bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046300; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Dukart et al.

JuSpace: A tool for spatial correlation analyses of magnetic resonance
imaging data with nuclear imaging derived neurotransmitter maps

Juergen Dukart!?, Stefan Holiga2, Michael Rullmann*, Rupert Lanzenbergers, Peter C.T.
Hawkins®, Mitul A. Mehta®, Swen Hesse*, Henryk Barthel*, Osama Sabri*, Robert Jech?,
Simon B. Eickhoff'2

1Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jilich, 52428
Jilich, Germany.

2 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Dusseldorf, 40223
Dusseldorf, Germany.

3 Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La
Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.

4 Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany.

5 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Wahringer Giirtel 18-20,
1090, Vienna, Austria.

6 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College
London, London SE5 8AF, UK

7 Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of
Medicine and General University Hospital, Katefinska 30, 128 08, Prague, Czech Republic.

Word count (abstract /main text): 147/3775

Corresponding author:

Juergen Dukart, PhD

Institute of Neuroscience and Medicine - INM-7: Brain and Behaviour, Research Center Julich
Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Dusseldorf
Wilhelm-Johnen-Stral3e,

52425 Jilich, Germany

Email: juergen.dukart@gmail.com



mailto:juergen.dukart@gmail.com
https://doi.org/10.1101/2020.04.17.046300
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046300; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Dukart et al.

Abstract

Recent studies have shown that drug-induced spatial alteration patterns in resting state
functional activity as measured using magnetic resonance imaging (rsfMRI) are associated
with the distribution of specific receptor systems targeted by respective compounds. Based on
this approach, we introduce a toolbox (JuSpace) allowing for cross-modal correlation of MRI-
based measures with nuclear imaging derived estimates covering various neurotransmitter
systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma-
aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson’s
disease patients (PD) and risperidone-induced changes in rsfMRI and cerebral blood flow
(CBF). Consistently with the predominant neurodegeneration of dopaminergic and
serotonergic system in PD, we find significant spatial associations between rsfMRI activity
alterations in PD and dopaminergic (D2) and serotonergic systems (5-HT1b). Risperidone
induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic
systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to

underlying neurotransmitter information.
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Introduction

Magnetic resonance imaging (MRI)- derived measures are now commonly applied to study
brain function and structure in health and disease (Good et al., 2001; Bohanna et al., 2008;
Bloudek et al., 2011; Drysdale et al., 2017). Voxel- and region-wise analyses are commonly
applied to study associations between task-based (tbfMRI) and resting state (rsfMRI) MRI
measures and observed symptoms, behaviour or genetic information (Meyer-Lindenberg and
Weinberger, 2006; Thompson et al., 2014; van Erp et al., 2015). RsfMRI measures provide
replicable pathophysiological marker for various behaviours as well as different neurological
and psychiatric conditions (Bernhardt et al., 2010; Telesford et al., 2010; Holiga et al., 2019).
Despite this valuable information, biological and methodological limitations are imposed with

respect to interpretation of the outcomes of voxel- and region-wise analyses.

From a methodological point of view, analyses of tbfMRI and rsfMRI are often limited by the
rather low to moderate test-retest reliability of the commonly applied voxel- and atlas-based
measures (Holiga et al., 2018). This low test-retest reliability and the resulting low signal-to-
noise ratios impede constraints on the ability of fMRI to identify robust and replicable
associations. Correspondingly, to date both tbfMRI and rsfMRI failed to achieve integration
into routine clinical applications for the suggested indications (Lee et al., 2013; Leuthardt et
al., 2018). Recent studies have shown that the overall spatial activity patterns (i.e. the relative
within-subject activation of one region over another) of both tbfMRI and rsfMRI measures
provide much more reliable marker as compared to standard voxel- and region-wise analyses
(Dukart et al., 2018; Holiga et al., 2018). Making use of this higher reliability may therefore
represent a viable way of improving the replicability of fMRI applications.

From biology point of view, standard analyses of fMRI data focus on identification of voxel- or
region-wise signals associated with a specific condition. Whilst providing information about the
spatial location of respective signals, such analyses do not allow drawing conclusions on
potential neurophysiological mechanisms underlying the observed associations. To overcome
this limitation, several recently published studies made use of spatial associations between
underlying biology and observed imaging alterations by correlating ex vivo micro RNA spatial
expression patterns with different imaging measures (Rizzo et al., 2016; Selvaggi et al., 2018;
Liu et al., 2019). The major idea behind such analyses is that disease- or drug-induced
changes in imaging measures occur in association with availability of a specific tissue property
(i.e. expression of a specific receptor) that is affected by the respective condition. For example,
in a disease that is primarily associated with loss of dopaminergic neurons, one would expect
strongest imaging changes in regions, which contain many of such neurons in healthy

individuals. Whilst promising, this approach also makes several assumptions that do not
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necessarily hold or are unknown for many of the underlying systems (Unterholzner et al.,
2020). For example, correlations with mRNA expression imply that the respective genes are
transcribed and lead to measurable changes of tissue structure or function. A viable way of
making use of this concept whilst avoiding these assumptions is by integration of positron
emission tomography (PET) or single photon computed emission tomography (SPECT)
derived tissue property maps. Recent advancements in PET and SPECT tracer development
resulted in a variety of novel tracers that can reliably measure the availability of specific
receptors but also functional aspects such as synthesis capacity across a variety of
neurotransmitters (Smith et al., 1998; Mawlawi et al., 2001; McCann et al., 2005; Lehto et al.,
2015; Beliveau et al., 2016). Such PET- and SPECT- derived maps provide a more direct
measurement of specific tissue properties as compared to mRNA expression. In line with that,
we have shown that MRI-derived spatial activity patterns induced by different drugs correlate
with PET- and SPECT- derived information that are associated with the mechanism of action

of respective compounds (Dukart et al., 2018).

Here we introduce the JuSpace toolbox allowing for spatial correlation of MRI-based or other
imaging modalities with PET- and SPECT- derived maps covering a variety of neurotransmitter
systems. To demonstrate its utility, we deploy the toolbox to rsfMRI data of Parkinson’s disease
(PD) patients on and off levodopa — a disease with devastating effects on multiple
neurotransmitter systems, including major contributions from dopamine and serotonin (Booij
etal., 1997; Pagano et al., 2017) — as well as to cerebral blood flow data of healthy volunteers
scanned on and off risperidone — an antipsychotic with a serotonergic and dopaminergic

mechanism of action.

Methods
Software description
[Figure 1]

The main idea of JuSpace is to test if MRI-derived information is spatially structured in a way
that reflects the distribution of specific biologically interpretable tissue properties as derived
from PET and SPECT modalities. JuSpace is a comprehensive license-free toolbox (only for
non-commercial use) for the integration of PET- and SPECT- derived modalities with other
brain imaging data. However, we do ask to cite the specific references for the PET and SPECT
maps, which are used for the respective analyses. The references are provided in Table 1.

The currently released version is available at https://github.com/juryxy/JuSpace). JuSpace has

been developed in the Matlab environment (Matlab 2017a or higher) and requires Statistical

Parametric Mapping Software (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) as
4
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well as the Matlab Statistics toolbox to be installed. It consists of a group of Matlab functions
together with PET receptor maps covering various receptor systems. JuSpace provides a
graphical user interface (Figure 1a) as well a direct call to the respective functions. There are

no specific system requirements.
Included PET maps

All PET and SPECT maps are free for non-commercial distribution and were previously
published as described in Table 1 and in the release notes provided with the toolbox. All PET
maps were derived from average group maps of different healthy volunteers and linearly

rescaled to a minimum of 0 and a maximum of 100:

PET — min(PET)
*
max(PET — min(PET))

PETescatea = 100

PET maps covering the following receptor types are included in the first release: 5-HT1a
(serotonin 5-hydroxytryptamine receptor subtype 1a), 5-HT1b (5-HT subtype 1b), 5-HT2a (5-
HT subtype 2a), D1 (dopamine D1), D2 (dopamine D2), DAT (dopamine transporter), --DOPA
(dopamine synthesis capacity), GABAa (gamma-aminobutric acid), NAT (noradrenaline

transporter) and SERT (serotonin transporter) (for references see Table 1).
Workflow
[Table 1]

The analysis workflow starts with the user selecting the imaging (i.e. MRI) data to correlate
with provided PET and SPECT maps. Either data for a single modality (“files 1” only) or data
to generate a contrast between conditions (“files 1” and “files 2”, i.e. patients vs. healthy
controls or pre- vs. post-treatment data) are entered as input. The default atlas is the
neuromorphometrics atlas from SPM12 (Friston et al., 1994) excluding all white matter and
cerebrospinal fluid regions. A symmetric version of the atlas with bilateral regions of interest
(left side flipped) is also included in the release. Neuromorphometrics atlas probability tissue
labels were derived from the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas
Labeling” (https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details). The
atlas can be changed to any custom atlas using the “Select atlas” button. The atlas is used to
extract mean regional values from the entered MRI modalities to be correlated with respective
values from selected PET and SPECT maps. An atlas is needed as correlation of voxel-wise
maps would result in highly inflated degrees of freedom. The number of distinct spatial features
strongly depends on data smoothness but is typically in the range of several hundred or more

distinct resolution elements (Mikl et al., 2008). In that sense, the default atlas with 119 regions
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provides a conservative estimate for the effective degrees of freedom. Next, the computing

option is selected. Currently available options are:

(1) Effect size between groups (computes Cohen’s d for each atlas region between files

selected in files 1 and files 2)

(2) Effect size of pair-wise differences (computes Cohen’s d for pair-wise differences

between files in files 1 relative to files 2)

(3) Mean from files 1 (computes mean value per atlas region for files 1)

(4) Files 1 each image (extracts mean value per atlas region for each file from files 1)
(5) Compute individual z-score maps for each file in files 1 relative to files 2

(6) Computes pair-wise differences between files 1 and files 2

(7) Computes leave-one-out z-scores maps for each file in files 1 relative to other files
in files 1

(8) Extracts mean value per atlas region for each file from files 1 and compares

correlation coefficients for all images against null distribution

Further, the analysis type is selected (Pearson correlation, Spearman correlation or multiple
linear regression). PET and SPECT maps can be selected by clicking on the respective name
(multiple selection is supported, i.e. hold control button during selection on a Windows

machine). The currently available PET and SPECT maps are listed in Table 1.

Further, the option for exact permutation based p-value (only for computing options (1),(2),(5)
and (6)) can be selected (as described below). Additionally, the option is provided to adjust for
spatial autocorrelation using the grey matter probability map TPM.nii from SPM12. The saving
directory has to be specified using the “Save directory” button. The “Compute” button initiates
the computation by calling the function “compute_DomainGauges” with the chosen

computational parameters.
Computational workflow

All provided files as well as the selected PET maps are loaded into the atlas space as mean
value per file and region (Figure 1b). Depending on the choice of the computing option, a
spatial correlation or multiple linear regression is then computed between the selected PET
maps and the extracted values as per selected computing option. In case adjustment the
optional adjustment for spatial autocorrelation was selected, a partial spatial correlation is
computed between both adjusting for local grey matter probabilities as estimated from TPM.nii
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provided with SPM12. In case of multiple linear regression, local grey matter probabilities are
added into the model. For correlation analyses, Fisher's z-transformed coefficients are
provided as well as the original correlation coefficients. The distribution of Fishers z
transformed correlation coefficients or regression coefficients for computing options (5)-(8) is
compared against null distribution using one-sample t-tests. For group-level computing options
(1)-(4), the p-value is provided directly for the specific correlation /multiple linear regression
analysis.

Permutation statistics

An optional exact orthogonal permutation based p-value can be computed for correlational
analyses (Pearson and Spearman) for computing options (1),(2),(5) and (6). The orthogonal
permutation approach ensures that the shuffled labels vector is uncorrelated with the initial
label vector providing a more valid null distribution (Aickin, 2010). The exact p-value is then
computed using add-one discounting. For the within-subject designs (computing option (2) and
(6)), the permutations are performed by random switching of 50% of the data between files 1
and files 2 whilst maintaining pairwise associations. For the between-subject designs
(computing options (1) and (5)), the files from both groups are randomly permuted across files
1 and files 2 whilst maintaining the initial relative ratios of both groups in each permutation. For
options (5) and (6), the exact p-value is computed as the number of mean absolute correlation
coefficients across permutations exceeding the observed mean absolute correlation

coefficient.

[Figure 2]

Correlation between PET and SPECT maps

We computed Spearman correlations using computing option (4) with and without adjustment
for auto-correlation to understand the interdependencies between all included PET and
SPECT maps. Significant positive correlations were observed between most PET maps with
strongest correlations of up to rho=.89 for GABAa and 5-HT2a and rho=.88 for DAT and SERT
(all p<.001) (Figure 2). The only significant but weak negative correlation was observed
between 5-HT1a and D2 (rho=-0.19, p=.037). To illustrate the utility of JuSpace we applied it
to two datasets capturing disease- and drug-induced activity alterations as measured using
rsfMRI.

Application example 1
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Dataset

To demonstrate the functionality of the JuSpace we applied it to an rsfMRI dataset of 30 PD
patients scanned on and off levodopa as compared to 30 age and sex matched healthy
controls (HC). A detailed description of the dataset as well of image acquisition and
preprocessing is provided in Supplement 1. Fractional Amplitude of Low Frequency
Fluctuations (fALFF) was computed as a measurement of local activity using the REST toolbox

with default parameters (linear detrending and 0.01-0.08 Hz band-pass filtering).
Spatial correlation analyses

We aimed to evaluate if fALFF alterations in PD patients on and off levodopa (individual z-
scores) as compared to HC are correlated with specific neurotransmitter systems. For this, we
used the JuSpace toolbox to compute Spearman correlation coefficients between respective
measures (computing option (5)) and the above PET maps included in the toolbox. We further
aimed to test for the effects of levodopa on the fALFF maps. For this, we correlated the single
subject pairwise differences between the fALFF maps with and without levodopa with the
above PET maps (computing option (6)). Exact permutation-based p-values (with 10000
permutations) were computed for all analyses to test if the mean correlation coefficients
observed across subjects are significantly different from the null distribution. All analyses were

false discovery rate (FDR) corrected for the number of tests for each group comparison.
Voxel-wise analyses

To compare the sensitivity and the information provided by the spatial correlation approach we
additionally performed standard voxel-wise analyses in SPM12 comparing either PD patients
on and off levodopa to HC (two-sample t-tests, including age and sex as covariates), or PD
patients on levodopa to their off levodopa state (paired t-tests). The focus of the above spatial
correlation analyses was on evaluating similarity of PD-related and drug-induced spatial
patterns with specific PET maps. To visualize all regions showing strongest respective
changes we applied a liberal voxel-wise threshold of p<.05 combined with a cluster threshold
of 100 voxels. Additionally, we report all contrasts which survive classical voxel-wise whole-

brain family-wise error correction (p<.05 FWE corrected) for multiple comparisons.

Application example 2

Dataset and image processing
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In a second application example, we applied JuSpace to a CBF dataset of healthy volunteers
(N=21) scanned on placebo and on a low and high dose of the dopamine antagonist
risperidone (0.5 and 2 mg) — a serotonin and dopamine antagonist. The risperidone cohort is
described in detail in Supplement 1 and in a previous publication (Hawkins et al., 2017). Pre-
processing of the CBF risperidone data is described elsewhere (Dukart et al., 2018). In brief,
it comprised computation of quantitative CBF maps, normalization into MNI space using
structural information and masking of non-grey matter voxels. Additionally, smoothing with
Gaussian kernel of 8 mm FWHM was applied prior to voxel-wise analyses.

Spatial correlation analyses

For the risperidone dataset, we tested for the effects of high and low dose of risperidone as
compared to placebo and to each other by computing Spearman correlation coefficients
between respective within-subject pairwise differences (computing options (6)). Exact
permutation-based p-values (10000 permutations) were computed for all analyses. All

analyses were FDR corrected according to the number of tests for each group comparison.
Voxel-wise analyses

We computed a within subject ANOVA to compare risperidone high dose, risperidone low dose
and placebo conditions using pair-wise t-contrasts. Same voxel- and cluster-wise thresholds

as for the PD dataset were applied.

Results

Application example 1

[Figure 3]

Results of spatial correlation analyses

Individual fALFF alterations in PD patients off levodopa as compared to HC were significantly
associated with spatial distribution of D2 (p<.001) and 5-HT1b (p=.003) receptors as derived
from healthy subjects (Figure 3a). Similarly, fALFF alterations in PD patients on levodopa were
significantly associated with availability of D2 (p=.002) and 5-HT1b receptors (both p=.008)
(Figure 3b). There was no significant difference between levodopa on and off conditions (all
p>.29) (Figure 3c).

[Figure 4]
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Results of voxel-wise analyses

In voxel-wise comparisons to HC, decreased fALFF was observed in PD on and off levodopa
conditions in an extensive network covering predominantly prefrontal, parietal, cerebellar,
basal ganglia, supplementary and primary motor regions (Figure 4a, b). Increased fALFF was
observed primarily in temporal and orbitofrontal cortices. Decreased fALFF was observed in
PD on levodopa as compared off levodopa in prefrontal, left temporal and right parietal cortices
(Figure 4c). None of the effects survived whole-brain voxel-wise correction for multiple

comparisons

Application example 2
Results of spatial correlation analyses

CBF alterations induced by the low dose of risperidone as compared to placebo were
significantly associated with D1 (p=.002), DAT (p<.001), F-Dopa (p=.006) and SERT (p<.001)
maps (Figure 3d). CBF changes induced by the high dose of risperidone were significantly
correlated with 5-HT2a (p<.001), D1 (p=.003), D2 (p=.003), DAT (p<.001), GABAa (p<.001)
and SERT (p<.001) maps (Figure 3e). CBF changes with the high dose as compared to low
dose of risperidone were significantly associated with 5-HT2a and GABAa receptor availability
(both p<.001) (Figure 3f).

Results of voxel-wise analyses

Increased CBF was observed in basal ganglia comparing high and low dose of risperidone to
placebo (Figure 3d,e). Reduced CBF in low dose as compared to placebo was predominantly
restricted to occipital and cerebellar cortices. High dose associated changes were more
extensive covering prefrontal, posterior cingulate, cerebellar temporal, parietal and occipital
regions. High dose as compared to low dose of risperidone showed an increase in CBF in the
right corpus striatum (Figure 3f). Reduced CBF was observed with high dose in prefrontal,
temporal, occipital, parietal and cerebellar regions. Only the reduced CBF in cerebellar and
occipital regions in high dose as compared to placebo survived whole-brain voxel-wise

correction for multiple comparisons.

Discussion

Here we introduce the JuSpace Toolbox, an integrated system for the comparison of PET and

SPECT derived neurotransmitter maps with other imaging modalities such as rsfMRI data. The
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software tests for associations between the imaging data of interest and a list of included PET

and SPECT maps by computing correlations or multiple linear regressions.

JuSpace allows for an easy integration of neuroimaging data with PET-derived receptor maps.
JuSpace is a user-friendly tool allowing user interface-based applications by researchers with
limited programming experience as well as direct function calls. The choice of settings for the
analyses is kept to a minimum. The toolbox further supports an easy integration of other
atlases and other PET-derived information, provided they have the same resolution, by simply
adding the respective maps in MNI space into the PET atlas directory. JuSpace is designed to
test the hypotheses that the spatial structure of imaging alterations induced i.e. by disease or
drug is associated with the availability of a specific receptor across the brain. Besides direct
correlation between the imaging data of interest and the available PET maps, the software
supports simple between- and within-subject designs by computing effect sizes, z-scores and
pair-wise differences. For both, between- and within-subject designs the toolbox provides more
rigorous permutation based statistics. Usage of these exact statistics for both options is
strongly recommended to avoid erroneous assumptions on data distribution or actual spatial

degrees of freedom.

As compared to available imaging-genomic toolboxes correlating imaging information with the
spatial information derived from few donors from the Allen Brain Atlas of post-mortem mRNA
expression JuSpace carries the advantage of making less assumptions about underlying
biology (i.e. unknown transcription of respective mRNA into specific tissue properties) (Rizzo
et al., 2016). It also allows for evaluation of spatial associations with PET-derived transmitter
synthesis information that are only available from in vivo studies, i.e. F-Dopa PET-derived

dopamine synthesis capacity.

Conclusions from the application examples

Here we applied the JuSpace toolbox to two datasets covering disease related rsfMRI
alterations in PD as well drug-induced CBF alterations in healthy controls. We show that rsfMRI
activity alterations in PD on and off levodopa are closely associated with availability of D2 and
5-HT1b receptors. These results are closely in line with the well-established affectedness of
the dopaminergic and serotonergic systems in PD (Booij et al., 1997; Pagano et al., 2017).
Furthermore, the consistency of the effects obtained with both scans in PD illustrates the
robustness of findings obtained using spatial correlation analyses. We do not find significant

associations between PET maps and fALFF differences between PD on and off levodopa. This
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is potentially explained by the effects being either subtle or not following the distribution of the

specific receptor maps currently included in JuSpace.

Risperidone-induced brain activity alterations are associated with a variety of neurotransmitter
systems including dopaminergic and serotonergic effects. In contrast to the highest affinity of
risperidone to 5-HT2a followed by D2 the significant associations with the corresponding PET
receptor maps only appeared with the high dose (Schotte et al., 1996). The strongest effects
observed with low dose rather associate with DAT, SERT and D1 receptor maps. In our
previous study (Selvaggi et al., 2018) we observed correlations with D2 receptors at both doses
for the group averaged data. This study did not examine effects using other targets and did not
evaluate individual differences. Importantly, the spatial correlation analysis relies on a direct
translation of the effect observed on the specific receptor into the respective activity
measurement, which may vary by drug and across subjects. The discrepancies observed
suggest that the effects on different receptors may have different transfer function onto the
observed CBF changes that is not directly associated with respective receptor affinities. This
observation is in line with our previous work evaluating correlations with post-mortem receptor
expression (Dukart et al., 2018). Overall, whilst the observed correlations with serotonergic
and dopaminergic system are in line with the known mechanism of action of risperidone the
correlation with GABAa receptor appearing with the high dose may appear unexpected as
there is no reported affinity of risperidone to the respective receptor. There are two potential
explanations for this effect. We observe a very strong positive correlation between GABAa and
5-HT2a receptor availability. In that sense, the observed correlation with both receptors is likely
due to the collinearity of both receptor systems making it difficult to dissociate the specific
effects on one of the two systems. Another possible explanation for the observed correlation
with GABAa may be in the reported interdependence of both systems with 5-HT2a activation
resulting in inhibition of GABAa currents (Feng et al. 2001). Similar to that, the strong
correlation of PET maps may also explain the observed correlation of the low dose changes
with DAT, SERT and D1 as all of the PET maps are strongly correlated. These strong cross-
correlations between different PET maps indicate that caution is required with respect to
interpretation of observed associations as being specific to a particular receptor. Further
analyses adjusting for cross-correlation of the PET receptors such as the multiple linear
regression analyses option also provided with the toolbox may facilitate the interpretation in

such cases.

Whole-brain corrected analyses of both datasets only revealed differences between high dose
of risperidone and placebo. The results applying a more liberal threshold were rather diffuse

covering a wide-range of regions making it difficult to interpret the findings with respect to any
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specific anatomical circuitries. In contrast, spatial correlation analyses reveal a higher
sensitivity to both PD- and risperidone-induced changes and additionally provide a biologically
meaningful interpretation of the observed effects. Our results therefore suggest the higher
sensitivity of the spatial correlation approach to detect disease- and drug-related activity
alterations as compared to standard voxel-wise analyses. The likely reasons for the higher
sensitivity of the spatial correlation as compared to voxel-wise analysis is the substantially
higher reliability of spatial activity profiles as compared to classical voxel- or region-wise fALFF
and CBF measures (Holiga et al., 2018).

Overall, the JuSpace toolbox allows for cross-modal evaluation of neuroimaging data
alongside molecular imaging atlases. The inclusion of PET and SPECT atlases for different
neurotransmitter systems allows for biologically meaningful evaluation and interpretation of the
spatial patterns. This is a flexible platform enabling inclusion of user-defined atlases and other
imaging modalities. As such, it has a great potential to improve and simplify multi-modal brain

imaging research.
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Table 1 Receptor maps included in the JuSpace toolbox

Receptor Tracer Modality N healthy Source and Reference
map volunteers
DAT [1231]-FP-CIT SPECT 174 o
Citation: (Dukart et al., 2018)
GABAa [11C]flumazenil PET 6
D2 [11C]Raclopride PET 7 Source:
https://datadryad.org/resource/doi:10.5061/dryad.rc073
Citation: (Alakurtti et al., 2015)
NET S,S-[11CJO- PET 10
methylreboxetine Citation: (Hesse et al., 2017)
(MRB)
D1 [11C]SCH23390 PET 13 e
Citation: (Kaller et al., 2017)
Dopamine [18F]fluorodopa PET 12 ) )
) Source: https://www.nitrc.org/projects/spmtemplate
synthesis o .
Citation: (Gomez et al., 2018)
5-HT1la [11C]WAY-100635 PET 36
5-HT1b [11C]P943 PET 22 Source: https://neurovault.org/collections/1206/
5-HT2a [F18]altanserin PET 19 Citation: (Savli et al., 2012)
SERT [11C]DASB PET 30

PET — positron emission tomography, SPECT - single photon emission computed
tomography, DAT — dopamine transporter, SERT — serotonin transporter, NAT — noradrenaline
transporter
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Figure 1 JuSpace toolbox, a) User interface of the JuSpace toolbox, b) Schematic work flow

of the JuSpace toolbox

Figure 2 Results of spatial correlation analyses between PET and SPECT derived
neurotransmitter maps. The displayed numbers are the observed Spearman correlation
coefficients. Significant correlations are highlighted by underlying ellipses. DAT — dopamine
transporter, SERT — serotonin transporter, NAT — noradrenaline transporter, FDOPA —

Fluorodopa

Figure 3 Results of spatial correlation analyses for PD and risperidone datasets. PD —
Parkinson’s disease, HC — healthy controls, DAT — dopamine transporter, SERT — serotonin

transporter, NAT — noradrenaline transporter, FDOPA — Fluorodopa

Figure 4 Results of voxel-wise analyses for PD and risperidone datasets. Orange and red
colors indicate increased fALFF (for PD) or CBF (for risperidone) in the first mentioned
condition/group. Cyan colors indicate decreased fALFF (for PD) or CBF (for risperidone) in the
first mentioned condition/group. PD — Parkinson’s disease, HC — healthy controls, HD — high

dose of risperidone, LD — low dose of risperidone,
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