

1 Site-specific amino acid distributions follow a universal 2 shape

3 Mackenzie M. Johnson^{1,2} and Claus O. Wilke^{1,2}

4 ¹*Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA,*
5 *78712*

6 ²*Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX,*
7 *USA, 78712*

8 November 3, 2020

9 **Abstract**

10 In many applications of evolutionary inference, a model of protein evolution needs to
11 be fitted to the amino acid variation at individual sites in a multiple sequence alignment.
12 Most existing models fall into one of two extremes: Either they provide a coarse-grained
13 description that lacks biophysical realism (e.g. dN/dS models), or they require a large
14 number of parameters to be fitted (e.g. mutation–selection models). Here, we ask whether
15 a middle ground is possible: Can we obtain a realistic description of site-specific amino
16 acid frequencies while severely restricting the number of free parameters in the model? We
17 show that a distribution with a single free parameter can accurately capture the variation in
18 amino acid frequency at most sites in an alignment, as long as we are willing to restrict our
19 analysis to predicting amino acid frequencies by rank rather than by amino acid identity.
20 This result holds equally well both in alignments of empirical protein sequences and of
21 sequences evolved under a biophysically realistic all-atom force field. Our analysis reveals
22 a near universal shape of the frequency distributions of amino acids. This insight has the
23 potential to lead to new models of evolution that have both increased realism and a limited
24 number of free parameters.

25 **Introduction**

26 To uncover the relationship between and the history of various protein sequences across
27 populations and species, evolutionary biologists frequently fit mathematical models of evo-
28 lution to homologous sequence alignments. Common applications of such models include
29 phylogenetic tree reconstruction, assessment of strength and type of selection, and evolu-
30 tionary rate inference. Early models had only one or two free parameters per alignment
31 (Jukes and Cantor, 1969; Kimura, 1980), but over time models have become more complex
32 and realistic (Goldman and Yang, 1994; Yang and Bielawski, 2000; Halpern and Bruno,
33 1998; Kosakovsky Pond and Frost, 2005; Yang and Nielsen, 2008; Arenas, 2015). An im-
34 portant insight from work in this area has been that evolving proteins display substantial
35 variation among individual sites (Echave and Wilke, 2017), and thus site-specific models are
36 critical. In part to address this insight, two more recent developments include mutation–
37 selection models that estimate selection coefficients for individual amino acids at individual
38 sites (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014; Tamuri et al., 2012, 2014) and
39 efforts to improve the biophysical realism of the models used (Koshi and Goldstein, 1998;

40 Conant and Stadler, 2009; Meyer and Wilke, 2013; Goldstein and Pollock, 2016; Bastolla
41 and Arenas, 2019).

42 One challenge with site-specific mutation-selection models is that they require the es-
43 timation of a large number of parameters, on the order of several thousand for proteins
44 of typical lengths. Thus, they can be problematic in data-poor applications, and there
45 is always a risk of overfitting. While this problem can be somewhat alleviated by using
46 random-effects models (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014) or penalized
47 likelihood (Tamuri et al., 2014), it would also be useful to have simpler models that capture
48 relevant variation at a site with only a small number of parameters. Conventionally, when
49 simpler models are desired or needed, most researchers employ rate models that assign a
50 single rate to each site (Pupko et al., 2002; Kosakovsky Pond and Frost, 2005; Ashkenazy
51 et al., 2016; Spielman and Kosakovsky Pond, 2018). Rate models have been shown to
52 provide useful summary information about evolutionary variation at individual sites, and
53 rates can usually be recovered if selection coefficients are known (Spielman and Wilke,
54 2015, 2016). However, the reverse inference is generally not possible. The rate at which
55 a site evolves does not contain any information about the amino acid distribution and/or
56 selection coefficients at that site.

57 Here, we explore whether there is some avenue to capturing site variation with only one
58 or two parameters per site while also retaining meaningful information about the amino
59 acid distribution. To this end, we evaluate a novel approach for characterizing site-specific
60 amino acid variation, which has previously been used to describe amino acid frequency
61 distributions averaged across sites with similar relative solvent accessibility (RSA) (Ramsey
62 et al., 2011). We demonstrate that a simple Boltzmann-like distribution with a single
63 free parameter can accurately represent observed amino acid frequencies, as long as we
64 allow for one important simplification of the problem: We rank amino acids from most
65 abundant to least abundant at each site, and then describe the frequency distribution of
66 the ranks, rather than of specific amino acids. We find that this approach works both
67 for empirically collected multiple sequence alignments and for alignments generated by
68 evolutionary simulation using a biophysically realistic, all-atom model of protein stability.
69 We further find that introducing additional parameters into the distribution does not seem
70 to lead to further improvements over the one-parameter description. In summary, we
71 uncover a property of amino acid distributions that, if incorporated into models of protein
72 evolution, could increase the realism of these models while keeping the number of free
73 parameters limited.

74 Theory

75 To evaluate the evolutionary and biophysical constraints acting on a site in a protein,
76 we can assemble a large alignment of homologous sequences for that protein and then
77 inspect the distribution of amino acids present at the site. Absent any constraint, all 20
78 amino acids should be present in the distribution. In reality, however, sites face various
79 constraints, and consequently a smaller number of amino acids is actually observed (Echave
80 and Wilke, 2017). Empirical alignments have shown that, on average, sites tend to have 3–5
81 amino acids that comprise the majority of the distribution. While this is true on average,
82 the actual number of amino acids observed can vary widely and will depend on the site's
83 location within the protein structure.

84 As a simple measure of the amino acid variability at a site, we can use the effective
85 number of amino acids n_{eff} , defined as (Strait and Dewey, 1996; Goldstein and Pollock,
86 2016; Echave and Wilke, 2017)

$$87 n_{\text{eff}} = e^H, \quad (1)$$

88 where H is the site entropy,

$$89 H = - \sum_i \pi_i \ln \pi_i. \quad (2)$$

90 Here, the sum runs over all 20 amino acids i , and π_i represents the frequency of amino acid
91 i at the focal site in the alignment. By definition, n_{eff} is a number between 1 and 20. A
92 value of 1 indicates that only a single amino acid is present at the given site, and a value of
93 20 indicates that all 20 amino acids are present at equal frequencies. Intermediate numbers
94 represent cases between these two extremes. For example, $n_{\text{eff}} = 3$ would indicate that the
95 majority of the distribution is made up of three distinct amino acids, even if a fourth or a
96 fifth amino acid may be observed at the site in very low frequencies.

97 The measures of site entropy and n_{eff} can tell us biologically relevant information about
98 a site, such as the amount of evolutionary constraint on the site. Sites with a high n_{eff}
99 can accept a wide range of different amino acids and are likely under weak selection. By
100 contrast, sites with a low n_{eff} can accept only a few amino acids and are likely under strong
101 purifying selection.

102 In principle, the amino acid frequencies π_i in Equation 2 can take on any arbitrary value.
103 However, in practice, more structure can be assumed. First, we can write the frequencies
104 in the form of a Boltzmann distribution with suitably defined energy levels E_i :

$$\pi_i = \frac{e^{-\beta E_i}}{\sum_j e^{-\beta E_j}}. \quad (3)$$

106 Here, β is the inverse temperature, and in the following we set $\beta = 1$ without loss of
107 generality. Equation 3 is a mathematical identity, i.e., for any set of (non-zero) π_i we can
108 define a corresponding set of E_i such that Equation 3 holds.

109 Prior work has suggested that if we order the π_i from largest to smallest, such that
110 $\pi_1 \geq \pi_2 \geq \dots \geq \pi_{20}$, then the corresponding energy levels are approximately evenly
111 spaced, such that $E_i = i\lambda$ with a site-specific numerical constant λ (Porto et al., 2005;
112 Ramsey et al., 2011). Ramsey et al. (2011) found this description to work well when amino
113 acid distributions were averaged over many sites with comparable solvent accessibility.
114 We assume here the result holds similarly for site-specific frequencies. Thus, we rewrite
115 Equation 3 as

$$\pi_i \approx \frac{e^{-i\lambda}}{\sum_j e^{-j\lambda}}. \quad (4)$$

117 Larger values of λ correspond to sites with a smaller effective number of amino acids
118 present, i.e., more conserved sites. There is a systematic trend of λ to increase as we move
119 from the surface of a protein to its core (Ramsey et al., 2011).

120 Equation 4 predicts the amino acid distribution at a site from a single free parameter,
121 λ . Consequently, we can calculate the n_{eff} that corresponds to a given λ . By substituting
122 Equation 4 into Equation 2 and then 1, we obtain

$$n_{\text{eff}} = \exp \left(- \sum_i \frac{e^{-i\lambda}}{\sum_j e^{-j\lambda}} \ln \frac{e^{-i\lambda}}{\sum_j e^{-j\lambda}} \right). \quad (5)$$

124 This equation is exact, i.e., Equation 5 provides us with the exact n_{eff} corresponding to a
125 given λ , assuming Equation 4 is true. However, Equation 5 also suggests that the inverse
126 relationship may be true as well. Given an n_{eff} , which we can calculate from a column in a
127 multiple sequence alignment, we can invert Equation 5 to predict a corresponding λ . This
128 inversion cannot be done analytically, but it is straightforward numerically.

129 Results

130 The preceding section suggests that the amino acid distribution at a site can be represented
131 by a single parameter λ , where once we know λ we know the individual frequencies π_i ,
132 modulo a reordering. (I.e., we will not know which amino acid is the most frequent or the

133 second-most frequent etc.; we will only know what their relative frequencies are.) Note
134 that this is a stronger statement than saying we can represent a site by its n_{eff} , because
135 while n_{eff} captures the variability at a site it does not a priori fix the frequencies π_i .

136 We can test this prediction empirically by taking columns in multiple sequence align-
137 ments (MSAs), calculating n_{eff} values, converting them into λ values, then calculating
138 predicted amino acid frequencies from the λ values and assessing how close they are to the
139 observed frequencies. For this purpose, we here use previously published MSAs of taxo-
140 nomically and functionally diverse proteins (Jiang et al., 2018). Specifically, we analyze
141 MSAs corresponding to 10 arbitrarily chosen proteins (Table 1), and we consider both
142 MSAs of natural sequences and of sequences generated via simulation, using an accelerated
143 origin-fixation algorithm (Teufel and Wilke, 2017). Although the natural sequences are
144 subjected to mutational biases and codon degeneracy and the simulated sequences are not
145 (all mutations between amino acids are equally likely), only minor differences in amino acid
146 frequencies have been observed between these sets of alignments (Jiang et al., 2018). For
147 this reason, we take observed amino acid frequencies as is and do not correct for mutation
148 biases.

149 **Theoretical expectation observed in simulated and empirical 150 alignments**

151 Because alignments of natural sequences are confounded by phylogenetic relatedness and
152 the simulated alignments are not (they were created using a star phylogeny), we expect
153 that our approach will fit the simulated alignments better than the natural ones. Therefore,
154 we first apply it to simulated sequences.

155 We begin with simulated sequences corresponding to a yeast copper-zinc superoxide dis-
156 mutase (PDB ID: 1B4T). The MSA has 153 sites, and we observe substantial heterogeneity
157 among the sites in terms of the number and type of amino acids present. To demonstrate
158 our theoretical reasoning described in the preceding section, we first consider one of the
159 variable sites (site 35), perform a linear regression on the ranked, log-transformed frequen-
160 cies to obtain λ , and then compare the distribution given by Equation 4 to the empirical
161 distribution at the site (Fig. 1). The two distributions look visually similar, and a χ^2
162 goodness-of-fit test detects no significant difference between them ($p = 0.106$).

163 Next, we repeat this procedure at all remaining sites in this protein's alignment. To
164 visualize the results from this analysis, we take the λ values obtained from the linear
165 regressions and plot $1/\lambda$ against the n_{eff} calculated directly from the observed amino acid
166 frequencies (Fig. 2). We plot $1/\lambda$ instead of λ to avoid the divergence at $n_{\text{eff}} = 1$, where
167 $1/\lambda = 0$. We find that the majority of sites fall near the line defined by Equation 5, which
168 is expected if the theoretical relationship between n_{eff} and λ holds true (Fig. 2). However,
169 even though all sites are near this theoretical relationship, there are measurable deviations
170 from the exact theory. Many sites fail the χ^2 goodness-of-fit test after False-Discovery-Rate
171 (FDR) correction, indicated in orange color (Fig. 2). As a general pattern, we observe that
172 sites with a higher effective number of amino acids are more likely to not fail the χ^2 test
173 (blue points).

174 We find similar results in nine additional simulated protein alignments (Fig. 3). Most
175 sites fall close to the line defined by Equation 5, but nevertheless, only a moderate number
176 of sites at high n_{eff} pass the χ^2 test. Surprisingly, our results look better for the empirical
177 alignments for the same ten proteins (Fig. S1). There the majority of the sites pass
178 the χ^2 test for each protein (Fig. 4 and Fig. S2). This difference is likely driven by the
179 difference in the number of sequences in each alignment. Most empirical alignments contain
180 between 80 and 200 sequences, whereas all simulated alignments contain 500 sequences
181 (Table 1). We test this hypothesis by downsampling the size of each simulated alignment
182 to match the number of sequences in its corresponding empirical alignment and repeating
183 the analysis. We confirm that indeed the downsampled simulated alignments more closely
184 resemble their empirical counterparts than the full simulated alignments (Fig. 4 and Fig.

185 S2). Additionally, we find that distributions of the adjusted coefficients of determination
186 (R^2) for these regression analyses look similar across simulated and empirical alignments,
187 with added variation in some downsampled simulated alignments (Fig. S3).

188 Null distributions confirm theoretical expectations

189 To test the validity of our fitting procedure, we repeat the methods discussed above un-
190 der two different null distributions. As a positive control, we randomly draw amino acid
191 distributions according to Equation 4 and then repeat our fitting procedure for these dis-
192 tributions. As expected, χ^2 tests show no significant difference between the simulated and
193 the fitted distributions, for all sites tested (Fig. 5, left panel).

194 As a negative control, we additionally simulate amino acid counts described by a Gaus-
195 sian function and then subject them to the same fitting procedure. We define expected
196 amino acid frequencies as $\pi_i \sim \exp[-(i - 10)^2/\sigma^2]$, where i is an integer taking on values
197 between 0 and 19. We use multinomial sampling to generate specific amino acid counts and
198 then re-rank counts from largest to smallest (see Methods for details). Depending on the
199 value of σ chosen, this approach can result in unrealistic amino acid distributions that are
200 near uniform, with n_{eff} values of 15–20 (Fig. 5, right panel). In this previously unobserved
201 area of parameter space, we find that the simulated distributions are accurately represented
202 by our theoretical relationship between $1/\lambda$ and n_{eff} . This is the case because for near-
203 uniform amino acid distributions, the quadratic term in the Gaussian can be neglected.
204 By contrast, for parameter choices that result in smaller n_{eff} values, we now see consistent
205 deviations between the observed and the expected distributions (most sites fail the χ^2 test
206 and are colored in orange), even though all sites fall near the expected relationship between
207 $1/\lambda$ and n_{eff} (Fig. 5, right panel). This result demonstrates that our χ^2 test is sensitive to
208 subtle deviations in amino acid frequencies from the distribution given by Equation 4.

209 Additional parameters and non-linearity do not improve re- 210 gression fit

211 As an additional method of assessing how well our characterization describes actual amino
212 acid distributions, we can also compare the n_{eff} values calculated from an empirical align-
213 ment to the n_{eff} values calculated from the frequencies of the fitted distribution. If the fitted
214 distribution accurately reflects the empirical distribution, then these two sets of n_{eff} values
215 should be very similar to each other. In fact, we generally find that they are highly corre-
216 lated and near the $x = y$ line (e.g., $R^2 = 0.971$, Fig. 6 top panel for the MSA corresponding
217 to yeast copper-zinc superoxide dismutase, PDB ID: 1B4T).

218 While the high correlations we observe are an excellent result, we can ask if we could
219 do better. For the top panel in Fig. 6, of the 153 sites in the alignment 20 had to be
220 excluded from the comparison as they are completely conserved for a single amino acid
221 and the fitting procedure fails in this case. Of the remaining 133 sites, 17 sites (12.8%)
222 fail the χ^2 test. Notably, the fits for this result are done using a one-parameter model,
223 where normalized, log-transformed counts are fit to a model without intercept, $0 - \lambda i$ (i is
224 an integer running from 0 to 19, see Methods for details). A single parameter fit tends to
225 performs poorly on sites that are highly conserved for either one or two equally frequent
226 amino acids.

227 To explore alternatives, we can make two modifications to this analysis: First, we can
228 perform a different linear regression that is however still consistent with Equation 4, a
229 two-parameter model with an intercept term: $b - \lambda i$. The intercept term cancels out in
230 Equation 4, but it affects the λ value and thus the amino acid frequencies obtained during
231 fitting. Second, we can test a quadratic regression where a third parameter, c , is added to
232 capture the shape of the curve: $b - \lambda i + ci^2$.

233 We find that both the two-parameter regression and the three-parameter regression
234 perform worse than the one-parameter regression based on several metrics: p -values from

235 the χ^2 goodness-of-fit test, R^2 values on transformed count data from regression analyses,
236 and R^2 values from the correlation between actual and estimated n_{eff} values (Fig. S4
237 and 6). For the two-parameter regression, we are still unable to fit the 20 sites with only
238 one amino acid observed. Of the remaining 133 sites, 34 sites (25.6%) fail the χ^2 test,
239 and the R^2 between the n_{eff} calculated on the actual and fit distribution has declined to
240 $R^2 = 0.859$. The three-parameter regression leads to the worst performance overall: 110
241 of 153 sites (71.9%) fail the χ^2 test, and the R^2 between the n_{eff} calculated on the actual
242 and fit distribution has declined to $R^2 = 0.401$.

243 As a general pattern, we observe that additional parameters and non-linearity in the
244 fitted model lead to increased variability in our ability to recapture the n_{eff} of the actual
245 distribution. With one parameter, we tend to slightly overestimate n_{eff} with our fitted
246 distribution, in particular towards low n_{eff} values (Fig. 6, top). The addition of the
247 intercept parameter moves points further from the $x = y$ line overall (Fig. 6, middle).
248 Finally, the quadratic regression, with three parameters, produces additional spread in
249 both directions, resulting in quite severe over- and underestimations of n_{eff} . We find that
250 these results hold true across all 10 empirical proteins considered (Fig. S5). A small
251 constant was added to amino acid counts prior to fitting only in the case of our three-
252 parameter regression as it was necessary to obtain enough data points for fitting at each
253 site ($n > 2$). This constant was excluded from the one- and two-parameter regressions as it
254 was not required for fitting and was shown to decrease our ability to fit the distribution (Fig.
255 S6, top and middle panel). We additionally attempted to improve our three-parameter fit
256 through regularization with ridge regression, which however increased the upward bias in
257 the n_{eff} of the fitted distribution (Fig. S6, bottom panel) (Friedman et al., 2010). Thus,
258 in conclusion, a simple one-parameter linear regression without intercept maximizes our
259 ability to capture the empirical amino acid distribution.

260 Discussion

261 We have shown that a simple Boltzmann-like distribution with a single free parameter
262 works surprisingly well at capturing amino acid variability at individual sites in protein
263 multiple sequence alignments, as long as we are prepared to ignore amino acid identity and
264 simply order amino acids from most frequent to least frequent. We have found that this
265 description works both in empirical alignments and in alignments derived from simulations
266 using a physics-based atom-level model of protein structure. For many, though not all,
267 sites in an alignment, the single one-parameter description is sufficiently accurate to be
268 statistically indistinguishable from the true amino acid distribution. In general, deviations
269 from the true distribution tend to be more prominent at sites that display less variability
270 overall.

271 That amino acid frequencies should be Boltzmann distributed follows from theoretical
272 models of protein stability (Dokholyan and Shakhnovich, 2001; Dokholyan et al., 2002;
273 Echave et al., 2015). However, we note that our finding here is stricter than prior theo-
274 retical predictions. In the most general scenario, we can write any arbitrary amino acid
275 distribution in Boltzmann form, by appropriately choosing energy levels for each individual
276 amino acid (see Eq. 3). Here, instead, we are arguing that energy levels are approximately
277 uniformly spaced, so that a single parameter λ (corresponding, in effect, to the distance
278 between two energy levels) can capture the entire distribution at a site. Previous work has
279 shown that energy levels are approximately evenly spaced for amino acid distributions av-
280 eraged across sites with similar relative solvent accessibility (Ramsey et al., 2011). We find
281 that this observation also holds true for site-specific amino acid distributions in both simu-
282 lated and empirical protein sequences. The mechanisms driving this empirical observation
283 remain unknown and should be explored in future work.

284 While our approach is able to reproduce the general shape of the distribution of amino
285 acids at a site, the actual and the estimated distribution are not always an exact match.

286 There are subtle deviations from the simple exponential decay that can be detected when
287 alignments are sufficiently large. In particular, while the majority of sites in simulated and
288 empirical alignments pass a χ^2 goodness-of-fit test when a limited number of sequences are
289 used in the regression (fewer than ~ 200), a larger fraction of sites fails the χ^2 goodness-of-
290 fit test for simulated alignments with the full 500 sequences. We have further found that
291 the distribution of amino acids is best characterized when fit (after log-transform) with a
292 simple linear regression without intercept. Adding a second parameter (the intercept) to
293 the linear regression or implementing a quadratic (three parameter) regression to aid in
294 approximating the distribution can improve χ^2 results for some sites, in particular highly
295 conserved sites. However, on average, the two- and three-parameter regressions perform
296 worse than the one-parameter regression.

297 The characterization presented here allows for a general approximation of the shape of
298 amino acid distributions. However, these theoretical distributions are not exact and vary
299 in their ability to recover the observed amino acid frequencies in an empirical or simulated
300 alignment. The biggest challenges seem to arise at sites that are highly conserved for only
301 a few amino acids. Unfortunately, such sites are common in empirical alignments. In
302 addition, just like is the case with evolutionary rate measures, approximating an amino
303 acid distribution by rank does not retain any information about the identity of amino acids
304 found at individual sites. While predicting the rank order of amino acids is beyond the
305 scope of this research, it might be possible to develop standard rankings based on the
306 biology of the system. For example, we observe that amino acids occupy rank 0 at different
307 frequencies based on their location within the protein structure (Fig. S7), e.g., hydrophobic
308 amino acids tend to be most abundant at sites that are buried in the protein core. Potential
309 strategies for jointly predicting rank frequencies and identities in evolutionary models are
310 discussed below.

311 The ability to reduce an amino acid distribution from 20 parameters to one might be use-
312 ful if applied to models of protein evolution. Current phenomenological models of protein
313 evolution that require only a few parameters, such as dN/dS models (Goldman and Yang,
314 1994; Kimura, 1977; Yang and Bielawski, 2000; Kryazhimskiy and Plotkin, 2008), provide
315 aggregate information about how sites have changed but capture little information about
316 the distribution of amino acids at individual sites (Arenas and Posada, 2014; Halpern and
317 Bruno, 1998). Additionally, they tend to be sensitive to evolutionary forces if not explicitly
318 modeled (Wilson and McVean, 2006; Arenas, 2015; Spielman and Wilke, 2015; Kryazhim-
319 skiy and Plotkin, 2008). Alternatively, mechanistic mutation-selection models often rely
320 on numerous parameters to account for observed heterogeneity in amino acid frequen-
321 cies across sites (Halpern and Bruno, 1998; Rodrigue et al., 2010; Yang and Nielsen, 2008;
322 Bruno, 1996; Tamuri et al., 2012, 2014). These models connect amino acid frequencies with
323 fitness, but they are computationally expensive and can result in an over-parameterized
324 representation of the sequence space (Puller et al., 2020; Rodrigue, 2013; Spielman and
325 Wilke, 2016). We note that a site-specific model with one free parameter has previously
326 been developed for phylogenetic inference (Arenas et al., 2015). By accounting for struc-
327 tural properties, this mean-field model improves inference of evolutionary events, but its
328 estimates of site-specific sequence entropy and substitution rate disagree with empirical
329 data (Jimenez et al., 2018).

330 Current approaches to preventing over-parameterization of mutation-selection mod-
331 els include using random-effects models (which in effect share amino acid distributions
332 among sites, Rodrigue et al. 2010) and regularization (which causes low amino acid fre-
333 quencies to be set to zero, Tamuri et al. 2014). Both approaches work reasonably well, but
334 random-effects models have a tendency to produce too many non-zero amino acid frequen-
335 cies (Spielman and Wilke, 2016). Our results here suggest a mathematical explanation
336 for this observation: Random-effects models tend to represent amino acid distributions
337 as a weighted average over a finite set of propensity vectors as the true propensity vec-
338 tor is unknown (Rodrigue et al., 2010). While individual propensity vectors can converge
339 into a Boltzmann form, a weighted average of different Boltzmann distributions—with

340 amino acids in different rank order—will generally not be Boltzmann, and in fact will
341 over-populate rare amino acids.

342 We emphasize that we have not proposed a new model of evolution here. We have
343 merely identified a property of empirical amino acid distributions that models of evolution
344 should be able to capture. Integrating this characterization into such models could improve
345 our ability to infer phylogenetic relationships as well as evolutionary rates and processes.
346 We would like to suggest some avenues of how our insights could be incorporated into future
347 models. First, for random-effects models, instead of using arbitrary propensity vectors it
348 might be useful to enforce the Boltzmann form with a single free parameter λ , and then fit
349 the amino acid order at each site. Amino acid order can be represented by permutations,
350 and permutations can be sampled using standard MCMC approaches (Strauß et al., 2019).
351 Of course, any models that fit amino acid order would require more than one parameter
352 per site.

353 For fixed-effects models, on the other hand, it may be possible to derive a new regu-
354 larization approach that uses our Eq. 4 for regularizing amino acid frequencies. We note
355 that fixed-effects models for phylogenetic inference often lack the statistical guarantees of
356 traditional likelihood estimation and thus may be prone to overfitting based on the dimen-
357 sionality of the site-specific variables (Rodrigue, 2013). Researchers wishing to incorporate
358 our characterization into such models should do so with caution.

359 Methods

360 Origin of multiple sequence alignments

361 We use protein multiple sequence alignments (MSAs) from an existing data set that con-
362 tains both empirical and simulated alignments for the same protein structures (Ramsey
363 et al., 2011; Jiang et al., 2018). The empirical alignments were originally assembled by
364 Ramsey et al. (2011) and include 38 MSAs, each containing at least 50 sequences, for 38
365 distinct protein structures (Jackson et al., 2013). For each protein structure, Jiang et al.
366 (2018) subsequently added a simulated alignment containing 500 sequences. The simulated
367 alignments were simulated using an accelerated origin-fixation algorithm (Jiang et al., 2018;
368 Teufel and Wilke, 2017) with a physics-based, atom-level model of protein structure as a
369 fitness function. The simulations were performed along a star phylogeny, such that no
370 phylogenetic structure is present in the simulated alignments (Jiang et al., 2018). The em-
371 pirical alignments had originally been filtered to remove sequences of $\geq 80\%$ similarity, so
372 phylogenetic structure in these alignments is limited but not absent (Ramsey et al., 2011).

373 Here, we arbitrarily selected 10 protein structures with their associated empirical and
374 simulated alignments for further analysis (Table 1). We note that because empirical align-
375 ments contain gaps, the total number of amino acids observed at any given site might be
376 smaller than the number sequences listed.

377 Approximating the distribution of amino acids at a site

378 We use the following fitting procedure to estimate the site-specific constant λ that param-
379 eterizes our Boltzmann-like amino acid distribution (Equation 4). Rather than fitting an
380 exponential model directly to the observed count data, we transform the data as described
381 below for use in a linear regression. At each site in an alignment, we first count all amino
382 acids and then rank them by frequency, from most to least abundant. These ranked counts
383 are then rescaled relative to the most abundant amino acid at that site and subsequently
384 log-transformed. We then fit a linear regression of the form $0 - \lambda i$ for $i = 0, 1, \dots, 19$ to the
385 rescaled and transformed counts, excluding any amino acids or sequences (gaps) that were
386 not observed in the alignment. The 0 in front of $-\lambda i$ indicates the absence of an intercept
387 term, i.e., the regression model is forced to go through 0 at $i = 0$.

388 Once we have obtained a λ value at a site, we calculate expected amino acid counts
389 by computing $-\lambda e^{-\lambda i}$ for $i = 0, 1, \dots, 19$. For direct comparison with observed counts,
390 the obtained values need to be normalized relative to their sum and multiplied by the
391 total number of counts at that site in the observed data (this is equivalent to the number
392 of sequences in simulated MSAs, but varies based on the presence of gaps in empirical
393 MSAs). Because we are fitting with realized frequencies instead of equilibrium frequencies,
394 the λ values calculated here are likely subject to some degree of sampling bias.

395 We assess the goodness-of-fit of the fitted to the observed distribution at each site by
396 comparing expected with observed amino acid counts using a χ^2 test with 18 degrees of
397 freedom. We correct for multiple testing via the False-Discovery-Rate (FDR) correction
398 (Benjamini and Hochberg, 1995). A χ^2 test on count data is the appropriate test here as
399 we are interested in our ability to reproduce the original distribution from λ alone. We
400 additionally report the proportion of variance explained (R^2) from the linear regression on
401 the observed and expected log-transformed counts.

402 Generating null distributions

403 To generate null distributions, we specify amino acid frequencies π_i at each site and then
404 draw amino acid counts for $n = 500$ sequences from multinomial distributions with ex-
405 pected counts $n\pi_i$. In all null distributions, we use 110 distinct sites. After generating
406 the samples under various distributions, we follow the same procedures for our empirical
407 and simulated alignments: We transform the data by ranking counts from most to least
408 frequent, normalizing, and log-transforming prior to fitting.

409 As a positive control, we use $\pi_i = Ce^{-\lambda i}$, with C chosen such that $\sum_i \pi_i = 1$. We
410 generate 110 values of λ uniformly spaced from 0.1 to 1. This choice guarantees that the
411 resulting distribution of n_{eff} looks similar to those observed in our protein alignments. Each
412 value of λ is used to simulate a site within a 500 sequence alignment.

413 As a negative control, we use $\pi_i = Ce^{-(i-10)^2/(\sigma^2)}$. The constant C is again chosen such
414 that $\sum_i \pi_i = 1$. For small σ , this choice generates amino acid frequencies that decay faster
415 than exponential. For large σ , on the other hand, this choice generates frequencies that
416 are nearly uniform. We select 110 σ values uniformly spaced from 0.5 to 15 to simulate
417 sites with values of n_{eff} ranging from 1 to 19.

418 Varying the number of parameters in fitting

419 We modify the fitting procedures described above by including additional parameters and
420 non-linearity during our analysis on empirical sequence alignments. Under our normal
421 procedure, we fit $0 - \lambda i$ to the observed amino acid count data, as explained above. We can
422 incorporate a second parameter into this linear regression by relaxing the assumption of
423 a zero intercept term. Thus, we fit $b - \lambda i$ to the ranked, normalized, and log-transformed
424 counts for only those amino acids that were observed in our data. We obtain expected
425 counts from this fit by computing $e^{b - \lambda i}$ for amino acids $i = 0, 1, \dots, 19$, normalizing to their
426 relative frequency, and rescaling with the total number of count observations for each site.

427 To capture non-linear effects in the distributions, we additionally fit a three-parameter
428 quadratic regression: $b - \lambda i + ci^2$. While the previous regressions could be implemented
429 on a small number of observed amino acids, a quadratic fit requires more data points (i.e.,
430 more non-zero amino acid counts). To deal with this limitation, we add a small constant
431 (0.01) to all amino acid counts at all sites prior to data transformation and fitting. With
432 this addition, the updated count values are ranked, normalized, and log-transformed prior
433 to fitting, resulting in all 20 amino acids being present (and fit) at all sites. After obtaining
434 λ , b , and c from the fit at each site, we compute $e^{b - \lambda i + ci^2}$ for $i = 0, 1, \dots, 19$, normalize each
435 count based on its relative frequency, and rescale with the total number of counts observed
436 at that site.

437 The results of all three fitting procedures are evaluated on their performance approxi-
438 mating the observed distribution via χ^2 goodness-of-fit tests. We test our ability to recover
439 the effective number of amino acids by calculating n_{eff} on both the actual and estimated
440 distribution for each site as described by Equation 1. The relationship between these mea-
441 sures at each site is compared across fitting methods and presented with their respective
442 coefficients of determination for all empirical alignments.

443 Results of Figure S6 are obtained by re-running the one- and two-parameter regressions
444 on amino acid counts after a small constant (0.01) was added (top and middle panel,
445 respectively). As in the three-parameter case, this results in all 20 amino acids being fit at
446 each site. We additionally modify the three-parameter regression described above by fitting
447 $b - \lambda i + ci^2$ with ridge regression in the `glmnet` R package (Friedman et al., 2010). In order
448 to not add an additional parameter to our analysis, we perform k -fold cross validation to
449 identify the optimal tuning parameter (λ_{tuning}) at each site with more than one amino acid
450 observed, and select one value for use across all sites (Fig. S8). Based on the observed
451 distribution, we fit the ridge regression in `glmnet` with $\lambda_{\text{tuning}} = 0.28$ and $\alpha = 0$ at each site
452 (Fig. S6, bottom panel). The expected number of amino acids at each site is calculated
453 from the values of b , λ , and c obtained from the ridge regression.

454 Code

455 Data and code for this work are available at:

456 <https://github.com/mmjohn/amino-acid-distributions>. All data analysis and figure
457 production was performed in R (R Core Team, 2019), making extensive use of the tidyverse
458 family of packages (Wickham et al., 2019).

459 Acknowledgements

460 This work was supported by National Institutes of Health (NIH) grant R01 GM088344.
461 M.M.J. acknowledges support from NIH training grant T32 LM012414-01A1.

462 References

463 Arenas, M. (2015). Trends in substitution models of molecular evolution. *Front. Genet.*,
464 6:319.

465 Arenas, M. and Posada, D. (2014). Simulation of genome-wide evolution under hetero-
466 geneous substitution models and complex multispecies coalescent histories. *Mol. Biol.*
467 *Evol.*, 31:1295–1301.

468 Arenas, M., Sánchez-Cobos, A., and Bastolla, U. (2015). Maximum-likelihood phylogenetic
469 inference with selection on protein folding stability. *Mol. Biol. Evol.*, 32:2195–2207.

470 Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N.
471 (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary
472 conservation in macromolecules. *Nucl. Acids Res.*, 44 (W1):W344–W350.

473 Bastolla, U. and Arenas, M. (2019). The influence of protein stability on sequence evolution:
474 applications to phylogenetic inference. In Sikosek, T., editor, *Computational Methods in*
475 *Protein Evolution*, pages 215–231. Springer, New York, NY.

476 Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
477 powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B. (Methodol.)*, 57:289–300.

478 Bruno, W. J. (1996). Modeling residue usage in aligned protein sequences via maximum
479 likelihood. *Mol. Biol. Evol.*, 13:1368–1374.

480 Conant, G. C. and Stadler, P. F. (2009). Solvent exposure imparts similar selective pressures
481 across a range of yeast proteins. *Mol. Biol. Evol.*, 26:1155–1161.

482 Dokholyan, N. V., Mirny, L. A., and Shakhnovich, E. I. (2002). Understanding conserved
483 amino acids in proteins. *Physica A.*, 314:600–606.

484 Dokholyan, N. V. and Shakhnovich, E. I. (2001). Understanding hierarchical protein evo-
485 lution from first principles. *J. Mol. Biol.*, 312:289–307.

486 Echave, J., Jackson, E. L., and Wilke, C. O. (2015). Relationship between protein ther-
487 modynamic constraints and variation of evolutionary rates among sites. *Phys. Biol.*,
488 12:025002.

489 Echave, J. and Wilke, C. O. (2017). Biophysical models of protein evolution: understanding
490 the patterns of evolutionary sequence divergence. *Annu. Rev. Biophys.*, 46:85–103.

491 Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
492 linear models via coordinate descent. *J. Stat. Softw.*, 33:1.

493 Goldman, N. and Yang, Z. (1994). A codon-based model of nucleotide substitution for
494 protein-coding DNA sequences. *Mol. Biol. Evol.*, 11:725–736.

495 Goldstein, R. A. and Pollock, D. D. (2016). The tangled bank of amino acids. *Protein Sci.*,
496 25:1354–1362.

497 Halpern, A. L. and Bruno, W. J. (1998). Evolutionary distances for protein-coding se-
498 quences: modeling site-specific residue frequencies. *Mol. Biol. Evol.*, 15:910–917.

499 Jackson, E. L., Ollikainen, N., Covert, A. W., I., Kortemme, T., and Wilke, C. O. (2013).
500 Amino-acid site variability among natural and designed proteins. *PeerJ*, 1:e211.

501 Jiang, Q., Teufel, A. I., Jackson, E. L., and Wilke, C. O. (2018). Beyond thermody-
502 namic constraints: evolutionary sampling generates realistic protein sequence variation.
503 *Genetics*, 208:1387–1395.

504 Jimenez, M. J., Arenas, M., and Bastolla, U. (2018). Substitution rates predicted by
505 stability-constrained models of protein evolution are not consistent with empirical data.
506 *Mol. Biol. Evol.*, 35:743–755.

507 Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In Munro, H. N.,
508 editor, *Mammalian Protein Metabolism III*, pages 21–132. Academic Press, New York,
509 NY.

510 Kimura, M. (1977). Preponderance of synonymous changes as evidence for the neutral
511 theory of molecular evolution. *Nature*, 267:275–276.

512 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions
513 through comparative studies of nucleotide sequences. *J. Mol. Evol.*, 16:111–120.

514 Kosakovsky Pond, S. L. and Frost, S. D. W. (2005). Not so different after all: a comparison
515 of methods for detecting amino acid sites under selection. *Mol. Biol. Evol.*, 22:1208–1222.

516 Koshi, J. M. and Goldstein, R. A. (1998). Models of natural mutations including site
517 heterogeneity. *Proteins*, 32:289–295.

518 Kryazhimskiy, S. and Plotkin, J. B. (2008). The population genetics of dN/dS . *PLoS Genet.*, 4.

519

520 Meyer, A. G. and Wilke, C. O. (2013). Integrating sequence variation and protein structure
521 to identify sites under selection. *Mol. Biol. Evol.*, 30:36–44.

522 Porto, M., Roman, H. E., Vendruscolo, M., and Bastolla, U. (2005). Prediction of site-
523 specific amino acid distributions and limits of divergent evolutionary changes in protein
524 sequences. *Mol. Biol. Evol.*, 22:630–638.

525 Puller, V., Sagulenko, P., and Neher, R. A. (2020). Efficient inference, potential, and
526 limitations of site-specific substitution models. *bioRxiv*.

527 Pupko, T., Bell, R. E., Mayrose, I., Glaser, F., and Ben-Tal, N. (2002). Rate4Site: an
528 algorithmic tool for the identification of functional regions in proteins by surface mapping
529 of evolutionary determinants within their homologues. *Bioinformatics*, 18 Suppl 1:S71–
530 S77.

531 R Core Team (2019). *R: a language and environment for statistical computing*. R Founda-
532 tion for Statistical Computing, Vienna, Austria.

533 Ramsey, D. C., Scherrer, M. P., Zhou, T., and Wilke, C. O. (2011). The relationship be-
534 tween relative solvent accessibility and evolutionary rate in protein evolution. *Genetics*,
535 188:479–488.

536 Rodrigue, N. (2013). On the statistical interpretation of site-specific variables in phylogeny-
537 based substitution models. *Genetics*, 193:557–564.

538 Rodrigue, N. and Lartillot, N. (2014). Site-heterogeneous mutation-selection models within
539 the PhyloBayes-MPI package. *Bioinformatics*, 30:1020–1021.

540 Rodrigue, N., Philippe, H., and Lartillot, N. (2010). Mutation-selection models of coding
541 sequence evolution with site-heterogeneous amino acid fitness profiles. *Proc. Natl. Acad.*
542 *Sci. U.S.A.*, 107:4629–4634.

543 Spielman, S. J. and Kosakovsky Pond, S. L. (2018). Relative evolutionary rate inference
544 in HyPhy with LEISR. *PeerJ*, 6:e4339.

545 Spielman, S. J. and Wilke, C. O. (2015). The relationship between dN/dS and scaled
546 selection coefficients. *Mol. Biol. Evol.*, 32:1097–1108.

547 Spielman, S. J. and Wilke, C. O. (2016). Extensively parameterized mutation-selection
548 models reliably capture site-specific selective constraint. *Mol. Biol. Evol.*, 33:2990–3002.

549 Strait, B. J. and Dewey, T. G. (1996). The Shannon information entropy of protein se-
550 quences. *Biophys. J.*, 71:148–155.

551 Strauß, M. E., Reid, J. E., and Wernisch, L. (2019). GPpseudoRank: a permutation sampler
552 for single cell orderings. *Bioinformatics*, 35:611–618.

553 Tamuri, A. U., dos Reis, M., and Goldstein, R. A. (2012). Estimating the distribution of
554 selection coefficients from phylogenetic data using sitewise mutation-selection models.
555 *Genetics*, 190:1101–1115.

556 Tamuri, A. U., Goldman, N., and dos Reis, M. (2014). A penalized-likelihood method
557 to estimate the distribution of selection coefficients from phylogenetic data. *Genetics*,
558 197:257–271.

559 Teufel, A. I. and Wilke, C. O. (2017). Accelerated simulation of evolutionary trajectories
560 in origin-fixation models. *J. R. Soc. Interface*, 14:20160906.

561 Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., François, R.,
562 Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Lin Pedersen, T., Miller,
563 E., Milton Bache, S., Müller, K., Ooms, J., Robinson, D., Paige Seidel, D., Spinu, V.,
564 Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to
565 the tidyverse. *J. Open Source Softw.*, 4:1686.

566 Wilson, D. J. and McVean, G. (2006). Estimating diversifying selection and functional
567 constraint in the presence of recombination. *Genetics*, 172:1411–1425.

568 Yang, Z. and Bielawski, J. P. (2000). Statistical methods for detecting molecular adapta-
569 tion. *Trends Ecol. Evol.*, 15:496–503.

570 Yang, Z. and Nielsen, R. (2008). Mutation-selection models of codon substitution and their
571 use to estimate selective strengths on codon usage. *Mol. Biol. Evol.*, 25:568–579.

Table 1: Identity and characteristics of the pairs of simulated and empirical protein alignments analyzed here. Data from Jiang et al. (2018).

PDB ID	Chain	Simulated ¹	Empirical ²	Length ³
1B4T	A	500	160	153
1CI0	A	500	87	205
1EFV	B	500	84	252
1G58	B	500	211	196
1GV3	A	500	181	213
2A84	A	500	125	277
2AIU	A	500	73	104
2BCG	Y	500	168	194
2BR9	A	500	96	230
2CFE	A	500	312	162

¹ Number of simulated sequences

² Number of empirical sequences

³ Number of amino acids in protein alignment

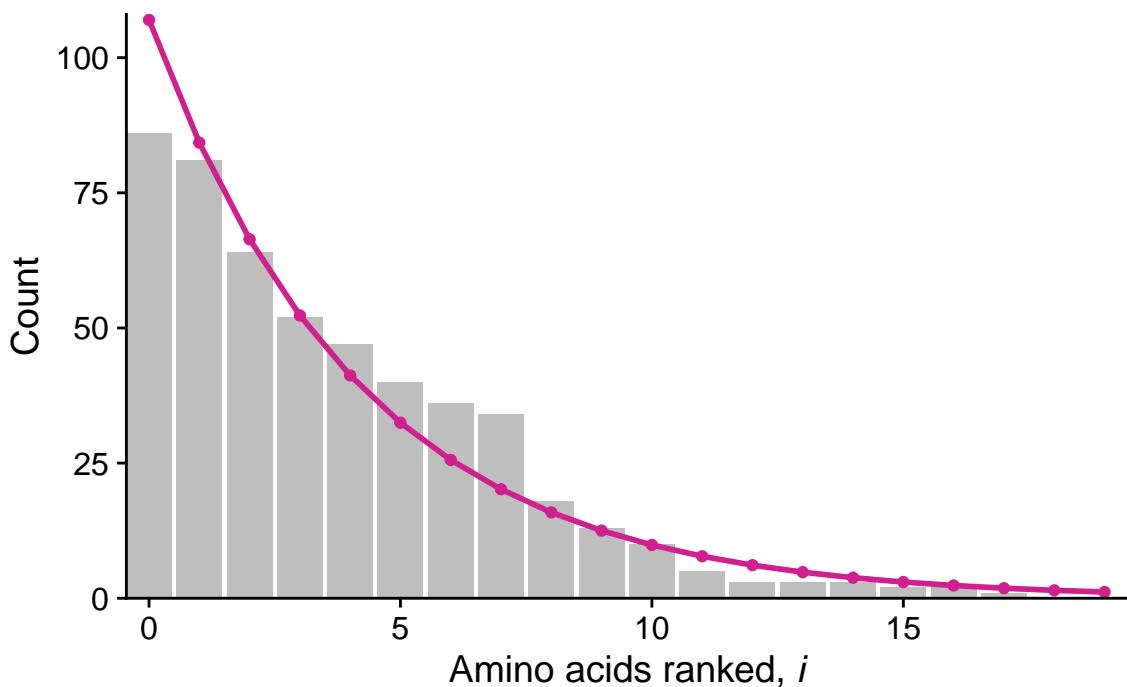


Figure 1: Site-specific distribution fit to observed amino acid counts. The gray bars represent the counts observed in 500 simulated sequences, while the magenta line depicts the distribution approximated from the linear regression fit to the log-transformed count data. The plot above is for site 35 for the simulated alignment of a yeast copper-zinc superoxide dismutase (PDB ID: 1B4T).

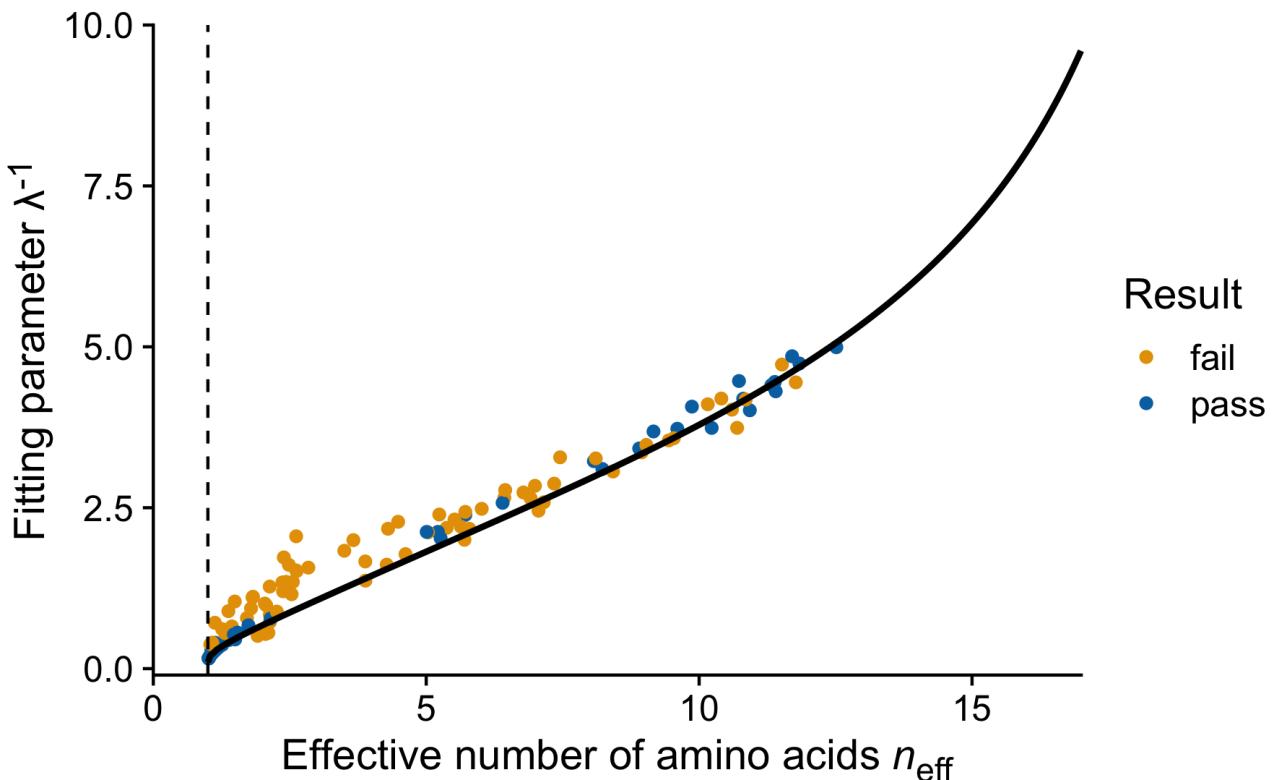


Figure 2: Relationship between the effective number of amino acids (n_{eff}) and λ^{-1} , for the simulated alignment from Figure 1 (PDB ID: 1B4T). Each point represents a site in the alignment with λ values from a linear regression on the transformed count data and n_{eff} values calculated with Equation 1 on observed counts. The use of λ^{-1} improves our ability to visualize this relationship for small values of n_{eff} where λ diverges. The black line represents the theoretical expectation calculated from Equation 5. Orange points indicate sites that fail the χ^2 test (75 sites), while blue sites show no significant difference between the actual and the fit distribution (50 sites). Sites with only one amino acid present were excluded from the χ^2 analysis (29 sites).

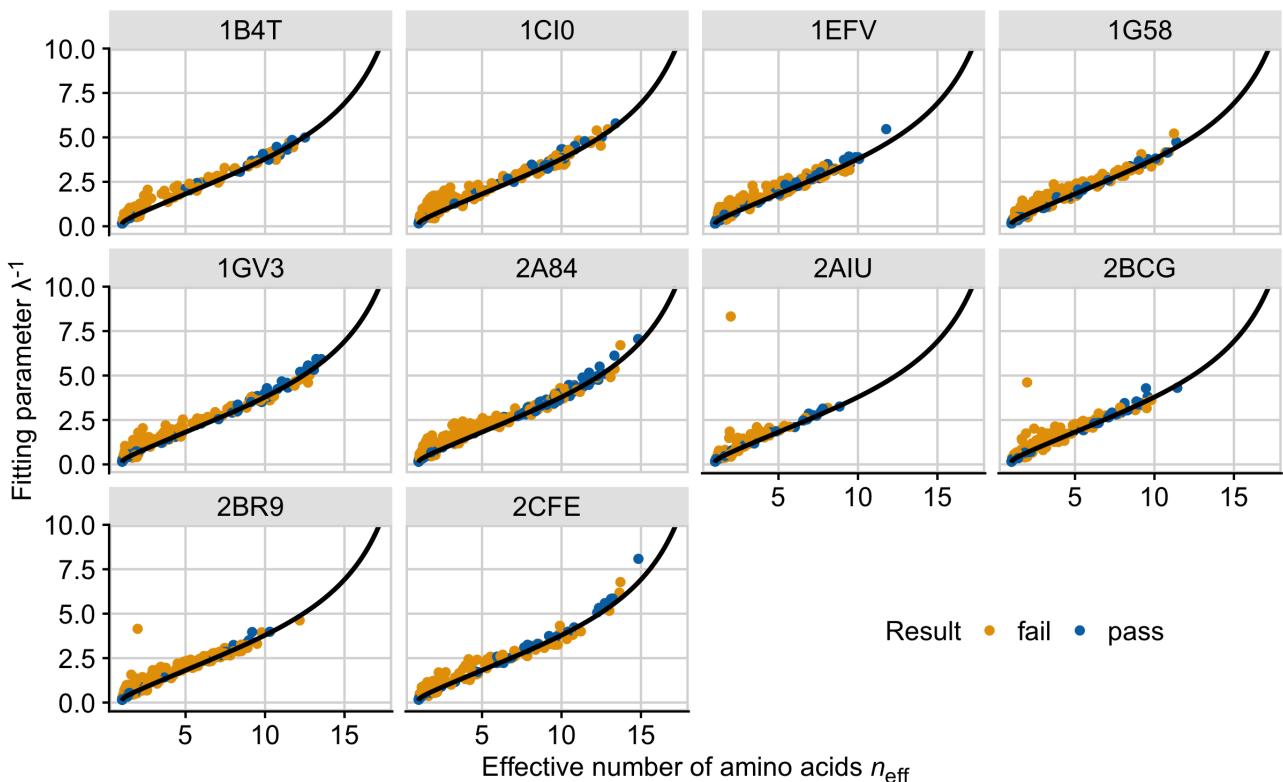


Figure 3: The fit of 10 simulated protein alignments to the theoretical expectation from Equation 5 (black line). The x axis represents the effective number of amino acids, n_{eff} , while the y axis is $1/\lambda$. The title of each panel indicates the protein's identifier in the Protein Data Bank. Each point represents the distribution at a single site, where λ is the slope parameter from the linear regression and n_{eff} is calculated with Equation 1. Orange points indicate a failed χ^2 , while blue points indicate a passed χ^2 after FDR correction.

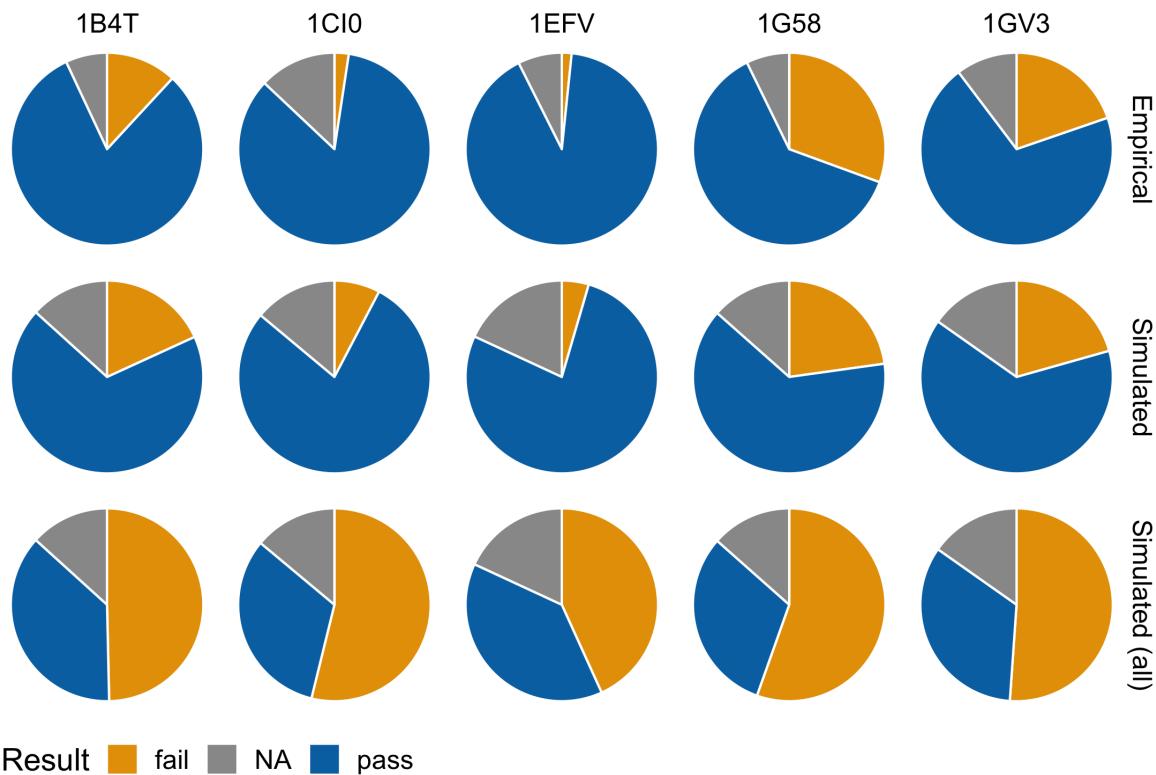


Figure 4: Performance of a χ^2 goodness-of-fit test between the actual and estimated amino acid distributions at each site in five different proteins. Analysis was performed on actual counts observed in the alignment and the counts estimated from the linear regression. Results are compared for an empirical alignment, a simulated alignment with an equivalent number of sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR correction controlled for multiple testing. Orange indicates sites that failed the χ^2 , while blue indicates sites that passed the χ^2 and grey indicates the number of sites that could not be tested under the χ^2 goodness-of-fit test due to the presence of a single amino acid.

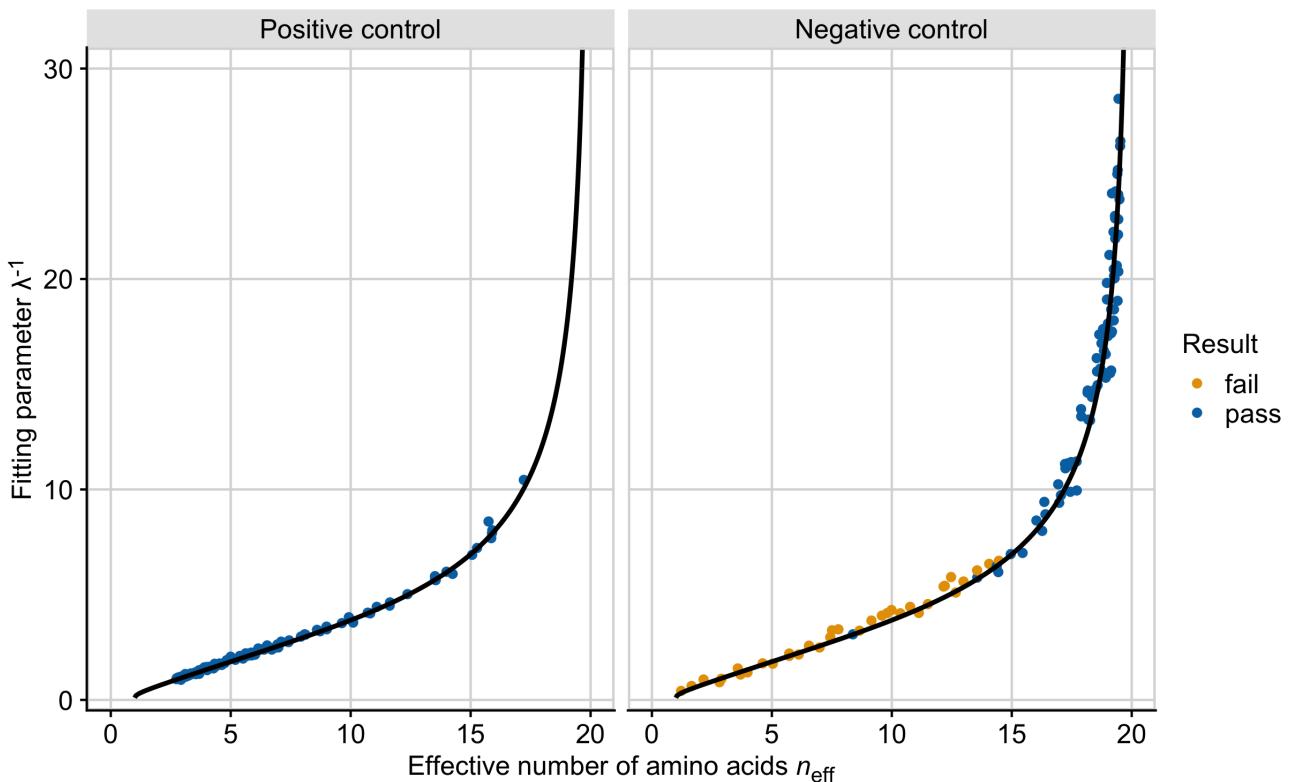


Figure 5: Fit of null distributions to the theoretical expectation (black line, Eq. 5). The x axis represents the effective number of amino acids, n_{eff} , while the y axis is $1/\lambda$, where λ is the slope parameter from the linear regression. Orange points indicate a failed χ^2 , while blue points indicate a passed χ^2 after FDR correction. The plot on the left show sites with distributions simulated from Equation 4, while the distributions represented on the right were simulated from a Gaussian distribution. For each site, values of λ come from linear regression on transformed counts, while n_{eff} is calculated with Equation 1 on raw counts.

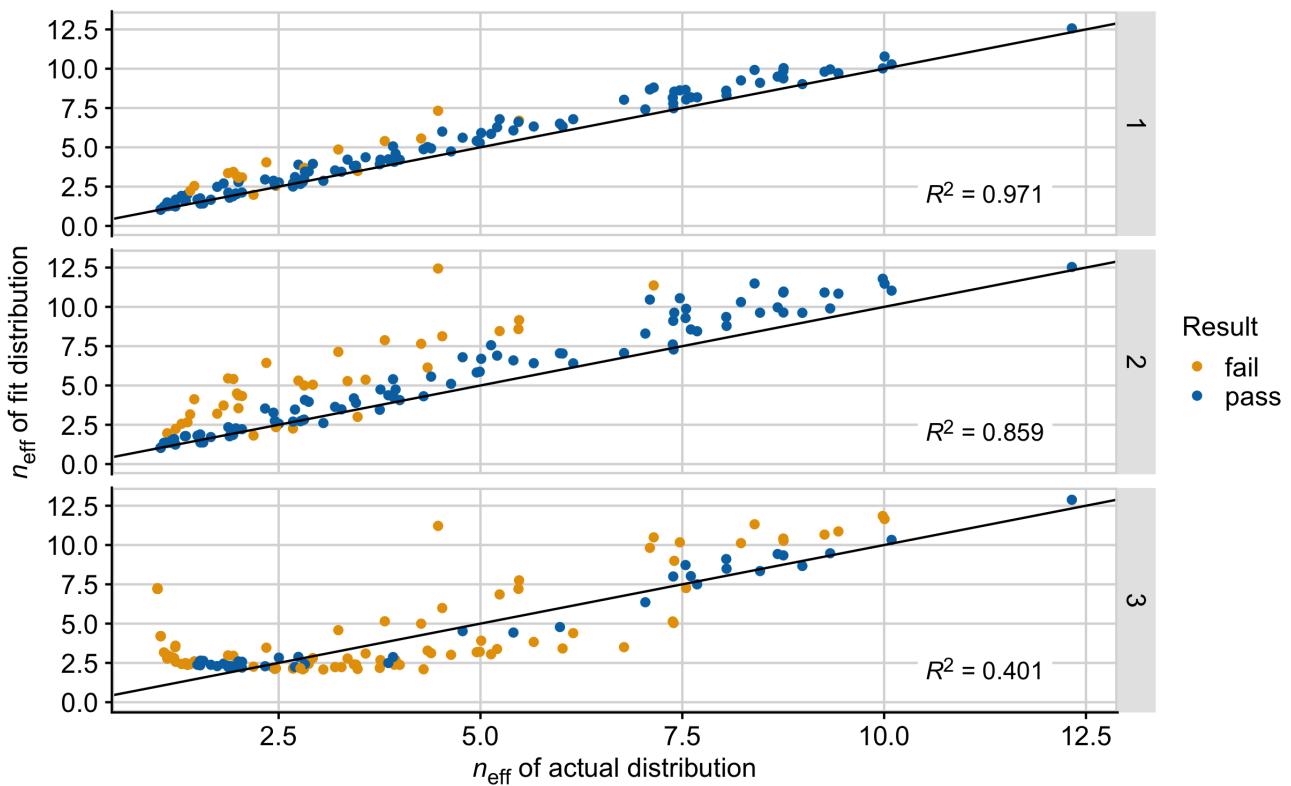


Figure 6: Conservation of the effective number of amino acids (n_{eff}) in the fit distribution. For each site, n_{eff} was calculated with Equation 1 on the observed counts in the alignment and on the counts estimated from the linear regression. Both measures are presented for each site in the empirical 1B4T alignment when the distribution was fit with either one, two, or three parameters, as indicated by the labels on the right. The black lines represent the points for which $x = y$, and the R^2 reported in the figure is from the correlation between n_{eff} in the actual and fit distribution. Colors indicate the result of the χ^2 goodness-of-fit test with FDR correction.

572

Supplemental Figures

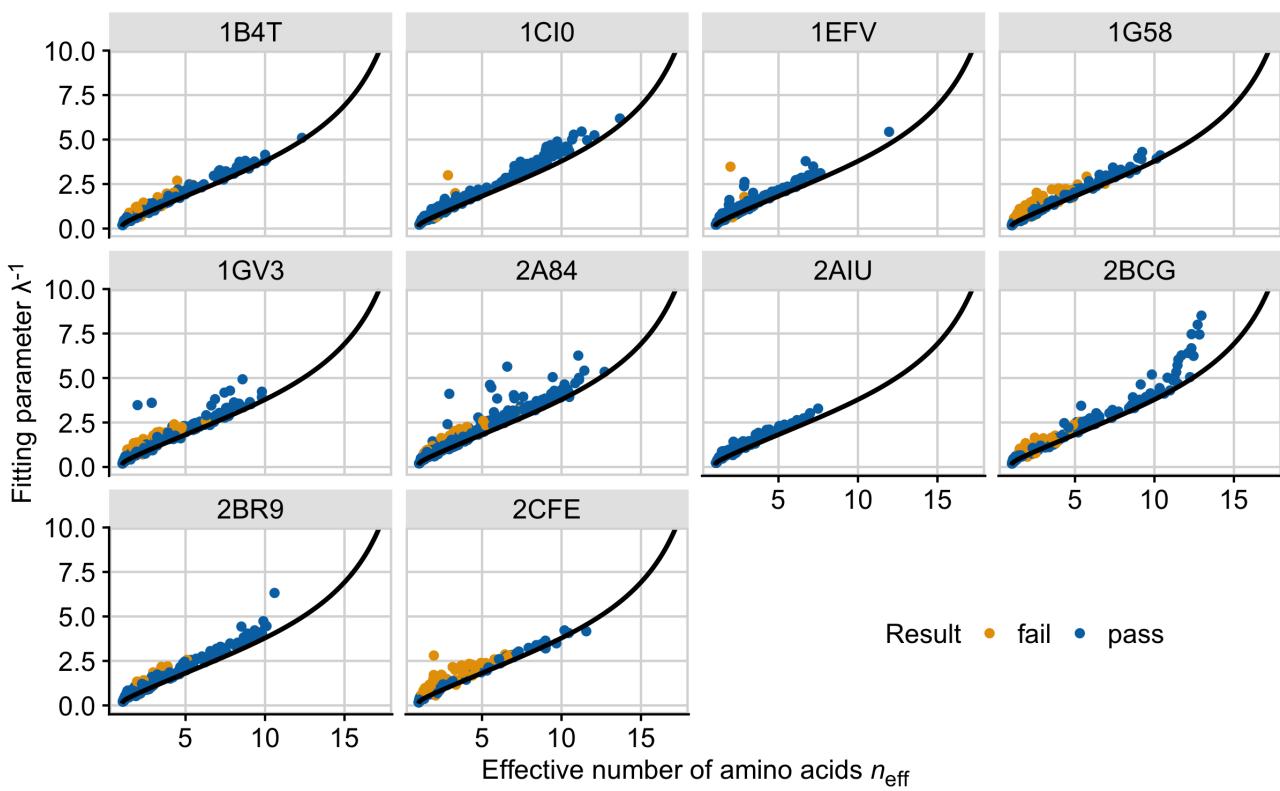


Figure S1: The fit of 10 empirical protein alignments to the theoretical expectation (black line, Eq. 5). Each point represents the amino acid distribution at a single site. The x axis represents the effective number of amino acids, n_{eff} , calculated with Equation 1, and the y axis is $1/\lambda$, where λ is the slope parameter from the linear regression. The title of each plot panel corresponds to the protein's name in the Protein Data Bank. Orange points indicate a failed χ^2 , while blue points indicate a passed χ^2 after FDR correction.

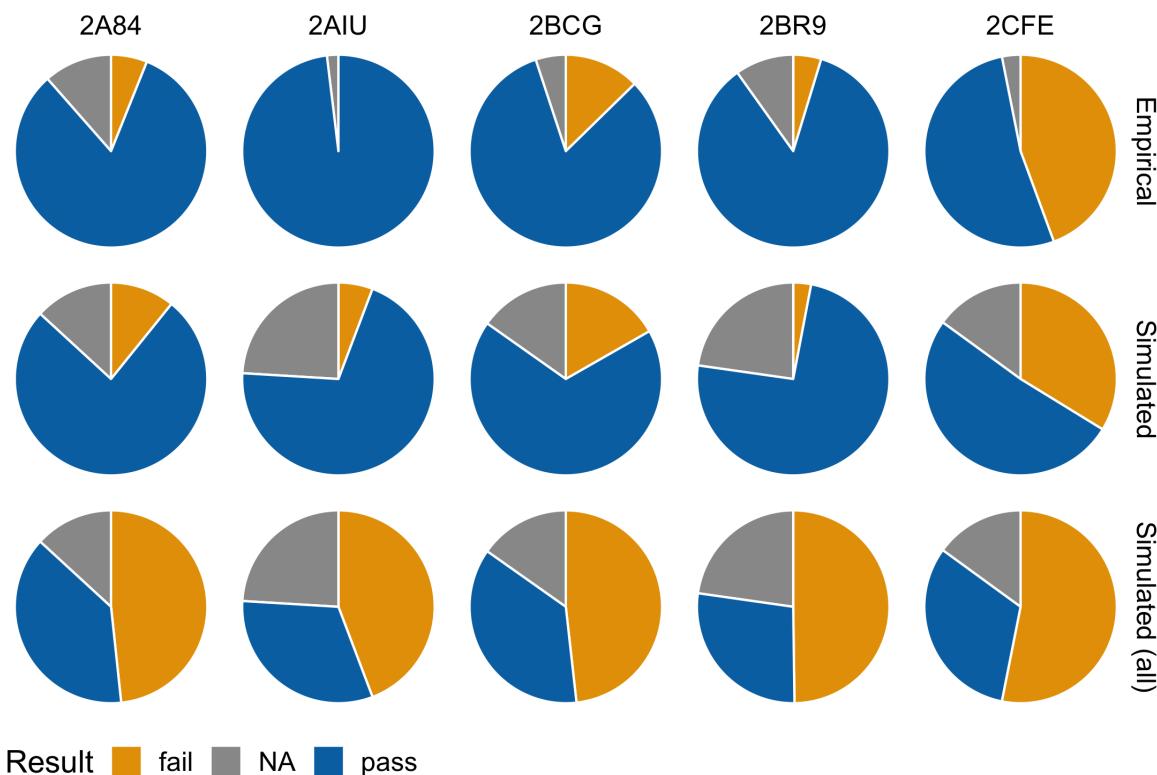


Figure S2: Performance of a χ^2 goodness-of-fit test between the actual and estimated amino acid distributions at each site in the remaining five proteins. Analysis was performed on actual counts observed in the alignment and the counts estimated from the linear regression. Results are compared for an empirical alignment, a simulated alignment with an equivalent number of sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR correction controlled for multiple testing. Orange indicates sites that failed the χ^2 , while blue indicates sites that passed the χ^2 and grey indicates the number of sites that could not be tested under the χ^2 due to the presence of a single amino acid.

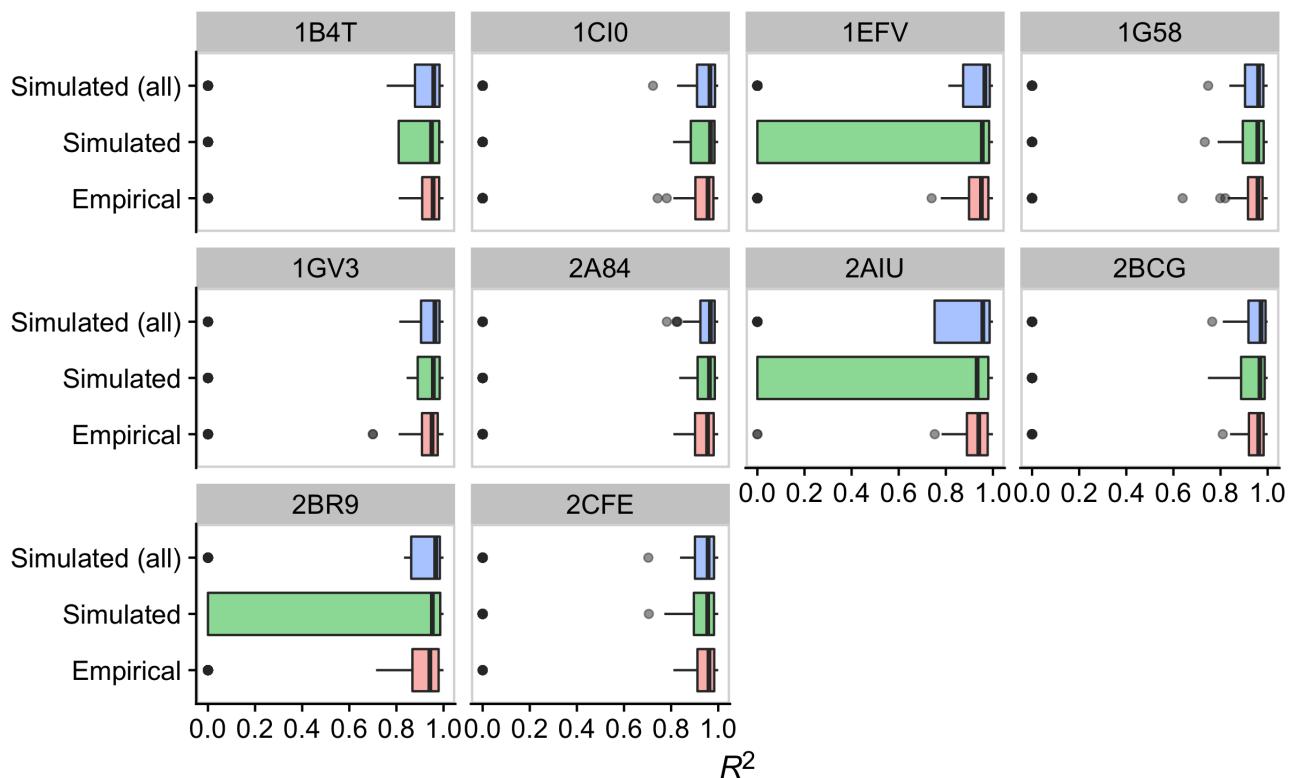


Figure S3: Adjusted coefficient of determination (R^2) for linear regressions at sites in simulated and empirical alignments. Analysis was performed on ranked, log-transformed amino acid counts at each site. The reported R^2 value comes directly from a one-parameter linear regression in R using the `lm` function. For each protein, the analysis was repeated on the full simulated alignment, a simulated alignment downsampled to match the size of the empirical alignment, and the full empirical alignment (see Table 1 for alignment sizes).

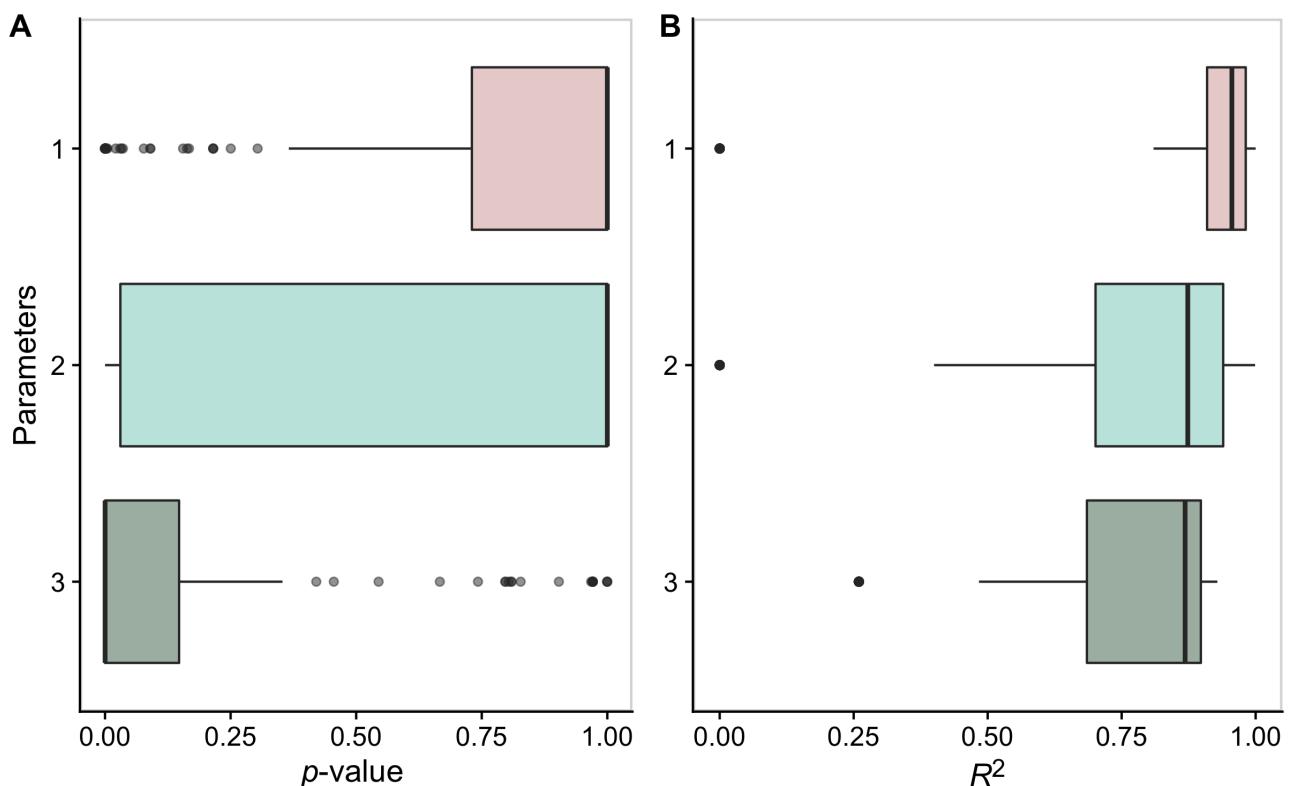


Figure S4: Regression performance based on the number of free parameters used to fit sites in the empirical 1B4T protein alignment. At each site, linear (one- and two-parameter) and quadratic (three-parameter) regressions were implemented and tested for their ability to reproduce the observed distribution. (A) Distribution of p -values from the χ^2 goodness-of-fit test after FDR correction. (B) Distribution of R^2 values (adjusted coefficient of determination). Each regression was fit to the ranked and log-transformed amino acids counts at a site; χ^2 was tested on the actual and expected counts, while R^2 comes directly from the regression fit to the transformed data.

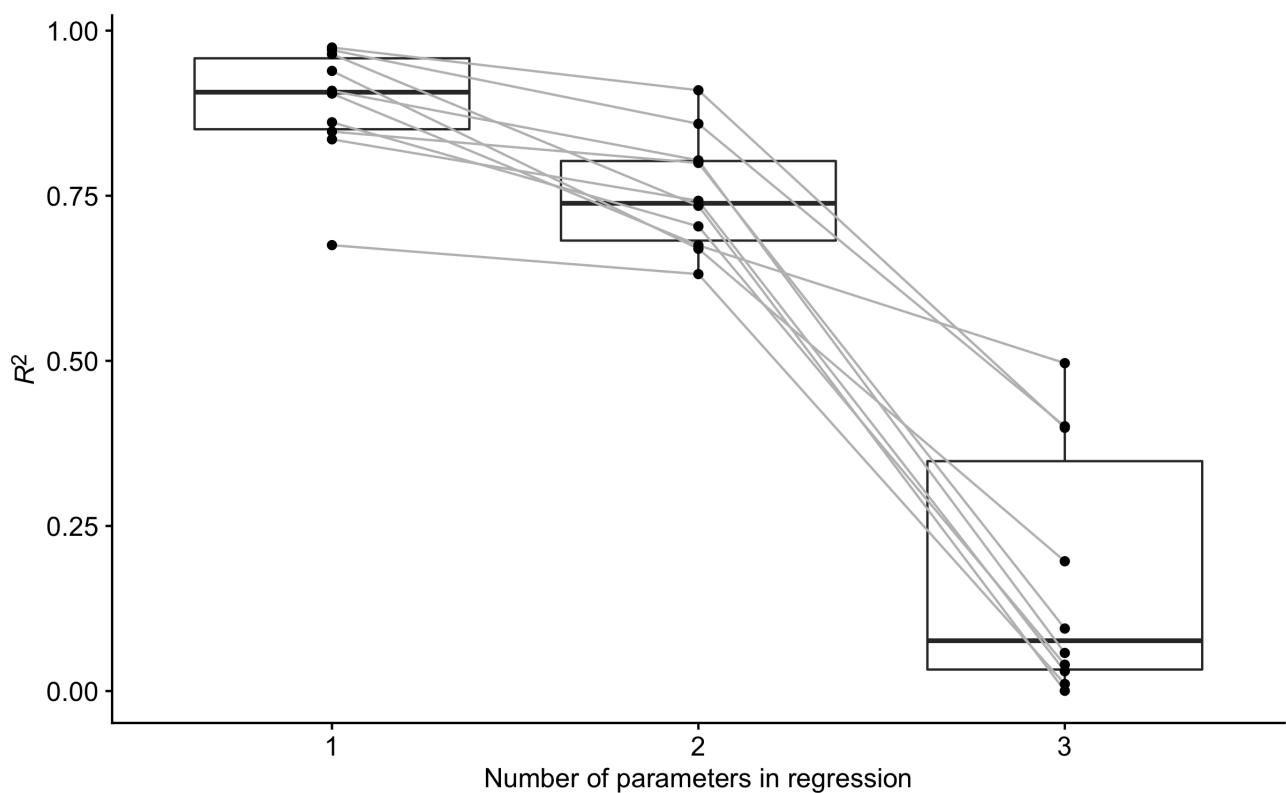


Figure S5: Coefficient of determination (R^2) for the correlation between the effective number of amino acids (n_{eff}) of the actual and the fit distributions, for three different regressions. Analysis shown in Figure 6 was repeated here on all 10 empirical alignments, where n_{eff} was calculated separately on the observed counts and the counts estimated from each regression. Each black dot represents one alignment, and lines connect alignments across regressions.

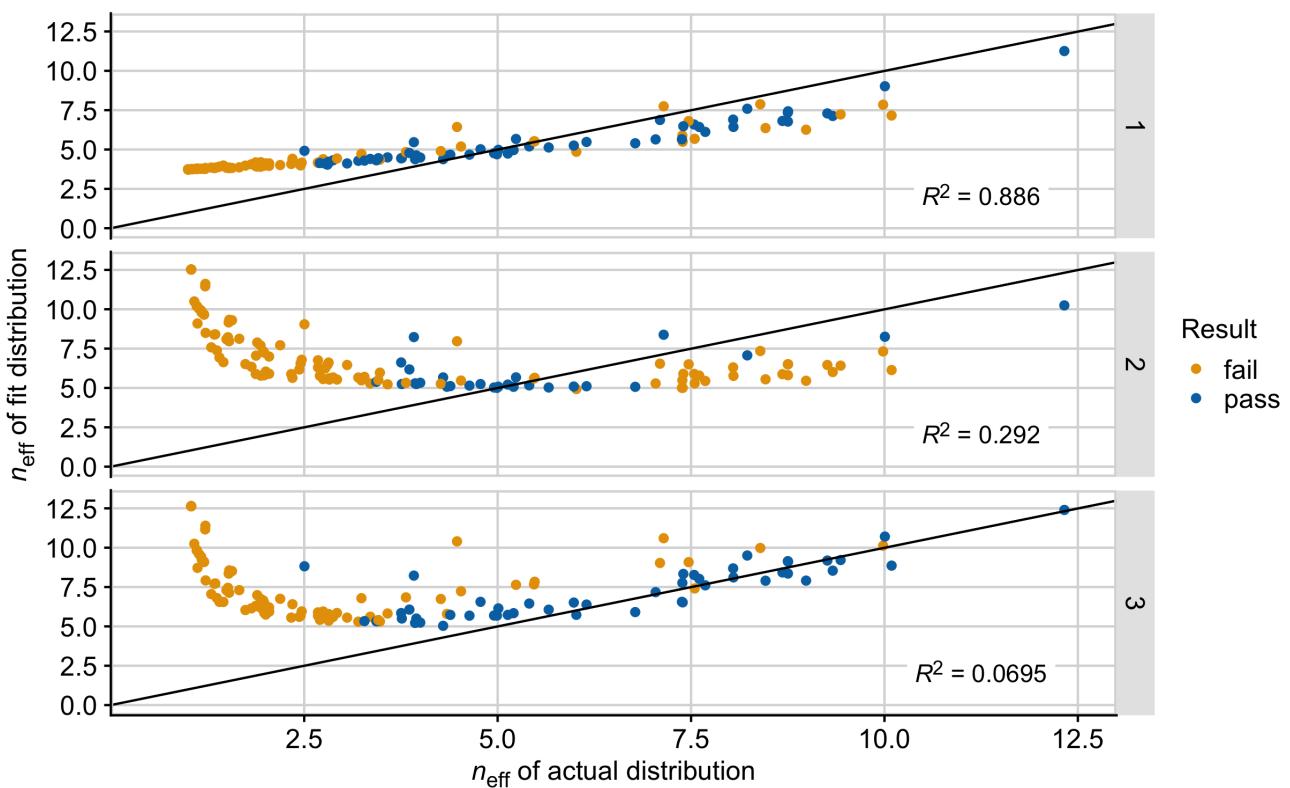


Figure S6: Conservation of the effective number of amino acids (n_{eff}) in the fit distribution with modified procedures. For each site, n_{eff} was calculated with Equation 1 on the observed counts in the alignment and on the counts estimated from the regression analysis. Each site in the empirical 1B4T alignment was fit with either one, two, or three parameters, as indicated by the labels on the right. In Figure 6, the one- and two-parameter regressions were fit to only the amino acids present in the alignment, while a small constant was added to all counts in the three-parameter regression prior to fitting. Here, a small constant was added to all amino acids prior to fitting to ensure each regression included 20 amino acids. Additionally, the 3-parameter regression here was fit via ridge regression with tuning parameter $\lambda_{\text{tuning}} = 0.28$. The black lines represent the points for which $x = y$, and the R^2 reported in the figure is from the correlation between n_{eff} in the actual and fit distribution. Colors indicate the result of the χ^2 goodness-of-fit test with FDR correction.

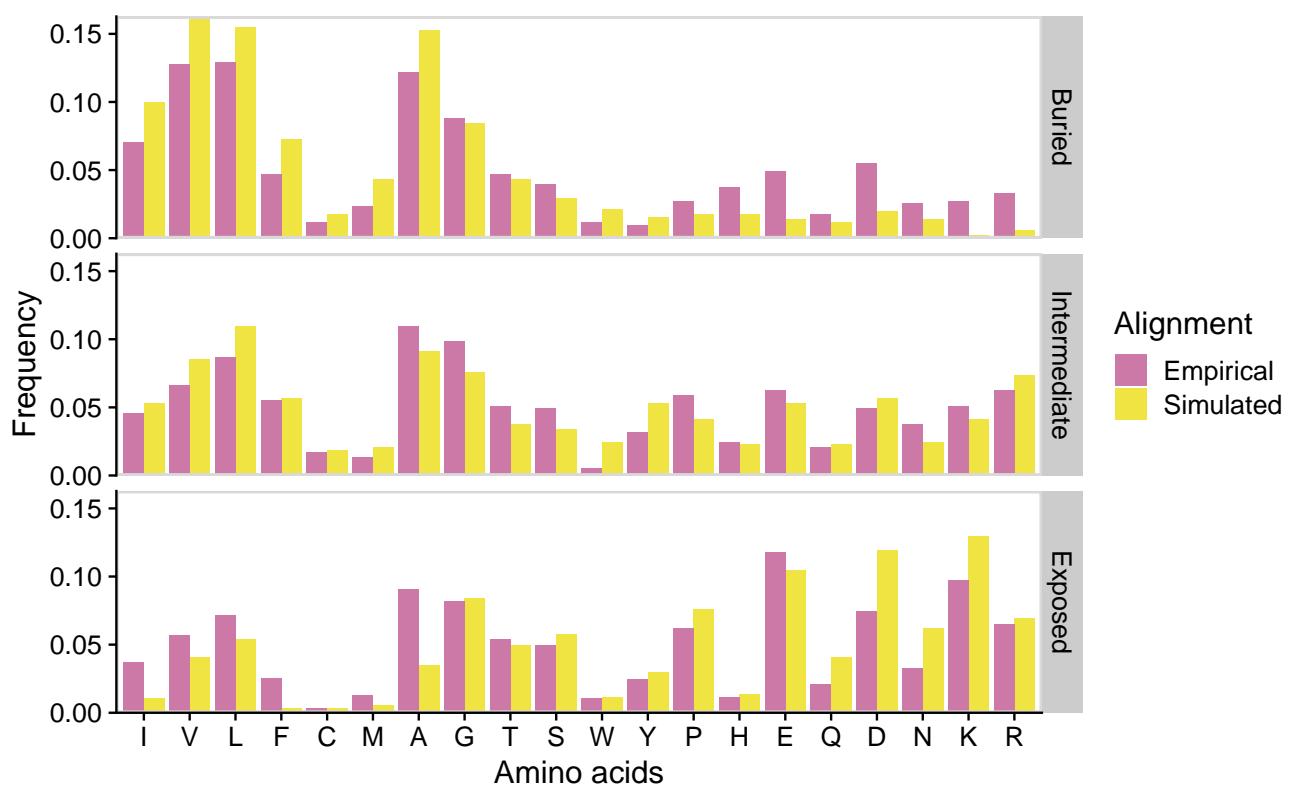


Figure S7: Identity of most abundant amino acid ($k = 0$) at sites based on position in the protein structure. For all 10 proteins considered, we calculated the frequency of each amino acid filling rank 0 in simulated and empirical alignments. RSA values for each site were taken from Jiang et al. (2018) and used to categorize a site's position within the protein: buried ($\text{RSA} < 5\%$), intermediate ($5\% \leq \text{RSA} \leq 25\%$), and exposed ($\text{RSA} > 25\%$). Amino acids are listed based on hydrophobicity according to the Kyte-Doolittle scale.

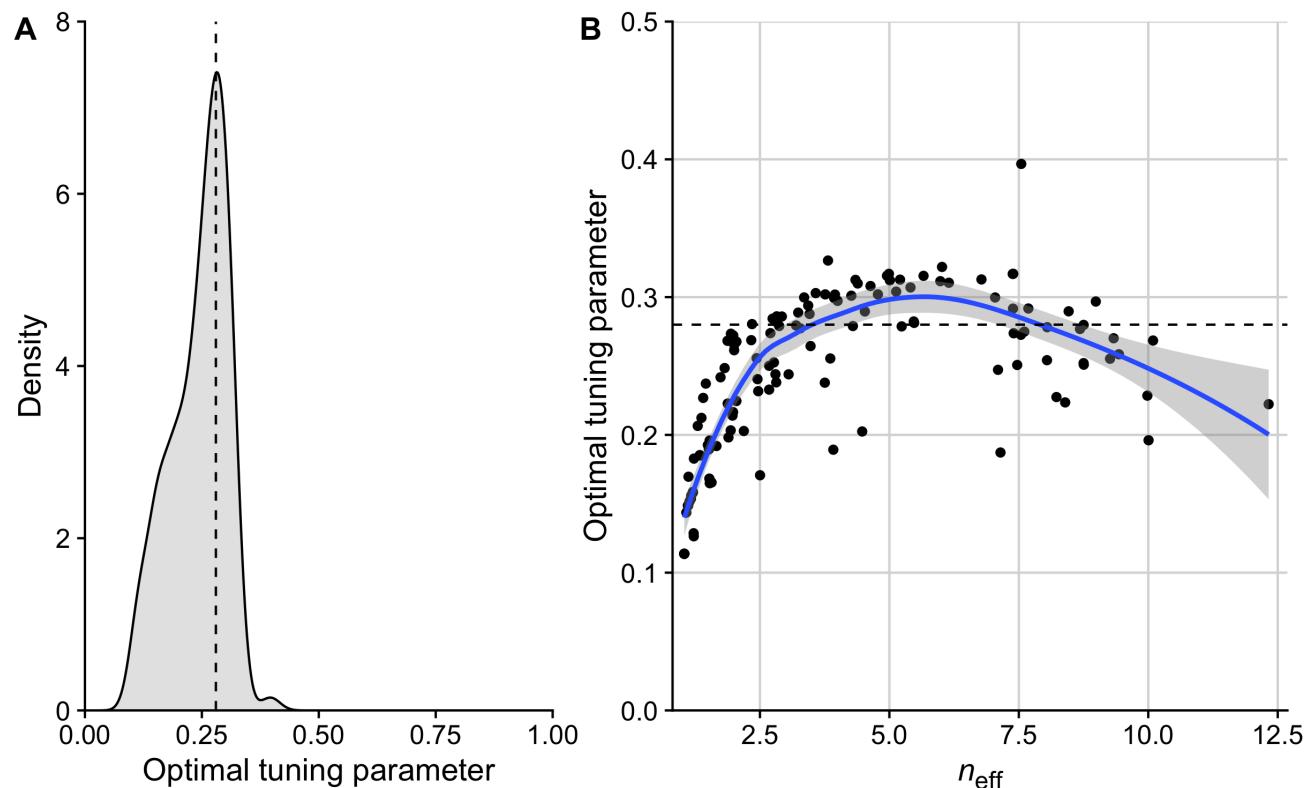


Figure S8: Relationship between a site's optimal tuning parameter in a 3-parameter ridge regression and its effective number of amino acids. For sites with more than one unique amino acid observed, k -fold cross validation was performed in `glmnet` to identify the value of λ_{tuning} , the tuning parameter, that gives the minimum mean cross-validation error. (A) Distribution of optimal tuning parameters. A single value was selected for use as the tuning parameter in ridge regression at all sites. (B) Effective number n_{eff} versus the associated optimal tuning parameter of each site. The blue line is the local polynomial regression fit with the `loess` function in R. In both A and B, the dashed line is the tuning parameter used at all sites ($\lambda_{\text{tuning}} = 0.28$).