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Abstract
Motivation: Long Read Sequencing (LRS) technologies are becoming
essential to complement Short Read Sequencing (SRS) technologies for
routine whole genome sequencing. LRS platforms produce DNA frag-
ment reads, from 10% to 10° bases, allowing the resolution of numerous
uncertainties left by SRS reads for genome reconstruction and analysis.
In particular, LRS characterizes long and complex structural variants un-
detected by SRS due to short read length. Furthermore, assemblies pro-
duced with LRS reads are considerably more contiguous than with SRS
while spanning previously inaccessible telomeric and centromeric regions.
However, a major challenge to LRS reads adoption is their much higher
error rate than SRS of up to 15%, introducing obstacles in downstream
analysis pipelines.
Results: We present Ratatosk, a new error correction method for erro-
neous long reads based on a compacted and colored de Bruijn graph built
from accurate short reads. Short and long reads color paths in the graph
while vertices are annotated with candidate Single Nucleotide Polymor-
phisms. Long reads are subsequently anchored to the graph using exact
and inexact k-mer matches to find paths corresponding to corrected se-
quences. We demonstrate that Ratatosk can reduce the raw error rate of
Oxford Nanopore reads 6-fold on average with a median error rate as low
as 0.28%. Ratatosk corrected data maintain nearly 99 % accurate SNP
calls and increase indel call accuracy by up to about 40 % compared to
the raw data. An assembly of the Ashkenazi individual HG002 created
from Ratatosk corrected Oxford Nanopore reads yields a contig N50 of
43.22 Mbp and less misassemblies than an assembly created from PacBio
HiFi reads.
Availability: https://github.com/DecodeGenetics/Ratatosk
Contact: guillaume.holley@decode.is

1 Introduction

In Norse mythology, the squirrel Ratatoskr runs up and down the ash tree
Yggdrasil, bearing envious words between the eagle at the top and the dragon
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at the bottom. Short read sequencing (SRS) has allowed for the accurate identi-
fication of small variants (SNPs and indels) in non-repetitive parts of the genome
while long read sequencing (LRS) allows for the characterization of large and
complex variations. We have designed Ratatosk to carry information between
the two technologies with the hope of leveraging the benefits of both of them.

Oxford Nanopore Technologies (ONT) and Pacific Bioscience (PacBio) are
LRS platforms [Logsdon et al.| [2020] that produce long sequence reads ranging
from 10 to 10° bases with an error rate up to 15% [Rang et al., 2018]. The
high error rate of LRS reads is in part compensated by their lengths which in-
crease their mapping accuracy, making LRS suitable for numerous applications
in all fields of genomics. LRS used at high coverage on a few individuals [Au-
dano et all [2019] or low-medium coverage at population scale [Beyter et al.,
2019 greatly improves the detection of Structural Variants (SVs) because the
large size of ONT reads spans SVs breakpoints. Additionally, LRS reads can
encompass large sections of highly repetitive regions in the human genome such
as centromeres [Bzikadze and Pevzner} [2019], telomeres [Miga et al.l [2020] and
tandem repeats [Mitsuhashi et all 2019]. Analyzing these regions with SRS
is gruelling as the reads generally map ambiguously to multiple locations be-
cause of their limited size. Yet, centromeres play an important role in cancer
genomics [Migal, [2019] while Short Tandem Repeat (STR) expansions associate
with a number of genetic diseases [Kristmundsdottir et al., |2020]. LRS tech-
nologies have also enabled de novo haplotype-resolved assemblies with very few
contig breaks [Porubsky et al.,[2019]. Finally, LRS technologies overcome chem-
istry limitations of SRS, in particular GC bias [Chen et al.,|2013] and PCR am-
plification artifacts [Kozarewa et al., [2009] causing uneven coverages for reads
produced by Ilumina platforms. Yet, the high error rate of LRS reads in-
troduces algorithmic challenges in analyzing these data while filtering out the
noise [Sedlazeck et al.| 2018a]. Highly accurate LRS technologies [Wenger et al.|
2019 that perform circular sequencing and generate highly accurate consensus
sequences are emerging but the required resources are still prohibitive at a pop-
ulation scale. SRS data are therefore often used to complement to LRS data for
SV breakpoint refinement [Sedlazeck et al.,[2018b] and assembly polishing [Kol-
mogorov et all 2019|.

We present Ratatosk, a new method based on a compacted and colored de
Bruijn graph for the hybrid correction of LRS reads using SRS data. Ratatosk
is specifically designed to avoid over-correction with incorrect haplotypes or
homologous regions as this would either remove true variants or add artificial
ones. Ratatosk introduces several new features not included in other hybrid
correction tools. First, SRS and LRS reads color vertices of the de Bruijn graph
to highlight existing paths for the correction. Graph coloring enables pruning
the search space when traversing the graph by removing chimeric paths. Sec-
ond, LRS reads are anchored to the graph using both exact and inexact k-mer
matches. The latter improves the anchoring of highly erroneous regions of the
LRS reads. Third, the graph is annotated with candidate SNPs to disentangle
small variations between haplotypes that are difficult to capture from erroneous
LRS reads. Finally, two passes of correction are performed using SRS and LRS
reads separately to take advantage of all data available, as well as increasing
k-mer sizes to remove errors made during the first correction pass.
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The performance of LRS read error correction tools is usually evaluated by the
error rate, genome coverage and different assembly metrics of the corrected
reads [Marchet et al., 2020, [Morisse et al., |2020] but there has been little inves-
tigation of the accuracy of variant calls on the corrected data. We demonstrate
that Ratatosk can reduce the raw error rate of ONT reads 6-fold on average
with a median error rate as low as 0.28 %. Ratatosk corrected data maintain
nearly 99 % accurate SNP calls and substantially increase indel calls accuracy to
nearly 92 % compared to the raw data. An assembly of the Ashkenazi individual
HGO002 [Zook et all, |2016] created from Ratatosk corrected ONT reads yields a
contig N50 of 43.22 Mbp and less misassemblies than an assembly created from
PacBio HiFi reads.

1.1 Previous work

Methods for LRS reads correction belong to one of two categories: self-correction
or hybrid correction. Self-correction methods refine the reads using information
from the set of LRS reads alone while hybrid correction methods use information
from a set of SRS reads originating from the same individuals. Overall, hybrid
correction methods have been shown to outperform self-correction methods in
terms of error rate and compute resource usage. However, a recurrent issue
with most error correction methods is that they do not retain the phasing of
the reads, hence limiting the usage of corrected data to mixed-haplotype assem-
bly. We provide here a short overview of hybrid correction methods and refer
to the reviews of [Zhang et al., [2019| [Fu et al.l |2019| and Morisse et al.| 2020 for
more details about self-correction methods.

Most hybrid correction methods use a de Bruijn graph built from SRS reads
as an index for the correction of LRS reads. The de Bruijn graph has been
extensively used as a data structure for genome assembly [Pevzner et al., [2001}
Idury and Waterman, [1995]. LoRDEC [Salmela and Rivals, |2014] builds a de
Bruijn graph from SRS reads and anchors LRS reads to the graph. Subse-
quences that do not anchor to the graph are then corrected: paths which are
similar to the uncorrected subsequences are extracted and used for correction.
Jabba [Miclotte et al. 2016] is similar to LoORDEC besides that SRS reads are
self-corrected before graph construction and LRS reads are anchored to the
graph using Maximum Exact Matches to enable different k-mer lengths during
correction. HG-CoLoR |Morisse et al., [2018] also uses self-corrected SRS reads
and aligns them to the LRS reads to find overlaps. These overlaps anchor the
reads onto a variable-order de Bruijn graph allowing for multiple k-mer lengths.
Finally, FMLRC [Wang et al., 2018] indexes the de Bruijn graph using a multi-
string Burrows-Wheeler Transform of the SRS reads. This representation is
lightweight in memory, enables multiple k-mer lengths and stores implicitly
k-mer frequencies. FMLRC has two passes of correction, one using a short k-
mer and one using a long k-mer in order to simplify the graph for high complexity
regions to correct. Unlike the above tools, CoLoRMap [Haghshenas et al. 2015]
constructs a weighted alignment graph from the mapping of the SRS reads to
the LRS reads. The mapping provides paths in the graph that maximize the
similarity with the subsequences to correct. CoLoRMap takes advantage of the
paired-end information to leap over regions of LRS reads where no SRS reads
map. We refer to the reviews of [Zhang et al., [2019, |Fu et al.| |2019| and Morisse
et al., [2020| for further information.
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2 Results

We evaluated Ratatosk using our reference-guided preprocessing on a set of
4 Tcelandic trios from deCODE genetics [Jonsson et al.,[2017] and the Ashkenazi
individual HG002 from Genome In A Bottle |[Zook et all 2016]. Each genome
was sequenced with both Illumina and ONT platforms. Two HG002 data sets
basecalled with Guppy 3.6 and Guppy 3.3 were employed as Guppy 3.6 signifi-
cantly improves the raw read accuracy over Guppy 3.3. Genome coverage and
N50 metrics are reported in Table [I] for the ONT reads. The short reads used
are Illumina paired-end reads of length 151 bases with a mean coverage of 42x
in the Icelandic trios and 61x in the HG002 data set. The Ratatosk corrected
ONT reads were subsequently compared to the raw and FMLRC [Wang et al.,
2018] corrected reads. The reviews of|Zhang et al., {2019 and [Fu et al.,|2019| high-
light FMLRC as one of the correction tools with the best overall performance
among hybrid methods. Time and memory usage for Ratatosk and FMLRC are
reported in Appendix, Section [D] All ONT reads were subsequently aligned to
the reference human genome GRCh38.p13 with minimap2 [Li, 2018] using the
default ONT setting for further analysis.

Table 1: Genome coverage and N50 for the ONT reads of the child (C), father
(F) and mother (M) in 4 Icelandic trios and the child in two HG002 data sets.

Guppy Coverage N50
version C F M C F M
T1 3.3 63.68 50.94 64.74 | 20,353 24,093 23,528
T2 3.3 55.68 67.95 70.46 | 25,767 22,496 20,439
T3 3.3 69.50 57.05 56.62 | 24,047 27,787 26,856
T4 3.3 57.07 5740 64.28 | 23,111 15,234 26,634
HGO002-1 3.6 46.72 NA NA | 52,311 NA NA
HG002-2 3.3 108.10 NA NA 22,260 NA NA

2.1 Error rate

Tables [2a] and 2b] show the error rates for the ONT reads corrected by Ratatosk
and FMLRC as well as the raw ONT reads. The mean error rate of the Ratatosk
reads is about 1.9 times lower than the FMLRC reads and about 6.3 times lower
than the raw reads. On the HG002 data sets, 50 % of the Ratatosk reads have
an error rate of 0.28% or below. This is up to 29 times lower than the raw
reads and up to 3.5 times lower than the FMLRC reads. Details on the error
rate calculations are given in Appendix, Section [B]

We also report in Figure [I] the number of supplementary alignments and the
ratio of ambiguous bases as metrics for read quality. Supplementary alignments
occur when an alignment cannot be represented as a single linear alignment [Li
et al., |2009] but instead, as a set of linear alignments where the alignment
with the greatest alignment score is selected as primary and the others as sup-
plementary. The presence of supplementary alignments might indicate an SV
large enough for the aligner to abandon mapping the read with a single linear
alignment. Supplementary alignments might also indicate that the read has
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Table 2: Error rates (in %) for the raw and corrected ONT reads in 4 Icelandic
trios and two HG002 data sets. Best results are highlighted.

Raw FMLRC Ratatosk
C F M C F M C F M
T1 | 11.89 11.20 10.89 | 3.85 3.56 3.33 | 1.76 1.81 1.72
Mean T2 | 10.52 11.20 10.14 | 3.20 3.48 2.94 | 1.70 1.79 1.58
T3 | 9.98 10.52 10.78 | 3.07 3.16 3.47 | 1.73 1.66 1.76
T4 | 10.74 11.19 10.18 | 3.26 3.57 2.94 | 1.56 1.76 1.52
T1 | 9.95 9.10 884 | 141 1.18 1.11 | 0.30 0.31 0.29
Median T2 | 837 9.05 822 | 1.00 1.15 0.88 | 0.28 0.29 0.28
T3 | 7.94 8.42 872 | 1.03 0.99 1.27 | 0.33 0.29 0.35
T4 | 8.91 9.34 816 | 1.23 1.33 0.96 | 0.28 0.28 0.27

(a) Error rates (in %) of the child (C), father (F) and mother (M) in 4 Icelandic trios.

Raw FMLRC Ratatosk
Mean Median | Mean Median | Mean Median
HGO002-1 | 8.81 6.95 2.53 0.55 1.48 0.27
HGO002-2 | 10.12 8.23 2.90 0.99 1.59 0.28

(b) Error rates (in %) for two HG002 data sets.

been partially over-corrected. Finally, ambiguous bases are bases from reads
which do not align in the extremities of primary alignments (soft-clipping) but
do align in at least one distant supplementary alignment of the same reads.
The ratio of ambiguous bases measure the proportion of read bases mapping
ambiguously because of chimeric reads [Marijon et all [2020] or over-correction.
More details are given in Appendix, Section [C]

As shown in Figure [1} Ratatosk slightly decreases on average the number of
supplementary alignments and the ratio of ambiguous bases compared to the
raw reads. On the other hand, FMLRC increases the number of supplementary
alignments by a factor 8.28 and increases the ratio of ambiguous bases by a
factor 1.44. This suggests that Ratatosk can correct soft-clipped bases and
chimeric reads while FMLRC is prone to over-correction.

2.2 Variant calling

There is a limited number of tools that can perform small variant calling on
corrected LRS reads. Clair [Luo et all |2020] and DeepVariant [Poplin et al.,
2018] are machine learning based and can train a model given a training set
of input reads. We use Clair for our evaluations as DeepVariant was several
times slower to train on the raw ONT reads. Longshot [Edge and Bansal, 2019
was not used as it does not call indels while Medaka |Oxford Nanopore Tech-
nologies| laccessed June 10th 2020, 2019] uses an error model specific to the raw
ONT reads and hence, could not be applied to corrected data. A model was
trained with Clair on the raw, Ratatosk and FMLRC ONT reads from HG002-1
using the truth set of variants less than 50 bases long in the high confidence
regions (see Appendix, Section. The different models generated for each type
of input long reads were then used to call small variants on all genomes and
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Figure 1: Number of supplementary alignments and ratio of ambiguous bases
for the Icelandic trios and the HG002 data sets.

variant calls were subsequently evaluated using rtg-tools [Krusche et al.l [2019].

Given a variant truth set, rtg-tools automatically computes an optimal qual-
ity score threshold for the variant calls. Table [3a] shows the variant calls accu-
racy for HG002-1 for which low quality variants below the optimal threshold
are filtered out. On the other hand, Table illustrates a standard setting
for which all variants with the FILTER field set to PASS in the VCF files are
used. With quality score filtering, SNP calls are nearly 99 % accurate for the
raw and Ratatosk reads with a slight accuracy decrease in the SNPs called from
the FMLRC reads. This demonstrates that SNPs are accurately represented in
the raw reads and Ratatosk captures well the SNP candidates in the correction.
However, indels are poorly represented in the raw reads and Ratatosk increases
the indel calls accuracy by up to 40 % compared to the raw reads. When no
filtering is applied, the difference of indel calls accuracy between raw and cor-
rected reads is staggering. Indeed, the indel calls accuracy of raw reads shrinks
to 19 % because a larger number of false positive indels are called compared to
the filtered calls. Indel call accuracy from the FMLRC reads decreases to 73 %
while indels called from the Ratatosk reads decline only to 91.29 % accuracy, a
0.5 % reduction compared to the filtered indel calls.

No variant truth set is available for the Icelandic trios so Mendelian inher-
itance concordance was measured by rtg-tools instead, as shown in Table [4
Note that because the trios were basecalled with Guppy 3.3, another model was
trained using HG002-2 for the raw reads and FMLRC corrected reads. Overall,
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Table 3: Small variant calls accuracy (in %) for the ONT reads from HG002-1
in high confidence (HC) and high confidence non repetitive (HCNR) regions.
Best results are highlighted.

SNPs Indels
Precision Recall F1 Precision Recall F1
Raw 98.94 98.66 98.80 76.41 83.72  79.90

HCNR | FMLRC 97.84 97.18  97.51 91.22 94.36  92.76
Ratatosk 98.53 99.05 98.79 94.90 97.34 96.10
Raw 98.65 97.98  98.31 74.47 40.01  52.05
HC FMLRC 97.44 97.27  97.36 93.08 81.07  87.01
Ratatosk 98.24 99.17 98.70 93.84 89.81 91.78

(a) Variants with quality scores below a threshold automatically computed by rtg-tools
are filtered out.

SNPs Indels
Precision Recall F1 Precision Recall F1
Raw 89.00 99.86 94.12 11.90 95.09 21.16

HCNR | FMLRC 77.97 99.80  87.55 51.83 98.85  68.01
Ratatosk 92.87 99.89 96.25 88.74 99.15 93.65
Raw 87.40 99.75  93.17 10.85 73.64  18.92
HC FMLRC 77.91 99.77  87.50 59.49 93.78  72.80
Ratatosk 92.73 99.88 96.17 86.94 96.09 91.29
(b) All variants with the FILTER field set to PASS in the VCF files are used.

small variants calls from Ratatosk reads are the most consistent with the calls
from each parents and both parents across all trios.

Table 4: Mendelian concordance (in %) of small variants called on the ONT
reads of 4 children from Icelandic trios with respect to the variant calls from
their father (F), mother (M) and both parents (F+M). All variants with the
FILTER field set to PASS in the VCF files are used by rtg-tools. Best results are
highlighted.

Raw FMLRC Ratatosk
F M F+M F M F+M F M F+M
T1 | 98.87 98.92 93.04 | 98.89 98.96 95.62 | 99.49 99.48 98.03
T2 | 98.90 98.78 93.05 | 99.01 99.00 95.89 | 99.50 99.49 97.70
T3 | 98.86 98.92 93.70 | 98.67 98.57 95.23 | 98.94 98.52 96.25
T4 | 98.80 98.98 93.39 | 98.95 99.12 96.02 | 99.51 99.54 98.21

2.3 Assembly

The Ratatosk corrected reads of HG002-1 were assembled using Flye 2.7.1 [Kol-
mogorov et al.,2019] and the produced contigs were evaluated with QUAST 5.0.2
|Gurevich et all [2013] and Merqury |Rhie et al. 2020]. We compared the
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Flye assembly of Ratatosk corrected reads to a recent assembly made from
PacBio HiFi reads with HiCanu [Nurk et al., 2020] and the reference assem-
bly Ashl v1.7 [Shumate et al. 2020] made from Illumina, ONT and PacBio
HiFi reads assembled with MaSuRCA |Zimin et al., 2013]. The Fly/Ratatosk
and HiFi/HiCanu assemblies were post-process with purge_ dups |[Guan et al.,
2020] to exclude allelic contigs from the assemblies. Misassemblies reported by
QUAST were filtered to exclude errors in known SV and segmental duplication
sites as well as centromeric regions using a script from HELEN [Shafin et al.,
2020]. The quality value represents a log-scaled probability of error for the
consensus basecalls while the k-mer completeness measures the proportion of
k-mers shared between the assembly and an accurate SRS data set from the
same individual.

Table 5: HGO002-1 assembly metrics for Ratatosk corrected ONT reads as-
sembled with Flye, PacBio HiFi reads assembled with HiCanu and the Ashl
reference assembly. Misassemblies are filtered to exclude errors in known SV
and segmental duplication sites as well as centromeric regions. All metrics are
computed by QUAST except k-mer completeness and quality value which are
computed by Merqury. Best results are highlighted.

Ratatosk + Flye | HiFi + HiCanu | Ashl
Reference coverage (%) 95.69 96.71 98.50
k-mer completeness (%) 97.21 97.45 97.67
Quality value 48.20 55.17 41.341
NG50 (Mbp) 43.22 42.21 33.65
NGA50 (Mbp) 23.92 18.51 15.62
# contigs 360 422 2,412
# misassemblies 70 84 187
# mismatches per 100 kbp 113.17 178.36 161.09
# indels per 100 kbp 26.90 26.84 27.00

As shown in Table |5} the Flye assembly of the Ratatosk reads is competi-
tive with other high quality LRS assemblies and outperforms them on several
metrics. In particular, the Ratatosk/Flye assembly has the largest NG50 and
NGA50, the lowest number of contigs and the smallest number of misassem-
blies. However, the HiFi/HiCanu assembly displays the best quality value,
likely due to the high accuracy of HiFi reads. While all assemblies have a
similar k-mer completeness, the Ashl reference assembly has the best reference
genome GRCh38 coverage. However, 1.96 % of the Ashl assembly is derived
from the reference genome GRCh38. Overall, these results demonstrate that
the correction performed by Ratatosk is suited for producing highly contiguous
assemblies of quality with very few errors.

3 Conclusion

We present Ratatosk, a hybrid error correction tool for long and erroneous reads
designed for accurate variant calling and assembly. Ratatosk uses short and
long reads to color paths in a compacted de Bruijn graph index and annotate
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vertices with candidate Single Nucleotide Polymorphisms. We demonstrate on
several data sets that Ratatosk decreases the error rate 6-fold and reduces the
number of ambiguously mapped bases in the reads. SNPs calls on Ratatosk
corrected reads are nearly 99 % accurate and indel calls accuracy is up to 40 %
higher compared to the uncorrected reads. Furthermore, variants calls obtained
from 4 corrected trios are highly concordant. Finally, we show that Ratatosk
corrected data enable highly contiguous assembly with fewer errors compared
to other assemblies made from accurate long reads. Future work includes trio-
based correction, additional correction passes and an enhanced path coloring of
the graph to enable a better correction in repetitive regions.

4 Methods

Section[4:1]details the concepts and data structures that will be used throughout
this paper. Section [1.2] describes how the main index is built and preprocessed
for correction. Sections and overview the methods used during the first
and second correction passes, respectively.

4.1 Definitions

A string s is a sequence of symbols drawn from an alphabet A. The length
of s is denoted by [s|. A substring of s is a string in s with a start po-
sition 4, a length [ and is denoted by s(,1). Let A be the DNA alphabet
A={A,C,G,T} for which (A,T) and (C,G) are complementing pairs. The
reverse-complemented string s is the reverse sequence of complemented symbols
in s. The canonical string § is the lexicographically smallest of s and its reverse-
complement 3. A de Bruijn graph (dBG) is a bi-directed graph G = (V, E) in
which each vertex v € V represents a k-mer and its reverse-complement. Only
the canonical k-mer of each vertex is stored in G. A directed edge e € F from
vertex v to vertex v’ representing k-mers x and z’, respectively, exists if and
only if 2(2,k —1) =2'(1,k —1). Each edge e is labeled with the orientation
of the k-mers z and 2’ they connect: {x,2'}, {z,2'}, {Z,2'} or {Z,2’}. Each
k-mer x has | A| possible successors z(2,k — 1) ® a and |A| possible predeces-
sors a @ z(1,k — 1) in G with a € A and ® as the concatenation operator. The
number of k-mers in G is denoted |G|. A path in the graph is a sequence of con-
nected vertices P = (v1,...,v,,). Path P is said non-branching if it is composed
of vertices having an in- and out-degree of one with exception of the head vertex
v1 which can have more than one incoming edge and the tail vertex v,, which
can have more than one outgoing edge. A non-branching path is maximal if it
cannot be extended in the graph without branching. A compacted de Bruijn
graph (cdBG) merges all maximal non-branching paths P from the dBG into
single vertices, called wnitigs, representing substrings of length |P|+k —1. A
simplified dBG and its compacted representation are illustrated in Figures
and A colored de Bruijn graph is a graph G = (V, E,C) in which (V, E) is
a dBG and C is a set of colors such that each vertex v € V maps to a subset
of C'. We extend the definition of a cdBG to a compacted and colored de Bruijn
Graph (ccdBG) where (V, E) is a cDBG, so the vertices represent unitigs, and
each k-mer of a unitig maps to a subset of C.
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(a)

GCGATT )

CAGTT

(b)

Figure 2: A de Bruijn graph in (a) and its compacted counterpart in (b) using
3-mers. For simplicity, the de Bruijn graph is directed and reverse-complements

are not considered.

4.2 Graph construction and preprocessing

Ratatosk takes as input a set S of paired SRS reads and a set £ of LRS reads.
A ¢dBG is built from S to correct the reads in £ using two correction passes as

shown in Figure

( rs ] ( srs

Color graph

Detect SNPs

Corrected LRS

Correct reaE

Corrected LRS
Color graph I

Index
construction

Correction 1

Correction 2

Figure 3: Ratatosk performs two passes of correction, each using a different
k-mer size for the graph construction and a different type of reads for the graph
coloring. LRS reads are shown in blue and SRS reads in green.

4.2.1 Graph construction

Using different k-mer lengths in the graph built from S has been shown to
improve the correction of £ [Miclotte et al. 2016, Morisse et al. [2018] [Wang
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et al. [2018]: A short k-mer is ideal for finding matches between LRS reads and
the graph while unitigs built with long k-mers have a better contiguity. In order
to combine the advantages of short and long k-mers, Ratatosk uses two k-mer
lengths ky and ko with ko > 2k;.

First, a cdBG Gy is built with the long ks-mers of S using the Bifrost graph
engine [Holley and Melsted, 2019]. By default, all ko-mers occurring exactly
once in S are assumed to contain a sequencing error and are discarded from the
graph construction. Subsequently, a cdBG G is built from the short k;-mers of
the unitigs in Go. Graph G is used for the first correction pass while graph G4
is later used in the second correction pass (Figure |3} Section .

4.2.2 Graph coloring

Graph G is turned into a ccdBG by coloring its unitigs with the read pairs
from S with which they share at least one kj-mer, as shown in Figure [4

Given @ SRS read pairs in input, each pair is identified by a color ranging
from 1 to @ Ratatosk uses hashing to ensure that two reads from the same

pair get the same color. Each read is initially given an identifier which is the
hash of the read name and each identifier is associated with a color. To simplify
the coloring and curb its running time, pair identifiers are not guaranteed to be
unique such that multiple read pairs might hold the same identifier, hence the
same color, because their read names hash to the same value. These collisions
are random and are expected to have little impact on the correction.

...TGCGATTA...
...TGCAGTTA...
..TGCACTTA...

( GCGATT )

( CAGTT )
°
: ¢ (cAc :

Figure 4: Graph coloring with three colors. Each color represents a read sharing
at least one k-mer with a unitig.

Coloring unitigs with read pairs is similar to partitions in the guided de
Bruijn graph [Holley et al.,|2017] and links in the Linked de Bruijn graph [Turner
et al., [2018]. Ratatosk enables a memory efficient graph coloring by using two
techniques. First, it discards similar read pairs from the coloring as they rep-
resent redundant information to index, especially in the case of high coverage
SRS data. Second, Ratatosk compacts the set of colors assigned to each unitig
by using consecutive color values rather than random values. Consecutive color
values can be compacted in memory using Run Length Encoding, delta encoding
and compacted bitmaps [Chambi et al.l [2016].

The graph coloring objective is for each read pair P. € S to color a set of
unitigs U, € Gy with color c. Each unitig u € U, shares at least one kj-mer
with P, as shown in Figure [l We devised a probabilistic algorithm which
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colors the graph while discarding similar read pairs and assigning consecutive
color values to unitigs in a greedy fashion. The algorithm performs two steps:
A partial coloring of the graph is initially made for read pair filtering and color
compaction purposes before completing a full graph coloring. In the partial
coloring, each read pair P, will only color the longest unitig u € U.. This unitig
acts as a centroid in the graph and it is expected that read pairs similar to P,
will color the same unitig. Hence, color ¢ and a hash h(U,) are assigned to
unitig v unless there exist another pair similar to P. which has already been
assigned to u. Two read pairs P, and P! are similar if they have the same unitig
set hash, i.e, ¢ # ¢ but h(U,) = h(U,/). In which case, P, is discarded and will
not be used for the full graph coloring. Next, read pairs are given new colors
by assigning, when possible, consecutive color values to pairs clustering to the
same unitigs. A final graph coloring is then performed using read pairs which
are not discarded and their new color values. The mean kj-mer coverage of
unitigs is also computed during the final graph coloring.

After coloring the graph, all unitigs with a mean k;-mer coverage lower than
a pre-defined threshold T, (see Appendix, Section are removed from the
graph. In order to limit even further the memory usage of Ratatosk, unitigs
having a mean kj-mer coverage greater than T),,, have their colors discarded.
These unitigs are usually ki-mers with a low sequence entropy such as poly-
{A,C,G,T} or ki-mers occurring within STRs. They are typically located
within highly branching subgraphs and their colors provide little guidance in-
formation while severely impacting the running time.

4.2.3 Candidate SNP annotation

While most de novo detection methods for SNPs, indels and SVs are based
on the analysis of graph bubbles |[Onodera et al.| 2013, [Peterlongo et al.l 2017,
Paten et al.l [2018] |Garrison et al., 2018], Ratatosk uses instead a simple but
fast string matching method to annotate vertices in the graph containing one
or more candidate SNPs. For each kij-mer x in unitigs, the graph is queried
for all ki-mers having a Hamming distance of 1 with x. Let x = u(p, k1) and
' =u/(p', k1) be ki-mers from unitigs u and u’, respectively, that differ by
exactly one substitution at position ¢ < k;. Unitigs v and ' are then annotated
at position p + 4 and p’ + 4, respectively, with a ITUPAC symbol representing
the substitution. For example, symbol R would be assigned to position 3 in
unitigs GCGATT and GCA of Figure [4] to represent an A/G substitution.

4.3 First correction pass

The following section describes how LRS reads are anchored to the ccdBG and
the methods used to correct non-anchored regions of the LRS reads.

4.3.1 Read Anchoring

We define solid and weak k-mers similarly as defined in LoRDEC and introduce
the definition of near solid k-mers:

e solid k-mer: exact length k substring match between a long read and a
unitig from the graph.

12
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e near solid k-mer: inexact length k£ substring match between a long read
and a unitig from the graph with one base substitution or indel.

e weak k-mer: length k substring of a long read which is neither a solid
k-mer nor a near solid k-mer.

We define two types of regions in a long read:
e solid region: a region of a long read composed only of solid k-mers.

e non-solid region: a region of a long read composed of weak or near solid
k-mers.

A solid or near solid k-mer is also called a match. A match between long
read r at position p, and unitig u at position p,, is denoted m = (p,., r, py, u). A
match m is unique if it is the only match at position p,. in r. A k-mer has at most
one solid match in Gy but can have multiple near solid matches in GG;. Note
that solid and non-solid regions can overlap by k—1 bases. All non-solid regions
are surrounded by two solid regions with the exception of non-solid regions at
the start and end of LRS reads.

4.3.2 Delimiting non-solid regions

Each read r € L is corrected independently, allowing multiple threads to correct
LRS reads in parallel. The graph is queried for each ki-mer of r, resulting in
a list of solid matches My and a list of near solid matches M,,, both sorted by
ascending match position p, in r. Only unique near solid matches (UNSM) are
kept in M,, to prevent anchoring r on a SNP or indel from an incorrect allele.
Furthermore, a ki-mer which is both a solid match and a near solid match is
considered solid and its near solid matches are discarded from M,,.

Non-solid regions of r are detected by finding all pairs of successive solid
matches mg, my € My for which p$ # p! —1 with the exception of non-solid
regions at the extremities of r. The first match mg of the pair is referred to as
the source match and the second match m; of the pair is referred to as the target
match. The length of the non-solid region to correct is then | = pl. — ps + kq. It
includes r(pg, k1) which is the last solid k;-mer from the source solid region and
r(pﬁ, k1) which is the first solid kq-mer from the target solid region as illustrated
in Figure f] If a read starts with a non-solid region, that region has no source
match and hence starts on the first position of the read. Similarly, if a read
ends with a non-solid region, that region has no target match and hence ends
on the last position of the read.

4.3.3 Traversing the graph

In order to correct a non-solid region, Ratatosk attempts to extract one path
in the graph connecting unitig u, of the source match to unitig u; of the target
match. Since the length [ of the non-solid region to correct is known, we as-
sume that the corrected path between us and u; has minimum sequence length
lnin = 1—|+F bases and maximum sequence length l,,. = [ - (1 + F) bases where
F is an upper-bound of the error rate in the long read (see Appendix, Section.
Ratatosk uses two greedy techniques to guide the traversal in the graph and
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Figure 5: Example of a long read r anchored on a ccdBG. A section of r is shown
at the bottom with two solid regions (non-dashed boxes at the extremities)
surrounding a non-solid region (dashed line box at the center). The grey areas
of the solid regions show the source and target matches between the long read
and the graph. The grey area of the non-solid region shows a near solid match.
For simplicity, colors are not shown.

prune the search space, as shown in Figure [6]

First, rather than exploring all paths between unitigs u, and u;, Ratatosk
only explores paths traversing UNSMs in the non-solid region to correct. These
matches provide an anchoring in the non-solid regions as they are near ex-
act ki-mer matches between the graph and the read to correct. Hence, paths
between ugs and u; which do not traverse the UNSMs are pruned because
they are not good candidates for the correction. Let m, be the near solid
match from M,, with the smallest position p!* such that p$ + k; < p”* < pl — k.
Ratatosk first attempts to extract one path connecting unitig us to unitig
u, € my, with a BFS traversal that only explores paths with maximum se-
quence length (p' — p2 + k1) - (1 + F') bases. The extracted path is then ex-
tended from w, to the next UNSM in M,. The process of extending the last
unitig of a path to the next UNSM in M, is repeated until there are no more
UNSMs to consider in M,, or no path extension is possible. Finally, the graph
traversal attempts to extend the path to the target unitig u;. Note that in the
absence of UNSM in the non-solid region to correct, all paths connecting u; and
u; with minimum sequence length [,,;, and maximum sequence length l,,,,, are
traversed.

Second, even using UNSMs to prune the search space during traversal, the
subgraph between two unitigs u, and w,," from UNSMs can be very large. This is
particularly true for LRS reads with a high error rate, resulting in long non-solid
regions with few or no UNSMs. In order to prune the search space between u,,
and u,’, a greedy graph traversal is used to extract one path connecting the two
unitigs. Unitig u,, is first extended by visiting all paths of length P,,,, vertices
with a BFS traversal. Each traversed path is given a probability sp of being
the correct path to extend and only the path with the greatest probability is
extended. The path chosen for extension maximizes its sequence similarity with
the non-solid region to correct. Furthermore, as colors highlight paths in the
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graph representing SRS reads, the path chosen for extension also maximizes its
color similarity with the surrounding solid regions. Hence, before correcting a
non-solid region, Ratatosk first computes the union C of all colors sets C,, from
the solid matches and UNSMs within an interval corresponding to the non-solid
region start and end positions extended of B bases on each side, i.e,

C:UC’u,VmEMS,MnWithpi—BSprgpi—l—B (1)

uem

During the BF'S traversal, a path probability sp is computed for each traversed
path based on the number of colors the path shares with C' and the sequence
similarity of the path to the region to correct. Specifically, given a path P
composed of Py,q, unitigs and its color set C), = uLéJPCu’ the color matching

probability of P is s, = ‘Cl"glc‘ and the sequence matching probability s, is

derived from the normalized edit distance of P to the non-solid region to correct
using an infix alignment computed by the edlib tool [Sosi¢ and Sikié, 2017]. Both
probabilities are then conflated:

S+ Sq
Se8q+ (1 —sc) - (1= sq)

sp = (2)
The path with the greatest probability sp is extended by starting a new graph
traversal from its last unitig. The extension continues until unitig w,,” is reached
or no path can be extracted as a result of a tip in the graph or extending over
(p —p + k) - (1 + F) bases.

To enable a faster traversal, a local minimum number of colors T¢ is com-
puted from the surrounding solid regions and the unitigs of UNSMs. Each
traversed unitig u of a path P must be colored by at least T colors of C' such
that:

TC:D-Iréin|Cu|,VmEMS7Mn with pf — B<p, <p.+ B (3)

and D being a fixed lower bound factor (see Appendix, Section . If the color
set of a traversed unitig has less than T colors, its path is not explored any
further nor it is considered for extension.

A path extension connecting unitig wu, to unitig u, might end prematurely
for multiple reasons: all possible extensions end on a tip of the graph because
of incomplete SRS data or insufficient color coverage in the traversed subgraph.
In such a case, the extended path is completed with a gap corresponding to the
non-solid subsequence to correct and the path extension resumes from unitig u,,.
An example of path extension with a gap is illustrated in Figure

Finally, non-solid regions located on long read extremities have only one
surrounding solid region. The non-solid region at the start of a long read is
corrected using a backward graph traversal from w; and the one at the end of
a long read is corrected with a forward graph traversal from us. Because each
of these graph traversals has no target match, any path with length [ base such
that in <1 <l is returned as a candidate for correction.

15


https://doi.org/10.1101/2020.07.15.204925
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.204925; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure 6: In (a), the union of colors is computed within the solid regions around
the non-solid region to correct and the USNMs. This union will partially guide
the graph traversal, along with the sequence similarity of the paths to the non-
solid region. In (b), a first subgraph (highlighted in red) of all paths starting
at unitig us with P, = 2 unitigs is explored for correction. The lower path is
extended using the same method (shown in green) and a path connecting to u,
is found.

Figure 7: Example of a gap in a path. Path P is first extended until unitig wu,,
then a gap corresponding to a subsequence from the uncorrected read is inserted
in P and the extension of P resumes from unitig u,,’.

4.3.4 Forward and backward corrections

A candidate path for correction is incomplete if it contains a gap or if it does not
connect to the unitig of a target match. If no path or only an incomplete path
has been extracted, Ratatosk corrects the non-solid region backward, i.e., from
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the target match to the source match. Indeed, the forward graph traversal might
have stopped prematurely for multiple reasons, one of which being that the color
guidance led incorrectly to a tip in the graph. However, traversing the graph
backward might lead to a different path. If both forward and backward paths
are incomplete, Ratatosk merges both paths by aligning their sequences to the
non-solid region using the Needleman—Wunsch algorithm (global alignment).
The merged sequence is created by traversing the alignment of both forward
and backward corrections at the same time and selecting subsequences in each
corrections. In the case of candidate paths starting or ending a long read, all
candidate paths are aligned to the non-solid region using a local alignment that
does not penalize gaps at the end. The candidate path with the smallest edit
distance is chosen for the correction.

4.3.5 Candidate SNP correction

Heuristics used to traverse the graph as presented in Section [£.3.3] might incor-
rectly extend a path and lead to the erroneous correction of a non-solid region
using SNPs from incorrect alleles. Once a path has been selected to correct a
non-solid region, all the positions in this path matching candidate SNPs and
their [IUPAC symbols are known from the unitigs. Let s be the non-solid region
and s’ its corrected counterpart. Sequence s’ is aligned to s and a CIGAR string
is generated from the alignment. Ratatosk iterates over matching positions of
the CIGAR string (symbol M) denoted m = (s, p, s’,p’). Note that m indicates
that base s(p, 1) is either a match or a mismatch with base s'(p’,1) but is not
part of an insertion or deletion in the alignment. Let Mj,, be the set of all
matches m = (s,p,s’,p’) for which s'(p’,1) has an assigned IUPAC symbol in
the graph indicating a candidate SNP. For each match m = (s,p, s’,p’) € Mgpp,
base b = s(p, 1) is compared to the IUPAC symbol associated to b = s'(p/,1).
If b is one of the possible bases represented by the IUPAC symbol, then b’ is
corrected with b. This method enables a conservative correction of SNPs in
the corrected non-solid regions by using only bases from the uncorrected non-
solid regions which are compatible with the candidate SNPs from the graph.
However, this method only corrects SNPs in the matching or mismatching re-
gions of the alignment and discards candidate SNPs located within insertions
of s'. To overcome this issue, a match m € Mg, is said strongly compatible if
s'(p',1) = s(p, 1) prior to SNP correction. A strongly compatible SNP indicates
that Ratatosk is confident in the subpath that was selected to correct the region
around that candidate SNP. As the strongly compatible SNP at position p’ is
from unitig v’ € m, all bases which are candidate SNPs in u’ are used to correct
SNPs in the inserted positions of the alignment (symbol I in the CIGAR string)
around position p’.

4.4 Second correction pass

In the first correction pass, Ratatosk corrected each LRS read independently
from the other reads in £. In a second correction pass, Ratatosk takes advan-
tage of the set of corrected LRS reads as a whole. Indeed, reads corrected during
the first pass might be sufficiently error-free to correct the remaining non-solid
regions. Furthermore, LRS reads are at least an order of magnitude longer than
SRS reads and do not need to be paired, hence offering more information to
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which paths to traverse in the graph. In the following, we describe the second
correction pass with a highlight on the differences with the first correction pass.

Let £’ be the set of corrected LRS reads obtained from the first correction
pass. First, graph G2 built from the ko-mers of S (Section is loaded in
memory. Compared to G, unitigs of G2 have a better contiguity and some
of the highly branching subgraphs of G; corresponding to repetitive regions
are untangled in G5. Graph coloring and candidate SNP annotation using £’
are performed as described in Sections [£:2.2] and respectively. Because
the reads in £’ are long and still erroneous in the uncorrected regions, they are
not expected to be similar and Ratatosk does not perform similar reads removal.

Reads of £’ are then anchored on the graph and non-solid regions are cor-
rected as described in Section Parameter B in Equation [I] corresponds to
the size of a buffer around a non-solid region where the union of unitig colors
from solid and UNSMs is computed. In the first correction pass, solid regions
are expected to be short and sparse because of the high error rate of LRS reads.
Hence, B was large enough to span two SRS reads from the same pair and
the gap that intersperse them in order to capture as many colors as possible.
Corrected LRS reads have no gap and are much longer than SRS reads so it is
expected that solid regions are much more abundant and contiguous than during
the first correction pass. Distance B is therefore much smaller for the second
pass (Appendix, Section which saves computation time. Furthermore, solid
regions are required to be at least B > ko bases long in the second pass to
increase the contiguity of solid regions and provide a better anchoring on the
graph.

During path selection described in Section BF'S traversals explored all
paths of P, unitigs and a path probability was assigned to each one of them
before selecting one path for extension. Traversing a fixed number of unitigs
avoids a combinatorial growth of the number of explored paths, especially in
complex subgraphs with short cycles that are characteristic of STRs. However,
as unitigs can have any length > ki, it has the disadvantage that the path
probability might be computed for paths of P, ., unitigs with different sequence
lengths. Instead, the graph traversal in the second correction pass explores paths
with a minimum sequence length of B bases rather than a minimum number of
unitigs.

Once a path P has at least B bases in its sequence, its color matching
probability s. and sequence matching probability s, are computed and conflated
into a path probability sp. The construction of color set C used in the color
matching probability s. is shown in Equation [4] and only uses the intersection
of colors from each side of the non-solid region, i.e, C* and C?, rather than the
union (Equation [1)) in order to remove erroneous colors which do not belong to
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this region:

c=cJc!
C* = () Cu, Vm € M; with p}, — B < py < p}, n
uem
C'= () Cu, ¥m € M, with pl, < p. <pl. + B
uem

4.5 Reference-guided correction

While Ratatosk is a reference-free method, we propose an optional reference-guided
preprocessing of the reads which is beneficial in several ways. This pipeline first
maps the input SRS and LRS reads to a reference genome and then clusters the
reads into bins corresponding to 5 Mbp long regions of the reference. Each bin
of SRS and LRS reads is subsequently corrected independently. The benefit is
three-fold:

e Graphs GG and G5 built from an SRS bin are much smaller and contiguous
than for the entire SRS data set, hence reducing the probability of selecting
an incorrect path during graph traversal.

e Computation time is reduced as the search space in each bin is much
smaller than for the entire SRS data set.

e Each bin is corrected independently so the workload can be distributed in
parallel over many nodes of an HPC.

However, a reference-guided preprocessing also introduces some challenges.
First, it is common that reference genomes contain gaps. For example, the hu-
man genome reference GRCh38.p13 has about 161 Mbp of N bases. Second,
SRS reads overlapping large insertion events are expected to be unmapped. Fi-
nally, SRS reads with poor mapping qualities map ambiguously to the reference
and might be incorrectly binned.

To overcome these issues, Ratatosk detects reads from the full SRS data
set & which are likely missing in each bin. Let S, and £, be the subset of
SRS and LRS reads of a bin b, respectively. To begin with, cdBGs Gf and Gf
are built from the ki-mers occurring twice or more in S, and L, respectively.
Once Gf is built, its unitigs are annotated with their mean kj-mer coverage.
At first, Gf contains many more kj-mers than Gf because many erroneous
ki-mers from L, occur twice or more in the bin. To prune these erroneous
ki-mers from GF, unitigs having low coverages are removed iteratively until
|GE£| ~ |GE|. Subsequently, all reads r € S are queried: If r contains many
ki-mers occurring in Gf but not in Gf, r is suspected to be missing from the
bin and is added to Sp.

We outline the binning and correction pipeline proposed, as illustrated in
Figure[§ in the following. First, all reads from S and £ are binned into regions
of 5Mbp according to their mapping to the reference genome. Low mapping
quality (< 30) and unmapped LRS reads are set aside in a bin for ambiguous
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long reads. Once all reads have been binned, a local correction is performed
in parallel for all non-ambiguous bins and the output corrected LRS reads are
merged. Note that each bin correction has access to S (top red arrows in
Figure [§) to retrieve the missing SRS reads from the bin. Finally, the bin of
ambiguous LRS reads is corrected globally using S. This correction is assisted
by the previously corrected non-ambiguous LRS reads to enhance graph coloring
during the second round of correction (bottom red arrow in Figure .

Unmapped

MAPQ<30

Corrected LRS bins

Corrected LRS

Figure 8: Reference-guided preprocessing of the input SRS reads (green) and
LRS reads (blue). Reads are first binned and each bin is corrected indepen-
dently. Unmapped or low mapping quality LRS reads are corrected using all
SRS reads and all corrected LRS bins. Red arrows indicate input read sets
which assist with the correction but are not corrected themselves.
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A Default parameters

Graph construction and coloring:

[ ] k1:31
o k=163
e FF=10.25

d Tmaw(u) =512 (|U| —k + 1) forueV
First correction pass:

o Thin =2
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e B =500
e D=0.1
o Pru:=4
Second correction pass:
o Tin=1
e B=095

B Error rate

Let r be an LRS read which has been aligned to a reference genome. We define
the following;:

|r|: Number of bases in r

D,.: Number of deleted bases in alignment of r to reference

I.: Number of inserted bases in alignment of r to reference

e M,: Number of mismatching bases in alignment of r to reference

Sr: Number of soft-clipped bases in alignment of r to reference

The deletion, insertion and substitution error rates of a set of LRS reads £
are:

M,
Ev=) ——=
7;6 |r| — S,
And the combined error rate of R is:

o ZD —|—I+M

rel

The error rates are computed from primary alignments only.

C Ambiguous bases

Ambiguous bases are bases which soft-clip in the primary alignment but map in
non-overlapping supplementary alignments to distant reference positions, such
as different chromosomes, compared to the primary alignment reference position.
The ratio of ambiguous bases aim to measure the proportion of over-corrected
bases in reads. To avoid counting ambiguous bases in supplementary align-
ments of a read r that might correspond to a large SV event, a supplementary
alignment is only used if it does not overlap the primary alignment nor an-
other supplementary alignment of r with a large buffer of 1 Mbp on each side of
the alignment. Algorithm [I]details the ambiguous bases ratio computation for a
read represented by a primary alignment and a set of supplementary alignments.
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Algorithm 1 Compute ratio of ambiguous bases

Input: Read r, Primary alignment P, list of supplementary alignments S
1: function AMBIGUOUSBASES(r, P, S)

2: S’ + sort(S) > Sort by decreasing alignment score
3: Co+— @ > Set of ambiguous read positions
4: Cp + set of soft-clipped read positions in P

5: B < 1,000,000 > Buffer size in bp
6: T < empty interval tree

7 pr’ « first mapped position of P in reference

8: pr + last mapped position of P in reference

9: T.addInterval(p?’, pT) > Add [pf, pT]
10: for each S € &’ do

11: p? « first mapped position of S in reference

12: p? + last mapped position of S in reference

13: O « T.getOverlappinglIntervals(p? — B, pJ + B)

14: if |O| =0 then > No overlap
15: Mg <+ set of mapped read positions in .S

16: Co  CoU(CpNMyg)

17: T.addInterval(pS, p5)

18: return Sl

I

D Time and memory

Time (CPU h.) | Peak RAM (GB)
Min Max Min Max
Ratatosk | 11,698 22,252 | 213.22  305.29
FMLRC 4,228 10,828 | 122.69  253.49

The reported running times do not include data preprocessing for both tools
which account for a negligible amount of time and memory compared to the total
running time. On average, Ratatosk is 3.13 times slower than FMLRC. However,
preliminary results on the HG002-1 data set suggests that Ratatosk v0.2 is
2.57 times faster than Ratatosk v0.1 which was used in our experiments.
Ratatosk was run in parallel on several machines due to the reference-guided
preprocessing of the input data while FMLRC was run on a single machine. The
reported peak of memory for Ratatosk matches the correction of the ambiguous
LRS bin at the end of the preprocessing pipeline as it requires to use all the
input SRS data. Indeed, Ratatosk memory usage is dominated by the graph
index and the SRS data coloring of its vertices during the first correction pass.
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E Tools
Tool Version / | URL
Commit
Ratatosk 0.1 https://github.com/DecodeGenetics/Ratatosk

FMLRC 77dde49 | https://github.com/holtjma/fmlrc
minimap2 2.14-r883 | https://github.com/1h3/minimap?2

Clair 2.0.6 https://github.com/HKU-BAL/Clair

rtg 3.10.1 https://github.com/RealTimeGenomics/rtg-tools
Flye 2.7.1 https://github.com/fenderglass/Flye

QUAST 5.0.2 https://github.com/ablab/quast

Merqury ed5918c | https://github.com/marbl/merqury
purge_dups | fe8dce2 https://github.com/dfguan/purge_dups

Script quast_sv_extractor.py was obtained from HELEN (https://github.
com/kishwarshafin/helen/tree/master/helen/modules/python/helper).

F HGO002 Data

Data URL

ONT Guppy 3.6 | https://precision.fda.gov/challenges/10

ONT Guppy 3.3 | https://community.nanoporetech.com/knowledge/
datasets/hg002

Mumina https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/HGO02_
NA24385_son/NIST_HiSeq_HGOO2_Homogeneity-10953946/
NHGRI_I1lumina300X_AJtrio_novoalign_bams

Small variants ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ | |
AshkenazimTrio/HGO02_NA24385_son/NISTv3.3.2/GRCh38
SVs* ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/
AshkenazimTrio/HGO02_NA24385_son/NIST_SV_v0.6/
HiFi + HiCanu | ftp://ftp.dfci.harvard.edu/pub/hli/hifiasm/ |
submission/HiCanu/HGO02.HiCanu.purge.fa.gz

Ashl v1.7 ftp://ftp.ccb. jhu.edu/pub/data/Homo_sapiens/Ashl/
v1.7/Assembly/

* Require to be adapted from GRCh37 to GRCh38 by changing the contig names and lifting

over the genomic regions to run with quast_sv_extractor.py.
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