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Abstract - The Late Quaternary extinctions of megafauna (defined as animal species >44.5 kg) 22 

reduced the dispersal of seeds and nutrients, and likely also microbes and parasites. Here we use 23 

body-mass based scaling and range maps for extinct and extant mammal species to show that these 24 

extinctions led to an almost seven-fold reduction in the movement of gut-transported microbes, 25 

such as Escherichia coli (3.3 km2/day to 0.5 km2/day). Similarly, the extinctions led to a seven-26 

fold reduction in the mean home ranges of vector-borne pathogens (7.8 km2 to 1.1 km2).  To 27 

understand the impact of this, we created an individual-based model where an order of magnitude 28 

decrease in home range increased maximum aggregated microbial mutations 4-fold after 20,000 29 

years. We hypothesize that pathogen speciation and hence endemism increased with isolation, as 30 

global dispersal distances decreased through a mechanism similar to the theory of island 31 

biogeography. To investigate if such an effect could be found, we analysed where 145 zoonotic 32 

diseases have emerged in human populations and found quantitative estimates of reduced dispersal 33 

of ectoparasites and fecal pathogens significantly improved our ability to predict the locations of 34 

outbreaks (increasing variance explained by 8%). There are limitations to this analysis which we 35 

discuss in detail, but if further studies support these results, they broadly suggest that reduced 36 

pathogen dispersal following megafauna extinctions may have increased the emergence of 37 

zoonotic pathogens moving into human populations.  38 

 39 
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 41 

Introduction –  42 

Since the Late Pleistocene and early Holocene, the loss of the planet’s largest mammals 43 

has affected trophic structure, seed dispersal, biogeochemistry and nutrient dispersal globally 44 

(Galetti et al., 2018) (Malhi et al., 2016) (Doughty et al., 2016).  Large animals play unique roles 45 

in dispersal processes because their long gut lengths, daily movements, and home ranges enable 46 

them to carry seeds, spores and nutrients long distances across landscapes. Obligate ectoparasites 47 

(such as ticks, fleas, lice) and microbes residing in the gut or other tissues rely on animal hosts for 48 

transport. Following the megafauna extinctions, the mean dispersal distance of both would have 49 

been reduced. Could such changes in microbe dispersal distances have had broader ecosystem 50 

consequences?  Here, we ask whether changes in microbe dispersal distances as a consequence of 51 

the megafauna extinctions impacted the emergence of zoonotic infectious diseases. 52 

 Understanding the predictors of zoonotic emergent infectious disease (EIDs) will enable 53 

better prediction, surveillance and management of future disease outbreaks. A study by Jones et al 54 

(2008) aggregated 335 EID origin events between 1940 and 2004, and found that 60.3% are 55 

zoonoses, with over 71.8% of these having a wildlife origin (n = 145)  (Jones et al., 2008). The 56 

authors found that host species richness was a significant predictor of zoonotic pathogens emerging 57 

from wildlife populations. Other studies have shown that infectious diseases emerged through 58 

humanity’s close association with agriculture and domestic animals (Dobson & Carper, 1996) 59 

(Wolfe, Dunavan, & Diamond, 2007) . A closer proximity with animals and higher human 60 

population densities increased the establishment and spread of EIDs.  Infectious diseases existed 61 

in hunter-gatherers but were subject to differing evolutionary pressures that allowed them to persist 62 

in low population densities (versus high population densities of agrarian societies). A fast-acting, 63 
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highly virulent disease would quickly kill off the sparse hunter-gather population before the 64 

disease had a chance to spread, thus also killing off the disease.  65 

The rise of agriculture and settling of peoples into close-knit communities clearly impacted 66 

disease emergence, but could the Pleistocene and early Holocene megafauna extinctions (Sandom 67 

et al 2014) also have shaped infectious disease?  There is strong debate about whether there is a 68 

positive biodiversity disease relationship especially related to human pathogens. Biodiversity loss 69 

tends to increase disease occurrence because the lost species are initially replaced with more 70 

abundant generalists that invest more in growth and less in adaptive immunity(Keesing et al., 71 

2010), making them better hosts for pathogens. Additionally, biodiversity loss may increase 72 

disease occurrence due to a reduction in the dilution effect. This posits that biodiversity decreases 73 

the probability of an outbreak by diluting the assemblage of transmission-competent hosts with 74 

non-competent hosts (Schmidt and Ostfeld 2001).  However, others have found that increases in 75 

biodiversity over time were not correlated with improved human health (Wood et al., 2017). Here, 76 

our research focuses on how EIDs might have been affected by the loss of dispersal, which has 77 

been decreasing through large animal population declines, extinctions, and more recently through 78 

human restrictions including fences and roads (Doughty et al., 2016) (Tucker et al., 2018) . We 79 

hypothesize that as global dispersal distances decreased following the megafauna extinctions, 80 

pathogen speciation may have increased with isolation in a mechanism similar to the theory of 81 

island biogeography(Reperant, 2010) (Heaney, 2000) . This reduced movement may also impact 82 

EID formation by increasing the immune-naivety of the remaining host species because they will 83 

no longer regularly interact with as many pathogens.  84 

In this paper, we first quantify the global change in pathogen dispersal through faeces 85 

(dispersed through the gut) and obligate ectoparasites (e.g. ticks) before and after the Late 86 
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Pleistocene/early Holocene megafauna extinctions. Next, we create an individual-based model to 87 

mechanistically show how reduced dispersal could impact aggregated microbial genetic change 88 

over time. Finally, we test whether the global decrease in pathogen dispersal impacted EID 89 

formation.  If the loss of dispersal is important to EID formation, then the regions of greatest 90 

dispersal loss will be statistically correlated to EID formation. Previous papers have statistically 91 

correlated EID outbreaks with human population density, mammal biodiversity, rainfall and found 92 

statistical patterns strong enough to make predictions about potential future outbreaks (Jones et al., 93 

2008) . We then add changes to dispersal patterns over time to see if the prediction of EIDs is 94 

improved.  95 

  96 
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 97 

Materials and Methods 98 

I. Impact of megafauna extinctions on microbial and blood parasite movement 99 

We estimated current global ecto-parasite and fecal pathogen dispersal patterns using the IUCN 100 

mammal species range maps for all extant species (removing all bats because mass scaling of 101 

dispersal for these taxa is inaccurate) (N=5,487).  To create maps of dispersal patters for a world 102 

without the Pleistocene megafauna extinctions, we added species range maps (N=274) of the now 103 

extinct megafauna (within 130,000 years) created in Faurby & Svenning (2015a) to the current 104 

IUCN based dispersal maps.   These ranges estimate the natural range as the area that a given 105 

species would occupy under the present climate, without anthropogenic interference.  In cases of 106 

evident anthropogenic range reductions for extant mammals, like the Asian elephant (Elephas 107 

maximus), the current ranges encompass only the IUCN defined ranges. However, our models of 108 

the world without extinctions includes the ranges on these extant animals prior to anthropogenic 109 

range reductions. The taxonomy of recent species followed IUCN while the taxonomy of extinct 110 

species (which were included if there are dates records less than 130,000 years old) followed 111 

Faurby & Svenning (2015b). Each living and extinct animal species was assigned a body mass 112 

estimate (Faurby & Svenning, 2016), with the few species lacking these estimates being assigned 113 

masses based on the mass of their closest relatives. We used the following mass based (M: average 114 

body mass per species (kg)) scaling equations (recalculated from primary data in Figure S1) to 115 

estimate home range (Kelt and Van Vuren, 2001), day range (Carbone et al 2005), and gut retention 116 

time (Demment and Van Soest, 1985, Demment 1983): 117 

 118 
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Equation 1 - Home Range        119 

HR (km2) = 0.04*M1.09   120 

 121 

This dataset, originally compiled by Kelt and Van Vuren (2001) (N=113 mammalian herbivores), 122 

used the convex hull approach to calculate home range and found the mass-based scaling to be 123 

highly size dependent (with mass scaling exponent of >1)  124 

 125 

Equation 2 –Mean home range for all mammals per pixel (MHR) or ectoparasite dispersal 126 

MHR (km2) = Σ HRi / n 127 

(i: per pixel species number; n: = number of mammal species per pixel)  128 

We define the mean ectoparasite dispersal per pixel as the average distance a pathogen could travel 129 

across all mammals present in the pixel and assuming an equal change of colonizing any mammal 130 

species. 131 

 132 

Next, we estimate fecal pathogen diffusivity with the following equations.  We start with day range 133 

(daily distance travelled) originally from Carbone et al 2005 (N=171 mammalian herbivores) but 134 

recalculated from primary data in Figure S1. 135 

 136 

Equation 3 - Day Range (DR)      137 

DR (km/day) = 0.45*M0.37   138 

 139 

Next, to estimate the minimum time a generalist microbe might stay in the body of a mammalian 140 

herbivore, we use passage time: 141 
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Equation 4 - Passage time (PT) from (Demment and Van Soest, 1985, Demment 1983)   142 

PT (days) = 0.589*D*M0.28 143 

Where D is digestibility, which we set to 0.5 as a parsimonious assumption because the actual 144 

value is unknown for many extant and extinct animals. 145 

Distance between consumption and defecation or straight line fecal transmission distance is simply 146 

multiplying equation 3 by equation 4: 147 

Equation 5 – Straight-line fecal transmission distance (FTD)  148 

FTD (km) = DR * PT 149 

 150 

However, animals rarely move in a straight line, and without any additional information, we can 151 

assume a random walk pattern with a probability density function governed by a random walk as: 152 

Equation 6 – Random walk transmission (RWT) per species   153 

RWT (km2/day) = (FTD)2/(2*PT) 154 

 155 

Here we define the mean fecal diffusivity as the mean range in any pixel a generalist microbe could 156 

travel during its lifetime assuming an equal chance of colonizing any mammal species. 157 

Equation 7 – Mean Fecal Diffusivity (FD) 158 

FD (km2/day) =  ∑RWTi/ n 159 

(i: per pixel species number; n: = number of mammal species per pixel) 160 

This equation represents the average distance a fecal pathogen would travel in an ecosystem if it 161 

had an equal chance of being picked up by any nearby species walking in a random walk. 162 
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Individual based model 163 

To establish whether the loss of terrestrial megafauna increased microbe heterogeneity, we 164 

used Matlab (Mathworks) to create an individual based model (IBM) with two randomly 165 

distributed animal species carrying a generalist microbe. We varied our model assumptions 166 

(parentheses below) in sensitivity studies (Tables S7). The IBM consisted of a 500x500 cell grid 167 

(300x300 and 1000x1000 – in our sensitivity study, we tried big and small grids) with species A 168 

in 10% (5 and 20%) of randomly selected cells and species B also in 10% (5 and 20%) of cells.  169 

10% (5 and 20%) of animals contained the generalist microbe.  We then created a 9 by 9 grid 170 

around each of species A.  This was considered the home range of the species and the group of 171 

animals would interact with all other groups of animals within that home range.  We assumed the 172 

home range of species B to be a single grid cell.  We make a simple assumption that mutations in 173 

this generalist microbe increase linearly with time until two animals interact, at which point the 174 

microbe is assumed to have been shared and the accumulated difference between host microbiomes 175 

is reset to zero.  Later, we reduced the home range of species A from a 9x9 to a 3x3 grid, mimicking 176 

the decline in dispersal following the extinctions.  We then, at each time step, identified the 177 

microbe with the highest number of accumulated mutations within the 500 by 500 grid for the 178 

megafauna world (9 by 9 simulation) and the post extinction world (3 by 3 simulations) (Figure 179 

2).  In order to parameterize the model with real world values, we assigned a single time step an 180 

arbitrary value of a single year (see justification in supplementary methods). The model was run 181 

for 20,000 years, putting the range reduction of species A at around 10,000 years ago, an 182 

approximate date for a large part of the Late Pleistocene extinctions.  183 

 184 

EID modelling 185 
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We then tested whether these changes in pathogen dispersal distance could help explain the 186 

location of 145 new zoonotic diseases (with a wildlife origin) that emerged over the past 64 years 187 

(Jones et al., 2008). Jones et al 2008 searched the literature to find biological, temporal and spatial 188 

data on 335 human EID ‘events’ between 1940 and 2004 of which 145 were defined as zoonotic. 189 

We also divide our analysis into vector driven (Table S3), non-vector driven (Table S4) and all 190 

diseases (Table 2). To control for spatial reporting bias, they estimated the mean annual per country 191 

publication rate of the Journal of Infectious Disease (JID). However, this is not a perfect control 192 

for reporting bias as it may bias towards first world countries.  In their paper, they used predictor 193 

variables of log(JID), log(human population density), human population growth rates, mean 194 

monthly rainfall, mammal biodiversity, and latitude. We repeat this study but add six data layers 195 

shown in Figure 1 of animal function, as well as other variables such as rainfall seasonality, total 196 

biodiversity (species richness including the now extinct megafauna), biomass weighted species 197 

richness and the change in biomass weighted species richness. In total, we tested 16 variables 198 

against the EID outbreaks (explained in Table S1). In addition to the 145 known EID outbreaks, 199 

we randomly generated ~five times more random points (>600 points) to compare them (all results 200 

in the paper are the average of three separate runs where the control points vary randomly) (see 201 

Figure S2 as an example distribution).  202 

We then used the Ordinary Least Squares (OLS) multiple regression models to predict 203 

the EID events. We used Akaike’s Information Criterion (AIC) for model inter-comparison, 204 

corrected for small sample size. Whenever spatial data are used there is a risk of autocorrelation 205 

because points closer to each other will have more similar signals than points far from each 206 

other. We therefore used Simultaneous Auto-Regressive (SARerr) models (Table 2) to account 207 

for spatial autocorrelation (Dormann et al., 2007) using the R library ‘spdep’ (Bivand, Hauke, & 208 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2020. ; https://doi.org/10.1101/2020.01.21.914531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914531
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Kossowski, 2013). SAR-err reduces the sample size by assuming that all outbreaks within the 209 

same neighbourhood are the same.  We examined possible neighbourhood sizes to determine 210 

how effective each was at removing residual autocorrelation from model predictions. We defined 211 

neighbourhoods by distance to the sample site. We tried distances from 5 km to 300 km and 212 

found that AIC was minimized at 200 km (Figure S3 – the average of 16 simulations). Following 213 

this reduction of our dataset, our correlogram (Figure S4) indicates vastly reduced spatial 214 

autocorrelation.  We estimated the overall SAR model performance by calculating the square of 215 

the correlation between the predicted (only the predictor and not the spatial parts) and the raw 216 

values. We will refer to this as pseudo-R2 in the paper even though we are aware that several 217 

different estimates of model fit are frequently referred to as pseudo-R2. We also did a VIF 218 

analysis using the R package usdm (Naimi et al., 2014) to control for multicollinearity and all 219 

VIFs of the predictor variables are below 1.5 showing little multicollinearity.  220 

  221 
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Results 222 

Without the megafauna extinctions, we estimate that the mean global home range of a 223 

generalist ectoparasite (Equation 2 – the average home range of all (non-bat) mammal species in 224 

its ecosystem) averages ~8 km2 (Table 1).  In parts of Eurasia and southern South America, that 225 

had a particularly high  pre-extinction diversity of large-mammals, the mean home range exceeded 226 

25 km2 (Figure 1). Following the extinctions, the mean global home range of a generalist blood 227 

parasite has been reduced to 1.1 km2 or 14% of the previous global average (Table 1). The 228 

decreases were particularly large in South America, where mean home range decreased over two 229 

orders of magnitude in the south of the continent since all 26 local mammal species >1,000 kg 230 

went extinct (Sandom et al 2014).  231 

The mean fecal diffusivity (Equation 7) is the minimum distance (assuming microbes are 232 

excreted in the first defecation) a generalist gut pathogen could travel between consumption and 233 

defecation and is highly size dependent. Without megafauna extinctions, this area is greater than 234 

3.3 km2/day and up to 10 km2 /day in parts of Eurasia and southern South America (Figure 1). 235 

Outside of abiotic dispersal by wind or water, this is a potentially important way for microbes to 236 

move across an ecosystem. Following the megafauna extinctions, the mean distance travelled by 237 

microbes globally through biotic means decreased to 0.5 km2 or ~15% of the non-extinction value. 238 

The largest declines in distance travelled are in the Americas and Eurasia. 239 

 We estimated the approximate increase in time for fecal pathogens and obligate 240 

ectoparasites to travel the same distance by dividing maps without extinctions by current maps 241 

(180x360) of mean ectoparasite and fecal dispersal (Figure 1). For instance, in southern South 242 

America, it would take 70 times as long for ectoparasites and 50 times as long for fecal microbes 243 
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to travel the same distance without versus with megafauna (Figure 1c and f). This contrasts to parts 244 

of Africa, where there is little change.  245 

 To better understand the possible impacts of lost dispersal on microbes, we used an 246 

individual based model (IBM) where initially, a large animal with a large home range periodically 247 

shared microbes with a small animal with a small home range.  We make a simple assumption that 248 

mutations in this generalist microbe increase linearly with time until two animals interact, at which 249 

point the microbe was assumed to have been shared and the mutational difference counters for 250 

each were reset to zero. Upon replacing an animal with a large home range (81 pixels) with a 251 

smaller home range (9 pixels), after 20,000 years of simulation time (Figure 2 and SI Appendix, 252 

Table S7), the maximum aggregate mutations increased fourfold in the 3 by 3 (compared to the 9 253 

by 9), but did not saturate for >10,000 years illustrating why it is important to understand EID 254 

drivers over long timescales.  Although vastly oversimplified, our model demonstrates that long 255 

periods of time (~10,000 years) might be necessary for genetic changes to build up following the 256 

loss of dispersal.  Most of the global dispersal capacity (70-76% - Table 1) was lost at this timescale 257 

(~10,000 years; and most of the loss before this time point was concentrated in Australia) near the 258 

end of the last ice age ~10-15 kybp following extinctions of megafauna from North and South 259 

America and Siberia. 260 

How might we theoretically predict reductions in microbe and ectoparasite dispersal to 261 

impact pathogen formation?  We would first predict that an extinct animal like a mammoth or 262 

mastodon would have a large home range (red line Figure 3a) because home range is highly size-263 

dependent (Wolf et al., 2013)  and isotope data suggest this is true (Hoppe et al., 1999). Such a 264 

large animal would also host many ectoparasite species because parasite species richness is also 265 

size dependent (Esser et al., 2016). Paleodata shows the extinct megafauna did indeed host 266 
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parasites (McConnell & Zavanda, 2013) . In our qualitative example for South America (Figure 267 

3), the Stegomastodon home range overlaps with species of extant mammals, vectors and likely 268 

microbes/pathogens.  Home range overlap between the species would ensure periodic interactions 269 

with pathogens so all would develop some immune protection. In Figure 3b, the Stegomastodon 270 

goes extinct and the smaller species no longer regularly interacts with other pathogens, becoming 271 

immune-naïve and more susceptible to generalist pathogens when they eventually interact. This 272 

isolation would allow variation to accumulate in the microbes, leading to possible evolutionary 273 

divergence (represented by several colors of the pathogens in Figure 3b). Figure 3c shows late 274 

Holocene interactions with humans and their immuno-limited  domestic ungulates (inbred animals 275 

are more susceptible to pathogens) (Smallbone, van Oosterhout, & Cable, 2016), highlighting 276 

other important variables necessary for EID occurrence(Jones et al., 2008, Table 2) . The arrival 277 

of domestic animals is thought to be important for EID occurrence because there is an evolutionary 278 

trough that needs to be surpassed for a pathogen to colonize a new host and evidence suggests this 279 

may be lower in domestic animals (Smallbone et al., 2016) .  280 

Our IBM predicts, given sufficient time, mutational differences between generalist 281 

microbes would greatly increase over space (Figure 2) following a significant decrease in mean home 282 

range and we hypothesize that this impacted EID formation (Figure 3). Since this hypothesized 283 

event occurred in the past, it is difficult to empirically test. However, databases exist with the 284 

locations of EIDs and previous work has correlated these locations with environmental and 285 

biodiversity variables (Jones et al., 2008). We therefore hypothesize that if decreased dispersal is 286 

related to zoonotic emergent disease, then adding a dispersal variable should improve the 287 

prediction of EIDs. More broadly, we hypothesize that information from the ecological past is 288 

relevant to predictions of future potential outbreaks. 289 
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The prediction of the spatial distribution of 145 zoonotic EID outbreaks was significantly 290 

improved by including the global loss of microbial dispersal following the extinctions (adding the 291 

change in fecal diffusivity (ΔFD) improved pseudo r2 by 8% (from 0.185 (null model) to 0.201 292 

(model FD) while reducing AIC by ~3% - Table 2).  We started with 16 variables described in 293 

Table S1, including our six maps from Figure 1, but the model that best predicted EIDs included 294 

ΔFD plus reporting bias (estimated as log (Journal of Infectious Disease articles (JID)); richer 295 

countries with more scientists will find more EIDs), human population density and rainfall. Both 296 

change in ecotoparisite dispersal (ΔMHR – Equation 2) and change in fecal diffusivity (ΔFD- 297 

Equation 7) were highly significant but had collinearity issues (VIF>10) and we chose to include 298 

just ΔFD versus ΔMHR because it reduced AIC by a greater amount (Table 2 – model HR). Jones 299 

et al. 2008 found current species richness to be a significant explanatory variable because host 300 

diversity is strongly positively correlated with pathogen diversity, and we also found this on its 301 

own (Table 2). However, adding SRcurrent to our best model increases AIC (Table 2 – model SR) 302 

and we did not include it in our final model. We tested whether transmission mode (vector-borne 303 

versus non-vector-borne transmission) impacted our results and found adding either ΔFD and 304 

ΔMHR improved model performance (reduced AIC) in both models predicting vector-borne and 305 

non-vector-borne EIDs, (SI Appendix, Table S3 and S4). In a sensitivity study (SI Appendix, Table 306 

S5 and S6) we tested the resilience of our results and found that our model results remained 307 

significant under a wide range of scenarios. For instance, moving the EID location randomly by 308 

one pixel to estimate the great uncertainty in knowing the exact EID emergence coordinates, did 309 

not greatly change our results. 310 

 We then create a new EID prediction map based on model FD (Table 2 and Figure 4 top) 311 

accounting for sampling bias by removing the log(JID) parameter. There are many similarities of 312 
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this map to the original Jones et al. (2008) map with large hotspots in regions of large human 313 

population densities. However, our map shows a more pronounced peak in southern South 314 

America and the north-eastern North America due to the impact of the ΔFD variable. We also 315 

estimate how the extinctions impacted EID occurrence (Figure 4 bottom) by subtracting ΔFD 316 

from our best EID prediction map (Figure 4 top) since if the extinctions had not happened, there 317 

would be no change in FD and removing this variable creates an EID prediction map with no 318 

extinctions. Without extinctions, global predicted EIDs are reduced by 24-42% (under low 319 

(0.0019) and high (0.0033) ΔFD scenarios since the slope of ΔFD = 0.0026 ± 0.0007, Table 2 – 320 

model FD). If we conservatively estimate that our model only captures about a fifth of the EID 321 

variance (total model r2 is highly dependent on the number of control points chosen though), then 322 

the extinctions increased EID occurrence by 5-8% (or 7-12 of the 145 total EIDs). We see the 323 

most profound differences in southern South America, eastern USA and central Eurasia where 324 

there were the most drastic decreases in body size. Using ΔMHR (Table 2 – model HR) in place 325 

of ΔFD gives similar results and global EIDs are reduced by 20-38% (under low (0.0012) and 326 

high (0.0022) ΔMHR scenarios since the slope = 0.0017+0.0005, Table 2 – model HR). 327 

 328 

  329 
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 330 

Discussion 331 

 The Late Pleistocene megafauna extinctions reduced dispersal of generalist fecal microbes 332 

and ectoparasites to ~15% of dispersal prior to the extinctions (Table 1). In certain regions such as 333 

southern South America, pathogens need >70 times as long to interact over the same distance today 334 

compared to a non-extinction world (Figure 1). A simple mechanistic model showed an order of 335 

magnitude reduction in dispersal could increase maximum mutations 4-fold (2-4 fold) (Figure 2 336 

and SI Appendix, Table S7). We hypothesize that this pathogen speciation could have impacted 337 

EID formation through a mechanism similar to the theory of island biogeography (Reperant, 338 

2010)(Heaney, 2000) where pathogen speciation and hence endemism increase with isolation as 339 

global dispersal distances decrease (Figure 3).  In addition, this increased time in pathogen flow 340 

may impact EID formation by increasing the immune-naivety of host species because they will no 341 

longer regularly interact with as many pathogens.  Our theory is supported because the change in 342 

fecal diffusivity significantly improves the prediction of EID formation (Table 2 and Figure 4).  343 

We acknowledge that changes to the range of historic mammals only explains a small amount of 344 

the variance in EID location. Many variables confound our analysis and would have been included 345 

had there been a comprehensive global dataset, such as: no past global animal abundance data, 346 

inclusion of all vector EIDs including non-generalists, not including bats, uncertainty in true EID 347 

origin.   348 

However, despite the many problems with the EID data, the correlation of decreased past 349 

dispersal with EID formation suggests that a fraction (8%) of the variance of EID formation can 350 

be explained by an event 10-15,000 years ago. Therefore, we further explore this idea below, 351 

while acknowledging much further research is needed to empirically support it.  In our IBM 352 
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(Figure 2), total unique mutations saturated at ~2,000 only after 10,000 model years, suggesting 353 

such a timeframe is reasonable for microbial evolution (supplementary methods). However, here 354 

we are suggesting that the loss of dispersal is correlated with modern disease emergence (we 355 

suggest they are also related to older diseases, such as the origin of smallpox, but we do not 356 

know the specific time or location of the emergence of these diseases into a human population, 357 

and hence, these emergences were excluded from the Jones et al (2008) dataset. Could something 358 

that happened >10,000 ybp affect diseases since 1940?  Our statistical model indicates that high 359 

human population densities are necessary for EID formation (Table 2). However, high human 360 

and domestic animal densities had not arrived until the late Holocene in much of the world and 361 

closer to the timeframe of the EID database. Therefore, the early Holocene may have been a time 362 

where reduced dispersal enabled microbial speciation but these new strains of microbes did not 363 

cause EID until other elements necessary, such as high human and domestic animal population 364 

densities, were also present.  365 

Part of the temporal discrepancy may also be due to pathogens first jumping to 366 

domesticated animals. Many domestic animals are artiodactyls similar to many of the extinct 367 

megafauna, and ungulates are the dominant hosts of zoonotic diseases (Han, Kramer, & Drake, 368 

2016) , making the evolutionary jump for pathogens from the extinct megafauna to domestic 369 

animals easier (the phylogenetic hypothesis). Domestic animals have taken over some of the 370 

functional roles of the now extinct megafauna, including their biomass (Barnosky, 2008) , and it 371 

is conceivable that they also eventually hosted their pathogens, which later spread to people 372 

through close contact (Klous et al 2016, Jones et al 2011). Inbreeding of domestic animals may 373 

have reduced their natural immune defences towards parasites and pathogens (Smallbone et al., 374 

2016). Domestic animals could also act as amplifier hosts (e.g. the Australian outbreak of 375 
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Hendra virus via horses in the 90s (Mendez et al 2012)).  Parasites that once attacked the now 376 

extinct megafauna, may have preferred domestic animals with limited defences to wild animals 377 

with evolved defence mechanisms. For instance, the common vampire bat (Desmodus rotundus) 378 

carries several blood transmitted diseases (including rabies), which feeds on domestic animals 379 

and humans, especially where populations of large animals are depleted (Bobrowiec , 2015)  380 

Wild fauna, for example, brocket deer (Mazama spp.) have evolved vigorous avoidance 381 

behaviour towards vampire bats (Galetti, et al., 2016). Further empirical support of this theory 382 

could come from correlating domestic animal EIDs to loss of past dispersal. 383 

Are our correlations between animal extinctions and EID formation due to ecological 384 

fallacy, where correlated data are related yet not mechanistic? For example, the areas that lost the 385 

most animal species may also have had significant environmental changes that actually led to the 386 

EID formation.  However, megafauna are keystone animals and ecosystem engineers and besides 387 

reducing pathogen dispersal, the loss of the megafauna ecosystem engineers would lead to 388 

drastic continental changes in ecosystem structure (Doughty et al 2016).  It has been shown that 389 

recent losses of African megafauna have increased rodent-borne disease, partially because 390 

changed landscape structure following the removal of ecosystem engineers as species like 391 

elephants create better habitat for rodent and pathogen populations (Young et al 2014).  Another 392 

study found total tick abundance (not species richness) increased in East Africa by 170% when 393 

herbivores >1000 kg were excluded, and by 360% with all large wildlife excluded (Titcomb et al 394 

2017). Accordingly, such changes may impact EID formation.  395 

The number of parasite species colonizing mammals scales with body size (Esser et al., 396 

2016) and mass scaling relationships suggest that the largest extinct megafauna species would have 397 

hosted a wide diversity of tick species(Esser et al., 2016)(Galetti et al 2018).  It is uncertain whether 398 
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ticks would have gone extinct following the megafauna extinctions, or switched hosts (e.g., there 399 

are 63 endangered tick species associated with threatened mammals (Mihalca, Gherman, & Cozma, 400 

2011) ). This is potentially the major source of uncertainty in our hypothesis – whether past 401 

pathogens went extinct following the loss of their host or evolved to new hosts. In the future, this 402 

could potentially be tested through metagenomics to understand the range of pathogens present in 403 

deposits of extinct mammal dung.  404 

If our theory finds further empirical support, then could we manage our ecosystems in the 405 

future to reduce infectious disease outbreaks?  Would increasing dispersal capacity (either with 406 

more large animals or improved dispersal corridors) reduce EID occurrence? If increased species 407 

immune-naiveté drove increased EID occurrence, then increasing the dispersal capacity of our 408 

ecosystems would help through, for example, the conversion of fenced pasture monocultures to 409 

free-range pastoralism (Poschlod & Bonn 1998).  However, if the extinctions influenced pathogen 410 

evolution, this evolution has already occurred and increasing dispersal may not help (although it 411 

could reverse the trend). 412 

We do not discount the importance of other more recent dispersal events such as 413 

colonialism, the slave trade, or tire exportation as more recent causes of EID hotspots.  Nor do we 414 

suggest that megafaunal extinctions are the sole cause of new EIDs since other causes such as 415 

human hunting behavior, human health care and GDP, land use change, density of 416 

humans/livestock (Allan et al 2017) have also been shown to impact EIDs.  Our results simply 417 

suggest that a more ancient large-scale change in dispersal patterns may also have had an impact.   418 

Biodiversity has been shown to provide many ecosystem services, including disease regulation 419 

(Cunningham, Daszak, & Wood, 2017) . Here, we suggest that past animal size and dispersal 420 

capacity should also be considered in understanding disease emergence. Large animals are (and 421 
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always have been) most vulnerable to anthropogenic extinction pressure (Dirzo et al., 2014) , and 422 

our research suggests an important step in disease regulation would be to stop current large-animal 423 

extirpations.  424 

 425 

 426 
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Table 1 – The number of animal species that went extinct between the Late Pleistocene and 

early Holocene, their mean weight, average home range (km2) and fecal transmission 

(km2/day) for each continent and the globe calculated for modern species and for modern plus 

extinct species. Also shown is the change (past/current) between these periods calculated for 

each pixel at the global scale. % dispersal lost is the lost continental dispersal divided by total 

lost global dispersal (weighted by area and excluding Antarctica). Bold numbers represent 

dispersal lost ~10-15 kybp and the range for Eurasia represents North to South differences and 

uncertainty (33-50%) in Eurasian extinctions and not bold represents other parts of the world. 

  North 

America 

South 

America 

Australia Eurasia Africa Global 

averages 

# species extinct 65 64 45 9 13 39.2 

Mean weight of extinct 

animals (kg) 

846 1,156 188 2,430 970 1118 

Modern + extinct mean 

home range  (km2) 7.1 10.7 1.2 7.3 10.3 7.8 

Modern mean home range 

(km2)     0.4 0.3 0.2 0.5 4.3 1.1 

Past/ current 16.2 31.5 5.5 13.6 2.3 7 

Modern + extinct fecal 

transmission (km2/day)  3 4.5 0.5 3.1 4.4 3.3 

Modern fecal transmission 

(km2/day)  0.2 0.1 0.1 0.2 1.8 0.5 

Past/ current 13.6 25.3 4.7 11.8 2.3 6.6 

% dispersal lost, bold = ~10-

15 kybp 
27 30 2 

13-19/ 

19-25 3 

70-76 

/23-30 
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Table 2 – A SARerr analysis to predict the presence of 145 EIDs compared with ~600 randomly 557 

generated points using 16 variables described in Table S1.  Using AIC, r2 and VIF we show the 558 

four best models with the predictors of JID -journal of infectious disease articles, human 559 

population density, SRcurrent current species richness, Δ MHR – change in mean home range (Figure 560 

1c and eq 2), ΔFD – change in fecal diffusivity (Figure 1f and eq 7), and Rain – average rainfall.  561 

In column one, we show the variables of interest, in column two, we show the individual model 562 

coefficient, r2 and significance using the Bonferroni correction to determine significance or 563 

0.05/16= 0.003125 = * (*=P<0.003125, **= P<06e-4, ***= P<06e-5).  For the rest of the models, 564 

we use standard significance (*=P<0.05). 565 

Variable 

Individual Model null - 

pseudo r2 = 0.185, 

AIC=460 

Model FD - 

pseudo r2 = 

0.201, AIC=448 

Model HR - 

pseudo r2 = 

0.197, AIC=452 

Model SR - 

pseudo r2 = 

0.201, AIC=450 

(Intercept)  -0.08 ±  0.026 *** -0.12 ±  0.027 *** -0.11 ±  0.027 *** -0.11 ±  0.05  

Log(JID) 
r2 = 0.046 , 

0.065 *** 

0.072 ±  0.01 *** 0.064 ±  0.01 *** 0.065 ±  0.01 *** 0.063 ±  0.01 *** 

Pop 

density 

r2 = 0.12 , 0.14 

*** 

0.13 ±  0.014 *** 0.13 ±  0.014 *** 0.13 ±  0.014 *** 0.13 ±  0.014 *** 

ΔFD (eq7) 
r2 = 0.042 , 

0.004 *** 

 0.0026 ±  0.0007 

*** 

 0.0026 ±  0.0007 

*** 

ΔMHR 

(eq2) 

r2 = 0.035 , 

0.003 *** 

  0.0017 ±  0.0005 

*** 

 

SRcurrent 
r2 = 0.012 , 

0.001 * 

   8e-6 ± 5e-4 

Rain 
r2 = 0.021 , 

0.0009 ** 

0.0004 ±  0.0002 * 0.0004 ±  0.0002 * 0.0004 ±  0.0002 * 0.0004 ±  0.003  

 566 

  567 
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 568 

Figures 569 

 570 

Figure 1 – Maps of (left) mean ectoparasite dispersal (km2) (from equation 2) and (right) fecal 571 

diffusivity (km2/day) (from equation 7) for the world prior the megafauna extinctions (top), with 572 

current animals (middle), and prior divided by current (bottom).  573 

  574 

Ectoparasite dispersal Fecal diffusivity

P
ri

o
r 

to
 e

xt
in

ct
io

n
s

C
u

rr
en

t
P

ri
o

r/
cu

rr
en

t

km2

km2

km2/day

km2/day

Prior/current Prior/current

a

e

d

b

c f

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2020. ; https://doi.org/10.1101/2020.01.21.914531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914531
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 575 

Figure 2 - The maximum aggregated genetic changes per grid (500 by 500) per time step when 576 

animals were constrained to move within a 9x9 pixel space (blue – megafauna world represented 577 

by the Stegomastodon), and a 3 by 3 pixel space (red – current world represented by the llama).   578 

A sensitivity study for our parameters is show in Figure S7.  579 
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Figure 3 – (A) Hypothetical example of a South American late Pleistocene animal assemblage 581 

and their home ranges. The animals host tick-borne and fecal pathogens with homogenous colors 582 

because the large home range of the megafauna keeps them interacting. Numbers indicates the 583 

mean global dispersal distance (Table 1) for ectoparasites and fecal pathogens.  (B) Hypothetical 584 

early to middle Holocene animal assemblage without the extinct megafauna, thus removing the 585 

regular interaction between tick and fecal pathogens increasing immuno-naivety for all species. 586 

Colors of tick-borne and fecal pathogens begin to diverge representing a hypothetical speciation 587 

because without the now extinct megafauna there is less interaction between pathogens.  (C) 588 

Hypothetical late Holocene animal assemblage with humans and their domestic animals picking 589 

up the now diverged (many colored) pathogens which could cause EIDs in people and domestic 590 

animals. This panel has no numbers because we did not calculate Anthropocene pathogen 591 

dispersal estimates. 592 
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 594 

 595 

Figure 4 –(top) A map of EID likely occurrence based on coefficients from Table 2 – model FD, 596 

but removing reporting bias (by excluding the variable log(JID)). (bottom) The current EID 597 

occurrence map (top) minus a map produced where the megafauna never went extinct (the variable 598 

Δ FD is zero). Therefore, this is a map showing where EID occurrence has increased in probability 599 

Current EID map

Impact of extinctions

Relative risk of an EID eventlow high

Possible increased risk due to extinctions
low high
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due to the megafauna extinctions.  In other words, it shows “cost of extinctions” for humanity in 600 

terms of increased EID likelihood.  601 

 602 
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