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Abstract

In many applications of evolutionary inference, a model of protein evolution needs to
be fitted to the amino acid variation at individual sites in a multiple sequence alignment.
Most existing models fall into one of two extremes: Either they provide a coarse-grained
description that lacks biophysical realism (e.g. dN/dS models), or they require a large
number of parameters to be fitted (e.g. mutation—selection models). Here, we ask whether
a middle ground is possible: Can we obtain a realistic description of site-specific amino
acid frequencies while severely restricting the number of free parameters in the model? We
show that a distribution with a single free parameter can accurately capture the variation in
amino acid frequency at most sites in an alignment, as long as we are willing to restrict our
analysis to predicting amino acid frequencies by rank rather than by amino acid identity.
This result holds equally well both in alignments of empirical protein sequences and of
sequences evolved under a biophysically realistic all-atom force field. Our analysis reveals
a near universal shape of the frequency distributions of amino acids. This insight has the
potential to lead to new models of evolution that have both increased realism and a limited
number of free parameters.

Introduction

To uncover the relationship between and the history of various protein sequences across
populations and species, evolutionary biologists frequently fit mathematical models of evo-
lution to homologous sequence alignments. Common applications of such models include
phylogenetic tree reconstruction, assessment of strength and type of selection, and evolu-
tionary rate inference. Early models had only one or two free parameters per alignment
(Jukes and Cantor}, 1969; [Kimura, (1980), but over time models have become more complex
and realistic (Goldman and Yang, [1994; [Yang and Bielawski, [2000; Halpern and Brunol,
1998; Kosakovsky Pond and Frost|, [2005; |[Yang and Nielsen, |2008; Arenas, 2015). An im-
portant insight from work in this area has been that evolving proteins display substantial
variation among individual sites (Echave and Wilke, |2017)), and thus site-specific models are
critical. In part to address this insight, two more recent developments include mutation—
selection models that estimate selection coefficients for individual amino acids at individual
sites (Rodrigue et al.l [2010; Rodrigue and Lartillot|, [2014; Tamuri et al., 2012, |2014)) and
efforts to improve the biophysical realism of the models used (Koshi and Goldstein, |1998;
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Conant and Stadler| 2009; Meyer and Wilke, 2013} |Goldstein and Pollockl 2016; Bastolla
and Arenas, |2019).

One challenge with site-specific mutation—selection models is that they require the es-
timation of a large number of parameters, on the order of several thousand for proteins
of typical lengths. Thus, they can be problematic in data-poor applications, and there
is always a risk of overfitting. While this problem can be somewhat alleviated by using
random-effects models (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014)) or penalized
likelihood (Tamuri et al.,[2014), it would also be useful to have simpler models that capture
relevant variation at a site with only a small number of parameters. Conventionally, when
simpler models are desired or needed, most researchers employ rate models that assign a
single rate to each site (Pupko et al., |2002; Kosakovsky Pond and Frostl 2005; |Ashkenazy
et al.| 2016; |Spielman and Kosakovsky Pond| |2018). Rate models have been shown to
provide useful summary information about evolutionary variation at individual sites, and
rates can usually be recovered if selection coefficients are known (Spielman and Wilke,
2015, 2016). However, the reverse inference is generally not possible. The rate at which
a site evolves does not contain any information about the amino acid distribution and/or
selection coefficients at that site.

Here, we explore whether there is some avenue to capturing site variation with only one
or two parameters per site while also retaining meaningful information about the amino
acid distribution. To this end, we evaluate a novel approach for characterizing site-specific
amino acid variation, which has previously been used to describe amino acid frequency
distributions averaged across sites with similar relative solvent accessibility (RSA) (Ramsey
et al., 2011). We demonstrate that a simple Boltzmann-like distribution with a single
free parameter can accurately represent observed amino acid frequencies, as long as we
allow for one important simplification of the problem: We rank amino acids from most
abundant to least abundant at each site, and then describe the frequency distribution of
the ranks, rather than of specific amino acids. We find that this approach works both
for empirically collected multiple sequence alignments and for alignments generated by
evolutionary simulation using a biophysically realistic, all-atom model of protein stability.
We further find that introducing additional parameters into the distribution does not seem
to lead to further improvements over the one-parameter description. In summary, we
uncover a property of amino acid distributions that, if incorporated into models of protein
evolution, could increase the realism of these models while keeping the number of free
parameters limited.

Theory

To evaluate the evolutionary and biophysical constraints acting on a site in a protein,
we can assemble a large alignment of homologous sequences for that protein and then
inspect the distribution of amino acids present at the site. Absent any constraint, all 20
amino acids should be present in the distribution. In reality, however, sites face various
constraints, and consequently a smaller number of amino acids is actually observed (Echave
and Wilke, |2017)). Empirical alignments have shown that, on average, sites tend to have 3-5
amino acids that comprise the majority of the distribution. While this is true on average,
the actual number of amino acids observed can vary widely and will depend on the site’s
location within the protein structure.

As a simple measure of the amino acid variability at a site, we can use the effective
number of amino acids neg, defined as (Strait and Dewey, 1996; Goldstein and Pollock,
2016; |[Echave and Wilke, [2017))

neg = €, (1)

where H is the site entropy,

H:—Zmlnm. (2)
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Here, the sum runs over all 20 amino acids ¢, and 7; represents the frequency of amino acid
1 at the focal site in the alignment. By definition, neg is a number between 1 and 20. A
value of 1 indicates that only a single amino acid is present at the given site, and a value of
20 indicates that all 20 amino acids are present at equal frequencies. Intermediate numbers
represent cases between these two extremes. For example, neg = 3 would indicate that the
majority of the distribution is made up of three distinct amino acids, even if a fourth or a
fifth amino acid may be observed at the site in very low frequencies.

The measures of site entropy and n.g can tell us biologically relevant information about
a site, such as the amount of evolutionary constraint on the site. Sites with a high neg
can accept a wide range of different amino acids and are likely under weak selection. By
contrast, sites with a low neg can accept only a few amino acids and are likely under strong
purifying selection.

In principle, the amino acid frequencies m; in Equation[2can take on any arbitrary value.
However, in practice, more structure can be assumed. First, we can write the frequencies
in the form of a Boltzmann distribution with suitably defined energy levels F;:

TR ¥
J

Uy

Here, 8 is the inverse temperature, and in the following we set 8 = 1 without loss of
generality. Equation [3|is a mathematical identity, i.e., for any set of (non-zero) m; we can
define a corresponding set of E; such that Equation [3| holds.
Prior work has suggested that if we order the m; from largest to smallest, such that
m > mg > --- > myg, then the corresponding energy levels are approximately evenly
spaced, such that F; = i\ with a site-specific numerical constant A (Porto et al., [2005;
Ramsey et al.,|2011). [Ramsey et al. (2011]) found this description to work well when amino
acid distributions were averaged over many sites with comparable solvent accessibility.
We assume here the result holds similarly for site-specific frequencies. Thus, we rewrite
Equation [3] as |
—1
m R %. (4)
J

Larger values of A correspond to sites with a smaller effective number of amino acids
present, i.e., more conserved sites. There is a systematic trend of A to increase as we move
from the surface of a protein to its core (Ramsey et al., 2011).

Equation [4] predicts the amino acid distribution at a site from a single free parameter,
A. Consequently, we can calculate the neg that corresponds to a given A. By substituting
Equation [4] into Equation [2] and then [I} we obtain

—iA

e*ﬁ‘)’ (5)

et e
neff:exp(—g Zefj)‘lnz
J J

This equation is exact, i.e., Equation [5| provides us with the exact neg corresponding to a
given A, assuming Equation 4] is true. However, Equation [5| also suggests that the inverse
relationship may be true as well. Given an n.g, which we can calculate from a column in a
multiple sequence alignment, we can invert Equation [b[to predict a corresponding A. This
inversion cannot be done analytically, but it is straightforward numerically.

Results

The preceding section suggests that the amino acid distribution at a site can be represented
by a single parameter A\, where once we know A we know the individual frequencies 7,
modulo a reordering. (I.e., we will not know which amino acid is the most frequent or the
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second-most frequent etc.; we will only know what their relative frequencies are.) Note
that this is a stronger statement than saying we can represent a site by its neg, because
while n.g captures the variability at a site it does not a priori fix the frequencies ;.

We can test this prediction empirically by taking columns in multiple sequence align-
ments (MSAs), calculating neg values, converting them into A values, then calculating
predicted amino acid frequencies from the A\ values and assessing how close they are to the
observed frequencies. For this purpose, we here use previously published MSAs of taxo-
nomically and functionally diverse proteins (Jiang et al., 2018). Specifically, we analyze
MSAs corresponding to 10 arbitrarily chosen proteins (Table , and we consider both
MSAs of natural sequences and of sequences generated via simulation, using an accelerated
origin-fixation algorithm (Teufel and Wilke, 2017). Although the natural sequences are
subjected to mutational biases and codon degeneracy and the simulated sequences are not
(all mutations between amino acids are equally likely), only minor differences in amino acid
frequencies have been observed between these sets of alignments (Jiang et al., 2018). For
this reason, we take observed amino acid frequencies as is and do not correct for mutation
biases.

Theoretical expectation observed in simulated and empirical
alignments

Because alignments of natural sequences are confounded by phylogenetic relatedness and
the simulated alignments are not (they were created using a star phylogeny), we expect
that our approach will fit the simulated alignments better than the natural ones. Therefore,
we first apply it to simulated sequences.

We begin with simulated sequences corresponding to a yeast copper-zinc superoxide dis-
mutase (PDB ID: 1B4T). The MSA has 153 sites, and we observe substantial heterogeneity
among the sites in terms of the number and type of amino acids present. To demonstrate
our theoretical reasoning described in the preceding section, we first consider one of the
variable sites (site 35), perform a linear regression on the ranked, log-transformed frequen-
cies to obtain A, and then compare the distribution given by Equation [4] to the empirical
distribution at the site (Fig. . The two distributions look visually similar, and a y?
goodness-of-fit test detects no significant difference between them (p = 0.106).

Next, we repeat this procedure at all remaining sites in this protein’s alignment. To
visualize the results from this analysis, we take the A values obtained from the linear
regressions and plot 1/\ against the neg calculated directly from the observed amino acid
frequencies (Fig. [2). We plot 1/X instead of X to avoid the divergence at neg = 1, where
1/XA = 0. We find that the majority of sites fall near the line defined by Equation |5, which
is expected if the theoretical relationship between neg and A holds true (Fig. . However,
even though all sites are near this theoretical relationship, there are measurable deviations
from the exact theory. Many sites fail the x? goodness-of-fit test after False-Discovery-Rate
(FDR) correction, indicated in orange color (Fig. . As a general pattern, we observe that
sites with a higher effective number of amino acids are more likely to not fail the x? test
(blue points).

We find similar results in nine additional simulated protein alignments (Fig. . Most
sites fall close to the line defined by Equation [5| but nevertheless, only a moderate number
of sites at high n.g pass the x? test. Surprisingly, our results look better for the empirical
alignments for the same ten proteins (Fig. [S1)). There the majority of the sites pass
the x? test for each protein (Fig. [4| and Fig. . This difference is likely driven by the
difference in the number of sequences in each alignment. Most empirical alignments contain
between 80 and 200 sequences, whereas all simulated alignments contain 500 sequences
(Table . We test this hypothesis by downsampling the size of each simulated alignment
to match the number of sequences in its corresponding empirical alignment and repeating
the analysis. We confirm that indeed the downsampled simulated alignments more closely
resemble their empirical counterparts than the full simulated alignments (Fig. 4| and Fig.

4
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. Additionally, we find that distributions of the adjusted coefficients of determination
(R?) for these regression analyses look similar across simulated and empirical alignments,
with added variation in some downsampled simulated alignments (Fig. .

Null distributions confirm theoretical expectations

To test the validity of our fitting procedure, we repeat the methods discussed above un-
der two different null distributions. As a positive control, we randomly draw amino acid
distributions according to Equation 4] and then repeat our fitting procedure for these dis-
tributions. As expected, x? tests show no significant difference between the simulated and
the fitted distributions, for all sites tested (Fig. |5} left panel).

As a negative control, we additionally simulate amino acid counts described by a Gaus-
sian function and then subject them to the same fitting procedure. We define expected
amino acid frequencies as m; ~ exp|[—(i — 10)?/0?], where i is an integer taking on values
between 0 and 19. We use multinomial sampling to generate specific amino acid counts and
then re-rank counts from largest to smallest (see Methods for details). Depending on the
value of o chosen, this approach can result in unrealistic amino acid distributions that are
near uniform, with neg values of 15-20 (Fig. |5, right panel). In this previously unobserved
area of parameter space, we find that the simulated distributions are accurately represented
by our theoretical relationship between 1/A and neg. This is the case because for near-
uniform amino acid distributions, the quadratic term in the Gaussian can be neglected.
By contrast, for parameter choices that result in smaller n.g values, we now see consistent
deviations between the observed and the expected distributions (most sites fail the x? test
and are colored in orange), even though all sites fall near the expected relationship between
1/X and neg (Fig. |5, right panel). This result demonstrates that our x? test is sensitive to
subtle deviations in amino acid frequencies from the distribution given by Equation

Additional parameters and non-linearity do not improve re-
gression fit

As an additional method of assessing how well our characterization describes actual amino
acid distributions, we can also compare the neg values calculated from an empirical align-
ment to the neg values calculated from the frequencies of the fitted distribution. If the fitted
distribution accurately reflects the empirical distribution, then these two sets of n.g values
should be very similar to each other. In fact, we generally find that they are highly corre-
lated and near the z = y line (e.g., R? = 0.971, Fig. @top panel for the MSA corresponding
to yeast copper-zinc superoxide dismutase, PDB ID: 1B4T).

While the high correlations we observe are an excellent result, we can ask if we could
do better. For the top panel in Fig. [6] of the 153 sites in the alignment 20 had to be
excluded from the comparison as they are completely conserved for a single amino acid
and the fitting procedure fails in this case. Of the remaining 133 sites, 17 sites (12.8%)
fail the x? test. Notably, the fits for this result are done using a one-parameter model,
where normalized, log-transformed counts are fit to a model without intercept, 0 — Ai (i is
an integer running from 0 to 19, see Methods for details). A single parameter fit tends to
performs poorly on sites that are highly conserved for either one or two equally frequent
amino acids.

To explore alternatives, we can make two modifications to this analysis: First, we can
perform a different linear regression that is however still consistent with Equation {4} a
two-parameter model with an intercept term: b — Ai. The intercept term cancels out in
Equation [4] but it affects the A value and thus the amino acid frequencies obtained during
fitting. Second, we can test a quadratic regression where a third parameter, ¢, is added to
capture the shape of the curve: b — \i 4 ci2.

We find that both the two-parameter regression and the three-parameter regression
perform worse than the one-parameter regression based on several metrics: p-values from


https://doi.org/10.1101/2020.08.05.238493
http://creativecommons.org/licenses/by/4.0/

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

276

277

278

279

280

281

282

283

284

285

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.05.238493; this version posted November 4, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

the x? goodness-of-fit test, R? values on transformed count data from regression analyses,
and R? values from the correlation between actual and estimated n.g values (Fig.
and @) For the two-parameter regression, we are still unable to fit the 20 sites with only
one amino acid observed. Of the remaining 133 sites, 34 sites (25.6%) fail the x? test,
and the R? between the n.g calculated on the actual and fit distribution has declined to
R? = 0.859. The three-parameter regression leads to the worst performance overall: 110
of 153 sites (71.9%) fail the x? test, and the R? between the neg calculated on the actual
and fit distribution has declined to R? = 0.401.

As a general pattern, we observe that additional parameters and non-linearity in the
fitted model lead to increased variability in our ability to recapture the ng of the actual
distribution. With one parameter, we tend to slightly overestimate n.g with our fitted
distribution, in particular towards low neg values (Fig. [6] top). The addition of the
intercept parameter moves points further from the x = y line overall (Fig. @ middle).
Finally, the quadratic regression, with three parameters, produces additional spread in
both directions, resulting in quite severe over- and underestimations of neg. We find that
these results hold true across all 10 empirical proteins considered (Fig. . A small
constant was added to amino acid counts prior to fitting only in the case of our three-
parameter regression as it was necessary to obtain enough data points for fitting at each
site (n > 2). This constant was excluded from the one- and two-parameter regressions as it
was not required for fitting and was shown to decrease our ability to fit the distribution (Fig.
top and middle panel). We additionally attempted to improve our three-parameter fit
through regularization with ridge regression, which however increased the upward bias in
the neg of the fitted distribution (Fig. bottom panel) (Friedman et al., [2010)). Thus,
in conclusion, a simple one-parameter linear regression without intercept maximizes our
ability to capture the empirical amino acid distribution.

Discussion

We have shown that a simple Boltzmann-like distribution with a single free parameter
works surprisingly well at capturing amino acid variability at individual sites in protein
multiple sequence alignments, as long as we are prepared to ignore amino acid identity and
simply order amino acids from most frequent to least frequent. We have found that this
description works both in empirical alignments and in alignments derived from simulations
using a physics-based atom-level model of protein structure. For many, though not all,
sites in an alignment, the single one-parameter description is sufficiently accurate to be
statistically indistinguishable from the true amino acid distribution. In general, deviations
from the true distribution tend to be more prominent at sites that display less variability
overall.

That amino acid frequencies should be Boltzmann distributed follows from theoretical
models of protein stability (Dokholyan and Shakhnovich, 2001; |Dokholyan et al., [2002;
Echave et al.l [2015). However, we note that our finding here is stricter than prior theo-
retical predictions. In the most general scenario, we can write any arbitrary amino acid
distribution in Boltzmann form, by appropriately choosing energy levels for each individual
amino acid (see Eq. . Here, instead, we are arguing that energy levels are approximately
uniformly spaced, so that a single parameter A (corresponding, in effect, to the distance
between two energy levels) can capture the entire distribution at a site. Previous work has
shown that energy levels are approximately evenly spaced for amino acid distributions av-
eraged across sites with similar relative solvent accessibility (Ramsey et al., [2011). We find
that this observation also holds true for site-specific amino acid distributions in both simu-
lated and empirical protein sequences. The mechanisms driving this empirical observation
remain unknown and should be explored in future work.

While our approach is able to reproduce the general shape of the distribution of amino
acids at a site, the actual and the estimated distribution are not always an exact match.
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There are subtle deviations from the simple exponential decay that can be detected when
alignments are sufficiently large. In particular, while the majority of sites in simulated and
empirical alignments pass a x? goodness-of-fit test when a limited number of sequences are
used in the regression (fewer than ~ 200), a larger fraction of sites fails the x? goodness-of-
fit test for simulated alignments with the full 500 sequences. We have further found that
the distribution of amino acids is best characterized when fit (after log-transform) with a
simple linear regression without intercept. Adding a second parameter (the intercept) to
the linear regression or implementing a quadratic (three parameter) regression to aid in
approximating the distribution can improve x? results for some sites, in particular highly
conserved sites. However, on average, the two- and three-parameter regressions perform
worse than the one-parameter regression.

The characterization presented here allows for a general approximation of the shape of
amino acid distributions. However, these theoretical distributions are not exact and vary
in their ability to recover the observed amino acid frequencies in an empirical or simulated
alignment. The biggest challenges seem to arise at sites that are highly conserved for only
a few amino acids. Unfortunately, such sites are common in empirical alignments. In
addition, just like is the case with evolutionary rate measures, approximating an amino
acid distribution by rank does not retain any information about the identity of amino acids
found at individual sites. While predicting the rank order of amino acids is beyond the
scope of this research, it might be possible to develop standard rankings based on the
biology of the system. For example, we observe that amino acids occupy rank 0 at different
frequencies based on their location within the protein structure (Fig. , e.g., hydrophobic
amino acids tend to be most abundant at sites that are buried in the protein core. Potential
strategies for jointly predicting rank frequencies and identities in evolutionary models are
discussed below.

The ability to reduce an amino acid distribution from 20 parameters to one might be use-
ful if applied to models of protein evolution. Current phenomenological models of protein
evolution that require only a few parameters, such as dN/dS models (Goldman and Yang;,
1994; Kimural, [1977; [Yang and Bielawskil, 2000; [Kryazhimskiy and Plotkin, |2008]), provide
aggregate information about how sites have changed but capture little information about
the distribution of amino acids at individual sites (Arenas and Posadal, 2014; Halpern and
Bruno, [1998). Additionally, they tend to be sensitive to evolutionary forces if not explicitly
modeled (Wilson and McVean, [2006; Arenas, |2015; |Spielman and Wilke, [2015; Kryazhim-
skiy and Plotkin) 2008). Alternatively, mechanistic mutation—selection models often rely
on numerous parameters to account for observed heterogeneity in amino acid frequen-
cies across sites (Halpern and Bruno, 1998; [Rodrigue et al., 2010; [Yang and Nielsen, [2008;
Brunol, [1996; Tamuri et al., 2012} 2014). These models connect amino acid frequencies with
fitness, but they are computationally expensive and can result in an over-parameterized
representation of the sequence space (Puller et al., [2020; Rodrigue, [2013; |Spielman and
Wilke, 2016|). We note that a site-specific model with one free parameter has previously
been developed for phylogenetic inference (Arenas et all 2015). By accounting for struc-
tural properties, this mean-field model improves inference of evolutionary events, but its
estimates of site-specific sequence entropy and substitution rate disagree with empirical
data (Jimenez et al., [2018).

Current approaches to preventing over-parameterization of mutation—selection mod-
els include using random-effects models (which in effect share amino acid distributions
among sites, Rodrigue et al.|2010) and regularization (which causes low amino acid fre-
quencies to be set to zero, Tamuri et al.[2014). Both approaches work reasonably well, but
random-effects models have a tendency to produce too many non-zero amino acid frequen-
cies (Spielman and Wilke, 2016)). Our results here suggest a mathematical explanation
for this observation: Random-effects models tend to represent amino acid distributions
as a weighted average over a finite set of propensity vectors as the true propensity vec-
tor is unknown (Rodrigue et al.; |2010). While individual propensity vectors can converge
into a Boltzmann form, a weighted average of different Boltzmann distributions—with
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amino acids in different rank order—will generally not be Boltzmann, and in fact will
over-populate rare amino acids.

We emphasize that we have not proposed a new model of evolution here. We have
merely identified a property of empirical amino acid distributions that models of evolution
should be able to capture. Integrating this characterization into such models could improve
our ability to infer phylogenetic relationships as well as evolutionary rates and processes.
We would like to suggest some avenues of how our insights could be incorporated into future
models. First, for random-effects models, instead of using arbitrary propensity vectors it
might be useful to enforce the Boltzmann form with a single free parameter A, and then fit
the amino acid order at each site. Amino acid order can be represented by permutations,
and permutations can be sampled using standard MCMC approaches (Straufl et al., [2019).
Of course, any models that fit amino acid order would require more than one parameter
per site.

For fixed-effects models, on the other hand, it may be possible to derive a new regu-
larization approach that uses our Eq. [4| for regularizing amino acid frequencies. We note
that fixed-effects models for phylogenetic inference often lack the statistical guarantees of
traditional likelihood estimation and thus may be prone to overfitting based on the dimen-
sionality of the site-specific variables (Rodrigue, 2013). Researchers wishing to incorporate
our characterization into such models should do so with caution.

Methods

Origin of multiple sequence alignments

We use protein multiple sequence alignments (MSAs) from an existing data set that con-
tains both empirical and simulated alignments for the same protein structures (Ramsey
et al., 2011} Jiang et al., [2018). The empirical alignments were originally assembled by
Ramsey et al.| (2011)) and include 38 MSAs, each containing at least 50 sequences, for 38
distinct protein structures (Jackson et al., 2013). For each protein structure, |Jiang et al.
(2018]) subsequently added a simulated alignment containing 500 sequences. The simulated
alignments were simulated using an accelerated origin-fixation algorithm (Jiang et al., 2018}
Teufel and Wilke, 2017) with a physics-based, atom-level model of protein structure as a
fitness function. The simulations were performed along a star phylogeny, such that no
phylogenetic structure is present in the simulated alignments (Jiang et al 2018). The em-
pirical alignments had originally been filtered to remove sequences of > 80% similarity, so
phylogenetic structure in these alignments is limited but not absent (Ramsey et al., 2011]).

Here, we arbitrarily selected 10 protein structures with their associated empirical and
simulated alignments for further analysis (Table . We note that because empirical align-
ments contain gaps, the total number of amino acids observed at any given site might be
smaller than the number sequences listed.

Approximating the distribution of amino acids at a site

We use the following fitting procedure to estimate the site-specific constant A that param-
eterizes our Boltzmann-like amino acid distribution (Equation . Rather than fitting an
exponential model directly to the observed count data, we transform the data as described
below for use in a linear regression. At each site in an alignment, we first count all amino
acids and then rank them by frequency, from most to least abundant. These ranked counts
are then rescaled relative to the most abundant amino acid at that site and subsequently
log-transformed. We then fit a linear regression of the form 0 — Ai for i = 0, 1, ..., 19 to the
rescaled and transformed counts, excluding any amino acids or sequences (gaps) that were
not observed in the alignment. The 0 in front of —Ai indicates the absence of an intercept
term, i.e., the regression model is forced to go through 0 at i = 0.


https://doi.org/10.1101/2020.08.05.238493
http://creativecommons.org/licenses/by/4.0/

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.05.238493; this version posted November 4, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

Once we have obtained a A value at a site, we calculate expected amino acid counts
by computing —Ae~* for i = 0,1,...,19. For direct comparison with observed counts,
the obtained values need to be normalized relative to their sum and multiplied by the
total number of counts at that site in the observed data (this is equivalent to the number
of sequences in simulated MSAs, but varies based on the presence of gaps in empirical
MSAs). Because we are fitting with realized frequencies instead of equilibrium frequencies,
the X values calculated here are likely subject to some degree of sampling bias.

We assess the goodness-of-fit of the fitted to the observed distribution at each site by
comparing expected with observed amino acid counts using a x? test with 18 degrees of
freedom. We correct for multiple testing via the False-Discovery-Rate (FDR) correction
(Benjamini and Hochberg), 1995). A x? test on count data is the appropriate test here as
we are interested in our ability to reproduce the original distribution from A alone. We
additionally report the proportion of variance explained (R?) from the linear regression on
the observed and expected log-transformed counts.

Generating null distributions

To generate null distributions, we specify amino acid frequencies m; at each site and then
draw amino acid counts for n = 500 sequences from multinomial distributions with ex-
pected counts nm;. In all null distributions, we use 110 distinct sites. After generating
the samples under various distributions, we follow the same procedures for our empirical
and simulated alignments: We transform the data by ranking counts from most to least
frequent, normalizing, and log-transforming prior to fitting.

As a positive control, we use m; = Ce ™, with C' chosen such that Yomio=1. We
generate 110 values of A uniformly spaced from 0.1 to 1. This choice guarantees that the
resulting distribution of n.g looks similar to those observed in our protein alignments. Each
value of A is used to simulate a site within a 500 sequence alignment.

As a negative control, we use m; = Ce~(i710*/(e*)  The constant C is again chosen such
that >, m; = 1. For small o, this choice generates amino acid frequencies that decay faster
than exponential. For large o, on the other hand, this choice generates frequencies that
are nearly uniform. We select 110 o values uniformly spaced from 0.5 to 15 to simulate
sites with values of n.g ranging from 1 to 19.

Varying the number of parameters in fitting

We modify the fitting procedures described above by including additional parameters and
non-linearity during our analysis on empirical sequence alignments. Under our normal
procedure, we fit 0 — A7 to the observed amino acid count data, as explained above. We can
incorporate a second parameter into this linear regression by relaxing the assumption of
a zero intercept term. Thus, we fit b — Ai to the ranked, normalized, and log-transformed
counts for only those amino acids that were observed in our data. We obtain expected
counts from this fit by computing e®*~* for amino acids i = 0, 1, ..., 19, normalizing to their
relative frequency, and rescaling with the total number of count observations for each site.

To capture non-linear effects in the distributions, we additionally fit a three-parameter
quadratic regression: b — \i 4+ ci?. While the previous regressions could be implemented
on a small number of observed amino acids, a quadratic fit requires more data points (i.e.,
more non-zero amino acid counts). To deal with this limitation, we add a small constant
(0.01) to all amino acid counts at all sites prior to data transformation and fitting. With
this addition, the updated count values are ranked, normalized, and log-transformed prior
to fitting, resulting in all 20 amino acids being present (and fit) at all sites. After obtaining
A, b, and ¢ from the fit at each site, we compute eb=Xitei® for j = 0,1, ...,19, normalize each
count based on its relative frequency, and rescale with the total number of counts observed
at that site.
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The results of all three fitting procedures are evaluated on their performance approxi-
mating the observed distribution via x? goodness-of-fit tests. We test our ability to recover
the effective number of amino acids by calculating n.g on both the actual and estimated
distribution for each site as described by Equation (I} The relationship between these mea-
sures at each site is compared across fitting methods and presented with their respective
coefficients of determination for all empirical alignments.

Results of Figure [S6| are obtained by re-running the one- and two-parameter regressions
on amino acid counts after a small constant (0.01) was added (top and middle panel,
respectively). As in the three-parameter case, this results in all 20 amino acids being fit at
each site. We additionally modify the three-parameter regression described above by fitting
b— \i 4+ ci? with ridge regression in the glmnet R package (Friedman et al., 2010). In order
to not add an additional parameter to our analysis, we perform k-fold cross validation to
identify the optimal tuning parameter ()\tunmg) at each site with more than one amino acid
observed, and select one value for use across all sites (Fig. [S8). Based on the observed
distribution, we fit the ridge regression in glmnet with Atuning = 0.28 and o = 0 at each site
(Fig. bottom panel). The expected number of amino acids at each site is calculated
from the values of b, A\, and ¢ obtained from the ridge regression.

Code

Data and code for this work are available at:
https://github.com/mmjohn/amino-acid-distributions. All data analysis and figure
production was performed in R (R Core Team| |[2019), making extensive use of the tidyverse
family of packages (Wickham et al. 2019)).
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Table 1: Identity and characteristics of the pairs of simu-
lated and empirical protein alignments analyzed here. Data
from |Jiang et al.| (2018)).

PDB ID Chain Simulated! Empirical’ Length?

1B4T A 500 160 153
1CI0 A 500 87 205
1EFV B 500 84 252
1G58 B 500 211 196
1GV3 A 500 181 213
2A84 A 500 125 277
2AT1U A 500 73 104
2BCG Y 500 168 194
2BR9 A 500 96 230
2CFE A 200 312 162

I Number of simulated sequences
2 Number of empirical sequences
3 Number of amino acids in protein alignment

100 1
75 1
=
3
U 50 T
25 -
0 T T T T ﬁ

0 5 10 15
Amino acids ranked, i

Figure 1: Site-specific distribution fit to observed amino acid counts. The gray bars represent
the counts observed in 500 simulated sequences, while the magenta line depicts the distribution
approximated from the linear regression fit to the log-transformed count data. The plot above
is for site 35 for the simulated alignment of a yeast copper-zinc superoxide dismutase (PDB ID:
1B4T).
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Figure 2: Relationship between the effective number of amino acids (neg) and A7, for the
simulated alignment from Figure (PDB ID: 1B4T). Each point represents a site in the alignment
with A values from a linear regression on the transformed count data and n.g values calculated
with Equation [1] on observed counts. The use of A~! improves our ability to visualize this
relationship for small values of n.g where \ diverges. The black line represents the theoretical
expectation calculated from Equation . Orange points indicate sites that fail the x? test (75
sites), while blue sites show no significant difference between the actual and the fit distribution
(50 sites). Sites with only one amino acid present were excluded from the y? analysis (29 sites).
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Figure 3: The fit of 10 simulated protein alignments to the theoretical expectation from Equation
(black line). The z axis represents the effective number of amino acids, n.g, while the y axis
is 1/A. The title of each panel indicates the protein’s identifier in the Protein Data Bank. Each
point represents the distribution at a single site, where \ is the slope parameter from the linear
regression and n.g is calculated with Equation [l Orange points indicate a failed y?2, while blue
points indicate a passed x? after FDR correction.
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Figure 4: Performance of a y? goodness-of-fit test between the actual and estimated amino
acid distributions at each site in five different proteins. Analysis was performed on actual
counts observed in the alignment and the counts estimated from the linear regression. Results
are compared for an empirical alignment, a simulated alignment with an equivalent number of
sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR
correction controlled for multiple testing. Orange indicates sites that failed the 2, while blue
indicates sites that passed the x? and grey indicates the number of sites that could not be tested
under the x? goodness-of-fit test due to the presence of a single amino acid.
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Figure 5: Fit of null distributions to the theoretical expectation (black line, Eq. . The z
axis represents the effective number of amino acids, neg, while the y axis is 1/, where X is the
slope parameter from the linear regression. Orange points indicate a failed x?, while blue points
indicate a passed x? after FDR correction. The plot on the left show sites with distributions
simulated from Equation [4, while the distributions represented on the right were simulated from
a Gaussian distribution. For each site, values of A come from linear regression on transformed
counts, while n.g is calculated with Equation [Ij on raw counts.
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Figure 6: Conservation of the effective number of amino acids (neg) in the fit distribution. For
each site, n.g was calculated with Equation [1| on the observed counts in the alignment and
on the counts estimated from the linear regression. Both measures are presented for each site
in the empirical 1B4T alignment when the distribution was fit with either one, two, or three
parameters, as indicated by the labels on the right. The black lines represent the points for
which z = y, and the R? reported in the figure is from the correlation between n.g in the actual
and fit distribution. Colors indicate the result of the x? goodness-of-fit test with FDR correction.
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Figure S1: The fit of 10 empirical protein alignments to the theoretical expectation (black line,
Eq. . Each point represents the amino acid distribution at a single site. The x axis represents
the effective number of amino acids, neg, calculated with Equation , and the y axis is 1/\, where
A is the slope parameter from the linear regression. The title of each plot panel corresponds to
the protein’s name in the Protein Data Bank. Orange points indicate a failed x?, while blue
points indicate a passed x? after FDR correction.
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Figure S2: Performance of a x? goodness-of-fit test between the actual and estimated amino
acid distributions at each site in the remaining five proteins. Analysis was performed on actual
counts observed in the alignment and the counts estimated from the linear regression. Results
are compared for on an empirical alignment, a simulated alignment with an equivalent number
of sequences, and a simulated alignment with 500 sequences for each protein considered. A FDR
correction controlled for multiple testing. Orange indicates sites that failed the 2, while blue
indicates sites that passed the x? and grey indicates the number of sites that could not be tested
under the x? due to the presence of a single amino acid.
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Figure S3: Adjusted coefficient of determination (R?) for linear regressions at sites in simulated
and empirical alignments. Analysis was performed on ranked, log-transformed amino acid counts
at each site. The reported R? value comes directly from a one-parameter linear regression in
R using the 1m function. For each protein, the analysis was repeated on the full simulated
alignment, a simulated alignment downsampled to match the size of the empirical alignment,

R2

and the full empirical alignment (see Table [1] for alignment sizes).
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Figure S4: Regression performance based on the number of free parameters used to fit sites in the
empirical 1B4T protein alignment. At each site, linear (one- and two-parameter) and quadratic
(three-parameter) regressions were implemented and tested for their ability to reproduce the
observed distribution. (A) Distribution of p-values from the x? goodness-of-fit test after FDR
correction. (B) Distribution of R? values (adjusted coefficient of determination). Each regression
was fit to the ranked and log-transformed amino acids counts at a site; y? was tested on the
actual and expected counts, while R? comes directly from the regression fit to the transformed
data.
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Figure S5: Coefficient of determination (R?) for the correlation between the effective number of
amino acids (neg) of the actual and the fit distributions, for three different regressions. Analysis
shown in Figure [6] was repeated here on all 10 empirical alignments, where n.g was calculated
separately on the observed counts and the counts estimated from each regression. Each black
dot represents one alignment, and lines connect alignments across regressions.
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Figure S6: Conservation of the effective number of amino acids (neg) in the fit distribution with
modified procedures. For each site, n.g was calculated with Equation [If on the observed counts
in the alignment and on the counts estimated from the regression analysis. Each site in the
empirical 1B4T alignment was fit with either one, two, or three parameters, as indicated by the
labels on the right. In Figure [6] the one- and two-parameter regressions were fit to only the
amino acids present in the alignment, while a small constant was added to all counts in the
three-parameter regression prior to fitting. Here, a small constant was added to all amino acids
prior to fitting to ensure each regression included 20 amino acids. Additionally, the 3-parameter
regression here was fit via ridge regression with tuning parameter Aqming = 0.28. The black lines
represent the points for which = y, and the R? reported in the figure is from the correlation
between neg in the actual and fit distribution. Colors indicate the result of the x? goodness-of-fit
test with FDR correction.
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Figure S7: Identity of most abundant amino acid (k = 0) at sites based on position in the protein
structure. For all 10 proteins considered, we calculated the frequency of each amino acid filling
rank 0 in simulated and empirical alignments. RSA values for each site were taken from
and used to categorize a site’s position within the protein: buried (RSA < 5%),
intermediate (5% < RSA < 25%), and exposed (RSA > 25%). Amino acids are listed based on
hydrophobicity according to the Kyte-Doolittle scale.

26


https://doi.org/10.1101/2020.08.05.238493
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.05.238493; this version posted November 4, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

B 0.51
0.4 .

o

9]

S

o

®©

o

()]

c

c

2

©

£

a

O
0 T T T 1 OO T T T T T
0.00 0.25 0.50 0.75 1.00 25 5.0 7.5 10.0 12.5

Optimal tuning parameter Ne

Figure S8: Relationship between a site’s optimal tuning parameter in a 3-parameter ridge re-
gression and its effective number of amino acids. For sites with more than one unique amino
acid observed, k-fold cross validation was performed in glmnet to identify the value of Atyning,
the tuning parameter, that gives the minimum mean cross-validation error. (A) Distribution of
optimal tuning parameters. A single value was selected for use as the tuning parameter in ridge
regression at all sites. (B) Effective number neg versus the associated optimal tuning parameter
of each site. The blue line is the local polynomial regression fit with the loess function in R.
In both A and B, the dashed line is the tuning parameter used at all sites (Aiuning = 0.28).
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