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Abstract9

In many applications of evolutionary inference, a model of protein evolution needs to10

be fitted to the amino acid variation at individual sites in a multiple sequence alignment.11

Most existing models fall into one of two extremes: Either they provide a coarse-grained12

description that lacks biophysical realism (e.g. dN/dS models), or they require a large13

number of parameters to be fitted (e.g. mutation–selection models). Here, we ask whether14

a middle ground is possible: Can we obtain a realistic description of site-specific amino15

acid frequencies while severely restricting the number of free parameters in the model? We16

show that a distribution with a single free parameter can accurately capture the variation in17

amino acid frequency at most sites in an alignment, as long as we are willing to restrict our18

analysis to predicting amino acid frequencies by rank rather than by amino acid identity.19

This result holds equally well both in alignments of empirical protein sequences and of20

sequences evolved under a biophysically realistic all-atom force field. Our analysis reveals21

a near universal shape of the frequency distributions of amino acids. This insight has the22

potential to lead to new models of evolution that have both increased realism and a limited23

number of free parameters.24

Introduction25

To uncover the relationship between and the history of various protein sequences across26

populations and species, evolutionary biologists frequently fit mathematical models of evo-27

lution to homologous sequence alignments. Common applications of such models include28

phylogenetic tree reconstruction, assessment of strength and type of selection, and evolu-29

tionary rate inference. Early models had only one or two free parameters per alignment30

(Jukes and Cantor, 1969; Kimura, 1980), but over time models have become more complex31

and realistic (Goldman and Yang, 1994; Yang and Bielawski, 2000; Halpern and Bruno,32

1998; Kosakovsky Pond and Frost, 2005; Yang and Nielsen, 2008; Arenas, 2015). An im-33

portant insight from work in this area has been that evolving proteins display substantial34

variation among individual sites (Echave and Wilke, 2017), and thus site-specific models are35

critical. In part to address this insight, two more recent developments include mutation–36

selection models that estimate selection coefficients for individual amino acids at individual37

sites (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014; Tamuri et al., 2012, 2014) and38

efforts to improve the biophysical realism of the models used (Koshi and Goldstein, 1998;39
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Conant and Stadler, 2009; Meyer and Wilke, 2013; Goldstein and Pollock, 2016; Bastolla40

and Arenas, 2019).41

One challenge with site-specific mutation–selection models is that they require the es-42

timation of a large number of parameters, on the order of several thousand for proteins43

of typical lengths. Thus, they can be problematic in data-poor applications, and there44

is always a risk of overfitting. While this problem can be somewhat alleviated by using45

random-effects models (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014) or penalized46

likelihood (Tamuri et al., 2014), it would also be useful to have simpler models that capture47

relevant variation at a site with only a small number of parameters. Conventionally, when48

simpler models are desired or needed, most researchers employ rate models that assign a49

single rate to each site (Pupko et al., 2002; Kosakovsky Pond and Frost, 2005; Ashkenazy50

et al., 2016; Spielman and Kosakovsky Pond, 2018). Rate models have been shown to51

provide useful summary information about evolutionary variation at individual sites, and52

rates can usually be recovered if selection coefficients are known (Spielman and Wilke,53

2015, 2016). However, the reverse inference is generally not possible. The rate at which54

a site evolves does not contain any information about the amino acid distribution and/or55

selection coefficients at that site.56

Here, we explore whether there is some avenue to capturing site variation with only one57

or two parameters per site while also retaining meaningful information about the amino58

acid distribution. To this end, we evaluate a novel approach for characterizing site-specific59

amino acid variation, which has previously been used to describe amino acid frequency60

distributions averaged across sites with similar relative solvent accessibility (RSA) (Ramsey61

et al., 2011). We demonstrate that a simple Boltzmann-like distribution with a single62

free parameter can accurately represent observed amino acid frequencies, as long as we63

allow for one important simplification of the problem: We rank amino acids from most64

abundant to least abundant at each site, and then describe the frequency distribution of65

the ranks, rather than of specific amino acids. We find that this approach works both66

for empirically collected multiple sequence alignments and for alignments generated by67

evolutionary simulation using a biophysically realistic, all-atom model of protein stability.68

We further find that introducing additional parameters into the distribution does not seem69

to lead to further improvements over the one-parameter description. In summary, we70

uncover a property of amino acid distributions that, if incorporated into models of protein71

evolution, could increase the realism of these models while keeping the number of free72

parameters limited.73

Theory74

To evaluate the evolutionary and biophysical constraints acting on a site in a protein,75

we can assemble a large alignment of homologous sequences for that protein and then76

inspect the distribution of amino acids present at the site. Absent any constraint, all 2077

amino acids should be present in the distribution. In reality, however, sites face various78

constraints, and consequently a smaller number of amino acids is actually observed (Echave79

and Wilke, 2017). Empirical alignments have shown that, on average, sites tend to have 3–580

amino acids that comprise the majority of the distribution. While this is true on average,81

the actual number of amino acids observed can vary widely and will depend on the site’s82

location within the protein structure.83

As a simple measure of the amino acid variability at a site, we can use the effective84

number of amino acids neff, defined as (Strait and Dewey, 1996; Goldstein and Pollock,85

2016; Echave and Wilke, 2017)86

neff = eH , (1)87

where H is the site entropy,88

H = −
∑
i

πi lnπi. (2)89
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Here, the sum runs over all 20 amino acids i, and πi represents the frequency of amino acid90

i at the focal site in the alignment. By definition, neff is a number between 1 and 20. A91

value of 1 indicates that only a single amino acid is present at the given site, and a value of92

20 indicates that all 20 amino acids are present at equal frequencies. Intermediate numbers93

represent cases between these two extremes. For example, neff = 3 would indicate that the94

majority of the distribution is made up of three distinct amino acids, even if a fourth or a95

fifth amino acid may be observed at the site in very low frequencies.96

The measures of site entropy and neff can tell us biologically relevant information about97

a site, such as the amount of evolutionary constraint on the site. Sites with a high neff98

can accept a wide range of different amino acids and are likely under weak selection. By99

contrast, sites with a low neff can accept only a few amino acids and are likely under strong100

purifying selection.101

In principle, the amino acid frequencies πi in Equation 2 can take on any arbitrary value.102

However, in practice, more structure can be assumed. First, we can write the frequencies103

in the form of a Boltzmann distribution with suitably defined energy levels Ei:104

πi =
e−βEi∑
j
e−βEj

. (3)105

Here, β is the inverse temperature, and in the following we set β = 1 without loss of106

generality. Equation 3 is a mathematical identity, i.e., for any set of (non-zero) πi we can107

define a corresponding set of Ei such that Equation 3 holds.108

Prior work has suggested that if we order the πi from largest to smallest, such that109

π1 ≥ π2 ≥ · · · ≥ π20, then the corresponding energy levels are approximately evenly110

spaced, such that Ei = iλ with a site-specific numerical constant λ (Porto et al., 2005;111

Ramsey et al., 2011). Ramsey et al. (2011) found this description to work well when amino112

acid distributions were averaged over many sites with comparable solvent accessibility.113

We assume here the result holds similarly for site-specific frequencies. Thus, we rewrite114

Equation 3 as115

πi ≈
e−iλ∑
j
e−jλ

. (4)116

Larger values of λ correspond to sites with a smaller effective number of amino acids117

present, i.e., more conserved sites. There is a systematic trend of λ to increase as we move118

from the surface of a protein to its core (Ramsey et al., 2011).119

Equation 4 predicts the amino acid distribution at a site from a single free parameter,120

λ. Consequently, we can calculate the neff that corresponds to a given λ. By substituting121

Equation 4 into Equation 2 and then 1, we obtain122

neff = exp
(
−
∑
i

e−iλ∑
j
e−jλ

ln
e−iλ∑
j
e−jλ

)
. (5)123

This equation is exact, i.e., Equation 5 provides us with the exact neff corresponding to a124

given λ, assuming Equation 4 is true. However, Equation 5 also suggests that the inverse125

relationship may be true as well. Given an neff, which we can calculate from a column in a126

multiple sequence alignment, we can invert Equation 5 to predict a corresponding λ. This127

inversion cannot be done analytically, but it is straightforward numerically.128

Results129

The preceding section suggests that the amino acid distribution at a site can be represented130

by a single parameter λ, where once we know λ we know the individual frequencies πi,131

modulo a reordering. (I.e., we will not know which amino acid is the most frequent or the132
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second-most frequent etc.; we will only know what their relative frequencies are.) Note133

that this is a stronger statement than saying we can represent a site by its neff, because134

while neff captures the variability at a site it does not a priori fix the frequencies πi.135

We can test this prediction empirically by taking columns in multiple sequence align-136

ments (MSAs), calculating neff values, converting them into λ values, then calculating137

predicted amino acid frequencies from the λ values and assessing how close they are to the138

observed frequencies. For this purpose, we here use previously published MSAs of taxo-139

nomically and functionally diverse proteins (Jiang et al., 2018). Specifically, we analyze140

MSAs corresponding to 10 arbitrarily chosen proteins (Table 1), and we consider both141

MSAs of natural sequences and of sequences generated via simulation, using an accelerated142

origin-fixation algorithm (Teufel and Wilke, 2017). Although the natural sequences are143

subjected to mutational biases and codon degeneracy and the simulated sequences are not144

(all mutations between amino acids are equally likely), only minor differences in amino acid145

frequencies have been observed between these sets of alignments (Jiang et al., 2018). For146

this reason, we take observed amino acid frequencies as is and do not correct for mutation147

biases.148

Theoretical expectation observed in simulated and empirical149

alignments150

Because alignments of natural sequences are confounded by phylogenetic relatedness and151

the simulated alignments are not (they were created using a star phylogeny), we expect152

that our approach will fit the simulated alignments better than the natural ones. Therefore,153

we first apply it to simulated sequences.154

We begin with simulated sequences corresponding to a yeast copper-zinc superoxide dis-155

mutase (PDB ID: 1B4T). The MSA has 153 sites, and we observe substantial heterogeneity156

among the sites in terms of the number and type of amino acids present. To demonstrate157

our theoretical reasoning described in the preceding section, we first consider one of the158

variable sites (site 35), perform a linear regression on the ranked, log-transformed frequen-159

cies to obtain λ, and then compare the distribution given by Equation 4 to the empirical160

distribution at the site (Fig. 1). The two distributions look visually similar, and a χ2
161

goodness-of-fit test detects no significant difference between them (p = 0.106).162

Next, we repeat this procedure at all remaining sites in this protein’s alignment. To163

visualize the results from this analysis, we take the λ values obtained from the linear164

regressions and plot 1/λ against the neff calculated directly from the observed amino acid165

frequencies (Fig. 2). We plot 1/λ instead of λ to avoid the divergence at neff = 1, where166

1/λ = 0. We find that the majority of sites fall near the line defined by Equation 5, which167

is expected if the theoretical relationship between neff and λ holds true (Fig. 2). However,168

even though all sites are near this theoretical relationship, there are measurable deviations169

from the exact theory. Many sites fail the χ2 goodness-of-fit test after False-Discovery-Rate170

(FDR) correction, indicated in orange color (Fig. 2). As a general pattern, we observe that171

sites with a higher effective number of amino acids are more likely to not fail the χ2 test172

(blue points).173

We find similar results in nine additional simulated protein alignments (Fig. 3). Most174

sites fall close to the line defined by Equation 5, but nevertheless, only a moderate number175

of sites at high neff pass the χ2 test. Surprisingly, our results look better for the empirical176

alignments for the same ten proteins (Fig. S1). There the majority of the sites pass177

the χ2 test for each protein (Fig. 4 and Fig. S2). This difference is likely driven by the178

difference in the number of sequences in each alignment. Most empirical alignments contain179

between 80 and 200 sequences, whereas all simulated alignments contain 500 sequences180

(Table 1). We test this hypothesis by downsampling the size of each simulated alignment181

to match the number of sequences in its corresponding empirical alignment and repeating182

the analysis. We confirm that indeed the downsampled simulated alignments more closely183

resemble their empirical counterparts than the full simulated alignments (Fig. 4 and Fig.184

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.08.05.238493doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238493
http://creativecommons.org/licenses/by/4.0/


S2). Additionally, we find that distributions of the adjusted coefficients of determination185

(R2) for these regression analyses look similar across simulated and empirical alignments,186

with added variation in some downsampled simulated alignments (Fig. S3).187

Null distributions confirm theoretical expectations188

To test the validity of our fitting procedure, we repeat the methods discussed above un-189

der two different null distributions. As a positive control, we randomly draw amino acid190

distributions according to Equation 4 and then repeat our fitting procedure for these dis-191

tributions. As expected, χ2 tests show no significant difference between the simulated and192

the fitted distributions, for all sites tested (Fig. 5, left panel).193

As a negative control, we additionally simulate amino acid counts described by a Gaus-194

sian function and then subject them to the same fitting procedure. We define expected195

amino acid frequencies as πi ∼ exp[−(i − 10)2/σ2], where i is an integer taking on values196

between 0 and 19. We use multinomial sampling to generate specific amino acid counts and197

then re-rank counts from largest to smallest (see Methods for details). Depending on the198

value of σ chosen, this approach can result in unrealistic amino acid distributions that are199

near uniform, with neff values of 15–20 (Fig. 5, right panel). In this previously unobserved200

area of parameter space, we find that the simulated distributions are accurately represented201

by our theoretical relationship between 1/λ and neff. This is the case because for near-202

uniform amino acid distributions, the quadratic term in the Gaussian can be neglected.203

By contrast, for parameter choices that result in smaller neff values, we now see consistent204

deviations between the observed and the expected distributions (most sites fail the χ2 test205

and are colored in orange), even though all sites fall near the expected relationship between206

1/λ and neff (Fig. 5, right panel). This result demonstrates that our χ2 test is sensitive to207

subtle deviations in amino acid frequencies from the distribution given by Equation 4.208

Additional parameters and non-linearity do not improve re-209

gression fit210

As an additional method of assessing how well our characterization describes actual amino211

acid distributions, we can also compare the neff values calculated from an empirical align-212

ment to the neff values calculated from the frequencies of the fitted distribution. If the fitted213

distribution accurately reflects the empirical distribution, then these two sets of neff values214

should be very similar to each other. In fact, we generally find that they are highly corre-215

lated and near the x = y line (e.g., R2 = 0.971, Fig. 6 top panel for the MSA corresponding216

to yeast copper-zinc superoxide dismutase, PDB ID: 1B4T).217

While the high correlations we observe are an excellent result, we can ask if we could218

do better. For the top panel in Fig. 6, of the 153 sites in the alignment 20 had to be219

excluded from the comparison as they are completely conserved for a single amino acid220

and the fitting procedure fails in this case. Of the remaining 133 sites, 17 sites (12.8%)221

fail the χ2 test. Notably, the fits for this result are done using a one-parameter model,222

where normalized, log-transformed counts are fit to a model without intercept, 0 − λi (i is223

an integer running from 0 to 19, see Methods for details). A single parameter fit tends to224

performs poorly on sites that are highly conserved for either one or two equally frequent225

amino acids.226

To explore alternatives, we can make two modifications to this analysis: First, we can227

perform a different linear regression that is however still consistent with Equation 4, a228

two-parameter model with an intercept term: b − λi. The intercept term cancels out in229

Equation 4, but it affects the λ value and thus the amino acid frequencies obtained during230

fitting. Second, we can test a quadratic regression where a third parameter, c, is added to231

capture the shape of the curve: b− λi+ ci2.232

We find that both the two-parameter regression and the three-parameter regression233

perform worse than the one-parameter regression based on several metrics: p-values from234
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the χ2 goodness-of-fit test, R2 values on transformed count data from regression analyses,235

and R2 values from the correlation between actual and estimated neff values (Fig. S4236

and 6). For the two-parameter regression, we are still unable to fit the 20 sites with only237

one amino acid observed. Of the remaining 133 sites, 34 sites (25.6%) fail the χ2 test,238

and the R2 between the neff calculated on the actual and fit distribution has declined to239

R2 = 0.859. The three-parameter regression leads to the worst performance overall: 110240

of 153 sites (71.9%) fail the χ2 test, and the R2 between the neff calculated on the actual241

and fit distribution has declined to R2 = 0.401.242

As a general pattern, we observe that additional parameters and non-linearity in the243

fitted model lead to increased variability in our ability to recapture the neff of the actual244

distribution. With one parameter, we tend to slightly overestimate neff with our fitted245

distribution, in particular towards low neff values (Fig. 6, top). The addition of the246

intercept parameter moves points further from the x = y line overall (Fig. 6, middle).247

Finally, the quadratic regression, with three parameters, produces additional spread in248

both directions, resulting in quite severe over- and underestimations of neff. We find that249

these results hold true across all 10 empirical proteins considered (Fig. S5). A small250

constant was added to amino acid counts prior to fitting only in the case of our three-251

parameter regression as it was necessary to obtain enough data points for fitting at each252

site (n > 2). This constant was excluded from the one- and two-parameter regressions as it253

was not required for fitting and was shown to decrease our ability to fit the distribution (Fig.254

S6, top and middle panel). We additionally attempted to improve our three-parameter fit255

through regularization with ridge regression, which however increased the upward bias in256

the neff of the fitted distribution (Fig. S6, bottom panel) (Friedman et al., 2010). Thus,257

in conclusion, a simple one-parameter linear regression without intercept maximizes our258

ability to capture the empirical amino acid distribution.259

Discussion260

We have shown that a simple Boltzmann-like distribution with a single free parameter261

works surprisingly well at capturing amino acid variability at individual sites in protein262

multiple sequence alignments, as long as we are prepared to ignore amino acid identity and263

simply order amino acids from most frequent to least frequent. We have found that this264

description works both in empirical alignments and in alignments derived from simulations265

using a physics-based atom-level model of protein structure. For many, though not all,266

sites in an alignment, the single one-parameter description is sufficiently accurate to be267

statistically indistinguishable from the true amino acid distribution. In general, deviations268

from the true distribution tend to be more prominent at sites that display less variability269

overall.270

That amino acid frequencies should be Boltzmann distributed follows from theoretical271

models of protein stability (Dokholyan and Shakhnovich, 2001; Dokholyan et al., 2002;272

Echave et al., 2015). However, we note that our finding here is stricter than prior theo-273

retical predictions. In the most general scenario, we can write any arbitrary amino acid274

distribution in Boltzmann form, by appropriately choosing energy levels for each individual275

amino acid (see Eq. 3). Here, instead, we are arguing that energy levels are approximately276

uniformly spaced, so that a single parameter λ (corresponding, in effect, to the distance277

between two energy levels) can capture the entire distribution at a site. Previous work has278

shown that energy levels are approximately evenly spaced for amino acid distributions av-279

eraged across sites with similar relative solvent accessibility (Ramsey et al., 2011). We find280

that this observation also holds true for site-specific amino acid distributions in both simu-281

lated and empirical protein sequences. The mechanisms driving this empirical observation282

remain unknown and should be explored in future work.283

While our approach is able to reproduce the general shape of the distribution of amino284

acids at a site, the actual and the estimated distribution are not always an exact match.285
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There are subtle deviations from the simple exponential decay that can be detected when286

alignments are sufficiently large. In particular, while the majority of sites in simulated and287

empirical alignments pass a χ2 goodness-of-fit test when a limited number of sequences are288

used in the regression (fewer than ∼ 200), a larger fraction of sites fails the χ2 goodness-of-289

fit test for simulated alignments with the full 500 sequences. We have further found that290

the distribution of amino acids is best characterized when fit (after log-transform) with a291

simple linear regression without intercept. Adding a second parameter (the intercept) to292

the linear regression or implementing a quadratic (three parameter) regression to aid in293

approximating the distribution can improve χ2 results for some sites, in particular highly294

conserved sites. However, on average, the two- and three-parameter regressions perform295

worse than the one-parameter regression.296

The characterization presented here allows for a general approximation of the shape of297

amino acid distributions. However, these theoretical distributions are not exact and vary298

in their ability to recover the observed amino acid frequencies in an empirical or simulated299

alignment. The biggest challenges seem to arise at sites that are highly conserved for only300

a few amino acids. Unfortunately, such sites are common in empirical alignments. In301

addition, just like is the case with evolutionary rate measures, approximating an amino302

acid distribution by rank does not retain any information about the identity of amino acids303

found at individual sites. While predicting the rank order of amino acids is beyond the304

scope of this research, it might be possible to develop standard rankings based on the305

biology of the system. For example, we observe that amino acids occupy rank 0 at different306

frequencies based on their location within the protein structure (Fig. S7), e.g., hydrophobic307

amino acids tend to be most abundant at sites that are buried in the protein core. Potential308

strategies for jointly predicting rank frequencies and identities in evolutionary models are309

discussed below.310

The ability to reduce an amino acid distribution from 20 parameters to one might be use-311

ful if applied to models of protein evolution. Current phenomenological models of protein312

evolution that require only a few parameters, such as dN/dS models (Goldman and Yang,313

1994; Kimura, 1977; Yang and Bielawski, 2000; Kryazhimskiy and Plotkin, 2008), provide314

aggregate information about how sites have changed but capture little information about315

the distribution of amino acids at individual sites (Arenas and Posada, 2014; Halpern and316

Bruno, 1998). Additionally, they tend to be sensitive to evolutionary forces if not explicitly317

modeled (Wilson and McVean, 2006; Arenas, 2015; Spielman and Wilke, 2015; Kryazhim-318

skiy and Plotkin, 2008). Alternatively, mechanistic mutation–selection models often rely319

on numerous parameters to account for observed heterogeneity in amino acid frequen-320

cies across sites (Halpern and Bruno, 1998; Rodrigue et al., 2010; Yang and Nielsen, 2008;321

Bruno, 1996; Tamuri et al., 2012, 2014). These models connect amino acid frequencies with322

fitness, but they are computationally expensive and can result in an over-parameterized323

representation of the sequence space (Puller et al., 2020; Rodrigue, 2013; Spielman and324

Wilke, 2016). We note that a site-specific model with one free parameter has previously325

been developed for phylogenetic inference (Arenas et al., 2015). By accounting for struc-326

tural properties, this mean-field model improves inference of evolutionary events, but its327

estimates of site-specific sequence entropy and substitution rate disagree with empirical328

data (Jimenez et al., 2018).329

Current approaches to preventing over-parameterization of mutation–selection mod-330

els include using random-effects models (which in effect share amino acid distributions331

among sites, Rodrigue et al. 2010) and regularization (which causes low amino acid fre-332

quencies to be set to zero, Tamuri et al. 2014). Both approaches work reasonably well, but333

random-effects models have a tendency to produce too many non-zero amino acid frequen-334

cies (Spielman and Wilke, 2016). Our results here suggest a mathematical explanation335

for this observation: Random-effects models tend to represent amino acid distributions336

as a weighted average over a finite set of propensity vectors as the true propensity vec-337

tor is unknown (Rodrigue et al., 2010). While individual propensity vectors can converge338

into a Boltzmann form, a weighted average of different Boltzmann distributions—with339

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.08.05.238493doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238493
http://creativecommons.org/licenses/by/4.0/


amino acids in different rank order—will generally not be Boltzmann, and in fact will340

over-populate rare amino acids.341

We emphasize that we have not proposed a new model of evolution here. We have342

merely identified a property of empirical amino acid distributions that models of evolution343

should be able to capture. Integrating this characterization into such models could improve344

our ability to infer phylogenetic relationships as well as evolutionary rates and processes.345

We would like to suggest some avenues of how our insights could be incorporated into future346

models. First, for random-effects models, instead of using arbitrary propensity vectors it347

might be useful to enforce the Boltzmann form with a single free parameter λ, and then fit348

the amino acid order at each site. Amino acid order can be represented by permutations,349

and permutations can be sampled using standard MCMC approaches (Strauß et al., 2019).350

Of course, any models that fit amino acid order would require more than one parameter351

per site.352

For fixed-effects models, on the other hand, it may be possible to derive a new regu-353

larization approach that uses our Eq. 4 for regularizing amino acid frequencies. We note354

that fixed-effects models for phylogenetic inference often lack the statistical guarantees of355

traditional likelihood estimation and thus may be prone to overfitting based on the dimen-356

sionality of the site-specific variables (Rodrigue, 2013). Researchers wishing to incorporate357

our characterization into such models should do so with caution.358

Methods359

Origin of multiple sequence alignments360

We use protein multiple sequence alignments (MSAs) from an existing data set that con-361

tains both empirical and simulated alignments for the same protein structures (Ramsey362

et al., 2011; Jiang et al., 2018). The empirical alignments were originally assembled by363

Ramsey et al. (2011) and include 38 MSAs, each containing at least 50 sequences, for 38364

distinct protein structures (Jackson et al., 2013). For each protein structure, Jiang et al.365

(2018) subsequently added a simulated alignment containing 500 sequences. The simulated366

alignments were simulated using an accelerated origin-fixation algorithm (Jiang et al., 2018;367

Teufel and Wilke, 2017) with a physics-based, atom-level model of protein structure as a368

fitness function. The simulations were performed along a star phylogeny, such that no369

phylogenetic structure is present in the simulated alignments (Jiang et al., 2018). The em-370

pirical alignments had originally been filtered to remove sequences of ≥ 80% similarity, so371

phylogenetic structure in these alignments is limited but not absent (Ramsey et al., 2011).372

Here, we arbitrarily selected 10 protein structures with their associated empirical and373

simulated alignments for further analysis (Table 1). We note that because empirical align-374

ments contain gaps, the total number of amino acids observed at any given site might be375

smaller than the number sequences listed.376

Approximating the distribution of amino acids at a site377

We use the following fitting procedure to estimate the site-specific constant λ that param-378

eterizes our Boltzmann-like amino acid distribution (Equation 4). Rather than fitting an379

exponential model directly to the observed count data, we transform the data as described380

below for use in a linear regression. At each site in an alignment, we first count all amino381

acids and then rank them by frequency, from most to least abundant. These ranked counts382

are then rescaled relative to the most abundant amino acid at that site and subsequently383

log-transformed. We then fit a linear regression of the form 0− λi for i = 0, 1, ..., 19 to the384

rescaled and transformed counts, excluding any amino acids or sequences (gaps) that were385

not observed in the alignment. The 0 in front of −λi indicates the absence of an intercept386

term, i.e., the regression model is forced to go through 0 at i = 0.387
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Once we have obtained a λ value at a site, we calculate expected amino acid counts388

by computing −λe−λi for i = 0, 1, ..., 19. For direct comparison with observed counts,389

the obtained values need to be normalized relative to their sum and multiplied by the390

total number of counts at that site in the observed data (this is equivalent to the number391

of sequences in simulated MSAs, but varies based on the presence of gaps in empirical392

MSAs). Because we are fitting with realized frequencies instead of equilibrium frequencies,393

the λ values calculated here are likely subject to some degree of sampling bias.394

We assess the goodness-of-fit of the fitted to the observed distribution at each site by395

comparing expected with observed amino acid counts using a χ2 test with 18 degrees of396

freedom. We correct for multiple testing via the False-Discovery-Rate (FDR) correction397

(Benjamini and Hochberg, 1995). A χ2 test on count data is the appropriate test here as398

we are interested in our ability to reproduce the original distribution from λ alone. We399

additionally report the proportion of variance explained (R2) from the linear regression on400

the observed and expected log-transformed counts.401

Generating null distributions402

To generate null distributions, we specify amino acid frequencies πi at each site and then403

draw amino acid counts for n = 500 sequences from multinomial distributions with ex-404

pected counts nπi. In all null distributions, we use 110 distinct sites. After generating405

the samples under various distributions, we follow the same procedures for our empirical406

and simulated alignments: We transform the data by ranking counts from most to least407

frequent, normalizing, and log-transforming prior to fitting.408

As a positive control, we use πi = Ce−λi, with C chosen such that
∑

i πi = 1. We409

generate 110 values of λ uniformly spaced from 0.1 to 1. This choice guarantees that the410

resulting distribution of neff looks similar to those observed in our protein alignments. Each411

value of λ is used to simulate a site within a 500 sequence alignment.412

As a negative control, we use πi = Ce−(i−10)2/(σ2). The constant C is again chosen such413

that
∑

i πi = 1. For small σ, this choice generates amino acid frequencies that decay faster414

than exponential. For large σ, on the other hand, this choice generates frequencies that415

are nearly uniform. We select 110 σ values uniformly spaced from 0.5 to 15 to simulate416

sites with values of neff ranging from 1 to 19.417

Varying the number of parameters in fitting418

We modify the fitting procedures described above by including additional parameters and419

non-linearity during our analysis on empirical sequence alignments. Under our normal420

procedure, we fit 0−λi to the observed amino acid count data, as explained above. We can421

incorporate a second parameter into this linear regression by relaxing the assumption of422

a zero intercept term. Thus, we fit b− λi to the ranked, normalized, and log-transformed423

counts for only those amino acids that were observed in our data. We obtain expected424

counts from this fit by computing eb−λi for amino acids i = 0, 1, ..., 19, normalizing to their425

relative frequency, and rescaling with the total number of count observations for each site.426

To capture non-linear effects in the distributions, we additionally fit a three-parameter427

quadratic regression: b − λi + ci2. While the previous regressions could be implemented428

on a small number of observed amino acids, a quadratic fit requires more data points (i.e.,429

more non-zero amino acid counts). To deal with this limitation, we add a small constant430

(0.01) to all amino acid counts at all sites prior to data transformation and fitting. With431

this addition, the updated count values are ranked, normalized, and log-transformed prior432

to fitting, resulting in all 20 amino acids being present (and fit) at all sites. After obtaining433

λ, b, and c from the fit at each site, we compute eb−λi+ci
2

for i = 0, 1, ..., 19, normalize each434

count based on its relative frequency, and rescale with the total number of counts observed435

at that site.436
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The results of all three fitting procedures are evaluated on their performance approxi-437

mating the observed distribution via χ2 goodness-of-fit tests. We test our ability to recover438

the effective number of amino acids by calculating neff on both the actual and estimated439

distribution for each site as described by Equation 1. The relationship between these mea-440

sures at each site is compared across fitting methods and presented with their respective441

coefficients of determination for all empirical alignments.442

Results of Figure S6 are obtained by re-running the one- and two-parameter regressions443

on amino acid counts after a small constant (0.01) was added (top and middle panel,444

respectively). As in the three-parameter case, this results in all 20 amino acids being fit at445

each site. We additionally modify the three-parameter regression described above by fitting446

b−λi+ ci2 with ridge regression in the glmnet R package (Friedman et al., 2010). In order447

to not add an additional parameter to our analysis, we perform k-fold cross validation to448

identify the optimal tuning parameter (λtuning) at each site with more than one amino acid449

observed, and select one value for use across all sites (Fig. S8). Based on the observed450

distribution, we fit the ridge regression in glmnet with λtuning = 0.28 and α = 0 at each site451

(Fig. S6, bottom panel). The expected number of amino acids at each site is calculated452

from the values of b, λ, and c obtained from the ridge regression.453

Code454

Data and code for this work are available at:455

https://github.com/mmjohn/amino-acid-distributions. All data analysis and figure456

production was performed in R (R Core Team, 2019), making extensive use of the tidyverse457

family of packages (Wickham et al., 2019).458
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Table 1: Identity and characteristics of the pairs of simu-
lated and empirical protein alignments analyzed here. Data
from Jiang et al. (2018).

PDB ID Chain Simulated1 Empirical2 Length3

1B4T A 500 160 153
1CI0 A 500 87 205
1EFV B 500 84 252
1G58 B 500 211 196
1GV3 A 500 181 213
2A84 A 500 125 277
2AIU A 500 73 104
2BCG Y 500 168 194
2BR9 A 500 96 230
2CFE A 500 312 162
1 Number of simulated sequences
2 Number of empirical sequences
3 Number of amino acids in protein alignment
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Figure 1: Site-specific distribution fit to observed amino acid counts. The gray bars represent
the counts observed in 500 simulated sequences, while the magenta line depicts the distribution
approximated from the linear regression fit to the log-transformed count data. The plot above
is for site 35 for the simulated alignment of a yeast copper-zinc superoxide dismutase (PDB ID:
1B4T).
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Figure 2: Relationship between the effective number of amino acids (neff) and λ−1, for the
simulated alignment from Figure 1 (PDB ID: 1B4T). Each point represents a site in the alignment
with λ values from a linear regression on the transformed count data and neff values calculated
with Equation 1 on observed counts. The use of λ−1 improves our ability to visualize this
relationship for small values of neff where λ diverges. The black line represents the theoretical
expectation calculated from Equation 5. Orange points indicate sites that fail the χ2 test (75
sites), while blue sites show no significant difference between the actual and the fit distribution
(50 sites). Sites with only one amino acid present were excluded from the χ2 analysis (29 sites).
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Figure 3: The fit of 10 simulated protein alignments to the theoretical expectation from Equation
5 (black line). The x axis represents the effective number of amino acids, neff, while the y axis
is 1/λ. The title of each panel indicates the protein’s identifier in the Protein Data Bank. Each
point represents the distribution at a single site, where λ is the slope parameter from the linear
regression and neff is calculated with Equation 1. Orange points indicate a failed χ2, while blue
points indicate a passed χ2 after FDR correction.
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Figure 4: Performance of a χ2 goodness-of-fit test between the actual and estimated amino
acid distributions at each site in five different proteins. Analysis was performed on actual
counts observed in the alignment and the counts estimated from the linear regression. Results
are compared for an empirical alignment, a simulated alignment with an equivalent number of
sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR
correction controlled for multiple testing. Orange indicates sites that failed the χ2, while blue
indicates sites that passed the χ2 and grey indicates the number of sites that could not be tested
under the χ2 goodness-of-fit test due to the presence of a single amino acid.
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Figure 5: Fit of null distributions to the theoretical expectation (black line, Eq. 5). The x
axis represents the effective number of amino acids, neff, while the y axis is 1/λ, where λ is the
slope parameter from the linear regression. Orange points indicate a failed χ2, while blue points
indicate a passed χ2 after FDR correction. The plot on the left show sites with distributions
simulated from Equation 4, while the distributions represented on the right were simulated from
a Gaussian distribution. For each site, values of λ come from linear regression on transformed
counts, while neff is calculated with Equation 1 on raw counts.
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Figure 6: Conservation of the effective number of amino acids (neff) in the fit distribution. For
each site, neff was calculated with Equation 1 on the observed counts in the alignment and
on the counts estimated from the linear regression. Both measures are presented for each site
in the empirical 1B4T alignment when the distribution was fit with either one, two, or three
parameters, as indicated by the labels on the right. The black lines represent the points for
which x = y, and the R2 reported in the figure is from the correlation between neff in the actual
and fit distribution. Colors indicate the result of the χ2 goodness-of-fit test with FDR correction.
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Supplemental Figures572

Figure S1: The fit of 10 empirical protein alignments to the theoretical expectation (black line,
Eq. 5). Each point represents the amino acid distribution at a single site. The x axis represents
the effective number of amino acids, neff, calculated with Equation 1, and the y axis is 1/λ, where
λ is the slope parameter from the linear regression. The title of each plot panel corresponds to
the protein’s name in the Protein Data Bank. Orange points indicate a failed χ2, while blue
points indicate a passed χ2 after FDR correction.
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Figure S2: Performance of a χ2 goodness-of-fit test between the actual and estimated amino
acid distributions at each site in the remaining five proteins. Analysis was performed on actual
counts observed in the alignment and the counts estimated from the linear regression. Results
are compared for on an empirical alignment, a simulated alignment with an equivalent number
of sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR
correction controlled for multiple testing. Orange indicates sites that failed the χ2, while blue
indicates sites that passed the χ2 and grey indicates the number of sites that could not be tested
under the χ2 due to the presence of a single amino acid.
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Figure S3: Adjusted coefficient of determination (R2) for linear regressions at sites in simulated
and empirical alignments. Analysis was performed on ranked, log-transformed amino acid counts
at each site. The reported R2 value comes directly from a one-parameter linear regression in
R using the lm function. For each protein, the analysis was repeated on the full simulated
alignment, a simulated alignment downsampled to match the size of the empirical alignment,
and the full empirical alignment (see Table 1 for alignment sizes).
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Figure S4: Regression performance based on the number of free parameters used to fit sites in the
empirical 1B4T protein alignment. At each site, linear (one- and two-parameter) and quadratic
(three-parameter) regressions were implemented and tested for their ability to reproduce the
observed distribution. (A) Distribution of p-values from the χ2 goodness-of-fit test after FDR
correction. (B) Distribution of R2 values (adjusted coefficient of determination). Each regression
was fit to the ranked and log-transformed amino acids counts at a site; χ2 was tested on the
actual and expected counts, while R2 comes directly from the regression fit to the transformed
data.
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Figure S5: Coefficient of determination (R2) for the correlation between the effective number of
amino acids (neff) of the actual and the fit distributions, for three different regressions. Analysis
shown in Figure 6 was repeated here on all 10 empirical alignments, where neff was calculated
separately on the observed counts and the counts estimated from each regression. Each black
dot represents one alignment, and lines connect alignments across regressions.
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Figure S6: Conservation of the effective number of amino acids (neff) in the fit distribution with
modified procedures. For each site, neff was calculated with Equation 1 on the observed counts
in the alignment and on the counts estimated from the regression analysis. Each site in the
empirical 1B4T alignment was fit with either one, two, or three parameters, as indicated by the
labels on the right. In Figure 6, the one- and two-parameter regressions were fit to only the
amino acids present in the alignment, while a small constant was added to all counts in the
three-parameter regression prior to fitting. Here, a small constant was added to all amino acids
prior to fitting to ensure each regression included 20 amino acids. Additionally, the 3-parameter
regression here was fit via ridge regression with tuning parameter λtuning = 0.28. The black lines
represent the points for which x = y, and the R2 reported in the figure is from the correlation
between neff in the actual and fit distribution. Colors indicate the result of the χ2 goodness-of-fit
test with FDR correction.
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Figure S7: Identity of most abundant amino acid (k = 0) at sites based on position in the protein
structure. For all 10 proteins considered, we calculated the frequency of each amino acid filling
rank 0 in simulated and empirical alignments. RSA values for each site were taken from Jiang
et al. (2018) and used to categorize a site’s position within the protein: buried (RSA < 5%),
intermediate (5% ≤ RSA ≤ 25%), and exposed (RSA > 25%). Amino acids are listed based on
hydrophobicity according to the Kyte-Doolittle scale.
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Figure S8: Relationship between a site’s optimal tuning parameter in a 3-parameter ridge re-
gression and its effective number of amino acids. For sites with more than one unique amino
acid observed, k-fold cross validation was performed in glmnet to identify the value of λtuning,
the tuning parameter, that gives the minimum mean cross-validation error. (A) Distribution of
optimal tuning parameters. A single value was selected for use as the tuning parameter in ridge
regression at all sites. (B) Effective number neff versus the associated optimal tuning parameter
of each site. The blue line is the local polynomial regression fit with the loess function in R.
In both A and B, the dashed line is the tuning parameter used at all sites (λtuning = 0.28).
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