-Pereira, E., . . . Jeffery, S. (2000). Recessive
710 Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. *Nat
711 Genet*, 25(4), 419-422. doi:10.1038/78107

712 Bafico, A., Liu, G., Yaniv, A., Gazit, A., & Aaronson, S. A. (2001). Novel mechanism of Wnt signalling inhibition
713 mediated by Dickkopf-1 interaction with LRP6/Arrow. *Nat Cell Biol*, 3(7), 683-686.
714 doi:10.1038/35083081

715 Baizabal, J. M., Mistry, M., Garcia, M. T., Gomez, N., Olukoya, O., Tran, D., . . . Harwell, C. C. (2018). The
716 Epigenetic State of PRDM16-Regulated Enhancers in Radial Glia Controls Cortical Neuron Position.
717 *Neuron*, 99(1), 239-241. doi:10.1016/j.neuron.2018.06.031

718 Bryja, V., Schulte, G., & Arenas, E. (2007). Wnt-3a utilizes a novel low dose and rapid pathway that does not
719 require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. *Cell Signal*, 19(3),
720 610-616. doi:10.1016/j.cellsig.2006.08.011

721 Bryja, V., Schulte, G., Rawal, N., Grahn, A., & Arenas, E. (2007). Wnt-5a induces Dishevelled phosphorylation
722 and dopaminergic differentiation via a CK1-dependent mechanism. *J Cell Sci*, 120(Pt 4), 586-595.
723 doi:10.1242/jcs.03368

724 Bunn, K. J., Daniel, P., Rosken, H. S., O'Neill, A. C., Cameron-Christie, S. R., Morgan, T., . . . Robertson, S. P.
725 (2015). Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. *Am J Hum Genet*, 96(4),
726 623-630. doi:10.1016/j.ajhg.2015.02.010

727 Carvallo, L., Munoz, R., Bustos, F., Escobedo, N., Carrasco, H., Olivares, G., & Larrain, J. (2010). Non-canonical
728 Wnt signaling induces ubiquitination and degradation of Syndecan4. *J Biol Chem*, 285(38), 29546-
729 29555. doi:10.1074/jbc.M110.155812

730 Choi, J., Park, S. Y., Costantini, F., Jho, E. H., & Joo, C. K. (2004). Adenomatous polyposis coli is down-regulated
731 by the ubiquitin-proteasome pathway in a process facilitated by Axin. *J Biol Chem*, 279(47), 49188-
732 49198. doi:10.1074/jbc.M404655200

733 Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. *Cell*, 149(6), 1192-1205.
734 doi:10.1016/j.cell.2012.05.012

735 Connacher, M. K., Tay, J. W., & Ahn, N. G. (2017). Rear-polarized Wnt5a-receptor-actin-myosin-polarity
736 (WRAMP) structures promote the speed and persistence of directional cell migration. *Mol Biol Cell*,
737 28(14), 1924-1936. doi:10.1091/mbc.E16-12-0875

738 Flynn, M., Saha, O., & Young, P. (2011). Molecular evolution of the LNX gene family. *BMC Evol Biol*, 11, 235.
739 doi:10.1186/1471-2148-11-235

740 Hikasa, H., Shibata, M., Hiratani, I., & Taira, M. (2002). The Xenopus receptor tyrosine kinase Xror2 modulates
741 morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.
742 *Development*, 129(22), 5227-5239. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/12399314>

743 Ho, H. Y., Susman, M. W., Bikoff, J. B., Ryu, Y. K., Jonas, A. M., Hu, L., . . . Greenberg, M. E. (2012). Wnt5a-Ror-
744 Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis.
745 *Proc Natl Acad Sci U S A*, 109(11), 4044-4051. doi:10.1073/pnas.1200421109

746 Huang, S. M., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., . . . Cong, F. (2009). Tankyrase
747 inhibition stabilizes axin and antagonizes Wnt signalling. *Nature*, 461(7264), 614-620.
748 doi:10.1038/nature08356

749 Karuna, E. P., Susman, M. W., & Ho, H. H. (2018). Quantitative Live-cell Reporter Assay for Noncanonical Wnt
750 Activity. *Bio-protocol*, 8(6), e2762. doi:10.21769/BioProtoc.2762

751 Kim, S. E., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semonov, M. V., . . . He, X. (2013). Wnt stabilization of
752 beta-catenin reveals principles for morphogen receptor-scaffold assemblies. *Science*, 340(6134), 867-
753 870. doi:10.1126/science.1232389

754 Lee, E., Salic, A., Kruger, R., Heinrich, R., & Kirschner, M. W. (2003). The roles of APC and Axin derived from
755 experimental and theoretical analysis of the Wnt pathway. *PLoS Biol*, 1(1), E10.
756 doi:10.1371/journal.pbio.0000010

757 Lee, H. J., Shi, D. L., & Zheng, J. J. (2015). Conformational change of Dishevelled plays a key regulatory role in
758 the Wnt signaling pathways. *eLife*, 4, e08142. doi:10.7554/eLife.08142

759 Leibiger, C., Kosyakova, N., Mkrtchyan, H., Glei, M., Trifonov, V., & Liehr, T. (2013). First molecular cytogenetic
760 high resolution characterization of the NIH 3T3 cell line by murine multicolor banding. *J Histochem
761 Cytochem*, 61(4), 306-312. doi:10.1369/0022155413476868

762 Lu, Z., Je, H. S., Young, P., Gross, J., Lu, B., & Feng, G. (2007). Regulation of synaptic growth and maturation by
763 a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. *J Cell Biol*, 177(6), 1077-1089.
764 doi:10.1083/jcb.200610060

765 Mansour, T. A., Lucot, K., Konopelski, S. E., Dickinson, P. J., Sturges, B. K., Vernau, K. L., . . . Bannasch, D. L.
766 (2018). Whole genome variant association across 100 dogs identifies a frame shift mutation in
767 DISHEVELLED 2 which contributes to Robinow-like syndrome in Bulldogs and related screw tail dog
768 breeds. *PLoS Genet*, 14(12), e1007850. doi:10.1371/journal.pgen.1007850

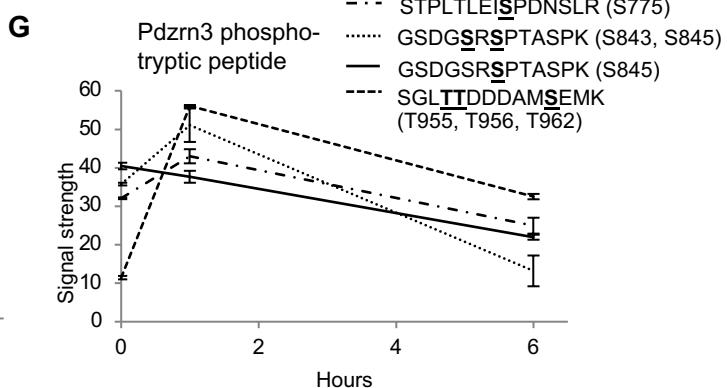
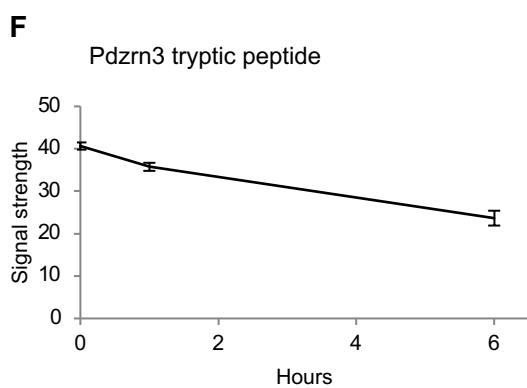
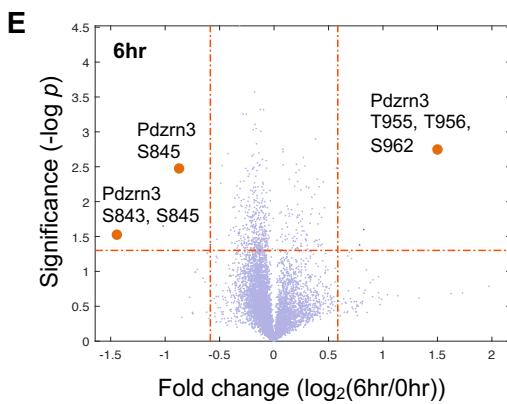
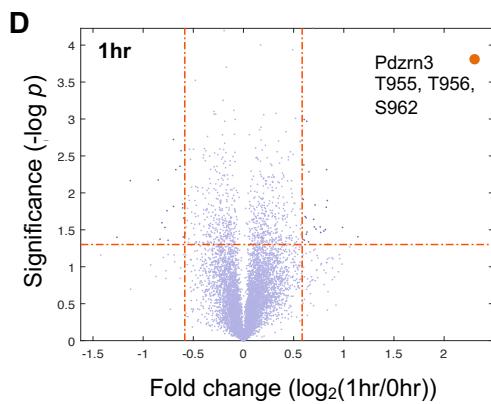
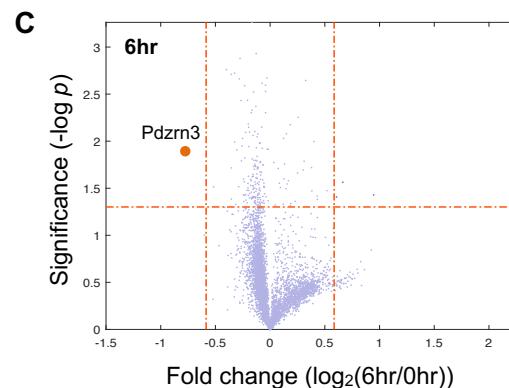
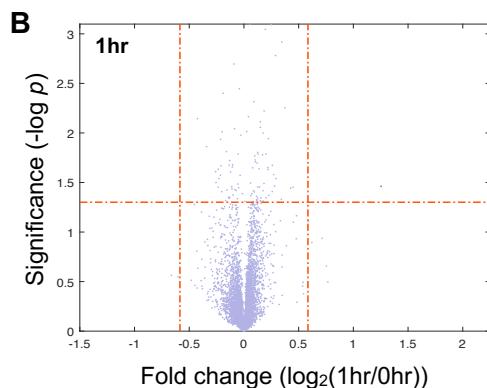
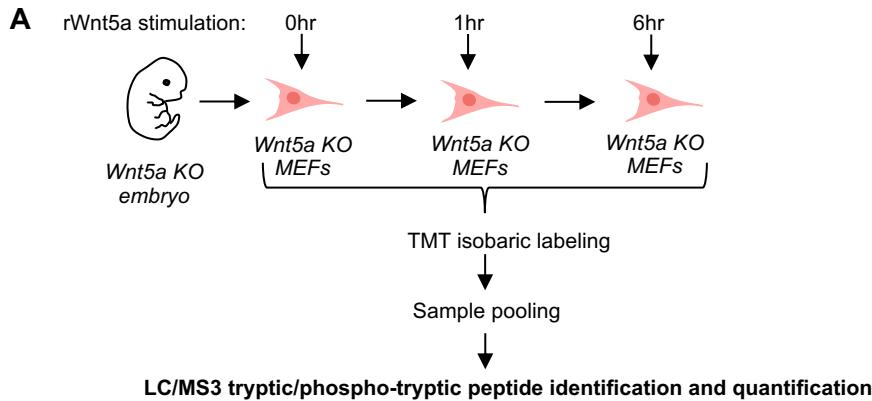
769 McAlister, G. C., Nusinow, D. P., Jedrychowski, M. P., Wuhr, M., Huttlin, E. L., Erickson, B. K., . . . Gygi, S. P.
770 (2014). MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential
771 expression across cancer cell line proteomes. *Anal Chem*, 86(14), 7150-7158. doi:10.1021/ac502040v

772 Meng, L., Mohan, R., Kwok, B. H., Elofsson, M., Sin, N., & Crews, C. M. (1999). Epoxomicin, a potent and
773 selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. *Proc Natl Acad Sci U S A*,
774 96(18), 10403-10408. doi:10.1073/pnas.96.18.10403

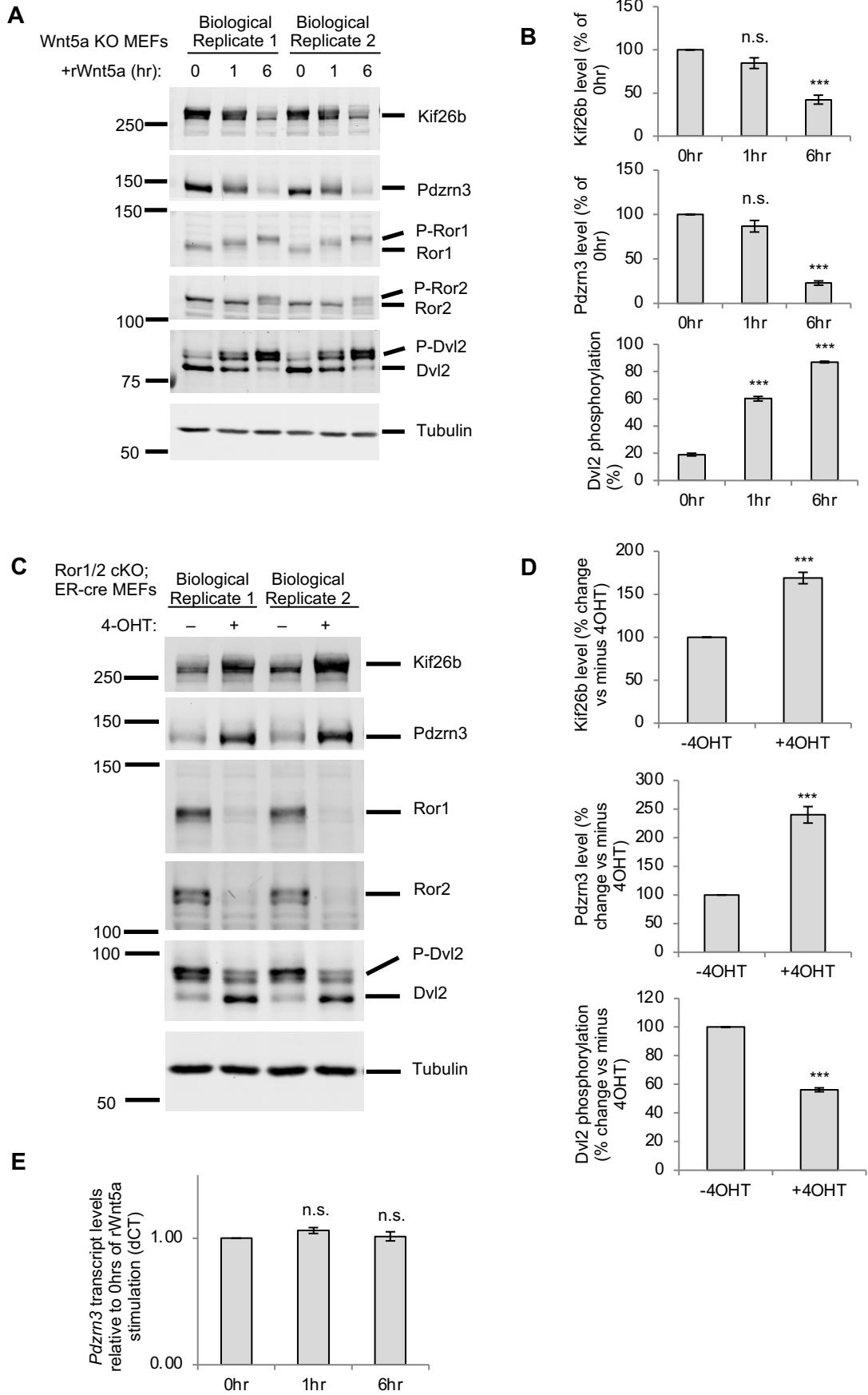
775 Moon, R. T., Campbell, R. M., Christian, J. L., McGrew, L. L., Shih, J., & Fraser, S. (1993). Xwnt-5A: a maternal
776 Wnt that affects morphogenetic movements after overexpression in embryos of *Xenopus laevis*.
777 *Development*, 119(1), 97-111. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/8275867>

778 Nomi, M., Oishi, I., Kani, S., Suzuki, H., Matsuda, T., Yoda, A., . . . Minami, Y. (2001). Loss of mRor1 enhances
779 the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of
780 mRor1 and mRor2 receptor tyrosine kinases. *Mol Cell Biol*, 21(24), 8329-8335.
781 doi:10.1128/MCB.21.24.8329-8335.2001

782 Nusse, R., & Varmus, H. (2012). Three decades of Wnts: a personal perspective on how a scientific field
783 developed. *EMBO J*, 31(12), 2670-2684. doi:10.1038/emboj.2012.146








784 Papkoff, J., Rubinfeld, B., Schryver, B., & Polakis, P. (1996). Wnt-1 regulates free pools of catenins and
785 stabilizes APC-catenin complexes. *Mol Cell Biol*, 16(5), 2128-2134. doi:10.1128/mcb.16.5.2128

786 Park, H. W., Kim, Y. C., Yu, B., Moroishi, T., Mo, J. S., Plouffe, S. W., . . . Guan, K. L. (2015). Alternative Wnt
787 Signaling Activates YAP/TAZ. *Cell*, 162(4), 780-794. doi:10.1016/j.cell.2015.07.013


788 Paulo, J. A., McAllister, F. E., Everley, R. A., Beausoleil, S. A., Banks, A. S., & Gygi, S. P. (2015). Effects of MEK
789 inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and
790 phosphoproteomics. *Proteomics*, 15(2-3), 462-473. doi:10.1002/pmic.201400154

791 Person, A. D., Beiraghi, S., Sieben, C. M., Hermanson, S., Neumann, A. N., Robu, M. E., . . . Lohr, J. L. (2010).
792 WNT5A mutations in patients with autosomal dominant Robinow syndrome. *Dev Dyn*, 239(1), 327-337.
793 doi:10.1002/dvdy.22156

794 Qi, J., Lee, H. J., Saquet, A., Cheng, X. N., Shao, M., Zheng, J. J., & Shi, D. L. (2017). Autoinhibition of Dishevelled
795 protein regulated by its extreme C terminus plays a distinct role in Wnt/beta-catenin and Wnt/planar
796 cell polarity (PCP) signaling pathways. *J Biol Chem*, 292(14), 5898-5908. doi:10.1074/jbc.M116.772509
797 Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., . . . Zhang, F. (2013). Double
798 nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. *Cell*, 154(6), 1380-1389.
799 doi:10.1016/j.cell.2013.08.021
800 Sewduth, R. N., Jaspard-Vinassa, B., Peghaire, C., Guillabert, A., Franzl, N., Larrieu-Lahargue, F., . . . Duplaa, C.
801 (2014). The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell
802 polarity signalling. *Nat Commun*, 5, 4832. doi:10.1038/ncomms5832
803 Steinhart, Z., & Angers, S. (2018). Wnt signaling in development and tissue homeostasis. *Development*,
804 145(11). doi:10.1242/dev.146589
805 Susman, M. W., Karuna, E. P., Kunz, R. C., Gujral, T. S., Cantu, A. V., Choi, S. S., . . . Ho, H. H. (2017). Kinesin
806 superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in
807 vertebrates. *eLife*, 6. doi:10.7554/eLife.26509
808 Ting, L., Rad, R., Gygi, S. P., & Haas, W. (2011). MS3 eliminates ratio distortion in isobaric multiplexed
809 quantitative proteomics. *Nat Methods*, 8(11), 937-940. doi:10.1038/nmeth.1714
810 Tong, S., Si, Y., Yu, H., Zhang, L., Xie, P., & Jiang, W. (2017). MLN4924 (Pevonedistat), a protein neddylation
811 inhibitor, suppresses proliferation and migration of human clear cell renal cell carcinoma. *Sci Rep*, 7(1),
812 5599. doi:10.1038/s41598-017-06098-y
813 Veeman, M. T., Axelrod, J. D., & Moon, R. T. (2003). A second canon. Functions and mechanisms of beta-
814 catenin-independent Wnt signaling. *Dev Cell*, 5(3), 367-377. Retrieved from
815 <https://www.ncbi.nlm.nih.gov/pubmed/12967557>
816 White, J., Mazzeu, J. F., Hoischen, A., Jhangiani, S. N., Gambin, T., Alcino, M. C., . . . Carvalho, C. M. (2015).
817 DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow
818 syndrome. *Am J Hum Genet*, 96(4), 612-622. doi:10.1016/j.ajhg.2015.02.015
819 White, J. J., Mazzeu, J. F., Coban-Akdemir, Z., Bayram, Y., Bahrambeigi, V., Hoischen, A., . . . Carvalho, C. M. B.
820 (2018). WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. *Am J*
821 *Hum Genet*, 102(1), 27-43. doi:10.1016/j.ajhg.2017.10.002
822 White, J. J., Mazzeu, J. F., Hoischen, A., Bayram, Y., Withers, M., Gezdirici, A., . . . Carvalho, C. M. B. (2016).
823 DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow
824 Syndrome. *Am J Hum Genet*, 98(3), 553-561. doi:10.1016/j.ajhg.2016.01.005
825 Witze, E. S., Connacher, M. K., Houel, S., Schwartz, M. P., Morphew, M. K., Reid, L., . . . Ahn, N. G. (2013).
826 Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell
827 trailing edge. *Dev Cell*, 26(6), 645-657. doi:10.1016/j.devcel.2013.08.019
828 Witze, E. S., Litman, E. S., Argast, G. M., Moon, R. T., & Ahn, N. G. (2008). Wnt5a control of cell polarity and
829 directional movement by polarized redistribution of adhesion receptors. *Science*, 320(5874), 365-369.
830 doi:10.1126/science.1151250
831 Yamaguchi, T. P., Bradley, A., McMahon, A. P., & Jones, S. (1999). A Wnt5a pathway underlies outgrowth of
832 multiple structures in the vertebrate embryo. *Development*, 126(6), 1211-1223. Retrieved from
833 <https://www.ncbi.nlm.nih.gov/pubmed/10021340>
834 Yang, Y., Kitagaki, J., Dai, R. M., Tsai, Y. C., Lorick, K. L., Ludwig, R. L., . . . Weissman, A. M. (2007). Inhibitors of
835 ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. *Cancer Res*, 67(19),
836 9472-9481. doi:10.1158/0008-5472.CAN-07-0568
837

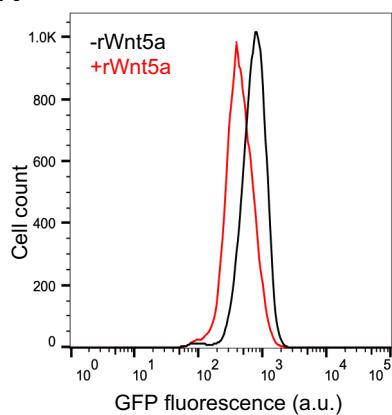

Figure 1

Figure 2

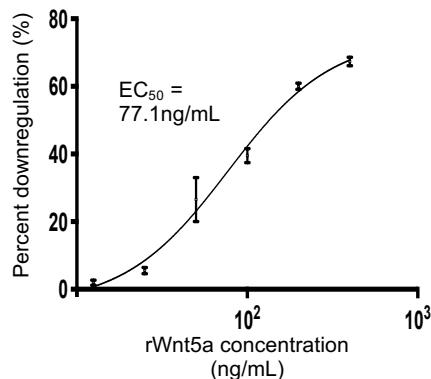
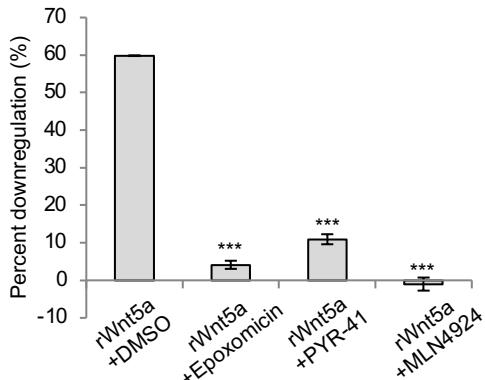
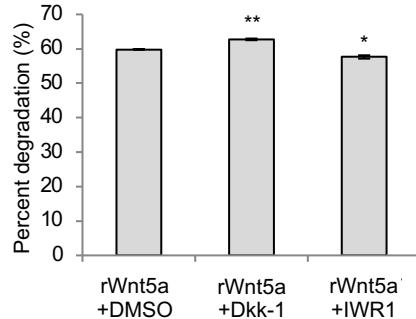
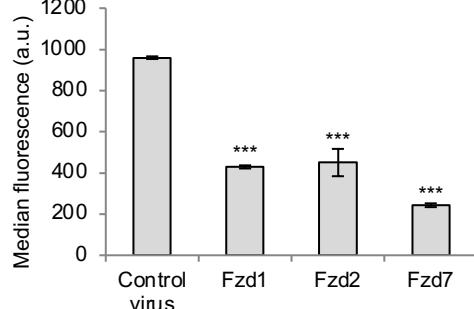


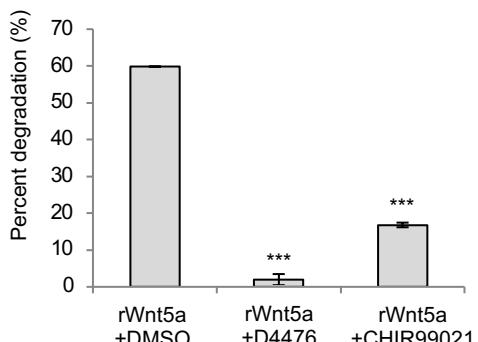
Figure 3

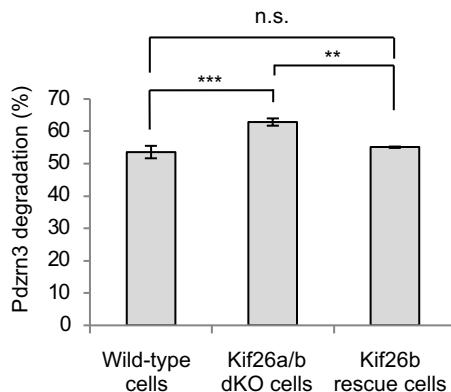

A


B


C

D


E


F

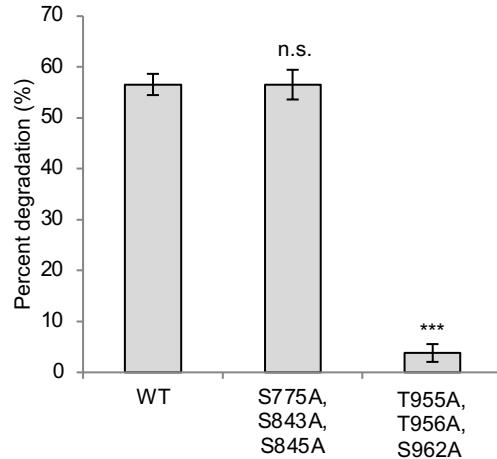
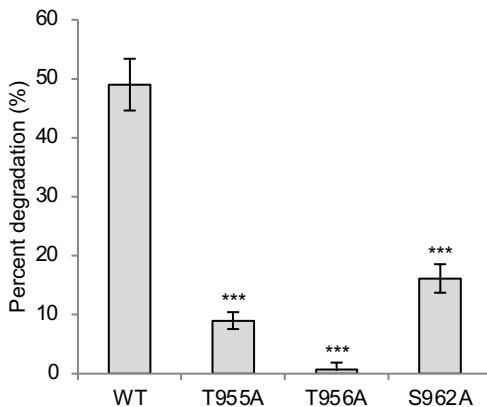
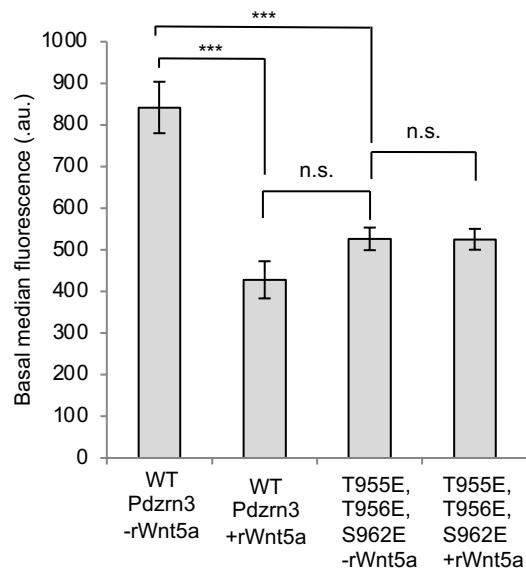
G

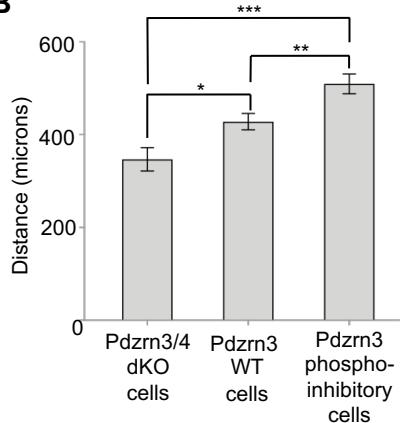
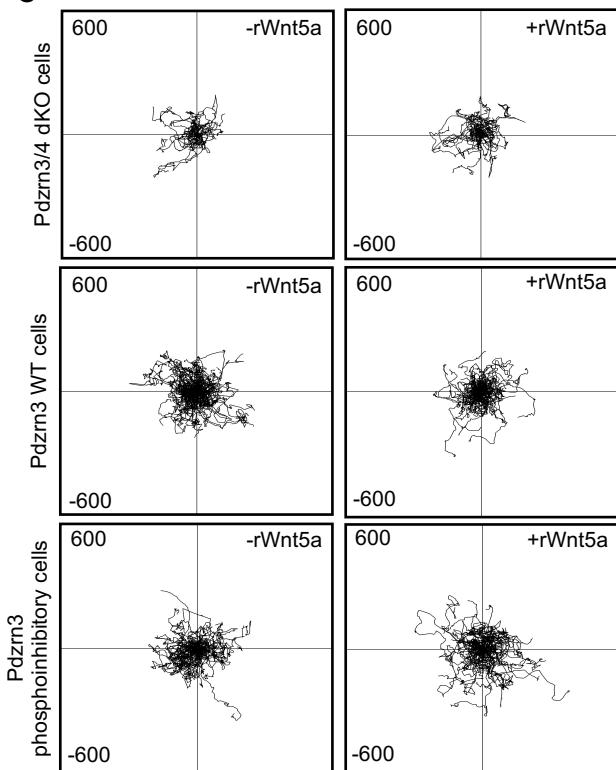
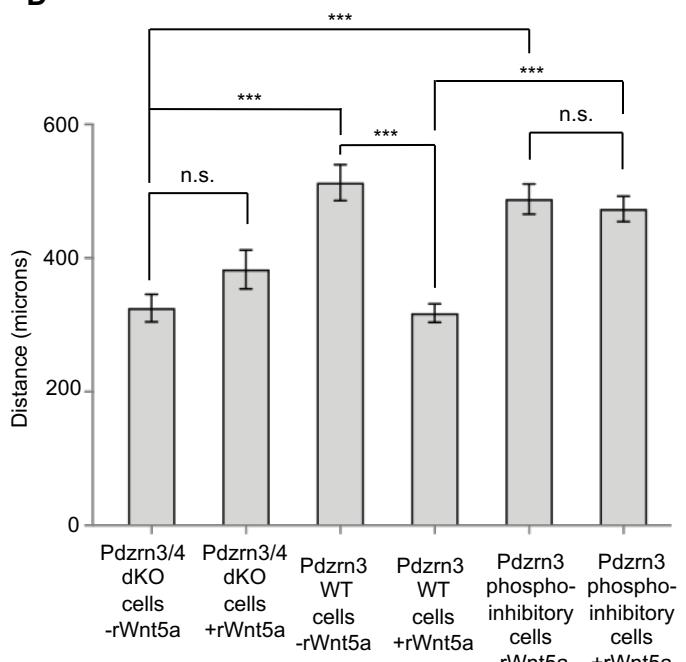
H

I

Figure 3 – Supplement 1

A




Kif26a reference CTGCCACACGAAGCTCGTGGAGCTAAACGACAGGCGTGGAAAGTTGGTCAGCG
Mutant allele 1 ctgccacacgaagctcg-----tggaaagtggtcagcg (-20)
Mutant allele 2 ctgccacacgaa-----gtggcgtggaagtggtcagcg (-19)




B

Pdzrn3 reference GGGCAGCTGCCCGCGCGTTGTCCGGTCGCCTATCGGCCAAGGAGCTAAC
Mutant allele 1 gggcagctgccccgcgc-----ggtcgcctgtcgcccaaggagctcaac (-8)
Pdzrn3 reference GGGCAGCTGCCCGCGCGTTGTC-----CGGTCGCCTATCGGCCAAGGA
Mutant allele 2 GGGCAGCTGCCCGCgcactacccaggtcgcctggtcgcctgtcgcccaaggA (+8)

C

Lnx4 reference GGCAGACTCCCCTCAGCCGGCAACATACGGCATGACTCCGGAAGTACAGCTACGAATGCCAGCACACA
Mutant allele 1 ggcggactccctcagccgtatgt-----tggccggctcacgaatgccagcacaca (-19)
Mutant allele 2 ggcggactccctcag-----ccggccaaaca (-44)
Mutant allele 3 ggcggactccctcag-----ccggaagtacagctcacgaatgccagcacaca (-22)

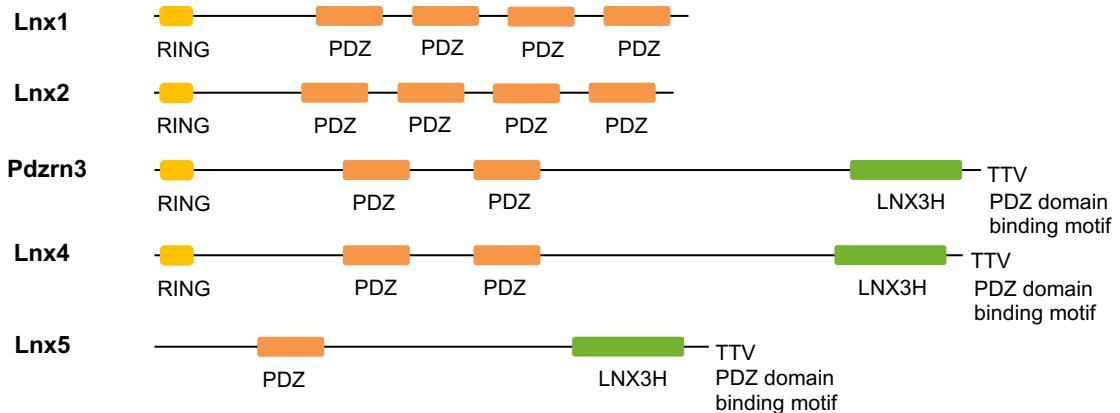
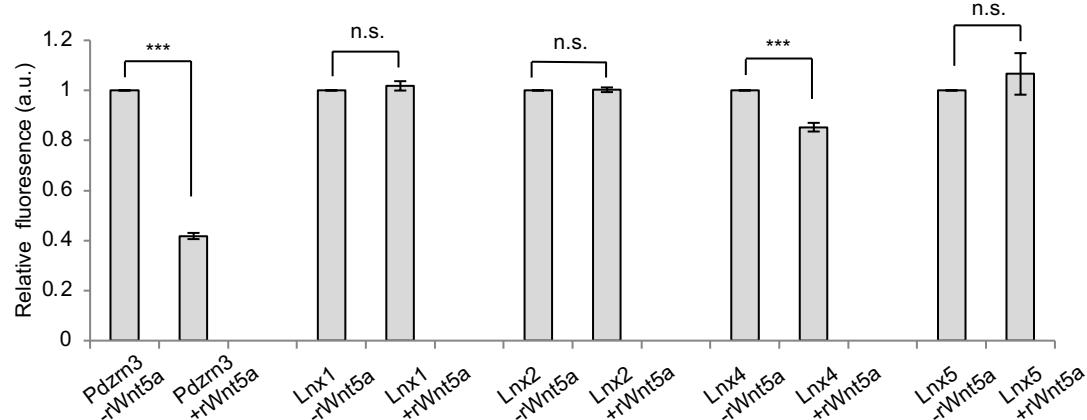

Figure 4**A****Pdzn3 phosphorylation sites****B****C****D**

Figure 5**A****B****C****D**

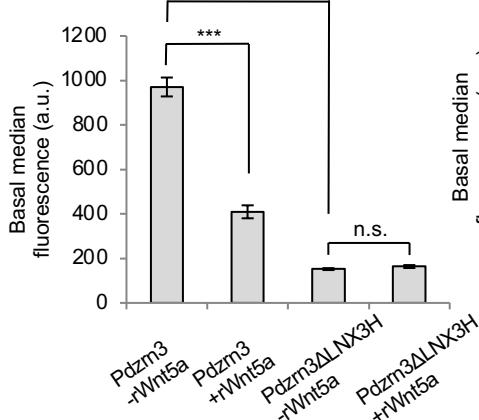
Figure 6

A

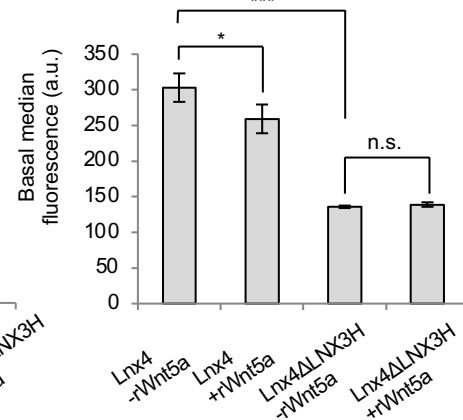
The Lnx/Pdzrn family

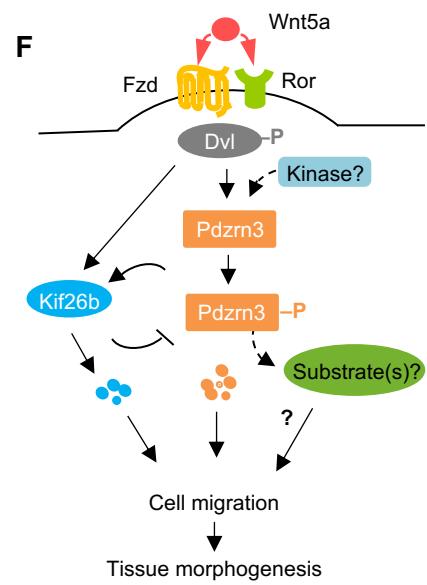

B

LNX3H domain homology


Group 2

Lnx5 RYVAKRPVRDRILLKARALKIREERSGMTTDDDAVSEMKMGRYWSKEERKQHLIRAREQRK
 Pdzrn3 RYITKRPVRDRILLRERALKIREERSGMTTDDDAVSEMKMGRYWSKEERKQHLVAKAKEQR
 Lnx4 RYITKRPVRDRILLKERALKIKEERSGMTTDDDTMSEMKMGRYWSKEERKQHLVRAKEQR
 :**:***: *: ****:*****:***:*****:*****:***:***:


C


D

E

F

Table 1 - Hits from Wnt5a knockout MEF TMT/MS3 screen
Protein abundance changes after 1 hour of rWnt5a stimulation

Upregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
	Early growth response protein			
Egr1		2.38439693	0.034497	

No genes upregulated with a >1.4-fold change

Downregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
	No genes downregulated with a >1.5-fold change			
	No genes downregulated with a >1.4-fold change			

Protein abundance changes after 6 hours of rWnt5a stimulation

Upregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
	Isoform 2 of Protein			
Wnt5a	Wnt-5a	1.92657207	0.037231	
	Mitochondrial import			
Tomm20	receptor subunit	1.58488672	0.027277	
	Microsomal glutathione			
Mgst3	S-transferase 3	1.52325576	0.039168	
ORF3	UPF0480 protein	1.43262102	0.033593	>1.4-fold change

Downregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
	Isoform 2 of E3			
	ubiquitin-protein ligase			
Pdzn3	PDZRN3	-1.7213491	0.012706	
	Peroxisomal biogenesis			
Pex19	factor 19	-1.4307244	0.030568	>1.4-fold change

Phosphopeptides after 1 hour of rWnt5a stimulation

Upregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
	Isoform 2 of E3			
	ubiquitin-protein ligase			
Pdzn3	PDZRN3	4.89634836	0.000145	

	CTTNBP2 N-terminal-like protein	2.20373642	0.039309
Fam193a	Protein FAM193A	1.98184441	0.029347
	CTTNBP2 N-terminal-like protein	1.78868644	0.049764
Cttnbp2nl	Mothers against decapentaplegic homolog 5	1.78489033	0.012698
	Protein phosphatase 1G	1.77555122	0.00484
Ppm1g	Uncharacterized protein		
Myo9b		1.77168825	0.015636
	Transcription intermediary factor 1-beta	1.76072021	0.031412
Trim28	Uncharacterized protein		
Ythdf2		1.74208623	0.032915
	Phosphatidylinositol transfer protein beta isoform	1.70467017	0.034315
Pitpnb	Isoform 2 of Runt-related transcription factor 2	1.69891043	0.02888
Runx2	Golgin subfamily A member 4	1.64988603	0.030965
Golga4	Isoform S of Protein Wiz		
Wiz		1.64010503	0.014559
	Isoform 3 of Junction-mediating and -regulatory protein	1.63159317	0.028972
Jmy	Copper chaperone for superoxide dismutase	1.62410293	0.022787
Ccs	Zinc finger protein 516	1.61724029	5.93E-05
Znf516	Isoform 3 of Citron Rho-interacting kinase	1.57217286	0.005184
Cit	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase	1.56721303	0.046131
Pfkfb3	E3 ubiquitin-protein ligase CBL	1.55046765	0.033896
Cbl	Isoform 3 of NHS-like protein 1	1.54778574	0.001073
	Uncharacterized protein		
-	FLJ45252 homolog	1.54340103	0.036225

	Uncharacterized protein		
Svil		1.54143915	0.02169
	Son of sevenless		
Sos1	homolog 1	1.53135359	0.020893
	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase		
Plcg1	gamma-1	1.52348015	0.04368
	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase	1.52089246	0.001019
Pfkfb3	Isoform 3 of Liprin-beta-1	1.51729378	0.004173
Ppfibp1	Isoform 2 of Tyrosine-protein phosphatase		
	non-receptor type 11	1.51187355	0.01227
Ptpn11	Isoform 3 of NHS-like protein 1	1.50814819	0.0426
Nhsl1			
	Myc proto-oncogene protein	1.4912389	0.01099 >1.4-fold change
Lmo7	Uncharacterized protein	1.48729622	0.027091
Cald1	Uncharacterized protein	1.48701178	0.036531
	Segment polarity protein dishevelled		
Dvl2	homolog DVL-2	1.48086717	0.002012
	Isoform 1 of		
Nf1	Neurofibromin	1.48075369	0.030678
	Isoform 2 of Tyrosine-protein kinase Fer		
Fer	protein kinase Fer	1.48039856	0.016535
Nup98	Uncharacterized protein	1.46133083	0.042083
	60S ribosomal protein		
Rpl29	L29	1.44329047	0.046032
	Isoform IV of Tyrosine-protein kinase ABL1		
Abl1	Melanoma-associated		
	antigen D1	1.43997197	0.039443
Maged1			
Ccnl1	Cyclin-L1	1.43229825	0.00098
Ndrg1	Protein NDRG1	1.42850036	0.020054
	Isoform 2 of Golgin		
Golga4	subfamily A member 4	1.42700633	0.047654
Clasp1	Uncharacterized protein	1.42585101	0.013897

Eps15l1	Isoform 2 of Epidermal growth factor receptor substrate 15-like 1	1.41925481	0.013828
Rin3	Ras and Rab interactor 3	1.41280026	0.033785
Arhgap28	Isoform 2 of Rho GTPase-activating protein 28	1.40860678	0.00301
E2f7	Transcription factor E2F7	1.40787996	0.016597
Fam21	WASH complex subunit FAM21	1.40421895	0.000116

Downregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
Marcks	Myristoylated alanine-rich C-kinase substrate	-2.3973859	0.039918	
Nolc1	Uncharacterized protein	-2.1844007	0.006836	
Ahnak	Uncharacterized protein	-1.8026613	0.006695	
Ahnak	Uncharacterized protein	-1.7797038	0.042335	
Cald1	Uncharacterized protein	-1.7570389	0.025368	
Marcks	Myristoylated alanine-rich C-kinase substrate	-1.720977	0.029386	
Kif26b	Kinesin-like protein KIF26B	-1.6966715	0.017427	
Anln	Actin-binding protein anillin	-1.6833907	0.043808	
Mcm4	DNA replication licensing factor MCM4	-1.6224145	0.001891	
-	Uncharacterized protein C1orf198 homolog	-1.6214208	0.015245	
Irf2bp1	Interferon regulatory factor 2-binding protein-like	-1.5960168	0.00485	
Nufip2	Nuclear fragile X mental retardation-interacting protein 2	-1.5511997	0.004365	
Map2	Microtubule-associated protein 2	-1.5388129	0.002688	

Zc3hc1	Isoform 2 of Nuclear-interacting partner of ALK	-1.5232583	0.01419
Nufip2	Nuclear fragile X mental retardation-interacting protein 2	-1.5224691	0.015971
Ssfa2	Sperm-specific antigen 2 homolog	-1.5155006	0.039513
Cald1	Uncharacterized protein	-1.5118212	0.021995
Sdpr	Serum deprivation-response protein	-1.4930308	0.03501 >1.4-fold change
Ncapd2	Isoform 2 of Condensin complex subunit 1	-1.4861123	0.028937
Ezh2	Isoform ENX-1B of Histone-lysine N-methyltransferase EZH2	-1.4738262	0.023732
Cep170	Centrosomal protein of 170 kD	-1.4699737	0.016189
Zc3hc1	Isoform 2 of Nuclear-interacting partner of ALK	-1.4617502	0.046771
Osbpl11	Oxysterol-binding protein-related protein 11	-1.461438	0.010918
Cep170	Centrosomal protein of 170 kD	-1.4584582	0.041928
Ankrd11	Uncharacterized protein	-1.4547921	0.012658
Aak1	Isoform 2 of AP2-associated protein kinase 1	-1.4509981	0.002565
Plec	Isoform PLEC-1A of Plectin	-1.4417757	0.003531
Rab11fip5	MKIAA0857 protein (Fragment)	-1.4327951	0.025892
Larp1	La-related protein 1	-1.4305745	0.008354
Map1b	Microtubule-associated protein 1	-1.4303788	0.018224
Lasp1	LIM and SH3 domain protein 1	-1.4124158	0.002568
Sorbs1	Uncharacterized protein	-1.4105315	0.030254
R3hdm1	R3hdm1 protein	-1.4029545	0.036937
Nolc1	Uncharacterized protein	-1.4000489	0.026646

Phosphopeptides after 6 hours of rWnt5a stimulation

Upregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
Pdzrn3	Isoform 2 of E3 ubiquitin-protein ligase PDZRN3	2.83867605	0.001695	
Bnip3l	BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like	1.76999942	0.025135	
Fndc3a	Fibronectin type III domain-containing protein	1.72367539	0.04181	
Csnk1g3	Casein kinase I isoform gamma-3	1.51977428	0.011998	
Dvl2	Segment polarity protein dishevelled homolog DVL-2	1.4882145	0.003304	>1.4-fold change
Mia3	Isoform 3 of Melanoma inhibitory activity protein 3	1.48109347	0.049233	

Downregulated

Gene symbol	Protein description	Fold change	p (<0.05)	>1.5-fold change
Pdzrn3	Isoform 2 of E3 ubiquitin-protein ligase PDZRN3	-2.7174416	0.030081	
Kif26b	Kinesin-like protein KIF26B	-2.0259939	0.022447	
Pdzrn3	Isoform 2 of E3 ubiquitin-protein ligase PDZRN3	-1.8443701	0.003328	
-	UPF0690 protein C1orf52 homolog	-1.5001226	0.041414	

Pebp1	Phosphatidylethanolami ne-binding protein 1	-1.43679	0.034675	>1.4-fold change
Ahnak2	Uncharacterized protein	-1.4042347	0.005449	