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Abstract 

Mass spectrometry glycoproteomics is rapidly maturing, allowing unprecedented 

insights into the diversity and functions of protein glycosylation. However, quantitative 

glycoproteomics remains challenging. We developed GlypNirO, an automated 

software pipeline which integrates the complementary outputs of Byonic and 

Proteome Discoverer to allow high-throughput automated quantitative glycoproteomic 

data analysis. The output of GlypNirO is clearly structured, allowing manual 

interrogation, and is also appropriate for input into diverse statistical workflows. We 

used GlypNirO to analyse a published plasma glycoproteome dataset and identified 

changes in site-specific N- and O-glycosylation occupancy and structure associated 

with hepatocellular carcinoma as putative biomarkers of disease. 
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Introduction 

Glycosylation is a key post-translational modification critical for protein folding and 

function in eukaryotes [1-3]. Diverse types of glycosylation are known, all involving 

modification of specific amino acid residues with complex carbohydrate structures. N-

linked glycosylation of asparaginies and O-linked glycosylation of serines and 

threonines are the most widely encountered and well studied in eukaryotes. A key 

feature of glycosylation critical to its biological functions and important for its analysis 

is its high degree of heterogeneity [4]. This heterogeneity can take the form of variable 

occupancy, also known as macroheterogeneity – the presence or absence of 

modification at a particular site in a protein, due to inefficient transfer of the initial 

glycan structure [5]. In addition, the non-template driven synthesis of glycan structures 

means that there can be multiple different glycan structures attached at the same site 

in a pool of mature glycoproteins [6]. This structural heterogeneity is also known as 

microheterogeneity. This heterogeneity in glycan structure and occupancy can be 

influenced by many genetic and environmental factors. As such, protein glycosylation 
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is often regulated in response to physiological or pathological conditions [7]. 

Accurately profiling the site-specific occupancy and structural heterogeneity of 

glycosylation across glycoproteomes can therefore provide insight into the biology of 

healthy and diseased states [8].  

The current state-of-the art technology for the characterization, identification, and 

quantification of the glycome or glycoproteome is liquid chromatography coupled to 

tandem mass spectrometry (LC-MS/MS) [9]. Popular and powerful glycoproteomic 

workflows typically involve standard proteomic sample preparation and protease 

digestion, coupled with depletion of abundant proteins or enrichment of glycopeptides 

to enable their measurement. There have also been several advances in glycopeptide 

quantification strategies including chemical labelling, label free and data-independent 

acquisition methods [10]. Progress in MS technology in particular has enabled deep 

and sensitive measurement of highly complex glycoproteomes, generating large 

amounts of high quality data [11]. With that comes the need for robust and automated 

workflows for extracting meaningful results. Numerous software packages have been 

developed for analysis of outputs from MS technology to automate the process of 

transformation of raw MS data into ion intensities and matching them with appropriate 

glycan and peptide sequence databases for glycopeptide identification (reviewed in 

[12-16]). However, there are few efficient, robust, and automated workflows for 

glycopeptide quantification. There are several freely available software programs for 

quantitative label-free glycoproteomics using MS1 or data-dependent acquisition. 

These include LaCyTools [17], MassyTools [18], and GlycoSpectrumScan [19], which 

use a predefined list of analytes and masses to interrogate MS1 data, and I-GPA [20], 

GlycopeptideGraphMS [21], GlycoFragwork [22], and GlycReSoft [23], which integrate 

identification and abundance/intensity information for glycopeptides (a recent review 

is provided in [10]). Importantly, the complexity of glycan heterogeneity requires that 

downstream analysis often involves manual processing in addition to standard 

informatics workflows.  

 

Here, we developed and used GlypNirO, an automated bioinformatic workflow for 

label-free quantitative N- and O-glycoproteomics that focuses on improving 

robustness and throughput. Our workflow uses a collection of scripts built on an in-
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house sequence string handling library and the scientific Python data handling 

package pandas [24], and integrates outputs of two commonly used software 

packages in glycoproteomic MS data analysis, Proteome Discoverer (Thermo Fisher) 

and Byonic (Protein Metrics), to extract occupancy and glycoform abundancy of all 

identified glycopeptides from LC-MS/MS datasets. We applied the workflow to a 

published dataset comparing the plasma glycoproteomes of liver cancer patients 

(heptatocellular carcinoma, HCC) and healthy controls [20]. Our analysis revealed 

differences in occupancy and glycan compositions of several proteins as potential 

HCC tumor biomarkers. 

 

Results and Discussion 

GlypNirO  

Byonic is powerful software that allows identification of glycopeptides and peptides 

from complex glyco/proteomic LC-MS/MS datasets but does not perform quantification. 

Proteome Discoverer allows robust and facile measurement of peptide abundances 

using MS1 peptide area under the curve (AUC) information. We developed GlypNirO 

to integrate the outputs from Byonic and Proteome Discoverer to improve the 

efficiency, ease, and robustness of quantitative glycoproteomic data analysis. 

GlypNirO takes Byonic and Proteome Discover output files, and user-defined sample 

information and processing parameters, performs a series of automated data 

integration and computational steps, and provides informative and intuitive output files 

with site- or peptide-specific glycoform abundance data. Glyco/peptide identifications 

from Byonic are linked with AUC data from Proteome Discoverer by matching the 

experimental scan number. The sites of glycosylation within each peptide assigned by 

Byonic are identified and clearly labelled. While identification of glycopeptides based 

on peptide sequence and glycan monosaccharide composition is comparatively 

reliable with modern LC-MS/MS and data analytics, it is much more difficult to 

unambiguously assign the precise site of modification within a glycopeptide. GlypNirO 

therefore provides two options for analysis: site-specific or peptide-specific. If the user 

trusts Byonic’s site-specific assignment, then all peptide variants that contain that site 

are included in calculations of its occupancy and glycoform distribution. If the user 
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prefers to perform a peptide-specific analysis, then each proteolytically unique peptide 

form is treated separately. GlypNirO then calculates the occupancy and proportion of 

each glycoform at each site/peptide, and provides output files with the protein name, 

site and/or peptide information, and occupancy and glycoform abundance. Full details 

are provided in Experimental. 

 

To provide a proof-of-concept use of GlypNirO, we performed an exploratory 

reanalysis of a previously published dataset [20] obtained from the ProteomeXchange 

Consortium via the MassIVE repository (PXD003369, MSV000079426). This study 

performed glycoproteomic LC-MS/MS analysis of whole plasma or plasma depleted 

of six abundant proteins from liver cancer (hepatocellular carcinoma (HCC)) patients 

and healthy controls. We identified glycopeptides and peptides in the datafiles from 

these samples using Byonic, searching separately for O- and N-glycopeptides 

(Supplementary Tables S1-S24), and processed the files with Proteome Discoverer 

(Supplementary Tables S25-S36). We then used GlypNirO to process these results 

files. This analysis was able to identify and measure 851 N-glycopeptides (site-

specific) from 150 proteins and 301 O-glycopeptides (peptide level) from 89 proteins 

(Supplementary Tables S37-S40).  

 

Several changes in site-specific glycosylation associated with HCC had been 

previously identified [20]. We benchmarked the performance of our workflow using 

GlypNirO with these previously reported changes. Consistent with previous analysis, 

we found that agalactosylated N-glycans on IgG were increased in abundance in HCC 

(Fig. 1a), and the relative abundance of the HexNAc(5)Hex(6)NeuAc(3) composition 

at multiple sites on alpha-1-antichymotrypsin was decreased in HCC (Fig. 1b).    
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Figure 1. Evaluation of GlypNirO site-specific N-glycosylation profiling. Site-
specific relative glycoform abundance in HCC and health controls at (a) 
immunoglobulin heavy constant gamma 1 (IgG1) N180, and (b) alpha-1-
antichymotrypsin N106 and N271.  

 

N-glycoproteome analysis 

To extend our analysis, we next investigated the full suite of N-glycosylation sites that 

we were able to identify and measure with GlypNirO. Comparing the site-specific 

glycoform relative abundance and occupancy, we identified 111 unique glycopeptides 

with increased and 128 with decreased abundance in HCC compared with healthy 

controls in depleted plasma, and 93 increased and 67 decreased in HCC in non-

depleted plasma (P<0.05, Fig. 2a and b). This analysis with GlypNirO of site-specific 

relative glycoform abundance confirmed that HCC was associated not only with 

changes in glycoprotein abundance in plasma, but with changes in the proportions of 

different glycan structures at specific sites in diverse glycoproteins.  
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Figure 2. N-glycoproteome profiling with GlypNirO. Volcano plots of site-specific 
N-glycoform relative abundance in HCC patients versus healthy controls in (a) 
depleted, and (b) non-depleted plasma.  

 

Examining the data in more detail identified several sites with multiple glycoforms with 

statistically significant changes in abundance. Specifically, HCC patients had 

decreased abundance of disialylated N-glycans at alpha-1-antitrypsin N271 and 

haptoglobin N184 (Fig. 3a and b), with increased abundance of non-sialylated N-

glycans at fibrinogen N78 (Fig. 3c), and decreased abundance of trisialylated N-

glycans at alpha-2-HS-glycoprotein N176 (Fig. 3d). Together, this suggests an overall 

decrease in sialylation of N-glycans across the plasma glycoproteome in HCC. 
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Figure 3. Site-specific N-glycopeptide profiling with GlypNirO. Site-specific 
relative glycoform abundance in HCC patients and health controls at (a) alpha-1-
antitrypsin N271, (b) haptoglobin N184, (c) fibrinogen gamma chain N78, and (d) 
alpha-2-HS-glycoprotein N176. N=3; values show mean; error bars show standard 
error of the mean; *, P<0.05. 
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O-glycoproteome analysis 

The plasma O-glycoproteome is perhaps somewhat neglected [25], despite the 

importance of O-glycosylation to diverse aspects of fundamental biology, health, and 

disease. We therefore investigated all O-glycosylation sites that we were able to 

identify and measure with GlypNirO. Because there are often multiple potential sites 

of O-glycosylation within a tryptic peptide and site-specific assignment is challenging 

with CID or HCD fragmentation information, we used peptide-centric analysis of the 

plasma O-glycoproteome. Comparing peptide-specific glycoform relative abundance 

and occupancy, we identified 41 unique O-glycopeptides with increased and 27 with 

decreased abundance in HCC compared with healthy controls in depleted plasma, 

and 17 increased and 26 decreased in HCC in non-depleted plasma (P<0.05, Fig. 4a 

and b). As the dataset we analysed measured enriched glycopeptides, it is likely that 

unglycosylated peptides forms are underrepresented. 

 

Figure 4. O-glycoproteome profiling with GlypNirO. Volcano plots of site-specific 
O-glycoform relative abundance in HCC patients versus healthy controls in (a) 
depleted, and (b) non-depleted plasma.  

 

We could identify both changes in peptide-specific O-glycan compositions and in O-

glycan occupancy. HCC patients had increased glycan occupancy and decreased 

abundance of monosialylated O-glycan on fibrinogen alpha chain 

G272GSTSYGTGSETESPR (Fig. 5a). HCC patients showed a relative decrease in 

disialylated and an increase in monosialylated O-glycan abundance on both plasma 
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protease C1 inhibitor V45AATVISK and histidine-rich glycoprotein 

S271STTKPPFKPHGSR (Fig. 5b and 5c). Together, and consistent with our N-

glycoproteome analyses, this suggests that HCC is associated with an overall 

decrease in sialylation of N- and O-glycans across the plasma glycoproteome. 
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Figure 5. Peptide-specific O-glycosylation profiling with GlypNirO. Peptide-
specific relative glycoform abundance in HCC patients and health controls on (a) 
fibrinogen alpha chain G272GSTSYGTGSETESPR, (b) plasma protease C1 inhibitor 
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V45AATVISK, and (c) histidine-rich glycoprotein S271STTKPPFKPHGSR. N=3; values 
show mean; error bars show standard error of the mean; *, P<0.05.  

 

 

Conclusion 

GlypNirO is an automated software pipeline that integrates glyco/peptide identification 

from Byonic and quantification from Proteome Discoverer, and provides output that is 

appropriate for both manual inspection and further statistical analyses. We note that 

all glycopeptide identification and quantification workflows will include false positive 

and negative results, and users should ensure data is appropriately searched and 

curated before processing with GlypNirO. Additionally, modern LC-MS/MS 

glycoproteomics cannot fully structurally characterize glycans and often struggles to 

confidently assign the precise sites of modification; ambiguities which may confound 

quantification workflows. Our proof-of-principle analysis of a plasma glycoproteome 

dataset demonstrated that GlypNirO can be used to detect changes in site-specific 

glycosylation occupancy and structure of N- and O-glycosylation in complex 

glycoproteomes. Specifically, we found that HCC was associated with decreased 

sialylation of both N- and O-glycans at specific sites on select plasma glycoproteins. 

GlypNirO will be a useful tool for enabling robust high-throughput quantitative 

glycoproteomics. 

 

 

Experimental 

Byonic and Proteome Discoverer analysis 

We identified glycopeptides and peptides using Byonic (Protein Metrics, v. 3.8.13) 

searching all DDA files (n=12) downloaded from a previously published dataset [20] 

obtained from the ProteomeXchange Consortium via the MassIVE repository 

(PXD003369, MSV000079426). Two searches were conducted on each file, one N-

linked and one O-linked. A human protein database was used (UniProt UP000005640, 

downloaded 20 April 2018 with 20,303 reviewed proteins) [26]. Cleavage specificity 
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was set as C-terminal to Arg/Lys with a maximum of one missed cleavage. The 

precursor mass tolerance was 10 ppm and fragment ion mass tolerances for CID and 

HCD were 0.5 Da and 20 ppm, respectively. Cys-S-beta-propionamide was set as a 

fixed modification, and dynamic modifications included deamidation of asparagine, 

mono-oxidised methionine, and the formation of pyroglutamate at N-terminal glutamic 

acid and glutamine. All variable modifications were set as “Common 1” allowing each 

modification to be present once on a peptide. For N-linked searches (N-X-S/T) a 

database of 164 N-glycans was used (Supplementary Table S41) and for the O-linked 

searches (at any S/T) a database of 49 O-glycans (Supplementary Table S42) was 

used. All glycan modifications were set as “Rare 1” allowing each modification to be 

present once on a peptide. A maximum of two common modifications and one rare 

modification were allowed per peptide. A protein false discovery rate cut-off of 1% was 

applied along with the peptide automatic score cutoff [27]. Precursor peak areas were 

calculated using the Precursor Ions Area Detector node in Proteome Discoverer (v. 

2.0.0.802 Thermo Fisher Scientific).Text output files from Proteome Discoverer and 

Byonic were then used in GlypNirO (https://github.com/bschulzlab/glypniro and 

Supplementary Information).  

 

Output combination and preprocessing 

GlypNirO was built and used in Python 3.8.3 with backward compatibility tested up to 

Python 3.6. Each Byonic output file was first iteratively prepared for linking with AUC 

information from the Proteome Discoverer output. Using a regular expression pattern 

provided by UniProtKB, the UniProtKB accession ID of each protein from the Protein 

Name column of the Byonic output was parsed and saved into a new temporary master 

id column. If a UniProtKB accession ID could not be matched, the entire protein name 

was saved into the master id column. Reverse (decoy) sequences and Common 

contaminant proteins were filtered and removed from the dataset. 

 

To combine data from different isoforms of the same protein, the Byonic output was 

grouped by accession ID in the master id column. From the Scan number column, the 

numeric scan number associated with a PSM was extracted into a temporary Scan 

number column. Area Under the Curve (AUC) information from the First Scan column 
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from the Proteome Discoverer output text file was assigned to Byonic data at each 

corresponding scan number, in the Area column. Entries with no AUC value and those 

not meeting a user-defined Byonic score cutoff (200 here) were removed from the data 

set. 

 

Using the Glycans NHFAGNa and Modification Type(s) column, the script obtained 

the monosaccharide composition of the attached glycan. In the standard Byonic output, 

only the ∆mass of the modification is directly indicated on the modified peptide 

sequence, with no direct indication of the identity of the corresponding modification. 

The script therefore calculated the theoretical mass of the glycan from the Glycans 

NHFAGNa column, and matched this to the corresponding amino acid in the peptide. 

This allowed unambiguous assignment of each site of glycosylation from the Byonic 

output. Options were provided to either include Byonic assignments of site-specificity, 

or not, in calculation for the final output. 

 

Unique PSM selection and glycoform AUC calculation 

The compiled dataset as a whole was sorted based on two levels in descending order, 

first by Area and then by Score. Two options were available for glyco/peptide grouping: 

site-specific analysis, or peptide-specific analysis. For site-specific analysis, the site-

specificity of glycosylation assigned by Byonic was trusted, and all peptide variants 

that contained that site were included in calculations of its occupancy and glycoform 

distribution. PSMs with identical unmodified peptide sequence, glycan 

monosaccharide composition, calculated m/z, and site of glycosylation were grouped. 

For each group, the PSM precursor m/z value with the highest associated Area was 

selected as the unique PSM. The Area associated with each unique PSM was used 

for the calculation of the total AUC of each glycoform at each identified glycosylation 

site.  

 

For peptide-specific analysis, the precise site of glycosylation within a peptide as 

assigned by Byonic was ignored, and each proteolytically unique peptide form was 

treated separately. PSMs with identical unmodified peptide sequence, glycan 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.06.15.153528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153528
http://creativecommons.org/licenses/by/4.0/


 15 

monosaccharide composition, and calculated m/z were grouped. As with site-specific 

analysis, for each group, the PSM with the highest Area was selected as its unique 

PSM. The Area of each unique PSM was used for the calculation of the total AUC of 

each glycoform for each unique proteolytic peptide.  

 

Proportional data analysis and final output 

In order to allow comparisons of site-specific glycoform abundance and occupancy 

between different samples, the proportion of each glycoform was calculated with and 

without inclusion of unglycosylated peptides. For calculation of proportion, 

glycosylation status was assumed to not quantitatively affect detection. These results 

were concatenated into the final output file, where columns are the different samples 

and rows are the different peptide and glycoforms that have been analyzed. The 

protein name of each glycosylated protein detected in the analysis was also included, 

parsed from the online UniProtKB database using an inhouse Python library. 

 

Statistical analyses 

Significant differences in glycoform abundances between healthy and diseased 

samples were evaluated using an unpaired two-tailed t-test without corrections for 

multiple comparisons. Missing values were not imputed. Spectra were manually 

validated for glycoforms of interest.   
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Supplementary Figures 

 

Supplementary Figure S1. GlypNirO workflow overview. 
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