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Motivation: Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn 22 

errors of metabolism (IEM). In order to judge if metabolite levels are abnormal, analysis of a large number 23 

of reference samples is crucial to correct for variations in metabolite concentrations resulting from factors 24 

such as diet, age and gender. However, a large number of controls requires the use of out-of-batch controls, 25 

which is hampered by the semi-quantitative nature of untargeted metabolomics data, i.e. technical variations 26 

between batches. Methods to merge and accurately normalize data from multiple batches are urgently 27 

needed.  28 

Methods & results: Based on six metrics, we compared existing normalization methods on their ability to 29 

reduce batch effects from eight independently processed batches. Many of those showed marginal 30 

performances, which motivated us to develop Metchalizer, a normalization method which uses 17 stable 31 

isotope-labeled internal standards and a mixed effect model. In addition, we propose a regression model 32 

with age- and sex as covariates fitted on control samples obtained from all eight batches. Metchalizer 33 

applied on log-transformed data showed the most promising performance on batch effect removal as well 34 

as in the detection of 178 known biomarkers across 45 IEM patient samples and performed at least similar 35 
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to an approach using 15 within-batch controls. Furthermore, our regression model indicates that 10-24% of 36 

the considered features showed significant age-dependent variations.   37 

Conclusions: Our comprehensive comparison of normalization methods showed that our Log-Metchalizer 38 

approach enables the use out-of-batch controls to establish clinically-relevant reference values for 39 

metabolite concentrations. These findings opens possibilities to use large scale out-of-batch control samples 40 

in a clinical setting, increasing throughput and detection accuracy.  41 

Availability: Metchalizer is available at https://github.com/mbongaerts/Metchalizer/ 42 

 43 

Introduction 44 

Screening of patients suspected for inborn errors of metabolism (IEM) is currently based on measuring 45 

panels of specific groups of metabolites like amino acids or organic acids using a number of different tests 46 

and techniques such as ion-exchange chromatography, LC-MS/MS and GS-MS. This targeted approach 47 

with several different tests is time consuming and limited in the number of metabolites being analyzed. 48 

Untargeted metabolomics using High Resolution Accurate Mass Liquid Chromatography Mass 49 

Spectrometry (HRAM LC-MS) can detect hundreds to thousands of metabolites within one test, and, as a 50 

consequence, receives increasing interest to be used in IEM screening (Miller, et al., 2015) (Coene, et al., 51 

2018) (Körver-Keularts, et al., 2018) (Haijes, et al., 2019) (Bonte, et al., 2019). Moreover, untargeted 52 

metabolomics can also reveal new biomarkers or increase our understanding of disease mechanism when 53 

exploited in epidemiological studies (Glinton, et al., 2019). 54 

 55 

In traditional targeted diagnostic laboratory tests hundreds of reference samples are required to establish 56 

robust reference intervals. When using untargeted metabolomics the establishment of reference values is 57 

complicated due to the semi-quantitative nature of the data owing to several sources of variation like 58 

injection volume, retention time, temperature, or ionization efficiency in the mass spectrometer that cannot 59 

easily be amended. Moreover, these variations are even larger between different measurement runs in which 60 

a batch of samples is being measured simultaneously, hampering the resemblance between different 61 

batches. As a result, within-batch variation is smaller than between-batch variation. Therefore, to conquer 62 

these batch effects, current approaches include reference samples in each single batch of measurements 63 

(Miller, et al., 2015) (Coene, et al., 2018) (Haijes, et al., 2019) (Körver-Keularts, et al., 2018) (Bonte, et al., 64 

2019) to improve detection sensitivity (due to tighter reference values as a result of lower variation in the 65 

in-batch reference samples). 66 

 67 
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Clearly, this reduces the throughput efficiency of IEM screening as the number of patient samples that can 68 

be included in a batch is considerably lower when the reference samples need to be measured as well. But, 69 

more importantly, the number of reference samples in one batch might fall short in the establishment of 70 

adequate reference ranges as variations in certain metabolites are not captured well enough in the relatively 71 

small reference panel. For example, factors like age, sex and BMI can affect abundancies of metabolites, 72 

and, to establish reliable reference ranges, one thus needs to correct for these factors by using a large number 73 

of reference samples (Chaleckis, et al., 2016) (Rist, et al., 2017) (Yu, et al., 2012). Consequently, for reliable 74 

untargeted metabolomics in clinical testing, a large set of reference samples is needed, while for throughput 75 

efficiency a small set is preferred. Altogether, this calls for an approach that can establish reference values 76 

based on reference samples being measured in several batches (out-of-batch controls). 77 

 78 

When relying on reference samples from different batches, one needs to correct for the batch effects to 79 

obtain reliable estimates for the reference ranges. This is generally solved by normalization methods and 80 

some have already been proposed within the context of untargeted metabolomics and mass spectrometry 81 

(Veselkov, et al., 2011) (Li, et al., 2017) (Välikangas, et al., 2016). Only a few groups have used out-of-82 

batch controls to determine the reference values and used relatively simple normalization techniques like 83 

median scaling (Miller, et al., 2015), using a reference internal standard per metabolite (Körver-Keularts, 84 

et al., 2018) or using anchor samples (Glinton, et al., 2019). However, there has not been an extensive 85 

exploration of normalization techniques within the context of diagnostic testing for IEM's. 86 

 87 

We explore several known normalization methods on their ability to remove batch effects and to detect 88 

biomarkers from patients with known IEM. Furthermore, we introduce a new normalization method, which 89 

we called Metchalizer, which uses internal standards and a mixed effect model to remove batch effects. As 90 

this allows for a large set of (out-of-batch) reference samples, we also explore a regression model that uses 91 

age and sex as covariates to correct for potential age and sex effects on the reference values. Using the 92 

regression model combined with the Metchalizer normalization, we achieve similar performances in 93 

biomarker detection compared to the use of within-batch controls. Hence, this opens the possibility to 94 

increase the throughput of untargeted metabolomics in IEM screening as well as including more complex 95 

confounder strategies. 96 

 97 

 98 

  99 
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Materials and methods 100 

 101 

Untargeted metabolomics datasets 102 

Human plasma samples of 260 control samples and 53 IEM patients were measured over eight batches over 103 

the period 10-12-2018 to 03-05-2019 (Bonte, et al., 2019) having in total 33 unique IEMs. For every patient 104 

a technical triplicate was included. A QC (Quality Control) sample was included in all eight batches and 105 

more than four technical replicates were present in every batch. Since the QC sample was a commercial 106 

sample, the sample differed in concentration of several metabolites when compared to the (average) 107 

concentrations of the human plasma samples analyzed in these datasets.  Features were annotated as 108 

described in Bonte et al. (Bonte, et al., 2019). Note that within each batch about 30 normal controls have 109 

been measured, which allows us to establish reference values based on within-batch controls, whereas the 110 

controls being measured for the other (seven) batches can be used for out-of-batch strategies. In this study 111 

we will refer to ‘feature’ as being either a single m/z-value (with unique retention time) or a merge of 112 

multiple features, where the adduct type and/or isotope was determined with corresponding neutral mass 113 

and consequently merged to a single feature. 114 

The following internal standards have been added to each batch to facilitate normalization based on these 115 

internal standards: 1,3-15N uracil (+/-), 5-bromotryptophan (+/-), D10-isoleucine (+/-), D3-carnitine (+/-), 116 

D4-tyrosine (+/-), D5- phenylalanine (+/-), D6-ornithine (+), dimethyl-3,3-glutaric acid (+/-), 13C-thymidine 117 

(+/-), D4-glycochenodeoxycholic acid (-), where + indicates positive ion mode, and – indicates the negative 118 

ion mode.  119 

 120 

Data processing 121 

Previous pre-processing steps (alignment, peak picking etc.) were performed per batch using Progenesis QI 122 

v2.4 (Newcastle-upon-Tyne, UK) (Bonte, et al., 2019). In-house software was developed to match features 123 

from each batch to a reference batch which in this case was the fifth batch when sorting on chronologically 124 

order. Chromatograms between batches were initially aligned to the reference batch by using lowess 125 

regression where features were matched based on retention time difference, m/z-value and median 126 

abundancy difference similar to the criteria described below. 127 

 128 

Matching features was performed based on several criteria:  129 

 130 
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1)  When features were annotated in reference batch and the batch being merged, these features were 131 

pooled to the merged dataset. 132 

2)  When MS/MS spectra were present for a potential matching pair of features, the cosine similarity 133 

metric was calculated and had to be > 0.8.  134 

3) Retention time difference in percentage was calculated between potential matches, and had to be < 135 

2.5%.   136 

4) Progenesis QI determined per feature an isotope distribution and we required sufficient overlap of 137 

these distributions between potential matching pairs. This was determined by calculating a difference 138 

in percentage between each bin of this distribution. The maximum difference of these bins had to be < 139 

50%. 140 

5) As we expect matching features to have similar within-batch median abundancies (despite of batch 141 

effects), we calculated the differences between these medians in percentages, which had to be < 300%. 142 

6)  Neutral masses were known for the matching pair but not the MS/MS spectra, the ppm-error had to be 143 

< 1. 144 

7)  m/z-values were known for the matching pair but not the MS/MS spectra and neutral masses, the ppm-145 

error of between the m/z-values had to be < 1.  146 

 147 

Features matching multiple other features in the reference batch were discarded (and vice versa). The 148 

resulting merged dataset contained only features which were matched across all eight batches.  149 

 150 

Quantitative evaluation set 151 

For the evaluation of the normalization methods, the following 16 metabolites were quantitatively (µmol/L) 152 

measured in two separate assays: leucine (+/-), C0 | L-carnitine (+/-), methionine (+/-), C2 | acetylcarnitine 153 

(+), 5-aminolevulinic acid/4-hydroxyproline (+), serine (+/-), citrulline (+/-), aspartic acid (+), glutamine 154 

(+/-), (allo)isoleucine (+/-), proline (+/-), tyrosine (+), phenylalanine (+/-), taurine (+/-), asparagine (+/-), 155 

arginine (+/-). Amino acids were determined by ion-exchange chromatography according to protocols 156 

described by the manufacturer (Biochrom). Free carnitine and acylcarnitines analysis was performed as 157 

described by Vreken et al. (Vreken, et al., 2002).  158 

 159 

 160 

  161 
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Normalization methods  162 

 163 

Initial transformations 164 

Prior to normalization raw abundancies were for some methods transformed using a log-transform or Box-165 

Cox transformation. The latter was given by: 166 

 167 

           (1) 168 

with  and . If an initial transformation was applied this was indicated in the name of the 169 

(normalization) method, where ‘BC-’ refers to the Box-Cox transformation and ‘Log-’ to the log 170 

transformation. When no transformation was performed this was indicated with ‘None-’. 171 

 172 

Normalization by Metchalizer  173 

Metchalizer assumes a linear mixed effect relationship between the abundancies of the internal standards 174 

and the feature of interest. Since the internal standards were expected to be correlated, we represented them 175 

by an orthogonal set of covariates. These covariates are obtained as the Latent Variables (LV) from the 176 

Partial Least Squares (PLS) of the set of internal standard abundancies (represented in matrix ) and the 177 

(categorical) information about which sample belonged to which batch (represented by matrix ). The 178 

number of LV's were chosen from the metric I(K): 179 

 180 

       (2) 181 

 182 

where is the center of batch b in the direction of  . We selected that K for which I(K) reached 75 183 

% of its maximum value. 184 

 185 

The mixed effect model then considers the LV's as fixed effects and all variations not explained by the LV's 186 

is considered as (random) batch effects:  187 

 188 

      (3) 189 
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with  indicating the covariate (score) of the kth Latent Variable (LV) of sample i.  is the (random) 190 

batch intercept for feature j. Note, that when the LV's are sufficient in explaining   the random intercept 191 

 will not contribute much.  Before fitting the model, we remove outlier samples per batch b and feature 192 

j based on their within-batch Z-score (|Z| > 2)  determined from all samples in that batch. These Z-scores 193 

were different than the Z-scores defined in other parts of this study.  194 

 195 

The batch corrected abundancy then becomes:  196 

 197 

     (4) 198 

 199 

 200 

Normalization by Best Correlated Internal Standard 201 

The internal standard, m, that best correlates with a feature j is being used to normalize the abundances of 202 

feature j. The correlation is measured within each batch using the spearman correlation between feature j 203 

and each internal standard individually across all samples and subsequently averaged across all eight 204 

batches. The internal standard which (positively) correlated the best was used for normalization according: 205 

 206 

         (5) 207 

with m being the best correlated internal standard.  208 

 209 

Normalization methods from literature 210 

We compared Metchalizer with a number of different normalization methods. For a description we refer to 211 

the original articles, here we only specify our settings: 212 

Anchor (Glinton, et al., 2019): Anchor assumes a linear response between the features in the anchor 213 

samples and samples in the batch. An anchor sample is a fixed sample which is analyzed in all eight batches, 214 

and was included more than four times in each batch . Normalization was performed per batch by dividing 215 

each feature by the median of the anchor samples for that same feature per batch  [1]. In this study we used 216 

our QC samples as the anchor samples.  217 

CRMN  (Redestig, et al., 2009) : We used function normFit from the crmn R package with input argument 218 

"crmn" and ncomp=3. As a design matrix we chose QC samples versus human plasma's.  219 
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EigenMS (Karpievitch, et al., 2015) : QC samples and plasma samples were treated as two different groups. 220 

We chose three ‘eigentrends’.  221 

Fast Cyclic Loess (Ballman, et al., 2004) : We used the normalizeCyclicLoess function from the limma R 222 

package using the method “fast” and span=0.7.  223 

NOMIS (Sysi-Aho, et al., 2007) : We used the function normFit from the crmn R package with input 224 

argument "nomis".   225 

PQN (Filzmoser & Walczak, 2014) : PQN was implemented as described by Filzmose et al. The reference 226 

spectrum was given by the median of every feature j. 227 

RUV (Livera, et al., 2015) : We used the function RUVRand with k=8 from the MetNorm R package.  228 

VSN (Huber, et al., 2002) : We used the vsn R package using the vsn2 function. 229 

 230 

Evaluation of normalization methods 231 

Six metrics were used to evaluate the performance of normalization methods.  232 

WTRj score: The WTR score (Within variance Total variance Ratio) calculates the ratio between the 233 

‘overall’ within-batch variance and the total variance from the QC samples: 234 

      (6) 235 

where  is the variance of all eight batch averages for metabolite j in the QC samples, and   236 

the ‘overall’ variance based on all QC samples. The WTR score is between 0 and 1. As we would like batch 237 

averages to be similar for the QC samples (resulting in  approaching zero), we are interested in 238 

WTR scores close to one.  239 

 240 

 score: Since normalization might also lead to the removal of variations of interest (for example 241 

biological variations), we tested whether the ranks of the features ordered by their abundancies within the 242 

QC samples were preserved after normalization. Per feature j, we determined the average rank the feature 243 

is assigned across all QC samples (across all batches) for both the raw abundancies ( ) as well as the 244 

normalized abundancies ( ). The  score then looks at the difference in rank positions due to 245 

normalization per feature j:  246 

 247 
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        (7) 248 

, with p the number of features. Lower  values indicate a better preservation of the ranks 249 

of the normalization method.  250 

Spearman score: For the set of 16 quantitatively measured metabolites, we calculated the Spearman 251 

correlation between their quantitative measurements and the normalized abundancies. Overall 252 

normalization performance could be judged based on the median Spearman score of these 16 scores, having 253 

scores  . Higher values indicate better resemblance with the quantitative measurements.  254 

R2 score: The R2 between the quantitative measurements and the normalized abundancies of the 16 255 

quantitatively measured metabolites. Overall performance could be judged from the median R2 score, with 256 

scores . Higher values indicate better (linear) fits with the quantitative measurements. 257 

QC prediction score: Since the QC samples were different from the human plasma samples in terms of 258 

concentrations for several metabolites/features, we expect this difference to be observed in the first few 259 

principal components (PCs) of a Principal Component Analysis (PCA) analysis applied to all features (excl. 260 

standards). We fitted a logistic function using the first four PC’s as covariates and with class labels: ‘human 261 

plasma’ and ’QC’. The fitted model returns per sample a probability of belonging either to the class ‘human 262 

plasma’ or ‘QC’. The probabilities for all samples are averaged into the QC prediction score  263 

Increasing normalization performances should result in higher scores, as QC - and human plasma samples 264 

should be nicely separated. We used LogisticRegression from the Python package scikitlearn with 265 

parameters penalty='l1', solver='saga', multi_class='auto', max_iter=10000 266 

(Pedregosa, et al., 2011).  267 

Batch prediction score: Increasing normalization performances should result in less batch clustering when 268 

examining the first few PC’s of the PCA analysis (see QC prediction score). We fitted a logistic function 269 

for each batch versus all other seven batches using the first four PC’s as covariates and obtained the 270 

probability scores for all human plasma’s having the correct batch label. These scores were than averaged 271 

for all human plasma samples into a batch prediction scores  . Scores closer to 1 indicate decreased 272 

normalization performances since batch separation is (still) present. 273 

  274 
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Methods to determine aberrated metabolic abundancies  275 

Reference values for metabolites were determined by using a Z-score methodology: a set of reference values 276 

was Z-transformed (corrected for mean and divided by the standard deviation) which was then assumed to 277 

be normally distributed. Aberrations can then be called by considering significant Z-scores using a chosen 278 

cutoff level. We use four different methods to determine the Z-scores. 279 

Method 15in: best matching controls within batch: Z-scores were calculated by selecting 15 control 280 

samples originating from the same batch as the patient based on age and sex as described in Bonte et al. 281 

(Bonte, et al., 2019).   282 

 283 

Method 15out: best matching controls from other batches: Z-scores were calculated similarly as in 284 

method 15in using explicitly 15 out-of-batch controls. Note, that since there a more out-of-batch controls 285 

than within-batch controls that age and sex matching can be done more accurately. 286 

 287 

Method All controls: This method used all available control samples from all eight batches, including 288 

within-batch controls, for Z-score calculation. 289 

 290 

Method Regression: We fitted a linear model on all 260 available controls excluding outliers which were 291 

first removed based on their within-batch |Z-score| > 3, this Z-score is different from other Z-scores 292 

mentioned in this study, and only used to remove outliers. The regression model is given by: 293 

 294 

    (8) 295 

          (9) 296 

 297 

where  is the predicted (normalized) abundancy of feature j for sample I,  is an intercept. , 298 

 (interaction) and  indicate slopes. P is the degree of the polynomial used for regression on age 299 

and set to P=3 in this study.  is 1 for women and 0 for men.  is the estimated error. The latter 300 

expression is the model in vector notation with   .  301 

 302 

 303 

 304 
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The coefficients were determined from the OLS estimator: 305 

 306 

         (10) 307 

 308 

where the rows of  are given by  and the variance in   is determined by the variance in   and the 309 

variance in : 310 

 311 

       (11) 312 

 313 

The covariance matrix of   is given by: 314 

 315 

 316 
             (12)  317 

 318 

with  estimated according: 319 

 320 

        (13) 321 

       322 

Since we expected  to be dependent on age (neglecting sex), we do estimate  differently from a 323 

weighted mean on the squared residuals: 324 

 325 

       (14)  326 
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where a and b determine how the weights decay (a) or increase (b) over age (we set a, b = 1 years). Z-327 

scores were obtained by subtracting the predicted average   and dividing by the variance   328 

(Equation 11). 329 

 330 

Significance of regression coefficients: Significance of the regression coefficients (Equation 8, 9) was 331 

obtained by considering the statistic: 332 

         (15) 333 

The variances of the coefficients were found in the diagonal elements of   (Equation 13). We tested 334 

the hypotheses that  with a two-tailed test. A robust p-value was obtained from a bootstrap procedure 335 

by taking the median p-value from a series of p-values obtained from 50 bootstraps on the above test 336 

statistics taking 95 % of the data each bootstrap. 337 

 338 

Final Z-scores  339 

Since the patient samples were measured in triplicate, we determined the final Z-scores from the average 340 

of these three Z-scores (Bonte, et al., 2019). These average  Z-score were determined for all Z-score 341 

methods i.e. 15in, 15out, All controls, Regression and IEM patient. 342 

 343 

P-values from Welch’s t-test 344 

As an alternative to using the (average) Z-scores we also considered the p-values obtained from the Welch's 345 

t-test to be informative, as it indicates whether the mean of triplicates differs significantly from the 346 

population average. Note that the triplicate was expected to have only technical variance whereas the 347 

reference population has variance consisting of technical- plus biological variance. For every Z-score 348 

method (15in, 15out, All controls, Regression) these p-values were obtained per feature (and patient). 349 

 350 

When using the regression model, we used an adjusted Welch's t-test assuming that variance in the estimate 351 

of the average of the population (which is Z=0) was negligible : 352 
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          (16) 353 

         354 

where sj is the sample standard deviation of the triplicate Z-scores,   indicates the average of the 355 

triplicate for feature j.  356 

 357 

Detection of the expected IEM biomarkers  358 

To explore how normalization and the method of determining these Z-scores (15in, 15out, All controls and 359 

Regression) affected the detection of biomarkers, we plotted the number of detected biomarker of the 360 

known IEM patients against the average number of detected features per patients for various (final) Z-score 361 

and p-value cutoff levels, similar to a ROC curve. Improved biomarker detection was believed to increase 362 

the area under the ROC(-like) curve (AUC).  363 

 364 

Establishing this ROC curve was done by assigning a status for every biomarker (if present and annotated 365 

in the MS-data). A database was established containing the expected biomarkers for each IEM including 366 

the expected Z-score sign (up or down regulated) as can be found in supplement S5 Table 5. For every IEM 367 

patient, we assigned for all expected biomarkers the status ‘positive’ or ‘negative’. The status ‘positive’ 368 

was assigned when 1) |Z-score| > Zabnormal , and 2) the sign of the Z-score corresponded with the expected 369 

sign for that biomarker in the IEM patient. Criteria 1 and 2 were also used for the ROC-curve created by 370 

the p-values. When a biomarker was found in both positive and negative ion mode, the Z-score(s) from the 371 

mode having the largest population average abundancy was taken. The average number of detected features 372 

(per patient) was obtained by considering features from both ion modes.  373 

 374 

Some of the expected biomarkers were not matched across all eight batches and therefore were absent in 375 

the merged dataset and analysis in this study. In the merged dataset, we obtained 178 patient-biomarker 376 

combinations (one patient could have multiple biomarkers) associated with 45 patients (hence, for 8 IEM 377 

patients no biomarkers were found in the merged dataset). 378 

 379 

 380 

 381 

 382 

  383 
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Results 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

Batch characteristics 394 

Eight untargeted metabolomics runs/batches were merged containing 260 control samples and 53 IEM 395 

patients, together having 33 unique IEMs. After merging, 773 positively ionized features were obtained, 396 

among which 121 were annotated, and 598 negatively ionized features were attained with 106 annotated 397 

features. We only included features which were merged across all eight batches to ensure consistency 398 

among the findings. Intra-batch coefficients of variation (CV) on 17 (internal and external) standards were 399 

smaller (median CV=14%) than inter-batch CV's (median CV=27%) indicating that batch effects were 400 

present (for more details see S1). Principle Component Analysis (PCA) further elucidated the presence of 401 

batch effects as shown in Figure 2A, showing the first three PC's for the log-transformed raw abundancies 402 

(Log-Raw).  403 

 404 

 405 

Comparing normalization methods 406 

We investigated the performance of several normalization methods on batch effect removal by evaluating 407 

multiple metrics based on quantitative measurements, the Quality Control (QC) samples and PCA analysis 408 

Figure 1. Flow diagram of different methods used in this study. 1) An initial transformation was applied. 2) A normalization 

method was applied. 3a) Multiple metrics were calculated to investigate batch effect removal. 3b) Normalized data was used 

to determine Z-scores for IEM patients using different (control) reference methods. 4a) Final Z-scores were calculated 

together with p-values. 4b) Regression analysis on all features/biomarkers was used to explore age- and sex dependency of 

abundancies. 5) Detection of the expected biomarkers was investigated using a  ROC-like curve for Z-scores and p-values  
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(see Methods and Figure 1). Some normalization methods were excluded from the following analysis 409 

because of their marginal performance on the considered metrics (as evaluated in supplement S2).  410 

 411 

Reduced batch effects: We visually observe in the PCA plots that most normalization methods reduced 412 

batch effects since batch clustering seemed to be reduced after normalization (Figure 2), and is confirmed 413 

when looking at the batch prediction score (Figure 3A) showing lower scores for normalized abundancies 414 

when compared with the raw data (None-Raw or Log-Raw). BC-Metchalizer, Log-Metchalizer and None-415 

Anchor had the lowest  batch prediction scores, with a median score of 0.13 (0.13) , 0.14 (0.14), 0.17 (0.16) 416 

for positive (negative) ion mode respectively.  417 

 418 

Improved separation of QC samples: QC samples (squares in Figure 2) were included in every batch and 419 

were expected to separate from the human plasma samples (squares vs circles in Figure 2) in the first four 420 

Principle Components (PC) due to overall abundancy differences for several metabolites. Normalization 421 

should maintain this separation which was measured by the QC prediction score (Figure 3B). Log-CRMN 422 

conserved QC/plasma separation, with a median QC prediction score of 1.00 (1.00) for positive (negative) 423 

ion mode, but was less able to reduce batch effects since it had a median batch prediction score of 0.76 424 

(0.39) for positive (negative) ion mode respectively. Log-NOMIS and Log-RUV were better in reducing 425 

batch effects, with a median batch prediction score of 0.21 (0.21), 0.24 (0.19) for positive (negative) ion 426 

mode respectively, but were less able to conserve the separation between QC and human plasma samples, 427 

since the median QC prediction scores were 0.32 (0.88) and 0.39 (0.94) for positive (negative) ion mode 428 

respectively. It is therefore likely that these two methods removed variations other than batch related 429 

variation. QC samples were almost perfectly separated from the human plasma sample by BC-Metchalizer, 430 

Log-Metchalizer and None-Anchor. 431 

 432 

Resemblance with quantitative measurements: To further quantify batch effect removal, we calculated the 433 

Spearman score and R2 score between quantitative plasma concentrations (in µmol/L) and the normalized 434 

abundancies of our evaluation set of amino acids and (acyl)carnitines (Methods). To ensure high signal-to-435 

noise ratio’s in the quantitative measurements, we selected only metabolites having a population average 436 

concentration above 1 µmol/L. Matching this evaluation set with the annotated features in the untargeted 437 

metabolomics data resulted in 16 and 13 metabolites in positive - and negative ion mode, respectively. 438 

Figure 3C and D shows both metrics for the investigated normalization methods. Again, for most 439 

normalization methods both metrics improved when compared to the raw data (None-Raw). BC-440 

Metchalizer, Log-Metchalizer and None-Anchor appeared to perform the best on these metrics with median 441 
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R2 scores of 0.56 (0.55), 0.57 (054), 0.57 (0.47), and median Spearman scores of 0.75 (0.74), 0.74 (0.79), 442 

0.73 (0.71), respectively, for positive (negative) ion mode. 443 

 444 

Reduced between-batch variation in QC samples: Next, we compared the within-batch variance of the QC 445 

samples with respect to the total variance which is expressed by the WTR score (Methods) for each 446 

normalization method. WTR scores close to 1 indicate the absence of batch effects. None-Raw and Log-447 

Raw had low WTR scores and after normalizing these scores increased (Figure 2E). BC-Metchalizer and 448 

Log-Metchalizer scored among the highest on this WTR score. None-Anchor had high WTR scores, but 449 

since None-Anchor uses the QC samples for normalization the WTR scores are biased towards higher 450 

values. 451 

 452 

Preserved feature ranks in QC samples: Removal of variation results in higher WTR scores but potentially 453 

removes also variation(s) of interest. Therefore, we investigated whether the ranks of the abundancies of 454 

the different features in the QC samples remained the same as in the raw data (expressed as the QC rank 455 

differences, , see Methods for details). A lower rank difference indicates that metabolic differences 456 

present in the QC samples were conserved after normalization. Figure 2F shows the QC rank differences 457 

for each normalization method. These results confirm the previous believe that Log-NOMIS and Log-RUV 458 

also removed non-batch related variations (higher ), since they had relatively high ’s. BC-459 

Metchalizer and Log-Metchalizer showed rank differences but were lower than most other competing 460 

methods. None-Anchor showed high QC rank differences, but this is again the result of the fact that None-461 

Anchor uses the QC samples for normalization. 462 

 463 

Taken together, BC-Metchalizer, Log-Metchalizer and None-Anchor showed the most consistent 464 

improvement across the evaluation metrics.  465 

 466 

 467 

 468 
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 469 
Figure 2. PCA plots for raw data and normalized data as indicated by the title of each panel. Each batch is indicated with a 470 
unique color. PCA was performed on 758 features (excluding the internal – and external standards) in positive ion mode. 471 
The squares indicate QC samples whereas the circles indicate patients and controls samples. 472 
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 473 
Figure 3. Six different performance metrics for batch effect removal (see Methods for more details). Data from positive – or 474 
negative ion mode is indicated by plain and stripped boxplots, respectively. A) Batch prediction score measures the presence 475 
of batch effects in the first four PC’s from PCA analysis. B) QC prediction score measures how well QC samples are 476 
separated from human plasma sample in the first four PC’s. C) R2 score between (normalized) abundancies and quantitative 477 
measurements. D) Spearman score of (normalized) abundancies with quantitative measurements. E) The WTR score 478 

measuring the overall within batch variation with respect to the total variance using the QC samples. F)   score 479 

measuring the preservation of the rank of features based on their abundancy in the QC samples before and after 480 
normalization.  481 

 482 

Confounder effects of age and sex 483 

To explore confounding effects of age and sex on metabolite abundancies, we developed a regression model 484 

with sex as linear covariates and age as a polynomial (p=1,2,3) covariate (see Methods). After 485 

normalization, we fitted the model parameters for every feature using all control samples present in the 486 
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eight batches and determined the significance of the coefficients in the regression model (see Methods). 487 

Table 1 shows the percentages of (strong) significant coefficients ( ) per ion mode and (selected) 488 

normalization methods. Our findings suggest that 6-24% of all features showed age dependency when 489 

looking at coefficient   (i.e. the linear term in the model). It is noteworthy that more age-related features 490 

were found in the negative ion mode.  491 

 492 

Age-dependent metabolites (supplement S3 Table S3), when using normalization by BC-Metchalizer, 493 

include known IEM biomarkers, such as: guanidinoacetic acid(+), homoarginine(-) and N-acetyltyrosine(-494 

) , 2-ketoglutaric acid(-), citrulline(-) and ornithine(-). As an example, we plotted the regression model for 495 

guanidinoacetic acid (Figure 3), illustrating that the Z-score for a fixed abundancy depends on age (and 496 

slightly on sex at later ages). This also shows a non-linear trend with age. Our analyses showed that more 497 

metabolites have significant non-linear trends over age ( and   in Table 1). Moreover, age dependent 498 

features have the tendency to increase/decrease in abundancy faster for decreasing age, implying that a 499 

matching reference population on younger ages seems to be more important (supplement S3 Figure 5).  500 

 501 

Hardly any significant gender-related features were found (Table 1). When significance on   was 502 

relaxed ( ), we found some biomarkers showing an interaction between age and sex, such as: 503 

malonic acid(+/-), guanidinoacetic acid(+), homoarginine(-), ornithine(-), sebacic acid(+/-). See 504 

supplement S3 Table 4 for a full list.  505 

 506 

 507 

Table 1. Percentage of strongly significant (  ) regression coefficients of the covariates age and sex when using 508 
the regression model (Methods) predicting 758 positively - and 583 negatively ionized features, for the different 509 
normalization method and ion modes. 510 

Normalization 
method  

Ion 
mode  

 
(%) 

  
(%) 

  
(%) 

 
(%) 

 
(%) 

 
(%) 

None-Anchor − 97 15 6 4 0 1 
None-Anchor + 99 6 4 2 0 0 
BC-Metchalizer - 100 23 12 8 0 1 
BC-Metchalizer + 100 11 6 4 0 0 
Log-Metchalizer - 100 24 15 10 1 0 
Log-Metchalizer + 100 10 6 4 0 0 

 511 

 512 

 513 
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 514 

Figure 1. Regression of guanidinoacetic acid when using BC-Metchalizer normalized data. The different colors indicate the 515 
sex as shown in the legend. The thick red/blue line indicates the average obtained from the fit on all controls for a given sex. 516 
The first standard deviation is indicated by the thin(ner) line whereas the second standard deviation ends at the shaded region. 517 

 518 

Detection of the expected IEM biomarkers  519 

Next we investigated the impact of normalization and using out-of-batch controls on expected biomarker 520 

detection in the 45 IEM patients by plotting the number of detected expected biomarkers against the average 521 

number of positives features per patient at various Z-score or p-value thresholds (Methods), similar to a  522 

Receiver Operator Curve (ROC). Untargeted metabolomics did not allow us to make a distinction between 523 

false positives (FP) and true positives (TP), due to unannotated features and even unknown disease related 524 

features/biomarkers.  Assuming that the majority of the positives per patient are false positives, we used 525 

the average number of positives per patient as proxy for the false positives. Improved performance was 526 

considered to increase the number of detected expected biomarkers (true positives of which we are certain) 527 

while lowering the average number of positives per patient, thereby increasing the Area Under the Receiver 528 

Operator Curve (AUC). We decided to take the method that uses 15 within-batch controls and raw 529 

abundancies (15in&None-Raw) as the reference approach, where the performance was expressed as a 530 

percentage of this reference AUC, named  . Here  indicates if the AUC was created from 531 

the average Z-scores or p-values. These p-values were obtained from the Welch’s t-test which tests whether 532 
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the average Z-score of an expected biomarker or feature across the triplicate significantly differs from the 533 

average Z-score of the reference population  (Methods).  534 

 535 

Log-transform improves biomarker detection for p-values: Our first observation is that, when considering 536 

the Z-scores,  the log-transformed raw abundancies (15in&Log-Raw) has an AUC approximately equal to 537 

 (Figure 4), implying that this transformation hardly affected this performance metric. 538 

However, when using the p-values, the log-transformation improved the detection of the expected 539 

biomarkers, as  is 8% higher than the  (Figure 4).  540 

 541 

Reduced performance with age/sex matched out-of-batch controls: When comparing the performance of 542 

using 15 out-of-batch controls (15out&Raw) to the 15in&Raw reference, the performance for 15out was 543 

clearly reduced (Figure 4 A), achieving only 80% of the reference . This difference was 544 

also present when looking at the p-values, resulting in a clear reduction of the   (74%). 545 

Hence, potential improved age/sex matching for 15out, due to the increased number of available controls 546 

(supplement S4 Figure 6), did not result in improved performance, most likely due to the dominance of 547 

batch effects.  548 

 549 

Normalization improves performance of age/sex matched out-of-batch controls: After normalizing with 550 

BC-Metchalizer, Log-Metchalizer or None-Anchor and using 15 out-of-batch controls (15out), the 551 

performance increased when compared to 15out&None-Raw (Figure 4 A, B and C), and came close to the 552 

; for BC-Metchalizer (94%) and Log-Metchalizer (96%), while None-Anchor stayed 553 

behind (90%). Interestingly, when considering biomarker detection performance using the p-values, BC-554 

Metchalizer performed on par with  15in&None-Raw (99%), Log-Metchalizer improved over 15in&None-555 

Raw (105%)  and None-Anchor stayed behind (90%). Log-Metchalizer performed similar to 15in&Log-556 

Raw (105% and 108%, respectively), indicating that out-of-batch controls can be used instead of in-batch 557 

controls to determine reference values. 558 

 559 

Regression model effectively models age and sex effects: The regression model (Regression) slightly 560 

improved  with respect to 15out for BC-Metchalizer (+2%) and None-Anchor (+4%), but not for Log-561 

Metchalizer (-1%), see also Figure 4 A, B and C. When considering the p-values, , only BC-562 

Metchalizer (+1%) improved but not None-Anchor (-2%) and Log-Metchalizer (-1%), although these 563 

performance differences in all cases were small (Figure 4 D, E and F). Interestingly, when we took all 564 

controls to determine the Z-scores (All controls, Methods), similar  performances were observed when 565 
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compared to Regression, i.e. -1% for BC-Metchalizer and +2% Log-Metchalizer and +1% for None-Anchor. 566 

When considering the p-values the difference were larger, i.e. -5% for BC-Metchalizer and -1% Log-567 

Metchalizer, and -5%  for  None-Anchor, suggesting an influence of age- and sex effects on the detection 568 

of biomarkers. 569 

  570 

 571 
 572 

Figure 2. The number of detected expected biomarkers versus the average number of positives per patient. A curve in each 573 
(sub)figure was formed by increasing the Z-score or p-values threshold (Zabnormal , Methods). The legend indicates (per curve) 574 
the methods used to determine Z-scores and how data was normalized, the AUC and AUC expressed as percentage of the 575 

. Performances using A) BC-Metchalizer using Z-scores, B) Log-Metchalizer using Z-scores, C) None-576 

Anchor using Z-scores, D) BC-Metchalizer using p-values, E) Log-Metchalizer using p-values, and F) None-Anchor using 577 
p-values. 578 

  579 
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 580 

Discussion 581 

Targeted measurements of metabolites in body fluids using various platforms such as HPLC, GC-MS and 582 

LC-MS/MS are traditionally applied for laboratory diagnosis of IEM. For each individual metabolite, age- 583 

and, sometimes, sex-dependent reference ranges are established using hundreds of reference samples. 584 

Untargeted metabolomics is a promising alternative enabling the determination of many metabolites in one 585 

analysis. This can speed up the diagnostic process and extends the number of different IEMs that can be 586 

screened in a single run. A major drawback of current approaches is that reference samples need to be 587 

included in the same experimental batch to ensure proper reference ranges (or Z-score transformations). 588 

Some methods do exist that use reference samples measured in different batches (out-of-batch controls) to 589 

determine age and sex corrected Z-scores, and they are based on normalizing methods that remove the batch 590 

effects. There has not been a comprehensive comparison of the different normalization methods with 591 

approaches that use out-of-batch controls, which we have set out in this work. Moreover, we developed a 592 

new normalization method, Metchalizer, that makes use of isotope-stable internal standards, an approach 593 

that has been shown to be useful when mapping specific metabolites to specific internal standards (Körver-594 

Keularts, et al., 2018) which we generalize to all features measured. Because more reference samples are 595 

available when using the out-of-batch controls, we additionally propose a regression model that 596 

incorporates sex and age effects as (non-linear) covariates. Alltogether, we have shown that our 597 

methodology has biomarker detection performances at least similar to using 15 within-batch controls. 598 

 599 

Typically, around 20,000 features in both negative and positive mode were detected per batch. When we 600 

require a feature to have been measured (and matched) in all eight batches, we retained 598 positive and 601 

773 negative ionized features, respectively.  As some normalization methods use a statistical approach 602 

(PQN, Fast Cyclic Loess), the reduction in features might explain the reduced performance of these 603 

methods. In addition, the requirement of features being measured (and matched) across all eight batches 604 

also resulted in the loss of some biomarkers, which hampered the performance of all out-of-batch methods 605 

with respect to the within-batch methods. As an alternative, we could have made the inclusion of features 606 

dependent on fewer batches (for example being present in >5 out of 8 batches). We decided not to do that 607 

as this would have resulted in an unequal number of control samples for the different features, leading to 608 

inconsistent results between the out-of-batch methods. The availability of more batches could have solved 609 

this issue because an equal number of control samples could likely be obtained per feature, even when these 610 

features were not present/matched in some batches. It is interesting to note that our proposed normalization 611 

method (Metchalizer) showed consistent performances when data from various number of batches is being 612 

used (supplement Figure S7). Some biomarkers, for example isobutyrylglycine, were only detected in the 613 
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batches having patients with elevated levels of these specific metabolites. We anticipate that for this kind 614 

of biomarkers out-of-batch strategies are not useful since abundancies in (healthy) controls are (very) low, 615 

thereby making Z-score calculation unsuitable.  616 

 617 

Anchor uses an anchor (fixed) samples, measured in all batches, to normalize the features. Anchor 618 

normalization on none-transformed data performed well when compared to most of the other normalization 619 

methods explored, but slightly less than BC-Metchalizer and Log-Metchalizer when considering the 620 

performance metrics Spearman score, R2 score, batch prediction score and performance on biomarker 621 

detection. We anticipate that the anchor samples may not correlate with all types of variation like, for 622 

example, injection volume which is a source of variation at the sample level, whereas the abundancy of the 623 

internal standards (used by Metchalizer) is directly linked to the injection volume. Anchor also assumes 624 

that metabolite levels remain constant over time in the anchor samples. As a consequence, if for example 625 

storage effects take place, Anchor is impeded. The use of Anchor may also be less practical because it 626 

requires the same anchor samples in every batch. The introduction of a new anchor sample requires an 627 

'overlapping batch' containing a set of both the former anchor sample together with the newly introduced 628 

anchor samples. 629 

 630 

Metchalizer exploits the linear relationship between the abundancy of a feature and those of the latent 631 

variables that are derived from the partial least squares between the internal standards and the features 632 

measured across all samples and capturing the covariance between the standards and the features (Methods). 633 

Metchalizer assumes that this relationship holds across batches and with that assumption determines (batch) 634 

intercepts that correct for the 'unexplained' batch/technical variations. Consequently, when such linear 635 

relationship between internal standards and features does not exist, the normalization would be fully based 636 

on the (batch) intercepts, deteriorating the power of this approach. Alternatively, when batch differences 637 

(represented by the intercepts) differ from each other due to biological variations between batches, this will 638 

be interpreted as 'unexplained' batch/technical variations, and consequently wrongly removed by 639 

Metchalizer. For this reason, it is important to use randomized control samples in every batch (in terms of 640 

age, sex etc) to minimize the possibility of biological variations between batches.  641 

 642 

Log-Metchalizer log transforms the abundancies before applying Metchalizer, whereas BC-Metchalizer 643 

uses a less strong Box-Cox transformation. The effect of this stronger transformation on most investigated 644 

metrics in this study was small, although we did observe that a stronger initial transformation led to 645 

improved biomarker detection performances when considering the p-values. 15in&None-Raw had a lower 646 

 than 15in&Log-Raw and could therefore also explain the improved performance of Log-Metchalizer 647 
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over BC-Metchalizer on this metric. A simulation showed that log-transforming the raw abundancies indeed 648 

caused differences in the obtained Z-scores and p-values when compared to the raw abundancies 649 

(supplement S10). Positive Z-scores had relatively lower p-values (and vice versa) for log-transformed 650 

abundancies and this could therefore explain the improved performance on biomarker detection, since most 651 

of the considered biomarkers had positive Z-scores, thus biasing this performance metric. Increasing the 652 

number of internal standards did not improve the normalization performance when considering metrics 653 

based on the quantitative measurements, although we observed that certain combinations of internal 654 

standards improved normalization of specific metabolites (supplement S6). This suggests that Metchalizer 655 

might be improved by matching features/metabolites with a certain set of internal standards (for example 656 

based on retention time).  657 

 658 

We were a bit surprised that biomarker detection performance using the Z-scores ( ) for the regression 659 

model was similar or slightly less than using all controls, as abundancies are known to be dependent on age 660 

and sex. One explanation might be that only a subset of the considered (expected) biomarkers have an age 661 

and/or sex dependency. Indeed, when we considered only these age-dependent biomarkers (19 biomarker-662 

patient combinations, supplement S3 Table 3), the performance of Regression was more improved than All 663 

controls (supplement S8). However, this set was small, so substantial evidence to support this improvement 664 

is lacking. Furthermore, our proposed performance metric assumed that the average number of positives 665 

was a proxy for the average number of false positives. Using Regression resulted generally in more positives 666 

(data not shown), but these were not necessarily merely false positives, which therefore could have affected 667 

the performance of Regression negatively. Though, when judging biomarker detection using the p-values, 668 

we did see that Regression slightly outperformed All controls. 669 

 670 

In conclusion, out of all explored normalization methods, the removal of batch effects was best performed 671 

by Log-Metchalizer. Fitting our regression model on the corresponding normalized data showed that 10-672 

24% (Table 1) of all considered features were depending on age, underlining the need for using age 673 

corrected Z-scores. On average, biomarker detection performance using Log-Metchalizer using out-of-674 

batch controls was at least similar to the best performing Log-Raw approach when using the 15 within-675 

batch controls (15in&Log-Raw). We anticipate that the success of Metchalizer and age- and sex correcting 676 

strategies such as our regression model depend on three factors: 1) a feature of interest being measured in 677 

a number of other batches (not necessarily all), 2) batch effects containing (only) technical variations, and 678 

3) abundancies being affected by age or other covariates (the presence of an effect-size). Together our 679 

proposed approach opens new opportunities to improve abnormality detection, especially for age-dependent 680 

features/biomarkers.  681 
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