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Motivation: Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn
errors of metabolism (IEM). In order to judge if metabolite levels are abnormal, analysis of a large number
of reference samples is crucial to correct for variations in metabolite concentrations resulting from factors
such as diet, age and gender. However, a large number of controls requires the use of out-of-batch controls,
which is hampered by the semi-quantitative nature of untargeted metabolomics data, i.e. technical variations
between batches. Methods to merge and accurately normalize data from multiple batches are urgently
needed.

Methods & results: Based on six metrics, we compared existing normalization methods on their ability to
reduce batch effects from eight independently processed batches. Many of those showed marginal
performances, which motivated us to develop Metchalizer, a normalization method which uses 17 stable
isotope-labeled internal standards and a mixed effect model. In addition, we propose a regression model
with age- and sex as covariates fitted on control samples obtained from all eight batches. Metchalizer
applied on log-transformed data showed the most promising performance on batch effect removal as well
as in the detection of 178 known biomarkers across 45 IEM patient samples and performed at least similar
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to an approach using 15 within-batch controls. Furthermore, our regression model indicates that 10-24% of
the considered features showed significant age-dependent variations.

Conclusions: Our comprehensive comparison of normalization methods showed that our Log-Metchalizer
approach enables the use out-of-batch controls to establish clinically-relevant reference values for
metabolite concentrations. These findings opens possibilities to use large scale out-of-batch control samples
in a clinical setting, increasing throughput and detection accuracy.

Availability: Metchalizer is available at https://github.com/mbongaerts/Metchalizer/

Introduction

Screening of patients suspected for inborn errors of metabolism (IEM) is currently based on measuring
panels of specific groups of metabolites like amino acids or organic acids using a number of different tests
and techniques such as ion-exchange chromatography, LC-MS/MS and GS-MS. This targeted approach
with several different tests is time consuming and limited in the number of metabolites being analyzed.
Untargeted metabolomics using High Resolution Accurate Mass Liquid Chromatography Mass
Spectrometry (HRAM LC-MS) can detect hundreds to thousands of metabolites within one test, and, as a
consequence, receives increasing interest to be used in IEM screening (Miller, et al., 2015) (Coene, et al.,
2018) (Korver-Keularts, et al., 2018) (Haijes, et al., 2019) (Bonte, et al., 2019). Moreover, untargeted
metabolomics can also reveal new biomarkers or increase our understanding of disease mechanism when

exploited in epidemiological studies (Glinton, et al., 2019).

In traditional targeted diagnostic laboratory tests hundreds of reference samples are required to establish
robust reference intervals. When using untargeted metabolomics the establishment of reference values is
complicated due to the semi-quantitative nature of the data owing to several sources of variation like
injection volume, retention time, temperature, or ionization efficiency in the mass spectrometer that cannot
easily be amended. Moreover, these variations are even larger between different measurement runs in which
a batch of samples is being measured simultaneously, hampering the resemblance between different
batches. As a result, within-batch variation is smaller than between-batch variation. Therefore, to conquer
these batch effects, current approaches include reference samples in each single batch of measurements
(Miller, et al., 2015) (Coeneg, et al., 2018) (Haijes, et al., 2019) (Kérver-Keularts, et al., 2018) (Bonte, et al.,
2019) to improve detection sensitivity (due to tighter reference values as a result of lower variation in the

in-batch reference samples).
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Clearly, this reduces the throughput efficiency of IEM screening as the number of patient samples that can
be included in a batch is considerably lower when the reference samples need to be measured as well. But,
more importantly, the number of reference samples in one batch might fall short in the establishment of
adequate reference ranges as variations in certain metabolites are not captured well enough in the relatively
small reference panel. For example, factors like age, sex and BMI can affect abundancies of metabolites,
and, to establish reliable reference ranges, one thus needs to correct for these factors by using a large number
of reference samples (Chaleckis, et al., 2016) (Rist, etal., 2017) (Yu, et al., 2012). Consequently, for reliable
untargeted metabolomics in clinical testing, a large set of reference samples is needed, while for throughput
efficiency a small set is preferred. Altogether, this calls for an approach that can establish reference values

based on reference samples being measured in several batches (out-of-batch controls).

When relying on reference samples from different batches, one needs to correct for the batch effects to
obtain reliable estimates for the reference ranges. This is generally solved by normalization methods and
some have already been proposed within the context of untargeted metabolomics and mass spectrometry
(Veselkov, et al., 2011) (Li, et al., 2017) (Vélikangas, et al., 2016). Only a few groups have used out-of-
batch controls to determine the reference values and used relatively simple normalization techniques like
median scaling (Miller, et al., 2015), using a reference internal standard per metabolite (Korver-Keularts,
et al., 2018) or using anchor samples (Glinton, et al., 2019). However, there has not been an extensive
exploration of normalization techniques within the context of diagnostic testing for IEM's.

We explore several known normalization methods on their ability to remove batch effects and to detect
biomarkers from patients with known IEM. Furthermore, we introduce a new normalization method, which
we called Metchalizer, which uses internal standards and a mixed effect model to remove batch effects. As
this allows for a large set of (out-of-batch) reference samples, we also explore a regression model that uses
age and sex as covariates to correct for potential age and sex effects on the reference values. Using the
regression model combined with the Metchalizer normalization, we achieve similar performances in
biomarker detection compared to the use of within-batch controls. Hence, this opens the possibility to
increase the throughput of untargeted metabolomics in IEM screening as well as including more complex

confounder strategies.
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100 Materials and methods
101

102  Untargeted metabolomics datasets

103  Human plasma samples of 260 control samples and 53 IEM patients were measured over eight batches over
104  the period 10-12-2018 to 03-05-2019 (Bonte, et al., 2019) having in total 33 unique IEMs. For every patient
105  a technical triplicate was included. A QC (Quality Control) sample was included in all eight batches and
106  more than four technical replicates were present in every batch. Since the QC sample was a commercial
107  sample, the sample differed in concentration of several metabolites when compared to the (average)
108  concentrations of the human plasma samples analyzed in these datasets. Features were annotated as
109  described in Bonte et al. (Bonte, et al., 2019). Note that within each batch about 30 normal controls have
110  been measured, which allows us to establish reference values based on within-batch controls, whereas the
111  controls being measured for the other (seven) batches can be used for out-of-batch strategies. In this study
112 we will refer to “feature’ as being either a single m/z-value (with unique retention time) or a merge of
113 multiple features, where the adduct type and/or isotope was determined with corresponding neutral mass

114  and consequently merged to a single feature.

115  The following internal standards have been added to each batch to facilitate normalization based on these
116  internal standards: 1,3-°N uracil (+/-), 5-bromotryptophan (+/-), Dig-isoleucine (+/-), Ds-carnitine (+/-),
117  Da-tyrosine (+/-), Ds- phenylalanine (+/-), Dg-ornithine (+), dimethyl-3,3-glutaric acid (+/-), ®C-thymidine
118  (+/-), Ds-glycochenodeoxycholic acid (-), where + indicates positive ion mode, and — indicates the negative

119 ion mode.
120

121 Data processing

122 Previous pre-processing steps (alignment, peak picking etc.) were performed per batch using Progenesis QI
123 v2.4 (Newcastle-upon-Tyne, UK) (Bonte, et al., 2019). In-house software was developed to match features
124  from each batch to a reference batch which in this case was the fifth batch when sorting on chronologically
125  order. Chromatograms between batches were initially aligned to the reference batch by using lowess
126 regression where features were matched based on retention time difference, m/z-value and median
127  abundancy difference similar to the criteria described below.

128

129  Matching features was performed based on several criteria:

130


https://doi.org/10.1101/2020.04.14.040469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.040469; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

131 1) When features were annotated in reference batch and the batch being merged, these features were
132 pooled to the merged dataset.

133  2) When MS/MS spectra were present for a potential matching pair of features, the cosine similarity
134 metric was calculated and had to be > 0.8.

135 3) Retention time difference in percentage was calculated between potential matches; and had to be <
136 2.5%.

137  4) Progenesis QI determined per feature an isotope distribution and we required sufficient overlap of

138 these distributions between potential matching pairs. This was determined by calculating a difference
139 in percentage between each bin of this distribution. The maximum difference of these bins had to be <
140 50%.

141  5) As we expect matching features to have similar within-batch median abundancies (despite of batch
142 effects), we calculated the differences between these medians in percentages, which had to be < 300%.
143 6) Neutral masses were known for the matching pair but not the MS/MS spectra, the ppm-error had to be
144 <1

145 7) m/z-values were known for the matching pair but not the MS/MS spectra and neutral masses, the ppm-
146 error of between the m/z-values had to be < 1.

147

148  Features matching multiple other features in the reference batch were discarded (and vice versa). The
149  resulting merged dataset contained only features which were matched across all eight batches.

150

151  Quantitative evaluation set

152 For the evaluation of the normalization methods, the following 16 metabolites were quantitatively (umol/L)
153  measured in two separate assays: leucine (+/-), CO | L-carnitine (+/-), methionine (+/-), C2 | acetylcarnitine
154  (+), 5-aminolevulinic acid/4-hydroxyproline (+), serine (+/-), citrulline (+/-), aspartic acid (+), glutamine
155  (+/-), (allo)isoleucine (+/-), proline (+/-), tyrosine (+), phenylalanine (+/-), taurine (+/-), asparagine (+/-),
156  arginine (+/-). Amino acids were determined by ion-exchange chromatography according to protocols
157  described by the manufacturer (Biochrom). Free carnitine and acylcarnitines analysis was performed as
158  described by Vreken et al. (Vreken, et al., 2002).

159

160

161
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Normalization methods

Initial transformations
Prior to normalization raw abundancies were for some methods transformed using a log-transform or Box-

Cox transformation. The latter was given by:

(y + )\Q)Al —1
M 1)

Uy =

with A1 = 0.5 and A2 = 1. If an initial transformation was applied this was indicated in the name of the
(normalization) method, where ‘BC-’ refers to the Box-Cox transformation and ‘Log-’ to the log

transformation. When no transformation was performed this was indicated with ‘None-’.

Normalization by Metchalizer

Metchalizer assumes a linear mixed effect relationship between the abundancies of the internal standards
and the feature of interest. Since the internal standards were expected to be correlated, we represented them
by an orthogonal set of covariates. These covariates are obtained as the Latent Variables (LV) from the
Partial Least Squares (PLS) of the set of internal standard abundancies (represented in matrix X)) and the
(categorical) information about which sample belonged to which batch (represented by matrix Y). The

number of LV's were chosen from the metric 1(K):

k=1 b.i ' (2)

LV
where T .p kis the center of batch b in the direction of LV We selected that K for which I(K) reached 75

% of its maximum value.

The mixed effect model then considers the LV's as fixed effects and all variations not explained by the LV's

is considered as (random) batch effects:

Jig = BY + Y BETLY* + i + €ise
k 3)
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with -’F}’Vk indicating the covariate (score) of the k' Latent Variable (LV) of sample i. Vit is the (random)
batch intercept for feature j. Note, that when the LV's are sufficient in explaining ¥i;jb the random intercept
Vb will not contribute much. Before fitting the model, we remove outlier samples per batch b and feature
j based on their within-batch Z-score (|Z| > 2) determined from all samples in that batch. These Z-scores

were different than the Z-scores defined in other parts of this study.

The batch corrected abundancy then becomes:

batch corrected

Yijb = Yijb — Yijo + Median(7 s, @

Normalization by Best Correlated Internal Standard

The internal standard, m, that best correlates with a feature j is being used to normalize the abundances of
feature j. The correlation is measured within each batch using the spearman correlation between feature j
and each internal standard individually across all samples and subsequently averaged across all eight

batches. The internal standard which (positively) correlated the best was used for normalization according:

Yiq g
:")"?J — Ql\-’fﬂd]ﬂ-l’l('!,".-m.]
Yim ©

with m being the best correlated internal standard.

Normalization methods from literature
We compared Metchalizer with a number of different normalization methods. For a description we refer to
the original articles, here we only specify our settings:

Anchor (Glinton, et al., 2019): Anchor assumes a linear response between the features in the anchor
samples and samples in the batch. An anchor sample is a fixed sample which is analyzed in all eight batches,
and was included more than four times in each batch . Normalization was performed per batch by dividing
each feature by the median of the anchor samples for that same feature per batch [1]. In this study we used

our QC samples as the anchor samples.

CRMN (Redestig, et al., 2009) : We used function normFit from the crmn R package with input argument

"crmn® and ncomp=3. As a design matrix we chose QC samples versus human plasma's.
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EigenMS (Karpievitch, etal., 2015) : QC samples and plasma samples were treated as two different groups.

We chose three ‘eigentrends’.

Fast Cyclic Loess (Ballman, et al., 2004) : We used the normalizeCyclicLoess function from the limma R

package using the method “fast” and span=0.7.

NOMIS (Sysi-Aho, et al., 2007) : We used the function normFit from the crmn R package with input

argument ‘nomis".

PQN (Filzmoser & Walczak, 2014) : PQN was implemented as described by Filzmose et al. The reference

spectrum was given by the median of every feature j.
RUV (Livera, et al., 2015) : We used the function RUVRand with k=8 from the MetNorm R package.

VSN (Huber, et al., 2002) : We used the vsn R package using the vsn2 function.

Evaluation of normalization methods
Six metrics were used to evaluate the performance of normalization methods.

WTR; score: The WTR score (Within variance Total variance Ratio) calculates the ratio between the

‘overall’ within-batch variance and the total variance from the QC samples:

2 2 2

WTR, — O-_'j._witlliu . O-j.tnt . Uj.}.mtwcc-u_

' ot Sl 2 m 2

T75 tot T3 tot (6)

where 7j.between is the variance of all eight batch averages for metabolite j in the QC samples, and 7;.tot
the “overall’ variance based on all QC samples. The WTR score is between 0 and 1. As we would like batch
averages to be similar for the QC samples (resulting in 7j,between approaching zero), we are interested in

WTR scores close to one.

AR score: Since normalization might also lead to the removal of variations of interest (for example
biological variations), we tested whether the ranks of the features ordered by their abundancies within the
QC samples were preserved after normalization. Per feature j, we determined the average rank the feature
is assigned across all QC samples (across all batches) for both the raw abundancies (") as well as the
normalized abundancies (F"™""""). The AR; score then looks at the difference in rank positions due to

normalization per feature j:
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| praw pnormalized
248 AR; = ‘Rj - Rj (7

249 AR < [O,p}, with p the number of features. Lower 242, values indicate a better preservation of the ranks

250 of the normalization method.

251  Spearman score: For the set of 16 quantitatively measured metabolites, we calculated the Spearman
252 correlation between their quantitative measurements and the normalized abundancies. Overall

253  normalization performance could be judged based on the median Spearman score of these 16 scores, having

254 scores € [—1, 1] Higher values indicate better resemblance with the quantitative measurements.

255  R? score: The R? between the quantitative measurements and the normalized abundancies of the 16

256  quantitatively measured metabolites. Overall performance could be judged from the median R? score, with

257  scores € [0,1] Higher values indicate better (linear) fits with the quantitative measurements.

258  QC prediction score: Since the QC samples were different from the human plasma samples in terms of
259  concentrations for several metabolites/features, we expect this difference to be observed in the first few
260  principal components (PCs) of a Principal Component Analysis (PCA) analysis applied to all features (excl.
261  standards). We fitted a logistic function using the first four PC’s as covariates and with class labels: “human
262 plasma’ and ’QC’. The fitted model returns per sample a probability of belonging either to the class ‘human
263  plasma’ or ‘QC’. The probabilities for all samples are averaged into the QC prediction score [0,1]
264  Increasing normalization performances should result in higher scores, as QC - and human plasma samples
265  should be nicely separated. We used LogisticRegression from the Python package scikitlearn with
266  parameters penalty="11", solver="saga®, multi_class="auto”, max_iter=10000
267  (Pedregosa, et al., 2011).

268  Batch prediction score: Increasing normalization performances should result in less batch clustering when
269  examining the first few PC’s of the PCA analysis (see QC prediction score). We fitted a logistic function
270  for each batch versus all other seven batches using the first four PC’s as covariates and obtained the
271  probability scores for all human plasma’s having the correct batch label. These scores were than averaged
272 for all human plasma samples into a batch prediction scores < [0, 1], scores closer to 1 indicate decreased

273 normalization performances since batch separation is (still) present.

274
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Methods to determine aberrated metabolic abundancies

Reference values for metabolites were determined by using a Z-score methodology: a set of reference values
was Z-transformed (corrected for mean and divided by the standard deviation) which was then assumed to
be normally distributed. Aberrations can then be called by considering significant Z-scores using a chosen

cutoff level. We use four different methods to determine the Z-scores.

Method 15in: best matching controls within batch: Z-scores were calculated by selecting 15 control
samples originating from the same batch as the patient based on age and sex as described in Bonte et al.
(Bonte, et al., 2019).

Method 15o0ut: best matching controls from other batches: Z-scores were calculated similarly as in
method 15in using explicitly 15 out-of-batch controls. Note, that since there a more out-of-batch controls

than within-batch controls that age and sex matching can be done more accurately.

Method All controls: This method used all available control samples from all eight batches, including

within-batch controls, for Z-score calculation.

Method Regression: We fitted a linear model on all 260 available controls excluding outliers which were
first removed based on their within-batch |Z-score| > 3, this Z-score is different from other Z-scores

mentioned in this study, and only used to remove outliers. The regression model is given by:

’,l}:s, — 3111tercept + BSex :E%Sex + BSex,Age l‘?ex$?ge
P SAge Agey: .\
+ 21 B ()P + & (8)
A o7 ~
Ui =T;B+6& o

I_}lntcrccpt

where Ui is the predicted (normalized) abundancy of feature j for sample I, is an intercept. - gl

fexhze (interaction) and 55" indicate slopes. P is the degree of the polynomial used for regression on age

. . _Sex . A .
and set to P=3 in this study. 27 js 1 for women and O for men. €i is the estimated error. The latter

. . . . . =T [l Sex ( Age ) p]
expression is the model in vector notation with i = [1s &3 5 ooy (5 _

10
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The coefficients were determined from the OLS estimator:

—
~

B=X"X)"'X"y (10)

T . .. . . A
where the rows of X are given by Z; and the variance in Yi is determined by the variance in B and the

variance in €i:

Varlgi] = Var [#§ | + Var(é;

= &7 'Cov[,g |Z; + 62 (11)

The covariance matrix of 2 is given by:

—_
-

Cov|f] = Cov|3 + (XTX)_leE‘]
= (XTX) 'XT E[eeT] X(XTX) !
(12)
with E[€ ET] estimated according:

52 0 0

0 o2 0
Efed] = ;

o o0 ... ‘5’}2\’ (13)

. 2 . i ~2
Since we expected 7i to be dependent on age (neglecting sex), we do estimate 7 differently from a

weighted mean on the squared residuals:

|, Age TAgc
_Agey N e
wi(2; ") = exp .V
a + bzx; (14)

11
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327  where a and b determine how the weights decay (a) or increase (b) over age (we set a, b = 1 years). Z-
328  scores were obtained by subtracting the predicted average Yi and dividing by the variance Var[g;]
329  (Equation 11).

330

331  Significance of regression coefficients: Significance of the regression coefficients (Equation 8, 9) was

332 obtained by considering the statistic:

Var[,@z-]

333 (15)

334  The variances of the coefficients were found in the diagonal elements of Cov[3 (Equation 13). We tested
335  the hypotheses that 3 = 0 with a two-tailed test. A robust p-value was obtained from a bootstrap procedure
336 Dby taking the median p-value from a series of p-values obtained from 50 bootstraps on the above test

337  statistics taking 95 % of the data each bootstrap.
338

339  Final Z-scores
340  Since the patient samples were measured in triplicate, we determined the final Z-scores from the average
341  of these three Z-scores (Bonte, et al., 2019). These average Z-score were determined for all Z-score

342 methods i.e. 15in, 150ut, All controls, Regression and IEM patient.
343

344  P-values from Welch’s t-test

345  Asanalternative to using the (average) Z-scores we also considered the p-values obtained from the Welch's
346  t-test to be informative, as it indicates whether the mean of triplicates differs significantly from the
347  population average. Note that the triplicate was expected to have only technical variance whereas the
348  reference population has variance consisting of technical- plus biological variance. For every Z-score
349  method (15in, 150ut, All controls, Regression) these p-values were obtained per feature (and patient).

350

351  When using the regression model, we used an adjusted Welch's t-test assuming that variance in the estimate

352  of the average of the population (which is Z=0) was negligible :
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Mean(Z;.)
J B)
5j
353 3 (16)
354

355  where s;j is the sample standard deviation of the triplicate Z-scores, Mean(Z;.) indicates the average of the
356 triplicate for feature j.

357

358  Detection of the expected IEM biomarkers

359  To explore how normalization and the method of determining these Z-scores (15in, 150ut, All controls and
360  Regression) affected the detection of biomarkers, we plotted the number of detected biomarker of the
361  known IEM patients against the average number of detected features per patients for various (final) Z-score
362  and p-value cutoff levels, similar to a ROC curve. Improved biomarker detection was believed to increase
363  the area under the ROC(-like) curve (AUC).

364

365  Establishing this ROC curve was done by assigning a status for every biomarker (if present and annotated
366 in the MS-data). A database was established containing the expected biomarkers for each IEM including
367  the expected Z-score sign (up or down regulated) as can be found in supplement S5 Table 5. For every IEM
368  patient, we assigned for all expected biomarkers the status ‘positive’ or ‘negative’. The status ‘positive’
369  was assigned when 1) |Z-score| > Zapnormat , and 2) the sign of the Z-score corresponded with the expected
370  sign for that biomarker in the IEM patient. Criteria 1 and 2 were also used for the ROC-curve created by
371  the p-values. When a biomarker was found in both positive and negative ion mode, the Z-score(s) from the
372 mode having the largest population average abundancy was taken. The average number of detected features
373  (per patient) was obtained by considering features from both ion modes.

374

375  Some of the expected biomarkers were not matched across all eight batches and therefore were absent in
376  the merged dataset and analysis in this study. In the merged dataset, we obtained 178 patient-biomarker
377  combinations (one patient could have multiple biomarkers) associated with 45 patients (hence, for 8 IEM
378  patients no biomarkers were found in the merged dataset).

379

380

381
382

383
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384 Results

Batch effect removal
evaluation:
Normalization: - R* score
« Raw + Spearman score
» Anchor » * WTR score
e ——— + Best Corrclated 1S + AR score
LEORIRAIOL. + CRMN = QC prediction score
* None : i
» Fast Cyclic Loess + Batch prediction score
= Box-Cox ‘ . 3a
v Logaritl + EigenMS
DEATAM, + Metchalizer
1 + NOMIS Z-score method: Abberations: Detection of
+ PQN - 15in ‘ + Final Z-scores » expected biomarkers
+« RUV 3 « Pay; e e
7[. . 150ut P-values 95 (ROC curve) 5
+ VSN 2 + All controls
* Regression —
Age - and sex effects
3b 4b

388 Figure 1. Flow diagram of different methods used in this study. 1) An initial transformation was applied. 2) A normalization
389 method was applied. 3a) Multiple metrics were calculated to investigate batch effect removal. 3b) Normalized data was used

to determine Z-scores for IEM patients using different (control) reference methods. 4a) Final Z-scores were calculated

390

together with p-values. 4b) Regression analysis on all features/biomarkers was used to explore age- and sex dependency of
391

abundancies. 5) Detection of the expected biomarkers was investigated using a ROC-like curve for Z-scores and p-values
392
393

394  Batch characteristics

395  Eight untargeted metabolomics runs/batches were merged containing 260 control samples and 53 IEM
396  patients, together having 33 unique IEMs. After merging, 773 positively ionized features were obtained,
397  among which 121 were annotated, and 598 negatively ionized features were attained with 106 annotated
398  features. We only included features which were merged across all eight batches to ensure consistency
399  among the findings. Intra-batch coefficients of variation (CV) on 17 (internal and external) standards were
400  smaller (median CV=14%) than inter-batch CV's (median CV=27%) indicating that batch effects were
401  present (for more details see S1). Principle Component Analysis (PCA) further elucidated the presence of
402  batch effects as shown in Figure 2A, showing the first three PC's for the log-transformed raw abundancies
403  (Log-Raw).

404

405

406  Comparing normalization methods

407  We investigated the performance of several normalization methods on batch effect removal by evaluating
408  multiple metrics based on quantitative measurements, the Quality Control (QC) samples and PCA analysis

14


https://doi.org/10.1101/2020.04.14.040469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.040469; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

409  (see Methods and Figure 1). Some normalization methods were excluded from the following analysis
410  because of their marginal performance on the considered metrics (as evaluated in supplement S2).

411

412 Reduced batch effects: We visually observe in the PCA plots that most normalization methods reduced
413  batch effects since batch clustering seemed to be reduced after normalization (Figure 2), and is confirmed
414  when looking at the batch prediction score (Figure 3A) showing lower scores for normalized abundancies
415  when compared with the raw data (None-Raw or Log-Raw). BC-Metchalizer, Log-Metchalizer and None-
416  Anchor had the lowest batch prediction scores, with a median score of 0.13 (0.13), 0.14 (0.14), 0.17 (0.16)
417  for positive (negative) ion mode respectively.

418

419  Improved separation of QC samples: QC samples (squares in Figure 2) were included in every batch and
420  were expected to separate from the human plasma samples (squares vs circles in Figure 2) in the first four
421  Principle Components (PC) due to overall abundancy differences for several metabolites. Normalization
422  should maintain this separation which was measured by the QC prediction score (Figure 3B). Log-CRMN
423  conserved QC/plasma separation, with a median QC prediction score of 1.00 (1.00) for positive (negative)
424  ion mode, but was less able to reduce batch effects since it had a median batch prediction score of 0.76
425  (0.39) for positive (negative) ion mode respectively. Log-NOMIS and Log-RUV were better in reducing
426  batch effects, with a median batch prediction score of 0.21 (0.21), 0.24 (0.19) for positive (negative) ion
427  mode respectively, but were less able to conserve the separation between QC and human plasma samples,
428  since the median QC prediction scores were 0.32 (0.88) and 0.39 (0.94) for positive (negative) ion mode
429  respectively. It is therefore likely that these two methods removed variations other than batch related
430  variation. QC samples were almost perfectly separated from the human plasma sample by BC-Metchalizer,
431  Log-Metchalizer and None-Anchor.

432

433  Resemblance with quantitative measurements: To further quantify batch effect removal, we calculated the
434  Spearman score and R? score between quantitative plasma concentrations (in umol/L) and the normalized
435  abundancies of our evaluation set of amino acids and (acyl)carnitines (Methods). To ensure high signal-to-
436  noise ratio’s in the quantitative measurements, we selected only metabolites having a population average
437  concentration above 1 pmol/L. Matching this evaluation set with the annotated features in the untargeted
438  metabolomics data resulted in 16 and 13 metabolites in positive - and negative ion mode, respectively.
439  Figure 3C and D shows both metrics for the investigated normalization methods. Again, for most
440  normalization methods both metrics improved when compared to the raw data (None-Raw). BC-

441  Metchalizer, Log-Metchalizer and None-Anchor appeared to perform the best on these metrics with median

15
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442  RZ%scores of 0.56 (0.55), 0.57 (054), 0.57 (0.47), and median Spearman scores of 0.75 (0.74), 0.74 (0.79),
443  0.73 (0.71), respectively, for positive (negative) ion mode.

444

445  Reduced between-batch variation in QC samples: Next, we compared the within-batch variance of the QC
446  samples with respect to the total variance which is expressed by the WTR score (Methods) for each
447  normalization method. WTR scores close to 1 indicate the absence of batch effects. None-Raw and Log-
448  Raw had low WTR scores and after normalizing these scores increased (Figure 2E). BC-Metchalizer and
449  Log-Metchalizer scored among the highest on this WTR score. None-Anchor had high WTR scores, but
450  since None-Anchor uses the QC samples for normalization the WTR scores are biased towards higher
451  values.

452

453  Preserved feature ranks in QC samples: Removal of variation results in higher WTR scores but potentially
454  removes also variation(s) of interest. Therefore, we investigated whether the ranks of the abundancies of
455  the different features in the QC samples remained the same as in the raw data (expressed as the QC rank
456  differences, AR, see Methods for details). A lower rank difference indicates that metabolic differences
457  present in the QC samples were conserved after normalization. Figure 2F shows the QC rank differences
458  for each normalization method. These results confirm the previous believe that Log-NOMIS and Log-RUV
459  also removed non-batch related variations (higher AR), since they had relatively high AR’s. BC-
460  Metchalizer and Log-Metchalizer showed rank differences but were lower than most other competing
461  methods. None-Anchor showed high QC rank differences, but this is again the result of the fact that None-
462  Anchor uses the QC samples for normalization.

463

464  Taken together, BC-Metchalizer, Log-Metchalizer and None-Anchor showed the most consistent
465  improvement across the evaluation metrics.

466

467

468
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469
470 Figure 2. PCA plots for raw data and normalized data as indicated by the title of each panel. Each batch is indicated with a

471 unique color. PCA was performed on 758 features (excluding the internal — and external standards) in positive ion mode.

472 The squares indicate QC samples whereas the circles indicate patients and controls samples.
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473
474 Figure 3. Six different performance metrics for batch effect removal (see Methods for more details). Data from positive — or

475 negative ion mode is indicated by plain and stripped boxplots, respectively. A) Batch prediction score measures the presence
476 of batch effects in the first four PC’s from PCA analysis. B) QC prediction score measures how well QC samples are
477 separated from human plasma sample in the first four PC’s. C) R? score between (normalized) abundancies and quantitative

478 measurements. D) Spearman score of (normalized) abundancies with quantitative measurements. E) The WTR score
479 measuring the overall within batch variation with respect to the total variance using the QC samples. F) AR score

480 measuring the preservation of the rank of features based on their abundancy in the QC samples before and after
481 normalization.
482

483  Confounder effects of age and sex
484  To explore confounding effects of age and sex on metabolite abundancies, we developed a regression model
485  with sex as linear covariates and age as a polynomial (p=1,2,3) covariate (see Methods). After

486  normalization, we fitted the model parameters for every feature using all control samples present in the
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487  eight batches and determined the significance of the coefficients in the regression model (see Methods).
488  Table 1 shows the percentages of (strong) significant coefficients (o = 2.7¢ ™) per ion mode and (selected)

489  normalization methods. Our findings suggest that 6-24% of all features showed age dependency when

490  looking at coefficient .<'-§f\g(' (i.e. the linear term in the model). It is noteworthy that more age-related features
491  were found in the negative ion mode.

492

493  Age-dependent metabolites (supplement S3 Table S3), when using normalization by BC-Metchalizer,
494  include known IEM biomarkers, such as: guanidinoacetic acid(+), homoarginine(-) and N-acetyltyrosine(-
495 ), 2-ketoglutaric acid(-), citrulline(-) and ornithine(-). As an example, we plotted the regression model for
496  guanidinoacetic acid (Figure 3), illustrating that the Z-score for a fixed abundancy depends on age (and
497  slightly on sex at later ages). This also shows a non-linear trend with age. Our analyses showed that more
498  metabolites have significant non-linear trends over age (.i'S’éq”(and 57" in Table 1). Moreover, age dependent
499  features have the tendency to increase/decrease in abundancy faster for decreasing age, implying that a
500 matching reference population on younger ages seems to be more important (supplement S3 Figure 5).
501

502 Hardly any significant gender-related features were found (Table 1). When significance on 357%"&°

was
503 relaxed (v = 0.05), we found some biomarkers showing an interaction between age and sex, such as:
504  malonic acid(+/-), guanidinoacetic acid(+), homoarginine(-), ornithine(-), sebacic acid(+/-). See
505  supplement S3 Table 4 for a full list.

506

507

508 Table 1. Percentage of strongly significant (& = 2.76_3) regression coefficients of the covariates age and sex when using
509 the regression model (Methods) predicting 758 positively - and 583 negatively ionized features, for the different

510 normalization method and ion modes.

Normalization lon Slulurccpt 3{-\{.{(‘ 3;3;(: ;?:‘j’\gc Sscx 350)(..%{-;‘0
method mode (%) (%) (%) (%) (%) (%)
None-Anchor - 97 15 6 4 0 1
None-Anchor + 99 6 2 0 0
BC-Metchalizer - 100 23 12 8 0 1
BC-Metchalizer + 100 11 6 4 0 0
Log-Metchalizer - 100 24 15 10 1 0
Log-Metchalizer + 100 10 6 4 0 0

511

512

513
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515 Figure 1. Regression of guanidinoacetic acid when using BC-Metchalizer normalized data. The different colors indicate the
516 sex as shown in the legend. The thick red/blue line indicates the average obtained from the fit on all controls for a given sex.

517 The first standard deviation is indicated by the thin(ner) line whereas the second standard deviation ends at the shaded region.

518

519  Detection of the expected IEM biomarkers

520  Next we investigated the impact of normalization and using out-of-batch controls on expected biomarker
521  detection in the 45 IEM patients by plotting the number of detected expected biomarkers against the average
522 number of positives features per patient at various Z-score or p-value thresholds (Methods), similar to a
523  Receiver Operator Curve (ROC). Untargeted metabolomics did not allow us to make a distinction between
524  false positives (FP) and true positives (TP), due to unannotated features and even unknown disease related
525  features/biomarkers. Assuming that the majority of the positives per patient are false positives, we used
526  the average number of positives per patient as proxy for the false positives. Improved performance was
527  considered to increase the number of detected expected biomarkers (true positives of which we are certain)
528  while lowering the average number of positives per patient, thereby increasing the Area Under the Receiver
529  Operator Curve (AUC). We decided to take the method that uses 15 within-batch controls and raw
530 abundancies (15in&None-Raw) as the reference approach, where the performance was expressed as a
531  percentage of this reference AUC, named AUCT;ievoneraw . Here X indicates if the AUC was created from

532  the average Z-scores or p-values. These p-values were obtained from the Welch’s t-test which tests whether
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533  the average Z-score of an expected biomarker or feature across the triplicate significantly differs from the
534  average Z-score of the reference population (Methods).

535

536  Log-transform improves biomarker detection for p-values: Our first observation is that, when considering
537  the Z-scores, the log-transformed raw abundancies (15in&Log-Raw) has an AUC approximately equal to
538 AUCT;,enoneRaw (Figure 4), implying that this transformation hardly affected this performance metric.
539  However, when using the p-values, the log-transformation improved the detection of the expected

AUCII)MH&"LD%-RH“’ is 8% hlgher than the AUC?&H&NDHC—RHW (Figure 4)

540  biomarkers, as
541

542  Reduced performance with age/sex matched out-of-batch controls: When comparing the performance of
543  using 15 out-of-batch controls (150ut&Raw) to the 15in&Raw reference, the performance for 150ut was
544  clearly reduced (Figure 4 A), achieving only 80% of the reference AUCT; g xone-raw. This difference was

545  also present when looking at the p-values, resulting in a clear reduction of the AUCT5 e Nome- R (74%).
546  Hence, potential improved age/sex matching for 150ut, due to the increased number of available controls
547  (supplement S4 Figure 6), did not result in improved performance, most likely due to the dominance of
548  batch effects.

549

550  Normalization improves performance of age/sex matched out-of-batch controls: After normalizing with
551  BC-Metchalizer, Log-Metchalizer or None-Anchor and using 15 out-of-batch controls (15out), the
552  performance increased when compared to 150ut&None-Raw (Figure 4 A, B and C), and came close to the
553  AUCT;,enonenaw; for BC-Metchalizer (94%) and Log-Metchalizer (96%), while None-Anchor stayed
554  behind (90%). Interestingly, when considering biomarker detection performance using the p-values, BC-
555  Metchalizer performed on par with 15in&None-Raw (99%), Log-Metchalizer improved over 15in&None-
556  Raw (105%) and None-Anchor stayed behind (90%). Log-Metchalizer performed similar to 15in&Log-
557  Raw (105% and 108%, respectively), indicating that out-of-batch controls can be used instead of in-batch
558  controls to determine reference values.

559

560 Regression model effectively models age and sex effects: The regression model (Regression) slightly
561  improved AUC#with respect to 150ut for BC-Metchalizer (+2%) and None-Anchor (+4%), but not for Log-
562  Metchalizer (-1%), see also Figure 4 A, B and C. When considering the p-values, AUCP, only BC-
563  Metchalizer (+1%) improved but not None-Anchor (-2%) and Log-Metchalizer (-1%), although these
564  performance differences in all cases were small (Figure 4 D, E and F). Interestingly, when we took all

565  controls to determine the Z-scores (All controls, Methods), similar AUC? performances were observed when
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568
569
570

571
572

573
574
575
576
577
578
579

compared to Regression, i.e. -1% for BC-Metchalizer and +2% Log-Metchalizer and +1% for None-Anchor.

When considering the p-values the difference were larger, i.e. -5% for BC-Metchalizer and -1% Log-

Metchalizer, and -5% for None-Anchor, suggesting an influence of age- and sex effects on the detection

of biomarkers.
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Figure 2. The number of detected expected biomarkers versus the average number of positives per patient. A curve in each

(sub)figure was formed by increasing the Z-score or p-values threshold (Zapnormai, Methods). The legend indicates (per curve)

the methods used to determine Z-scores and how data was normalized, the AUC and AUC expressed as percentage of the

Z
AUCT5ingNone-Raw, Performances using A) BC-Metchalizer using Z-scores, B) Log-Metchalizer using Z-scores, C) None-

Anchor using Z-scores, D) BC-Metchalizer using p-values, E) Log-Metchalizer using p-values, and F) None-Anchor using

p-values.
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580

581  Discussion

582  Targeted measurements of metabolites in body fluids using various platforms such as HPLC, GC-MS and
583  LC-MS/MS are traditionally applied for laboratory diagnosis of IEM. For each individual metabolite, age-
584  and, sometimes, sex-dependent reference ranges are established using hundreds of reference samples.
585  Untargeted metabolomics is a promising alternative enabling the determination of many metabolites in one
586  analysis. This can speed up the diagnostic process and extends the number of different IEMs that can be
587  screened in a single run. A major drawback of current approaches is that reference samples need to be
588 included in the same experimental batch to ensure proper reference ranges (or Z-score transformations).
589  Some methods do exist that use reference samples measured in different batches (out-of-batch controls) to
590  determine age and sex corrected Z-scores, and they are based on normalizing methods that remove the batch
591  effects. There has not been a comprehensive comparison of the different normalization methods with
592  approaches that use out-of-batch controls, which we have set out in this work. Moreover, we developed a
593 new normalization method, Metchalizer, that makes use of isotope-stable internal standards, an approach
594  that has been shown to be useful when mapping specific metabolites to specific internal standards (Korver-
595  Keularts, et al., 2018) which we generalize to all features measured. Because more reference samples are
596 available when using the out-of-batch controls, we additionally propose a regression model that
597  incorporates sex and age effects as (non-linear) covariates. Alltogether, we have shown that our
598  methodology has biomarker detection performances at least similar to using 15 within-batch controls.

599

600  Typically, around 20,000 features in both negative and positive mode were detected per batch. When we
601  require a feature to have been measured (and matched) in all eight batches, we retained 598 positive and
602 773 negative ionized features, respectively. As some normalization methods use a statistical approach
603  (PQN, Fast Cyclic Loess), the reduction in features might explain the reduced performance of these
604  methods. In addition, the requirement of features being measured (and matched) across all eight batches
605  also resulted in the loss of some biomarkers, which hampered the performance of all out-of-batch methods
606  with respect to the within-batch methods. As an alternative, we could have made the inclusion of features
607  dependent on fewer batches (for example being present in >5 out of 8 batches). We decided not to do that
608  as this would have resulted in an unequal number of control samples for the different features, leading to
609 inconsistent results between the out-of-batch methods. The availability of more batches could have solved
610  this issue because an equal number of control samples could likely be obtained per feature, even when these
611  features were not present/matched in some batches. It is interesting to note that our proposed normalization
612  method (Metchalizer) showed consistent performances when data from various number of batches is being

613  used (supplement Figure S7). Some biomarkers, for example isobutyrylglycine, were only detected in the
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614  batches having patients with elevated levels of these specific metabolites. We anticipate that for this kind
615  of biomarkers out-of-batch strategies are not useful since abundancies in (healthy) controls are (very) low,
616  thereby making Z-score calculation unsuitable.

617

618  Anchor uses an anchor (fixed) samples, measured in all batches, to normalize the features. Anchor
619  normalization on none-transformed data performed well when compared to most of the other normalization
620 methods explored, but slightly less than BC-Metchalizer and Log-Metchalizer when considering the
621 performance metrics Spearman score, R? score, batch prediction score and performance on biomarker
622  detection. We anticipate that the anchor samples may not correlate with all types of variation like, for
623  example, injection volume which is a source of variation at the sample level, whereas the abundancy of the
624  internal standards (used by Metchalizer) is directly linked to the injection volume. Anchor also assumes
625  that metabolite levels remain constant over time in the anchor samples. As a consequence, if for example
626  storage effects take place, Anchor is impeded. The use of Anchor may also be less practical because it
627  requires the same anchor samples in every batch. The introduction of a new anchor sample requires an
628  ‘overlapping batch' containing a set of both the former anchor sample together with the newly introduced
629  anchor samples.

630

631  Metchalizer exploits the linear relationship between the abundancy of a feature and those of the latent
632  variables that are derived from the partial least squares between the internal standards and the features
633  measured across all samples and capturing the covariance between the standards and the features (Methods).
634  Metchalizer assumes that this relationship holds across batches and with that assumption determines (batch)
635 intercepts that correct for the 'unexplained' batch/technical variations. Consequently, when such linear
636  relationship between internal standards and features does not exist, the normalization would be fully based
637  on the (batch) intercepts, deteriorating the power of this approach. Alternatively, when batch differences
638  (represented by the intercepts) differ from each other due to biological variations between batches, this will
639  be interpreted as 'unexplained' batch/technical variations, and consequently wrongly removed by
640  Metchalizer. For this reason, it is important to use randomized control samples in every batch (in terms of
641  age, sex etc) to minimize the possibility of biological variations between batches.

642

643  Log-Metchalizer log transforms the abundancies before applying Metchalizer, whereas BC-Metchalizer
644  uses a less strong Box-Cox transformation. The effect of this stronger transformation on most investigated
645  metrics in this study was small, although we did observe that a stronger initial transformation led to
646  improved biomarker detection performances when considering the p-values. 15in&None-Raw had a lower

647  AUCPthan 15in&Log-Raw and could therefore also explain the improved performance of Log-Metchalizer
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648  over BC-Metchalizer on this metric. A simulation showed that log-transforming the raw abundancies indeed
649  caused differences in the obtained Z-scores and p-values when compared to the raw abundancies
650  (supplement S10). Positive Z-scores had relatively lower p-values (and vice versa) for log-transformed
651  abundancies and this could therefore explain the improved performance on biomarker detection, since most
652  of the considered biomarkers had positive Z-scores, thus biasing this performance metric. Increasing the
653  number of internal standards did not improve the normalization performance when considering metrics
654  based on the quantitative measurements, although we observed that certain combinations of internal
655  standards improved normalization of specific metabolites (supplement S6). This suggests that Metchalizer
656  might be improved by matching features/metabolites with a certain set of internal standards (for example
657  based on retention time).

658

659  We were a bit surprised that biomarker detection performance using the Z-scores (AUCZ) for the regression
660  model was similar or slightly less than using all controls, as abundancies are known to be dependent on age
661  and sex. One explanation might be that only a subset of the considered (expected) biomarkers have an age
662  and/or sex dependency. Indeed, when we considered only these age-dependent biomarkers (19 biomarker-
663  patient combinations, supplement S3 Table 3), the performance of Regression was more improved than All
664  controls (supplement S8). However, this set was small, so substantial evidence to support this improvement
665 is lacking. Furthermore, our proposed performance metric assumed that the average number of positives
666  was a proxy for the average number of false positives. Using Regression resulted generally in more positives
667  (data not shown), but these were not necessarily merely false positives, which therefore could have affected
668  the performance of Regression negatively. Though, when judging biomarker detection using the p-values,
669  we did see that Regression slightly outperformed All controls.

670

671  In conclusion, out of all explored normalization methods, the removal of batch effects was best performed
672 by Log-Metchalizer. Fitting our regression model on the corresponding normalized data showed that 10-
673  24% (Table 1) of all considered features were depending on age, underlining the need for using age
674  corrected Z-scores. On average, biomarker detection performance using Log-Metchalizer using out-of-
675  batch controls was at least similar to the best performing Log-Raw approach when using the 15 within-
676  batch controls (15in&Log-Raw). We anticipate that the success of Metchalizer and age- and sex correcting
677  strategies such as our regression model depend on three factors: 1) a feature of interest being measured in
678  a number of other batches (not necessarily all), 2) batch effects containing (only) technical variations, and
679  3) abundancies being affected by age or other covariates (the presence of an effect-size). Together our
680  proposed approach opens new opportunities to improve abnormality detection, especially for age-dependent

681 features/biomarkers.
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755  The regression model, Best Correlated Internal Standard, PQN, Anchor and Metchalizer(Log) were
756  developed in Python and are available at https://github.com/mbongaerts/Metchalizer. The code developed
757  for merging the batches can also be found here. The Progenesis QI processed data for all 8 batches is
758  available at https://github.com/mbongaerts/Metchalizer/Data. We removed the patient samples for privacy
759  reasons.
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