

1 **TITLE**

2 **Defining the early stages of intestinal colonisation by whipworms**

3

4 **AUTHORS**

5 María A. Duque-Correa^{1,*}, David Goulding^{1,+}, Faye H. Rodgers^{1,+}, Claire Cormie^{1,a}, Kate
6 Rawlinson¹, J. Andrew Gillis², Allison J. Bancroft³, Hayley M. Bennett^{1,b}, Magda Lotkowska¹, Adam
7 J. Reid¹, Anneliese Speak¹, Paul Scott¹, Nicholas Redshaw¹, Catherine McCarthy¹, Cordelia
8 Brandt¹, Catherine Sharpe^{3,c}, Caroline Ridley³, Judit Gali Moya⁴, Claudia M. Carneiro⁵, Tobias
9 Starborg³, Kelly S. Hayes³, Nancy Holroyd¹, Mandy Sanders¹, David J. Thornton³, Richard K.
10 Grencis^{3,^} & Matthew Berriman^{1,^,*}

11

12 ¹Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.

13 ²Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.

14 ³Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix
15 Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester,
16 M13 9PT, UK.

17 ⁴Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain.

18 ⁵Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Campus Universitario
19 Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.

20 ^aCurrent Address: Cambridge Institute of Therapeutic Immunology and Infectious Disease,
21 University of Cambridge, CB2 0AW, UK.

22 ^bCurrent Address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.

23 ^cCurrent Address: InstilBio, UMIC Bio-Incubator, Manchester, M13 9XX, UK.

24

25 ^{+,^}These authors contributed equally to this work.

26 ^{*}Corresponding authors: M.A.D.C. <md19@sanger.ac.uk>; M.B. <mb4@sanger.ac.uk>.

27 **Abstract**

28 Whipworms are large metazoan parasites that inhabit distinct multi-intracellular epithelial
29 burrows described as syncytial tunnels, in the large intestine of their hosts. How first-stage
30 larvae invade host epithelia and establish infection remains unclear. Here, we investigate
31 early infection events both using *Trichuris muris* infections of mice and murine caecaloids,
32 the first *in-vitro* system for whipworm infection. We show that larvae degrade the mucus
33 layers to access epithelial cells. In early syncytial tunnels, larvae are completely
34 intracellular but woven through multiple live enterocytes and goblet cells. We also use
35 single cell RNA sequencing for the first time to describe the mouse caecum. From infected
36 caeca, the transcriptome data reveal the progression of infection results in cell damage
37 and an expansion of enterocytes with a type-I interferon (IFN) signature, characterised by
38 the expression of *Isg15*, instigating the host immune response to the whipworm and tissue
39 repair. Our results unravel intestinal epithelium invasion by whipworms and reveal new
40 specific interactions between the host and the parasite that allow the whipworm to
41 establish its multi-intracellular niche.

42

43 **Introduction**

44 Human whipworms (*Trichuris trichiura*) infect hundreds of millions of people and cause trichuriasis,
45 a major Neglected Tropical Disease with high chronic morbidity and dire socio-economic
46 consequences in affected countries^{1,2}. Although *T. trichiura* is experimentally intractable, a mouse
47 model of infection with the natural rodent-infecting species *T. muris* closely mirrors infections in
48 humans³, making this species distinctive as the only major soil transmitted helminth with a direct
49 mouse counterpart.

50 Whipworms live in the caecum and proximal colon of their hosts and have a unique life cycle
51 strategy where they establish a multi-intracellular niche within intestinal epithelial cells (IECs)³⁻⁵. In
52 this niche, whipworms can remain for years causing chronic infections^{1,2}. Infection with whipworms

53 follows ingestion of eggs from the external environment¹⁻³. Upon arrival in the caecum and
54 proximal colon, eggs hatch in a process mediated by the host microbiota^{3,6} (Fig. 1a). Within hours,
55 motile first-stage (L1) larvae released from the eggs enter the intestinal epithelia (IE) at the bottom
56 of the crypts of Lieberkühn^{4,7-9} (Fig. 1A). To reach this location, L1 larvae need to overcome
57 barriers that are known to protect the crypt base, including the mucus layers covering the
58 epithelium and the continuous stream of fluid that flushes from the crypt to the lumen¹⁰. To date,
59 the physical and molecular cues directing the larvae to the crypt base and mediating their
60 penetration through the overlying mucus into the IE are unknown.

61 To accommodate themselves completely inside the IE, the larvae burrow through several IECs
62 creating multinucleated cytoplasmic masses that have been described as syncytial tunnels¹¹. The
63 syncytium is thought to provide a sheltered environment and a continuous source of nutrients for
64 the worm, as it moults four times to reach adulthood^{5,11,12}. Whilst the syncytial tunnels are only
65 visible for the first time at the L3 larval stage, around day 21 post infection (p.i.), the biology and
66 the mechanisms in which the multicellular epithelial burrows are generated are not understood¹.
67 Due to the lack of experimental accessibility during the first days of infection, the impact of the
68 tunnels is controversial; it is not known whether IECs forming the tunnels are dead, or whether
69 they are alive and interacting with the parasite to orchestrate the development of immune
70 responses^{5,11,13,14}.

71 Here, we investigated the cellular and molecular processes mediating invasion of the IE by
72 whipworm larvae and their establishment within multicellular epithelial tunnels during the first three
73 days of infection. We used a combination of mouse infections, together with a new *in vitro* model
74 comprising murine caecal organoids (caecaloids) infected with *T. muris* L1 larvae, to examine
75 infection biology. We found that L1 larvae degrade the mucus layer and penetrate the underlying
76 IE. We also observed that early syncytial tunnels are composed of enterocytes and goblet cells
77 that are alive and actively interacting with the larvae during the first hours of the infection.
78 Progression of infection results in damage to the host epithelium, which responds with an
79 expression signature of type-I IFN signalling dominated by *Interferon-stimulated gene 15* (*Isg15*),
80 an alarmin that initiates immune and tissue repair responses¹⁵⁻¹⁷. Collectively, our work unravels

81 mechanisms involved in the invasion and colonisation of IE by whipworms through the formation of
82 syncytial tunnels, and the early host IE-parasite interactions that can lead to the initiation of
83 immune responses to the worm.

84

85 **Results**

86 **Enterocytes and goblet cells at the bottom of the crypts of Lieberkühn are the host** 87 **cells of whipworm L1 larvae**

88 Light microscopy studies dating back 40-50 years have shown *T. muris* L1 larvae infecting
89 cells at the base of the crypts of Lieberkühn in the first hours of an infection^{4,7,8}. Confirming
90 these findings, we found L1 larvae invading IECs in the crypt bases of the caecum and
91 proximal colon of *T. muris*-infected mice as early as three hours p.i. (Fig. 1b;
92 *Supplementary Fig. 1a-c*). Transmission electron microscopy (EM) revealed L1 larvae
93 infecting enterocytes and goblet cells (Fig. 1c). Larvae were in direct contact with the IEC
94 cytoplasm as no cell membrane could be seen between the whipworm cuticle and the
95 cytoplasm (Figs. 1c-g). We found larvae displaced cellular organelles (Figs. 1c-g) and
96 burrowed through mucin secretory granules of goblet cells, possibly causing mucus
97 discharge (Fig. 1d). Tannic acid staining revealed complex carbohydrate in the immediate
98 vicinity surrounding the larvae, both between host cells and in bordering host cell
99 cytoplasm, likely to be secretions from the worm or the result of disrupting goblet cells (Fig.
100 1d, *inset*). Infected cells reorganized their cytoskeleton around the worm (Fig. 1e, *inset*).
101 With infection progression, at 24 and 72 h p.i., chromatin was visibly condensed and
102 fragmenting indicating onset of apoptosis (Figs. 1f and g), host cells show numerous
103 mitochondria (Figs. 1f) and some host cells were liquified (Figs. 1g, *inset I*). Our
104 observations were often limited to histological sections with a transverse view through a
105 single slice of the worm within an IEC. Indeed, due to the intricate topography of the
106 multicellular epithelial niche of the larvae, obtaining longitudinal sections of the complete

107 worm inside its niche proved extremely challenging. However, serial block face SEM
108 allowed us to capture the entire syncytial tunnel formed by L1 larvae (*Supplementary video*
109 *1 and 2*) and revealed that by 3 h p.i., larvae were completely intracellular. A typical
110 syncytial tunnel was composed of approximately 40 IECs, with 75% of those cells being
111 enterocytes and 15% goblet cells (*Supplementary Fig. 1d*). Our results suggest that close
112 interactions of enterocytes and goblet cells with L1 larvae are critical during invasion and
113 colonisation of the IE by whipworms.

114

115 **Caecaloids provide an *in-vitro* infection model that reveals the intricate path of early**
116 **syncytial tunnels**

117 Although illuminating, serial block face SEM is technically demanding and is constrained
118 by the need to find the small percentage of infected IECs (< 1%) in the total caecal
119 epithelia and by the intracellular location of the L1 larvae at the bottom of crypts.
120 Moreover, the lack of genetic tools to generate fluorescent larvae and of an *in vitro* culture
121 system (cell lines do not support infection by whipworm L1 larvae) have severely
122 hampered investigations on the early stages of intestinal colonisation by whipworms.
123 Hence, to further examine the processes of invasion and formation of the syncytial tunnels,
124 we developed the first *in vitro* whipworm infection model using caecaloids¹⁸. Caecaloids
125 cultured in an open conformation using transwells (*Supplementary Fig. 2a*) generated self-
126 organizing structures that resembled crypts present in the caecum. The structures
127 comprised tight centres of proliferating stem and trans-amplifying (TA) cells, surrounded by
128 differentiated absorptive, goblet, enteroendocrine and tuft cells, with a mucus layer
129 overlaying the IECs; and polarised microvilli (*Supplementary Fig. 2b-k*). L1 larvae obtained
130 by hatching *T. muris* eggs in the presence of *E. coli*, to simulate microbiota exposure⁶,
131 were directly cultured with the IECs (*Supplementary Fig. 2a*). We observed L1 larvae
132 infecting IECs in caecaloids as evidenced by enterocyte microvilli staining above the worm

133 (Fig. 2a) and images showing the larvae woven through multiple IECs (Fig. 2b). We
134 captured invasion of goblet cells by L1 larvae with SEM (Fig. 2c), and by TEM we found
135 larvae within the cytoplasm of enterocytes and goblet cells of the caecaloids (Fig. 2c). Our
136 caecaloid system also revealed the intricate path of the tunnels formed by L1 larvae
137 burrowing through IECs (Fig. 2d, *Supplementary videos 3 and 4*). Together, these images
138 show L1 larvae infecting IECs for the first time *in vitro*, effectively reproducing *in vivo*
139 infection. The caecaloid model enabled the entirety of the L1 larva, its host cells, and the
140 trail of the syncytial tunnels to be visualised.

141

142 **Whipworm larvae invade the caecal epithelium by degrading the overlying mucus
143 layer**

144 After hatching and to counter host peristalsis, whipworm L1 larvae rapidly reach the bottom of the
145 crypt and invade the IECs⁸. But first, the larvae must traverse the outer and inner mucus layers
146 overlaying the IE. Despite their motility, mucus can aggregate around whipworm larvae, blocking
147 their advance towards the IE. An additional mechanism is therefore required for larval traversal of
148 the mucus layers. Many intestinal pathogens have evolved enzymes to degrade the mucin
149 oligosaccharides via glycosidases, exposing the mucin peptide backbone to proteases¹⁹.
150 Proteolytic cleavage of mucins causes disassembly of the polymerized mucin network, reducing
151 mucus viscosity, increasing its porosity and likely impairing mucus barrier function^{19,20}. The
152 protozoan parasite *Entamoeba histolytica* breaks down the mucus network to facilitate invasion of
153 IECs by cleaving mucin 2 (MUC2), the major component of intestinal mucus²¹. Adult *T. muris* also
154 degrades MUC2 via secretion of serine proteases²⁰. RNA sequencing (RNA-seq) analysis of L1
155 larvae recovered from infected mice at 3 h and 24 h p.i. showed significantly increased expression
156 of serine proteases (*Supplementary Fig. 3a*), as well as WAP, Kunitz and serpin classes of
157 peptidase inhibitors (*Supplementary Fig. 3b*). It is therefore likely that L1 larvae secrete proteases
158 to degrade mucus and this facilitates their invasion of the IE. Indeed, the sedimentation profile of
159 purified glycosylated MUC2 was altered by exposure to L1 larvae, with a higher proportion of
160 slower-sedimenting mucins indicating a reduction in size due to mucin depolymerization (Fig. 3a).

161 Early in infections, the small ratio of larvae versus IECs in the caecum dilutes any effects the
162 larvae have on the mucus layer; thus, from *in vivo* experiments, it is not possible to directly
163 determine whether degradation occurs in the mucus layers overlaying the IECs during whipworm
164 larvae invasion. We therefore used the caecaloid system to examine the effects of larvae on mucin
165 more closely. Consistent with our results from purified MUC2, when comparing mucus from L1
166 larvae-infected and uninfected caecaloids, we observed an increased proportion of mucin
167 distribution exhibiting a lower sedimentation rate, indicating increased degradation of mucin
168 polymers (*Fig. 3b, Supplementary Fig. 4*). Moreover, the mucus layer immediately overlaying
169 larvae-infected IECs was less densely stained by toluidine blue than the mucus overlaying
170 neighbouring uninfected regions and uninfected caecaloids (*Fig. 3c*), again indicating degradation.
171 Collectively, these data suggest that degradation of mucus by L1 larvae enables whipworms to
172 penetrate through the mucus layer and invade the underlying IECs.

173

174 **Close interactions between *T. muris* L1 larvae and IECs defining the whipworm
175 niche in the syncytial tunnels**

176 After crossing the mucus layer, the L1 larva becomes intracellular creating a syncytium, a hallmark
177 of whipworm infections (*Figs. 1 and 2*). Only previously described for later larval and adult
178 stages^{5,11}, syncytial tunnels are suggested to form by lateral burrowing of whipworms through
179 adjacent IECs that join to form a single structure housing the parasite. Presently, the interactions
180 between the host IECs and the L1 larvae and the process of formation of the tunnels are not
181 understood. Tilney *et al.* previously observed that the syncytium around the anterior end of L3-L4
182 larvae and adult worms is an inert scaffold of dead cells with a brush border cover⁵. In contrast, at
183 early stages of infection, we found that while cells left behind in the tunnel were dead, the IECs
184 actively infected by the worm were in fact alive (*Fig. 4a*). Using TEM of caecaloids infected with *T.*
185 *muris* for 24 and 72 h, we observed direct contact of the L1 larvae with the host cells cytoplasm,
186 displacement by the larvae of cellular organelles (*Figs. 2c and 4b-d*), deposition of actin fibres in
187 IECs surrounding the worm cuticle (*Fig. 4b, inset I*), and numerous mitochondria in infected cells
188 (*Fig. 4c and d*), thus recreating the host-parasite interactions observed *in vivo* (*Fig. 1*). With

189 infection progression, at 72 h p.i., we also detected other alterations in infected IECs of caecaloids,
190 including cell liquefaction and pyknotic nuclei indicating early apoptosis (*Figs. 4c and d*). Moreover,
191 several lysosomes were found in infected cells, many of which were being discharged over the
192 larval cuticle (*Fig. 4d insets II and III*). Taken together, these findings suggest that early in infection
193 there is an active interplay between the IECs and the parasite at its multi-intracellular niche, which
194 may shape the initial host responses to the larvae.

195

196 **Whipworm burrowing through IECs ultimately results in tissue damage**

197 IE barrier integrity is maintained by intercellular junctions between the IECs including, from apical
198 to basal: tight junctions, adherens junctions, and desmosomes²². Syncytial tunnels hosting stage 3
199 and 4 larvae and adult whipworms present an intact apical surface, stabilised by the actin
200 cytoskeleton and cell junctions, and a basal surface that remains attached to the basement
201 membrane, but lateral membranes of the host IECs that are ruptured⁵. In contrast, during early
202 infection, lateral membranes of host cells were still visible and separating their cytoplasm (*Figs. 1c*
203 and *2c*) and tight junctions were still present on infected cells, but have disappeared in the cells left
204 behind in the tunnel as indicated by the presence or absence of ZO-1 stain, in caecaloids (*Figs. 2d*
205 and *5a*, *Supplementary video 5*). We noticed that while all intercellular junctions were still present
206 in infected caecaloids cells after 72 h, desmosomes, but not tight and adherens junctions, joining
207 infected IECs and adjacent cells had opened (*Figs. 5b, Supplementary Fig. 5a*). When compared
208 to those of uninfected cells, the distance between desmosomes joining infected IECs and adjacent
209 cells significantly increased from 26 nm to 38 nm (*Fig. 5b*). Strikingly, we observed equivalent
210 perturbations *in vivo* (*Supplementary Fig. 5*), further demonstrating that the caecaloid-whipworm
211 model closely recapitulates whipworm infection. Altogether, our results indicate that with
212 progression of infection, the tunnelling of the larvae through the IECs results in IEC damage.

213

214 **Host IECs responses to early infection with whipworms are dominated by a type-I 215 IFN signature**

216 IEC responses to whipworm early infection are thought to initiate host immune responses to the
217 worm and orchestrate repair to the IE damage caused by larval invasion and tunnelling^{13,14}.
218 However, currently little is known about the nature of those responses. Using bulk RNA-seq of
219 whole caeca from infected mice at day 7 p.i and caecal IECs from infected mice at 24 and 72 h p.i.,
220 we detected the upregulation of genes involved in innate immune responses, specifically those
221 related to type-I IFN signalling and normally characteristic of bacterial and viral infections (Fig. 6a,
222 *Supplementary Fig. 6, Supplementary Data 1 and 2*). The response to larval infection in the
223 caecum at day 7 p.i. therefore appeared to be driven by the IECs from a much earlier stage of
224 infection.

225 Using the 10X Chromium platform, we performed single-cell RNA-seq (scRNA-seq) of caecal IECs
226 from uninfected and *T. muris*-infected mice at 24 and 72h p.i. Populations of undifferentiated,
227 enterocytes, goblet, enteroendocrine and tuft cells could be identified (Fig. 6b-d, *Supplementary*
228 *Fig. 7*). Isolating undifferentiated cells *in silico*, we further characterised 5 subpopulations: stem
229 and TA cells that are on the S and G2/M phases of cell cycle, deep secretory cells and two
230 enterocyte progenitor populations, which express known markers of these cell types in the small
231 intestine^{23,24} and colon²⁵⁻²⁹ (*Supplementary Figs. 8 and 9*). Enterocytes were divided in five sub-
232 clusters: two early enterocyte populations and three late/mature ones, distinguished by the
233 expression of particular marker genes involved in defined biological processes (Figs. 6b and c,
234 *Supplementary Data 3*). Interestingly, one cluster of enterocytes was characterised by the
235 expression of IFN-stimulated genes (ISGs), specifically *Isg15*, *Ifit1*, *Ifitb1*, *Ddx60* and *Oasl2* (Fig.
236 6b and c). We detected a striking increase in the size of this cluster on *T. muris*-infected mice at 72
237 h p.i. (Figs. 6b and d).

238 We validated the expansion of *Isg15* expressing enterocytes in response to whipworm infection
239 using mRNA *in situ* hybridization (ISH) by chain reaction (HCR) on caecal tissues from uninfected
240 and *T. muris*-infected mice after 24 and 72 h p.i. (Fig. 7a-c). In uninfected mice, occasional crypts
241 expressing high levels of *Isg15* were detected (Fig. 7a), consistent with the presence of this cluster
242 of enterocytes in naïve mice (Fig. 6b). These crypts were easily distinguishable above
243 the extremely low baseline level of *Isg15* expressed in enterocytes throughout the

244 caecum. Interestingly, by 72h p.i., the number of crypts showing high levels of *lsg15* expression
245 increased significantly, with those *lsg15*⁺ crypts forming large groups or “islands” (Figs. 7b-c). *T.*
246 *muris* is detectable *in situ* by its expression of p43 (Figs. 7d-e), the single most abundant protein
247 secreted/excreted by the parasite³⁰. Using multiplexed ISH by HCR for *T. muris* p43, mouse *Krt20*
248 (mature enterocyte marker, Fig 6c) and *lsg15*, we were able to locate worms in the caecum of
249 infected mice. Larvae were occasionally found near islands of *lsg15*⁺ crypts (Fig. 7f, n=3/9 worms
250 detected at 72h p.i.), though this was not always the case (Fig. 7g; n=6/9 worms detected at 72h
251 p.i.). We speculate that larval infection and tunnelling through IECs at the bottom of the crypts
252 resulted in the activation of responses by enterocytes immediately above. Taken together, these
253 findings suggest that host IECs responses to early whipworm larvae infection are dominated by a
254 type-I IFN signature driven by the expansion of a distinct population of enterocytes expressing
255 *lsg15*.

256

257 **Discussion**

258 We have shown that whipworm invasion of the IE is preceded by the degradation of the mucus
259 layers and identified absorptive and goblet cells as the main constituents of the syncytium hosting
260 whipworm larvae. Our findings revealed the early syncytial tunnels are an interactive multi-
261 intracellular niche where whipworms interplay with their host IECs resulting in the activation of
262 type-I IFN signalling responses that potentially orchestrate the development of immunity against
263 the worm and tissue repair.

264 Previous studies on syncytial tunnels have focused on L3-L4 larval and adult stages when, in the
265 caecal and proximal colonic crypts, the syncytium becomes a visible protrusion of the wall into the
266 lumen^{5,11}. In this work, we determined interactions between *T. muris* L1 larvae and IECs mediating
267 whipworm penetration of the caecal epithelium and formation of syncytial tunnels. To do this, we
268 exploited a novel *in vitro* system that used caecaloids, together with *in vivo* observations where
269 possible. Caecaloids grown and differentiated in transwells recapitulate the complexity of the
270 cellular composition and, to some degree, the architecture of the caecal epithelium. This
271 architecture promotes whipworm larvae infection *in vitro* enabling us to tackle questions that could

272 not otherwise be investigated in the mouse model. The fact that whipworm invasion and
273 colonisation is not supported by epithelial cell lines, 3D caecaloids or undifferentiated caecaloids
274 grown in transwells (forming a complete monolayer but lacking differentiated cell types) indicates
275 that a combination of interactions of the larvae with particular cellular or molecular components of
276 the caecal epithelium, as well as specific physicochemical conditions, are critical in triggering
277 parasite invasion. Those components include a complex mucus layer that is well mimicked by our
278 *in vitro* system, which allowed us to visualise mucus degradation *in situ* and detect
279 depolymerisation of mucins upon larvae infection. Other pathogens that preferentially colonise the
280 large intestine such as *Shigella dysenteriae*³¹ and *E. histolytica*^{32,33} recognize tissue specific
281 expression of mucin and mucin glycosylation patterns. *Trichuris* L1 larvae may also recognise
282 molecular cues within the mucus to initiate invasion as Hasnain *et al.* showed decreased
283 establishment of *T. muris* in *Sat1*^{-/-} mice with reduced sulphated mucus³⁴. For penetration and
284 tunnelling through IECs, the expression of proteases by whipworm L1 larvae we detected may be
285 critical as proteases secreted by other parasitic nematode infective larvae facilitate their entry in
286 the intestinal wall of mammalian hosts^{35,36}. Future studies we be able to use the caecaloid-
287 whipworm larvae model together with live imaging tools to capture active invasion, and knock-out
288 technologies and inhibitors, will determine the nature of the molecular mechanisms directing larvae
289 movement towards and penetration at the IECs of the crypt base.

290 Our findings on the cellular composition of early tunnels are in line with previous observations
291 indicating that absorptive and goblet cells constitute the syncytium hosting older larval stages and
292 adults¹¹. Ascertaining the path of the L1 larvae inside the IECs of caecaloids allowed us to discover
293 that while the IECs ultimately succumb after the parasite has moved through them, when the
294 larvae are within the IECs, they remain alive. Surprisingly, during the first 24 h of infection these
295 host cells present minimal damage. Despite the presence of larva in direct contact with their
296 cytoplasm, which has joined into a multinucleated mass, desmosomal contacts with adjacent cells
297 and lateral membranes are conserved. We identified distinct host-parasite interactions in the
298 tunnels including the reorganisation of the infected IEC cytoskeleton around the cuticle of the
299 larvae suggesting a response of the host cell to the intracellular parasite. Moreover, we visualised

300 a likely excretion/secretion of products by the larva into its immediate environment in the cytoplasm
301 of the infected IECs. These products may support larval intracellular tunnelling by digesting cells
302 and cellular components, or manipulating the activation of inflammatory responses by the IECs.
303 We also detected numerous mitochondria in infected IECs when compared with uninfected
304 neighbouring cells. Within early syncitia, larvae may therefore interact with their host cells to
305 modify their energy demands and metabolic activity. As infection progressed, at 72 h p.i., we
306 identified infected cells where several lysosomes had surrounded and discharged over the cuticle
307 of the larvae, suggesting a direct response of the host cell to the parasite. In addition, we observed
308 perturbations in IECs forming the syncytial tunnel including opening of the desmosomes, early
309 pyknotic nuclei indicative of apoptosis and liquefaction of cells. These alterations indicate that
310 whipworm burrowing through IECs ultimately results in IE damage.

311 IE damage at the syncytial tunnels caused by the whipworm larvae either mechanically through
312 tunnelling or chemically as induced by secretory/excretory products, potentially results in release of
313 damage-associated molecular patterns (DAMPs) and alarmins by infected IECs, which have been
314 suggested to initiate innate immune responses to the worm^{13,14,37}. The production of the alarmins
315 IL-25^{38,39}, IL-33^{40,41} and TSLP^{42,43} implicated in the induction of type 2 responses to *Trichuris* and
316 other parasitic worms³⁷ was either not detected or did not significantly increase in our single cell or
317 bulk transcriptomics data over the first 72 hours of infection (*Supplementary Fig. 10 and 11*). It is
318 remarkable that upon invasion of the epithelium over the very early stages of whipworm
319 colonisation, IEC responses to the worm are mostly silent. Conversely, in response to infection we
320 identified a striking expansion of an enterocyte population expressing several ISGs including
321 *lsg15*. ISG15 has been described as an alarmin that induces tissue alerts and inflammation via
322 immune cell recruitment, infiltration and activation¹⁵⁻¹⁷. On the other hand, ISG15 exerts
323 immunoregulatory functions by negatively regulating type-I IFN signalling and production of
324 proinflammatory cytokines and chemokines^{16,44}. Moreover, ISG15 regulates tissue damage and/or
325 repair responses, specifically in the context of viral infection of the respiratory epithelium^{16,45}.
326 Intestinal, respiratory and corneal epithelial cells have been shown to express *lsg15* in response to
327 not only viral, but also protozoal parasitic and fungal infections^{16,46-48} and to inflammation during

328 IBD¹⁷. We therefore hypothesise that ISG15 acts as an alarmin released upon of IECs damage
329 caused by whipworm larvae invasion, potentially triggering the development of immune and tissue
330 repair responses.

331 ISG15 is rapidly induced in response to type-I IFNs but also to nucleic acids sensed by cytosolic
332 receptors in an IFN-independent manner¹⁶. Our transcriptomic data suggests that the larval
333 induction of *lsg15* in IECs is type-I IFN independent. While we did not detect increased levels of
334 *Ifna1* and *Ifnab1* upon infection either in the complete caecum or IECs (*Supplementary Fig. 10 and*
335 *11*), the expanded *lsg15*-expressing enterocyte population co-expressed *Ddx60* and *Irf7*. DDX60
336 promotes retinoic-acid inducible gene 1 (RIG-I)-like receptor mediated signalling upon cytosolic
337 sensing of self- and non-self nucleic acids that results in *lsg15* expression via the IFN regulatory
338 factors 3 and 7 (IRF3, IRF7)^{16,49}. Thus, DNA or RNA released from whipworm infected/damaged
339 IECs or secreted by larvae may induce *lsg15* expression in infected and bystander cells. Further
340 research is needed to understand the molecular mechanisms leading to *lsg15* expression by IECs
341 and role of this alarmin in host responses to whipworm infection.

342 Studies on infection with other parasitic worms, including *Schistosoma mansoni*⁵⁰, *Nippostrongylus*
343 *brasiliensis*⁵¹ and *Heligmosomoides polygyrus*⁵² suggest that type-I IFNs are important in driving
344 the initiation of type 2 responses that result in worm expulsion³⁷. Our data indicates that this is not
345 the case for *T. muris*, which would be of clear benefit to the parasite allowing it to remain in its
346 niche, and furthermore exemplifies the diverse regulatory mechanisms that govern early host
347 responses to different helminths.

348 Collectively, our work has contributed to define the early stages of intestinal invasion and
349 colonisation by whipworms. Extending the applicability of our caecaloid-whipworm system,
350 adapting it to study *T. trichiura* L1 larvae infection of human caecal and proximal colon organoids
351 and adding stroma and immune cells will be important next steps. Further investigations on the
352 early host-parasite interplay within the whipworm mucosal niche will be fundamental to the
353 development of new tools to help control trichuriasis and also provide novel insights into how the
354 intestinal epithelium adapts to damage and mediates repair.

355 **Methods**

356 **Mice**

357 C57BL/6N mice were kept under specific pathogen-free conditions, and colony sentinels tested
358 negative for *Helicobacter* spp. Mice were fed a regular autoclaved chow diet (LabDiet) and had *ad*
359 *libitum* access to food and water. All efforts were made to minimize suffering by considerate
360 housing and husbandry. Animal welfare was assessed routinely for all mice involved. Mice were
361 naïve prior the studies here described. Experiments were performed under the regulation of the UK
362 Animals Scientific Procedures Act 1986 under the Project licenses 80/2596 and P77E8A062 and
363 were approved by the institutional Animal Welfare and Ethical Review Body.

364 **Parasites and *T. muris* infection**

365 Infection and maintenance of *T. muris* was conducted as described⁵³. Age and sex matched
366 female mice (6–10-week-old) were orally infected under anaesthesia with isoflurane with a high
367 (400-1000) dose of embryonated eggs from *T. muris* E-isolate. Mice were randomised into
368 uninfected and infected groups using the Graph Pad Prism randomization tool. Uninfected and
369 infected mice were co-housed. Mice were monitored daily for general condition and weight loss.
370 Mice were culled including concomitant uninfected controls at different time points by cervical
371 dislocation, and caecum and proximal colon were collected for downstream processing. Blinding at
372 the point of measurement was achieved using barcodes. During sample collection, group
373 membership could be seen, however this stage was completed by technician staff with no
374 knowledge of the experiment objectives.

375 **In vitro hatching of *T. muris* eggs with *Escherichia coli***

376 *E. coli* K-12 was grown in Luria Bertani broth overnight at 37°C and shaking at 200 rpm. Eggs were
377 added to bacterial cultures and incubated for 2 h at 37°C, 5% CO₂. Larvae were washed with PBS
378 three times to remove *E. coli* by centrifugation at 720 g for 10 min at RT. Bacteria were killed by
379 culturing larvae in RPMI 1640 (Gibco Thermo Fisher Scientific), 10% Foetal Bovine Serum (FBS)
380 (Gibco Thermo Fisher Scientific), 2 mM L-glutamine (Sigma-Aldrich), 1X antibiotic/antimycotic
381 (Sigma Aldrich) and 1 mg/ml ampicillin (Roche) for 2 h at 37°C, 5% CO₂. Larvae were washed with

382 RPMI 1640 three times to remove ampicillin and separated from egg shells and unembryonated
383 eggs using a stepped 50-60% Percoll (Sigma Aldrich) gradient. Centrifugation at 300 g for 15 min
384 at RT was performed and the 50% interface layer was collected. Recovered larvae were washed
385 with RPMI 1640 and resuspended in media containing Primocin (InvivoGen).

386 ***T. muris* L1 and L2 larvae recovery from infected mice for RNA extraction**

387 Mice were culled at 3 and 24 h post infection (p.i). to recover L1 larvae and at day 14 to recover L2
388 larvae. Caecum and proximal colon were collected and placed in 5X penicillin/streptomycin (Gibco
389 Thermo Fisher Scientific) in Dulbecco's PBS 1X without calcium and magnesium (PBS) (Gibco
390 Thermo Fisher Scientific). Caecum and proximal were cut longitudinally and were washed to
391 remove faecal contents. The tissues were cut into small sections and added to 0.9% NaCl in PBS
392 and incubated in a water bath at 37°C for 2 h to allow L1/L2 larvae to come free from the
393 epithelium. Larvae were removed from the NaCl and placed into 1X penicillin/streptomycin PBS.
394 Larvae were washed once with PBS and pellets were resuspended in TRIzol LS (Invitrogen).

395 **3D Caecaloid culture**

396 Mouse 3D caecaloids lines from C57BL/6N adult mice (6-8 weeks old) were derived from caecal
397 epithelial crypts as previously described¹⁸. Briefly, the caecum was cut open longitudinally and
398 luminal contents removed. Tissue was then minced, segments were washed with ice-cold PBS and
399 vigorous shaking to remove mucus, and treated with Gentle Cell Dissociation Reagent
400 (STEMCELL Tech) for 15 min at room temperature (RT) with continuous rocking. Released crypts
401 were collected by centrifugation, washed with ice-cold PBS, resuspended in 200 µl of cold Matrigel
402 (Corning), plated in 6-well tissue culture plates and overlaid with a Wnt-rich medium containing
403 base growth medium (Advanced DMEM/F12 with 2 mM Glutamine, 10 mM HEPES, 1X
404 penicillin/streptomycin, 1X B27 supplement, 1X N2 supplement (all from Gibco Thermo Fisher
405 Scientific)), 50% Wnt3a-conditioned medium (Wnt3a cell line, kindly provided by the Clevers
406 laboratory, Utrecht University, Netherlands), 10% R-spondin1 conditioned medium (293T-HA-
407 Rspo1-Fc cell line, Trevigen), 1 mM N-acetylcysteine (Sigma-Aldrich), 50 ng/ml rmEGF (Gibco
408 Thermo Fisher Scientific), 100 ng/ml rmNoggin (Peprotech), 100 ng/ml rhFGF-10 (Peprotech) and
409 10 µM Rho kinase (ROCK) inhibitor (Y-27632) dihydrochloride monohydrate (Sigma-Aldrich).

410 Caecaloids were cultured at 37°C, 5% CO₂. The medium was changed every two days and after
411 one week, Wnt3a-conditioned medium was reduced to 30% and penicillin/streptomycin was
412 removed (expansion medium). Expanding caecaloids were passaged, after recovering from
413 Matrigel using ice-cold PBS or Cell Recovery Solution (Corning), by physical dissociation through
414 vigorous pipetting with a p200 pipette every six to seven days.

415 **Caecaloid culture in 2D conformation using transwells**

416 3D caecaloids grown in expansion medium for 4-5 days after passaging were dissociated into
417 single cells by TrypLE Express (Gibco Thermo Fisher Scientific) digestion. 200,000 cells in 200 µl
418 base growth medium were seeded onto 12 mm transwells with polycarbonate porous membranes
419 of 0.4 µm (Corning) pre-coated with 50 mg/ml rat tail collagen I (Gibco Thermo Fisher Scientific).
420 Cells were cultured with expansion medium in the basolateral compartment for two days. Then,
421 basolateral medium was replaced with medium containing 10% Wnt3a-conditioned medium for
422 additional 48 h. To induce differentiation of cultures, medium in the apical compartment was
423 replaced with 50 µl base growth medium and medium in the basolateral compartment with medium
424 containing 2.5% Wnt3A-conditioned medium that was changed every two days. Cultures were
425 completely differentiated when cells pumped the media from the apical compartment and cultures
426 looked dry.

427 ***T. muris* L1 larvae infection of caecaloids grown in transwells**

428 Differentiated caecaloid cultures in transwells were infected with 300 L1 *T. muris* larvae obtained
429 by *in vitro* hatching of eggs in presence of *E. coli*. Larvae in a volume of 100 µl of base growth
430 medium were added to the apical compartment of the transwells. Infections were maintained for up
431 to 72 h at 37°C, 5% CO₂.

432 **IF staining of caecaloids**

433 For IF, caecaloid cultures in transwells were fixed with 4% Formaldehyde, Methanol-free (Thermo
434 Fisher) in PBS for 20 min at 4°C, washed three times with PBS and permeabilized with 2% Triton
435 X-100 (Sigma-Aldrich) 5% FBS in PBS for 1 h at RT. Caecaloids were then incubated with primary
436 antibodies α-villin (1:100, Abcam, ab130751), α-Ki-67 (1:250, Abcam, ab16667), α-chromogranin A

437 (1:50, Abcam, ab15160), α -Dcamlk-1 (1:200, Abcam, ab31704), α -zona occludens-1 (ZO-1)
438 protein (1:200, Invitrogen, 61-7300) and the lectins *Ulex europaeus* agglutinin - Atto488 conjugated
439 (UEA, 1:100, Sigma-Aldrich, 19337) and *Sambucus nigra* - Fluorescein conjugated (SNA, 1:50,
440 Vector Laboratories, FL-1301) diluted in 0.25% Triton X-100 5% FBS in PBS overnight at 4°C.
441 After three washes with PBS, caecaloids were stained with secondary antibody Donkey anti-rabbit
442 IgG Alexa Fluor 555 (1:400, Molecular Probes, A31572), phalloidin Alexa Fluor 647 (1:1000, Life
443 Technologies, A22287) and 4',6'-diamidino-2-phenylindole (DAPI, 1:1000, AppliChem,
444 A1001.0010) at RT for 1 h. Transwell membranes were washed three times with PBS and
445 mounted on slides using ProLong Gold anti-fade reagent (Life Technologies Thermo Fisher
446 Scientific). Confocal microscopy images were taken with a Leica SP8 confocal microscope and
447 processed using the Leica Application Suite X software.

448 **Cell death fluorescence staining of caecaloids**

449 To evaluate cell death in infected caecaloids, cultures were incubated with 100 μ l warm base
450 growth medium containing 0.3 mg/ml of propidium iodide (Sigma-Aldrich) and 8 μ M of CellEventTM
451 Caspase-3/7 Green Detection Reagent (Invitrogen) for 30 min at 37°C 5% CO₂. Then, caecaloids
452 were fixed and counterstained as described above.

453 **mRNA ISH by HCR and IF on paraffin sections of mice**

454 Caeca from uninfected and *T. muris*-infected mice after 24 and 72 h p.i. were fixed, embedded in
455 paraffin and sectioned at 8 μ m thickness for mRNA *in situ* hybridization as previously described⁵⁴.
456 All probes, buffers, and hairpins for third generation HCR were purchased from Molecular
457 Instruments (Los Angeles, California, USA). HCR on paraffin sections was carried out according to
458 the protocol of Choi et al. (2018)⁵⁵, with modifications according to Criswell and Gillis (2020)⁵⁶.
459 Immunofluorescence on paraffin sections was carried out according to the protocol of Marconi et
460 al. (2020)⁵⁴, except with heat-mediated antigen retrieval. Antigen retrieval was performed by
461 warming dewaxed and rehydrated slides in water at 60°C for 5 min, followed by incubation in
462 citrate buffer (10 mM sodium citrate, 0.05% Tween20, pH 6.0) at 95°C for 25 min. Slides were then
463 cooled for 30 min at -20°C and rinsed 2 x 5 min in 1X PBS + 0.1% Triton X-100 at RT before

464 proceeding with blocking and antibody incubation. Rabbit anti-p43 primary and AF488-conjugated
465 goat-anti-rabbit IgG secondary antibodies were diluted 1:400 and 1:500, respectively, in 10%
466 sheep serum. All slides were coverslipped with Fluoromount-G containing DAPI (Southern Biotech)
467 and imaged on a Zeiss Axioscope A1 compound microscope.

468 **Transmission EM**

469 Caeca and caecaloids were fixed in 2.5% glutaraldehyde/2% paraformaldehyde in 0.1M sodium
470 cacodylate buffer, post-fixed with 1% osmium tetroxide and mordanted with 1% tannic acid
471 followed by dehydration through an ethanol series (contrasting with uranyl acetate at the 30%
472 stage) and embedding with an Epoxy Resin Kit (all from Sigma-Aldrich). Semi-thin 0.5 μ m sections
473 were cut and collected onto clean glass slides and dried at 60°C before staining with 1% Toluidine
474 Blue and 1% Borax (all from Sigma-Aldrich) in distilled water for 30 seconds. Sections were then
475 rinsed in distilled water and mounted in DPX (Sigma-Aldrich) and coverslipped. Sections were
476 imaged on a Zeiss 200M Axiovert microscope.

477 Ultrathin sections cut on a Leica UC6 ultramicrotome were contrasted with uranyl acetate and lead
478 nitrate, and images recorded on a FEI 120 kV Spirit Biotwin microscope on an F416 Tietz CCD
479 camera.

480 **Scanning EM**

481 Caecaloids were fixed with 2.5% glutaraldehyde and 4% paraformaldehyde in 0.01 M PBS at 4°C
482 for 1 h, rinsed thoroughly in 0.1 M sodium cacodylate buffer three times, and fixed again in 1%
483 buffered osmium tetroxide for 3 h at RT. To improve conductivity, using the protocol devised by
484 Malick and Wilson⁵⁷, the samples were then impregnated with 1% aqueous thiocarbohydrazide
485 and osmium tetroxide layers, with the steps separated by sodium cacodylate washes. They were
486 then dehydrated three times using an ethanol series (30, 50, 70, 90, and 100% ethanol, 20 min
487 each) before they were critical point dried in a Leica EM CPD300 and mounted on aluminium stubs
488 with conducting araldite and sputter coated with a 2 nm platinum layer in a Leica EM ACE 600.
489 Images were taken on a HITACHI SU8030.

490 **Serial block face scanning EM**

491 Samples from caeca of infected mice were processed according to Deerinck et al⁵⁸. Embedded
492 tissues were mounted and serial sectioned on a Gatan 3View System and simultaneously imaged
493 on a Zeiss Merlin SEM. Serial images were oriented and assimilated into corrected z-stacks using
494 IMOD. The phenotype of infected cells was determined in each image and number cells of each
495 cellular population were quantified.

496 **MUC2 and caecaloid mucus degradation experiments**

497 Glycosylated MUC2 was derived from LS174T cells, purified as previously described²⁰ and
498 incubated with 400 *T. muris* L1 larvae for 24 h at 37°C, 5% CO₂. For experiments with caecaloid
499 cultures, after 24 and 72 h of L1 larvae infection, mucus was recovered by six PBS washes
500 followed by six washes with 0.2 M urea.

501 **Rate zonal centrifugation**

502 Mucus degradation analysis was conducted as described²⁰. Briefly, purified MUC2 (in 4 M
503 guanidinium hydrochloride (GuHCl)) was loaded onto the top of 6–8 M GuHCl gradients and
504 centrifuged in a Beckman Optima L-90K Ultracentrifuge (Beckman SW40 rotor) at 40,000 rpm for
505 2.75 h 15°C. Alternatively, mucus samples (in PBS or 0.2 M urea) were loaded onto 5-25% (w/v)
506 linear sucrose gradients and centrifuged in a Beckman Optima L-90K Ultracentrifuge (Beckman
507 SW40 rotor) at 40,000 rpm for 3 h 15°C. After, centrifugation tubes were emptied from the top and
508 the fractions probed with a MUC2 antibody or using the Periodic Acid Schiff's (PAS) assay. To
509 determine the sucrose or GuHCl concentration the refractive index of each fraction was measured
510 using a refractometer; all sucrose and GuHCl gradients were comparable (data not shown).

511 **Caecal IECs Isolation**

512 Caeca of uninfected and infected mice at day one and three p.i. were processed individually in
513 parallel. Caeca were open longitudinally, washed with ice-cold HBSS 1X (Gibco Thermo Fisher
514 Scientific) containing 1X penicillin/streptomycin to remove the caecal contents and cut in small
515 fragments. These were incubated at 37°C in DMEM High Glucose (Gibco Thermo Fisher
516 Scientific), 20% FBS, 2% Luria Broth, 1X penicillin/streptomycin, 100 µg/ml gentamicin (Sigma
517 Aldrich), 10 µM ROCK inhibitor and 0.5 mg/ml Dispase II (Sigma Aldrich) with horizontal shaking
518 for 90 min to detach epithelial crypts. Supernatant containing crypts was filtered through a 300 µm

519 cell strainer (PluriSelect) and pelleted by centrifugation at 150 g for 5 min at RT. Crypts were
520 dissociated into single cells by TrypLE Express digestion 10-20 min at 37°C. The epithelial single-
521 cell suspension was washed and counted using MOXI automated cell counter. Cells were stained
522 using the antibodies anti-CD236 (epithelial cell adhesion molecule (EPCAM); PE-Cy7, Biolegend)
523 and anti-CD45 (Alexa 700, Biolegend) for 20 min on ice. Cells were washed and stained with
524 DAPI. Live epithelial cells (CD236+, CD45-, DAPI-) were sorted using a fluorescence-activated cell
525 sorting (FACS) Aria flow cytometer (BD) into TRIzol LS for bulk-RNAseq or DMEM High Glucose
526 10% FBS 10 µM ROCK inhibitor for droplet- based single-cell RNAseq.

527 **Bulk RNA isolation from L1 and L2 *T. muris* larvae and library preparation for RNA-
528 seq**

529 L1/L2 larvae were collected via pipette in 200-300 µl of PBS then added directly to lysing matrix D
530 (1.4-mm ceramic spheres, MagNA Lyser Green Bead tubes, Roche) along with 1 ml of TRIzol LS.
531 A PreCellys 24 (Bertin) was used to homogenize the samples by bead beating 3x for 20 sec at
532 6000 rpm, placing the samples on wet ice to cool between runs. Homogenized samples were
533 transferred to 1.5 ml microfuge tubes and total RNA extracted by adding 400 µl of Chloroform,
534 shaking vigorously and incubating for 5 min at RT. Samples were centrifuged at 12000 g for 15 min
535 at RT, then the upper aqueous phase was transferred to a new microfuge tube prior to addition of
536 800 µl Isopropyl alcohol with 2 µl GlycoBlue (Invitrogen). Tubes were placed at -80 °C overnight
537 and then centrifuged at 12000 g for 10 min at 4 °C. The supernatant was removed, being careful
538 not to disturb the blue pellet, and washed in 1 ml 75 % ethanol. The pellet was air-dried briefly then
539 resuspended in nuclease-free water. Total RNA was quantified by Bioanalyzer (Agilent).
540 Multiplexed cDNA libraries were generated from 300 pg of total high-quality RNA according to the
541 SmartSeq2 protocol by Picelli et al. (2014)⁵⁹, and 125bp paired-end reads were generated on the
542 Illumina HiSeq according to the manufacturer's standard sequencing protocol.

543 **Bulk RNA isolation from caecum of uninfected and *T. muris*-infected mice and
544 library preparation for RNA-seq**

545 Total RNA from sections of caecum of mice pre-infection, and 4 and 7 days p.i., was isolated using
546 1 ml TRIzol and lysing matrix D to homogenise tissues with a Fastprep24 (MP Biomedicals), and

547 following manufacturer's standard extraction protocol. Total RNA was quantified by Bioanalyzer
548 and 1 µg or 50µl cherry picked. Poly A mRNA was purified from total RNA using oligodT magnetic
549 beads and strand-specific indexed libraries were prepared using the Illumina's TruSeq Stranded
550 mRNA Sample Prep Kit followed by ten cycles of amplification using KAPA HiFi DNA polymerase
551 (KAPA Biosystems). Libraries were quantified and pooled based on a post-PCR Bioanalyzer and
552 75 base pair (bp) paired-end reads were generated on the Illumina HiSeq 2500 according to the
553 manufacturer's standard sequencing protocol.

554 **Bulk RNA isolation from sorted IECs from uninfected and *T. muris*-infected mice
555 and library preparation for RNA-seq**

556 Total RNA from sorted IECs 1 and 3 days p.i. with time matched uninfected concomitant controls,
557 was isolated using Trizol LS. Briefly, 200 µl of Chloroform was added to 500 µl of samples in Trizol
558 LS, shaked vigorously and incubated for 5 min at RT. Samples were centrifuged at 15000 g for 15
559 min at RT and the upper aqueous phase was recovered and mixed with one volume of 100%
560 ethanol. RNA was recovered using the RNA Clean and Concentrator kit (Zymo Research). The
561 samples were quantified with the QuantiFluor RNA system (Promega) and 100 ng/50 µl cherry
562 picked. Libraries were then constructed using the NEB Ultra II RNA custom kit (New England
563 BioLabs) on an Agilent Bravo WS automation system followed by 14 cycles of PCR using KAPA
564 HiFi Hot Start polymerase (KAPA Biosystems). The libraries were then pooled in equimolar
565 amounts and 75bp paired-end reads were generated on the Illumina HiSeq 4000 according to the
566 manufacturers standard sequencing protocol.

567 **Droplet-based single-cell RNA sequencing 10X**

568 Sorted cells were counted using MOXI automated cell counter and loaded onto the 10X Chromium
569 Single Cell Platform (10X Genomics) at a concentration of 1000 cells per µl (Chromium Single Cell
570 3' Reagent kit v.3) as described in the manufacturer's protocol (10X User Guide). Generation of gel
571 beads in emulsion (GEMs), barcoding, GEM-RT clean-up, complementary DNA amplification and
572 library construction were all performed as per the manufacturer's protocol. Individual sample
573 quality was checked using a Bioanalyzer Tapestation (Agilent). Qubit was used for library

574 quantification before pooling. The final library pool was sequenced on the Illumina HiSeq 4000
575 instrument using 50bp paired-end reads.

576 **Quantification and statistical analysis**

577 **General**

578 Desmosome separation measurements in uninfected, distant to worm and adjacent (infected) cells
579 in caecaloids and percentages of *lsg15*⁺ crypts in uninfected and infected mice after 24 and 72h
580 p.i. were compared using Kruskal Wallis and Dunn's comparison tests from the Prism 8.2 software
581 (GraphPad). Statistical comparison for desmosome separation in uninfected and infected mice and
582 the *in vitro* and *in vivo* models was done using Mann-Whitney tests from the Prism 8.2 software
583 (GraphPad).

584 **L1 and L2 larvae RNA-seq data processing and analysis**

585 *T. muris* reference genome (PRJEB126) was downloaded from Wormbase Parasite v14⁶⁰. Reads
586 from each RNA-seq sample were mapped against predicted transcripts using Kallisto v0.42.3⁶¹.
587 Indexing and quantification were performed using default parameters. Read counts from multiple
588 transcripts were combined at the gene level. Genes with zero counts across all samples and
589 samples with less than 500000 read counts were removed prior to analysis. Differentially
590 expressed genes were determined using DESeq2 v1.22.2⁶². Contrasts were performed between
591 egg samples and 3h L1s, 3h L1s and 24h L1s, and 24h L1s and L2s. Genes were identified as
592 differentially expressed with an adjusted p-value of < 0.05 and a log2 fold change > 1 or < -1. To
593 identify functional patterns in an unbiased way, GO terms were determined which were enriched in
594 differentially expressed genes using TopGO v2.34.0⁶³ (node size = 5, method = weight01, FDR =
595 0.05, statistic = Fisher).

596 Gene expression heatmaps were created by combining read counts across biological replicates
597 and calculating log2(FPKM + 1) for each gene, in each condition. These data were plotted using
598 pheatmap v1.0.11 in R for genes which were differentially expressed in any contrast and had the
599 GO term GO:0004252 (serine-type endopeptidase activity), contained a WAP domain (Pfam:
600 PF00095), a Kunitz domain (Pfam: PF00014) or a serpin domain (Pfam: PF00079).

601 **Caecum and IEC bulk RNA-seq data processing and analysis**

602 For bulk RNA-seq data from caecum and IEC samples, reads were pseudo-aligned to the mouse
603 transcriptome (Ensembl release 98) using Kallisto v0.46.2⁶¹. The DESeq2 package (v1.26.0)⁶² was
604 used to identify differentially expressed genes over the time course (caecum; likelihood ratio test)
605 or by pairwise comparison with time-matched controls (IECs; Wald test). All differentially
606 expressed genes with an FDR adjusted p-value < 0.05 are reported in *Supplementary Data 1*
607 (caecum) and 2 (IECs). Significantly enriched GO terms (Biological Process) annotated to the
608 differentially expressed genes were identified using the GOseq package (v1.38.0)⁶⁴, accounting for
609 gene length bias, and p-values FDR-corrected with the Benjamini-Hochberg method. Expressed
610 genes were ranked by log(pvalue) (most significantly upregulated to most significantly
611 downregulated) and the fgsea package (v1.12.0)⁶⁵ used for pathway enrichment analysis with the
612 MSigDB *M. musculus* Hallmark pathways⁶⁶.

613 **10x single cell RNA-seq analysis**

614 **Quality Control**

615 Raw unfiltered count matrices were generated using the CellRanger software suite (v3.0.2),
616 aligning against the mm10-3.0.0 (Ensembl 93) mouse reference transcriptome. Unless otherwise
617 stated, all further analysis was performed using the Seurat package (v3.0.2)⁶⁷ in R (v3.6.1). Each
618 library was examined for its distribution of unique molecular identifiers (UMIs) per cell
619 (*Supplementary Fig. 7a*). UMI filtering thresholds were set for each library at the first local
620 minimum on a UMI density plot, with GEMs associated with fewer UMIs being excluded from
621 further analysis. Cells with a high percentage (>30%) of UMIs associated with mitochondrial genes
622 were also excluded (*Supplementary Figs. 7b and c*). All libraries were initially merged and
623 clustered prior to doublet detection with the DoubletDecon package (v1.1.4)⁶⁸. The
624 Main_Doublet_Decon function was run 10 times, and the intersection of identified cells were
625 considered to be doublets and removed from the dataset. A distinct cluster of contaminating
626 immune cells (identified by expression of CD3 and CD45) was also removed. Post QC, average
627 cell recovery was 1401 cells per sample, with a total of 22422 cells captured at a mean depth of
628 39336 UMIs per cell and 4910 mean genes per cell.

629 **Clustering, cell type identification and pseudotime analysis**

630 Libraries derived from all mice (four per condition) were merged. Feature counts were log-
631 normalized and scaled, and the 2000 most highly variable genes (identified with the
632 `FindVariableFeatures` function) used for dimensionality reduction with PCA. The first 35 principal
633 components were used for running UMAP for visualisation (`min.dist=0.05`) and for neighbour
634 finding, and clusters initially identified with the `FindClusters` function (`resolution=0.6`). We
635 confirmed the absence of batch effects visually (*Supplementary Fig. Fig. 7d*). Cluster specific
636 marker genes were identified based on cells derived from the eight control mice using the
637 `FindAllMarkers` function (`logfc.threshold=0.5`, `only.pos=TRUE`, `min.pct=0.3`, `test.use="wilcox"`).
638 Clusters were inspected and some very similar clusters were merged, leaving 11 distinct clusters,
639 and cluster markers recalculated. Cluster sizes were quantified as a proportion of the total number
640 of cells per mouse, and differences between control and infected (timepoint-matched) mice
641 assessed with a two-tailed t test. Significantly enriched GO terms associated with cluster marker
642 genes (*Supplementary Data 3*) were identified with the `enrichGO` function from the `clusterProfiler`
643 package (v3.14.0).

644 To scrutinise the undifferentiated cells further, three undifferentiated clusters were isolated *in silico*.
645 Feature counts were normalized and scaled, top 2000 variable features identified and PCA
646 performed. The first 30 principal components were used for running UMAP for visualisation
647 (`min.dist=0.05`) and for neighbour finding, and clusters identified with the `FindClusters` function
648 (`resolution=0.4`). After merging of very similar clusters, five clusters remained and markers were
649 recalculated as described above.

650 Libraries from eight control mice were further analysed with the `monocle3` (v0.2.1) package⁶⁹ to
651 place the cells in pseudotime. We applied a standard workflow with `preprocess_cds`
652 (`num_dim=100`), `align_cds` (correcting for batch), `reduce_dimension` (`reduction_method=UMAP`),
653 `cluster_cells` and `learn_graph` to fit a trajectory graph. Two main partitions were identified,
654 consisting of undifferentiated cells/enterocytes and goblet cells. Cells in the G2M phase were
655 selected as the root of the trajectories for pseudotime ordering. We used partition-based graph
656 abstraction (PAGA)⁷⁰, implemented in `SCANPY`⁷¹, to draw an abstract connectivity graph. After

657 standard pre-processing, regressing out sample batches, the PAGA graph was computed and
658 visualized (threshold=0.3).

659 **Data availability**

660 The transcriptomic datasets generated during and analysed the current study are available in the
661 European Nucleotide Archive (ENA) repository (<https://www.ebi.ac.uk/ena/browser/home>), under
662 the accession numbers ERP008531 (STDY 3371 - Mouse and *Trichuris muris* transcriptome time
663 course), ERP126662 (STDY 4023 - Investigating the transcriptome of early infective larvae stage
664 of *Trichuris muris*) and ERP021944 (STDY 4672 - Investigating early host intestinal epithelial cells
665 - whipworm interactions).

666

667 **References**

- 668 1 Else, K. J. *et al.* Whipworm and roundworm infections. *Nat Rev Dis Primers* **6**, 44, doi:10.1038/s41572-020-0171-3 (2020).
- 669 2 Jourdan, P. M., Lamberton, P. H. L., Fenwick, A. & Addiss, D. G. Soil-transmitted
670 helminth infections. *Lancet* **391**, 252-265, doi:10.1016/S0140-6736(17)31930-X
671 (2018).
- 672 3 Klementowicz, J. E., Travis, M. A. & Grencis, R. K. *Trichuris muris*: a model of
673 gastrointestinal parasite infection. *Seminars in immunopathology* **34**, 815-828,
674 doi:10.1007/s00281-012-0348-2 (2012).
- 675 4 Panesar, T. S. & Croll, N. A. The location of parasites within their hosts: site
676 selection by *Trichuris muris* in the laboratory mouse. *Int J Parasitol* **10**, 261-273,
677 doi:10.1016/0020-7519(80)90006-5 (1980).
- 678 5 Tilney, L. G., Connelly, P. S., Guild, G. M., Vranich, K. A. & Artis, D. Adaptation of a
679 nematode parasite to living within the mammalian epithelium. *J Exp Zool A Comp
680 Exp Biol* **303**, 927-945, doi:10.1002/jez.a.214 (2005).
- 681 6 Hayes, K. S. *et al.* Exploitation of the intestinal microflora by the parasitic nematode
682 *Trichuris muris*. *Science* **328**, 1391-1394, doi:10.1126/science.1187703 (2010).
- 683 7 Wakelin, D. The development of the early larval stages of *Trichuris muris* in the
684 albino laboratory mouse. *J Helminthol* **43**, 427-436,
685 doi:10.1017/s0022149x00004995 (1969).
- 686 8 Panesar, T. S. The early phase of tissue invasion by *Trichuris muris* (nematoda:
687 *Trichuroidea*). *Z Parasitenkd* **66**, 163-166, doi:10.1007/bf00925723 (1981).
- 688 9 Beer, R. J. Studies on the biology of the life-cycle of *Trichuris suis* Schrank, 1788.
689 *Parasitology* **67**, 253-262, doi:10.1017/s0031182000046497 (1973).
- 690 10 Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells.
691 *Nat Rev Gastroenterol Hepatol* **16**, 19-34, doi:10.1038/s41575-018-0081-y (2019).
- 692 11 Lee, T. D. & Wright, K. A. The morphology of the attachment and probable feeding
693 site of the nematode *Trichuris muris* (Schrank, 1788) Hall, 1916. *Can J Zool* **56**,
694 1889-1905, doi:10.1139/z78-258 (1978).
- 695 12 O'Sullivan, J. D. B., Cruickshank, S. M., Starborg, T., Withers, P. J. & Else, K. J.
696 Characterisation of cuticular inflation development and ultrastructure in *Trichuris
697 muris* using correlative X-ray computed tomography and electron microscopy. *Sci
698 Rep* **10**, 5846, doi:10.1038/s41598-020-61916-0 (2020).

700 13 Grencis, R. K. Immunity to helminths: resistance, regulation, and susceptibility to
701 gastrointestinal nematodes. *Annu Rev Immunol* **33**, 201-225, doi:10.1146/annurev-
702 immunol-032713-120218 (2015).

703 14 Artis, D. & Grencis, R. K. The intestinal epithelium: sensors to effectors in nematode
704 infection. *Mucosal immunology* **1**, 252-264, doi:10.1038/mi.2008.21 (2008).

705 15 Iglesias-Guimaraes, V. *et al.* IFN-Stimulated Gene 15 Is an Alarmin that Boosts the
706 CTL Response via an Innate, NK Cell-Dependent Route. *J Immunol* **204**, 2110-
707 2121, doi:10.4049/jimmunol.1901410 (2020).

708 16 Perng, Y. C. & Lenschow, D. J. ISG15 in antiviral immunity and beyond. *Nat Rev
709 Microbiol* **16**, 423-439, doi:10.1038/s41579-018-0020-5 (2018).

710 17 Ostvik, A. E. *et al.* Intestinal epithelial cells express immunomodulatory ISG15
711 during active ulcerative colitis and Crohn's disease. *J Crohns Colitis*,
712 doi:10.1093/ecco-jcc/jaa022 (2020).

713 18 Duque-Correa, M. A. *et al.* Development of caecaloids to study host-pathogen
714 interactions: new insights into immunoregulatory functions of *Trichuris muris*
715 extracellular vesicles in the caecum. *Int J Parasitol* **50**, 707-718,
716 doi:10.1016/j.ijpara.2020.06.001 (2020).

717 19 McGuckin, M. A., Linden, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and
718 enteric pathogens. *Nat Rev Microbiol* **9**, 265-278, doi:10.1038/nrmicro2538 (2011).

719 20 Hasnain, S. Z., McGuckin, M. A., Grencis, R. K. & Thornton, D. J. Serine
720 protease(s) secreted by the nematode *Trichuris muris* degrade the mucus barrier.
721 *PLoS neglected tropical diseases* **6**, e1856, doi:10.1371/journal.pntd.0001856
722 (2012).

723 21 Lidell, M. E., Moncada, D. M., Chadee, K. & Hansson, G. C. *Entamoeba histolytica*
724 cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve
725 the protective colonic mucus gel. *Proc Natl Acad Sci U S A* **103**, 9298-9303,
726 doi:10.1073/pnas.0600623103 (2006).

727 22 Buckley, A. & Turner, J. R. Cell Biology of Tight Junction Barrier Regulation and
728 Mucosal Disease. *Cold Spring Harb Perspect Biol* **10**,
729 doi:10.1101/cshperspect.a029314 (2018).

730 23 Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature* **551**,
731 333-339, doi:10.1038/nature24489 (2017).

732 24 Yan, K. S. *et al.* Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and
733 Injury-Inducible Stem Cell Activity. *Cell Stem Cell* **21**, 78-90 e76,
734 doi:10.1016/j.stem.2017.06.014 (2017).

735 25 Parikh, K. *et al.* Colonic epithelial cell diversity in health and inflammatory bowel
736 disease. *Nature* **567**, 49-55, doi:10.1038/s41586-019-0992-y (2019).

737 26 Murata, K. *et al.* Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of
738 Ablated Intestinal Stem Cells. *Cell Stem Cell* **26**, 377-390 e376,
739 doi:10.1016/j.stem.2019.12.011 (2020).

740 27 Wang, Y. *et al.* Single-cell transcriptome analysis reveals differential nutrient
741 absorption functions in human intestine. *J Exp Med* **217**, doi:10.1084/jem.20191130
742 (2020).

743 28 Herring, C. A. *et al.* Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and
744 Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. *Cell Syst* **6**, 37-51
745 e39, doi:10.1016/j.cels.2017.10.012 (2018).

746 29 Liu, Q. *et al.* Quantitative assessment of cell population diversity in single-cell
747 landscapes. *PLoS Biol* **16**, e2006687, doi:10.1371/journal.pbio.2006687 (2018).

748 30 Bancroft, A. J. *et al.* The major secreted protein of the whipworm parasite tethers to
749 matrix and inhibits interleukin-13 function. *Nat Commun* **10**, 2344,
750 doi:10.1038/s41467-019-09996-z (2019).

751 31 Sudha, P. S., Devaraj, H. & Devaraj, N. Adherence of *Shigella dysenteriae* 1 to
752 human colonic mucin. *Curr Microbiol* **42**, 381-387, doi:10.1007/s002840010234
753 (2001).

754 32 Ravdin, J. I. & Guerrant, R. L. Role of adherence in cytopathogenic mechanisms of
755 *Entamoeba histolytica*. Study with mammalian tissue culture cells and human
756 erythrocytes. *J Clin Invest* **68**, 1305-1313, doi:10.1172/jci110377 (1981).

757 33 Chadee, K., Petri, W. A., Jr., Innes, D. J. & Ravdin, J. I. Rat and human colonic
758 mucins bind to and inhibit adherence lectin of *Entamoeba histolytica*. *J Clin Invest*
759 **80**, 1245-1254, doi:10.1172/JCI113199 (1987).

760 34 Hasnain, S. Z. *et al.* Immune-driven alterations in mucin sulphation is an important
761 mediator of *Trichuris muris* helminth expulsion. *PLoS Pathog* **13**, e1006218,
762 doi:10.1371/journal.ppat.1006218 (2017).

763 35 Tort, J., Brindley, P. J., Knox, D., Wolfe, K. H. & Dalton, J. P. Proteinases and
764 associated genes of parasitic helminths. *Advances in parasitology* **43**, 161-266,
765 doi:10.1016/s0065-308x(08)60243-2 (1999).

766 36 Dzik, J. M. Molecules released by helminth parasites involved in host colonization.
767 *Acta Biochim Pol* **53**, 33-64 (2006).

768 37 Gause, W. C., Rothlin, C. & Loke, P. Heterogeneity in the initiation, development
769 and function of type 2 immunity. *Nature reviews. Immunology* **20**, 603-614,
770 doi:10.1038/s41577-020-0301-x (2020).

771 38 Owyang, A. M. *et al.* Interleukin 25 regulates type 2 cytokine-dependent immunity
772 and limits chronic inflammation in the gastrointestinal tract. *J Exp Med* **203**, 843-
773 849, doi:10.1084/jem.20051496 (2006).

774 39 Saenz, S. A. *et al.* IL25 elicits a multipotent progenitor cell population that promotes
775 T(H)2 cytokine responses. *Nature* **464**, 1362-1366, doi:10.1038/nature08901
776 (2010).

777 40 Humphreys, N. E., Xu, D., Hepworth, M. R., Liew, F. Y. & Grencis, R. K. IL-33, a
778 potent inducer of adaptive immunity to intestinal nematodes. *J Immunol* **180**, 2443-
779 2449, doi:10.4049/jimmunol.180.4.2443 (2008).

780 41 Chen, Z. *et al.* Interleukin-33 Promotes Serotonin Release from Enterochromaffin
781 Cells for Intestinal Homeostasis. *Immunity*, doi:10.1016/j.immuni.2020.10.014
782 (2020).

783 42 Taylor, B. C. *et al.* TSLP regulates intestinal immunity and inflammation in mouse
784 models of helminth infection and colitis. *J Exp Med* **206**, 655-667,
785 doi:10.1084/jem.20081499 (2009).

786 43 Zaph, C. *et al.* Epithelial-cell-intrinsic IKK-beta expression regulates intestinal
787 immune homeostasis. *Nature* **446**, 552-556, doi:10.1038/nature05590 (2007).

788 44 Werneke, S. W. *et al.* ISG15 is critical in the control of Chikungunya virus infection
789 independent of UbE1L mediated conjugation. *PLoS Pathog* **7**, e1002322,
790 doi:10.1371/journal.ppat.1002322 (2011).

791 45 Morales, D. J. *et al.* Novel mode of ISG15-mediated protection against influenza A
792 virus and Sendai virus in mice. *J Virol* **89**, 337-349, doi:10.1128/JVI.02110-14
793 (2015).

794 46 Heo, I. *et al.* Modelling *Cryptosporidium* infection in human small intestinal and lung
795 organoids. *Nat Microbiol* **3**, 814-823, doi:10.1038/s41564-018-0177-8 (2018).

796 47 Dong, C., Gao, N., Ross, B. X. & Yu, F. X. ISG15 in Host Defense Against *Candida*
797 *albicans* Infection in a Mouse Model of Fungal Keratitis. *Invest Ophthalmol Vis Sci*
798 **58**, 2948-2958, doi:10.1167/iovs.17-21476 (2017).

799 48 Nikolaev, M. *et al.* Homeostatic mini-intestines through scaffold-guided organoid
800 morphogenesis. *Nature* **585**, 574-578, doi:10.1038/s41586-020-2724-8 (2020).

801 49 Radoshevich, L. *et al.* ISG15 counteracts *Listeria monocytogenes* infection. *eLife* **4**,
802 doi:10.7554/eLife.06848 (2015).

803 50 Webb, L. M. *et al.* Type I interferon is required for T helper (Th) 2 induction by
804 dendritic cells. *EMBO J* **36**, 2404-2418, doi:10.15252/embj.201695345 (2017).

805 51 Connor, L. M. *et al.* Th2 responses are primed by skin dendritic cells with distinct
806 transcriptional profiles. *J Exp Med* **214**, 125-142, doi:10.1084/jem.20160470 (2017).

807 52 Reynolds, L. A. *et al.* MyD88 signaling inhibits protective immunity to the
808 gastrointestinal helminth parasite *Heligmosomoides polygyrus*. *J Immunol* **193**,
809 2984-2993, doi:10.4049/jimmunol.1401056 (2014).

810 53 Wakelin, D. Acquired immunity to *Trichuris muris* in the albino laboratory mouse.
811 *Parasitology* **57**, 515-524 (1967).

812 54 Marconi, A., Hancock-Ronemus, A. & Gillis, J. A. Adult chondrogenesis and
813 spontaneous cartilage repair in the skate, *Leucoraja erinacea*. *eLife* **9**,
814 doi:10.7554/eLife.53414 (2020).

815 55 Choi, H. M. T. *et al.* Third-generation *in situ* hybridization chain reaction:
816 multiplexed, quantitative, sensitive, versatile, robust. *Development* **145**,
817 doi:10.1242/dev.165753 (2018).

818 56 Criswell, K. E. & Gillis, J. A. Resegmentation is an ancestral feature of the
819 gnathostome vertebral skeleton. *eLife* **9**, doi:10.7554/eLife.51696 (2020).

820 57 Malick, L. E. & Wilson, R. B. Modified thiocarbohydrazide procedure for scanning
821 electron microscopy: routine use for normal, pathological, or experimental tissues.
822 *Stain Technol* **50**, 265-269, doi:10.3109/10520297509117069 (1975).

823 58 Deerinck, T. J., Bushong, E. A., Lev-Ram, V., Shu, X., Tsien, R.Y. and Ellisman,
824 M. H. . Enhancing Serial Block-Face Scanning Electron Microscopy to Enable High
825 Resolution 3-D Nanohistology of Cells and Tissues. *Microscopy and Microanalysis*
826 **16** 1138-1139, doi:doi:10.1017/S1431927610055170 (2010).

827 59 Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc*
828 **9**, 171-181, doi:10.1038/nprot.2014.006 (2014).

829 60 Bolt, B. J. *et al.* Using WormBase ParaSite: An Integrated Platform for Exploring
830 Helminth Genomic Data. *Methods Mol Biol* **1757**, 471-491, doi:10.1007/978-1-4939-
831 7737-6_15 (2018).

832 61 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-
833 seq quantification. *Nat Biotechnol* **34**, 525-527, doi:10.1038/nbt.3519 (2016).

834 62 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
835 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550,
836 doi:10.1186/s13059-014-0550-8 (2014).

837 63 Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups
838 from gene expression data by decorrelating GO graph structure. *Bioinformatics* **22**,
839 1600-1607, doi:10.1093/bioinformatics/btl140 (2006).

840 64 Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis
841 for RNA-seq: accounting for selection bias. *Genome Biol* **11**, R14, doi:10.1186/gb-
842 2010-11-2-r14 (2010).

843 65 Korotkevich, G. *et al.* Fast gene set enrichment analysis. *bioRxiv*, 060012,
844 doi:10.1101/060012 (2021).

845 66 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set
846 collection. *Cell Syst* **1**, 417-425, doi:10.1016/j.cels.2015.12.004 (2015).

847 67 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902
848 e1821, doi:10.1016/j.cell.2019.05.031 (2019).

849 68 DePasquale, E. A. K. *et al.* DoubletDecon: Deconvoluting Doublets from Single-Cell
850 RNA-Sequencing Data. *Cell Rep* **29**, 1718-1727 e1718,
851 doi:10.1016/j.celrep.2019.09.082 (2019).

852 69 Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed
853 by pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-386,
854 doi:10.1038/nbt.2859 (2014).

855 70 Wolf, F. A. *et al.* PAGA: graph abstraction reconciles clustering with trajectory
856 inference through a topology preserving map of single cells. *Genome Biol* **20**, 59,
857 doi:10.1186/s13059-019-1663-x (2019).
858 71 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
859 expression data analysis. *Genome Biol* **19**, 15, doi:10.1186/s13059-017-1382-0
860 (2018).
861

862

863 **Acknowledgements**

864 This work was supported by the National Centre for the Replacement, Refinement and Reduction
865 of Animals in Research (UK) David Sainsbury Fellowship Grant NC/P001521/1; the Medical
866 Research Council Grant MR/R002800/1; and Wellcome via core funding to the Wellcome Sanger
867 Institute (grant 206194) and the Wellcome Centre for Cell-Matrix Research, University of
868 Manchester (grant 088785/Z/09/Z).
869

870 **Author contributions**

871 Conceptualization, M.A.D-C., R.K.G. and M.B.; data curation, M.A.D-C., D.G., F.H.R., K.R., J.A.G.,
872 A.J.R., C.S., C.R., and T.S.; formal analysis, M.A.D-C., D.G., F.H.R., K.R., J.A.G., A.J.R., C.S.,
873 and C.R.; funding acquisition, M.A. D-C., D.J.T., R.K.G and M.B.; investigation, M.A.D-C., D.G.,
874 C.C., K.R., J.A.G., A.J.B., H.M.B., M.L., A.S., P.S., N.R., C.M., C.B., C.S., C.R., J.G. M., C.M. C.,
875 T.S., and K.S.H.; methodology, M.A.D-C., D.G., F.H.R., K.R., J.A.G., A.J.B., H.M.B., A.J.R., A.S.,
876 P.S., N.R., C.S., C.R., T.S., and K.S.H.; project administration, M.A. D-C., N. H., M.S., and M.B.;
877 resources, M.A. D-C., J.A.G., D.J.T., R.K.G and M.B.; supervision, M.A.D-C., D.J.T., R.K.G and M.
878 B; validation, M.A.D-C., D.G., K.R., J.A.G., C.S., and C.R.; visualization, M.A.D-C., D.G., F.H.R.,
879 K.R., J.A.G., A.J.R., C.S., and C.R.; writing of the original draft, M.A.D-C., F.H.R., K.R., J.A.G.,
880 H.M.B., A.J.R., D.J.T., R.K.G. and M.B.; writing–review and editing, M.A.D-C., F.H.R., D.J.T.,
881 R.K.G. and M.B.
882

883 **Competing interests**

884 The authors declare no competing interests.

885

886 **Figures**

887 **Figure 1. Whipworm L1 larvae infects enterocytes and goblet cells at the bottom of the**
888 **crypts of Lieberkühn in the caecum.**

889 **a** Illustration of the processes of egg hatching at the caecal lumen and larvae infection of the IE at
890 the base of the crypts. **b** Images of toluidine blue-stained transverse sections from caecum of mice
891 infected with *T. muris* (3 and 72 h p.i.), showing whipworm larvae (arrowhead) infecting cells at the
892 base of crypts. Scale bar 30 μ m. **c-g**. TEM images of transverse sections from caecum of mice
893 infected with *T. muris*. **c** Whipworm L1 larvae infecting goblet cells (insets I and III) and
894 enterocytes (inset II) at 3 h p.i. Scale bar 5 μ m. Blue lines show the cellular membranes of the host
895 cells. **d-e** Larvae infecting goblet cells in the caecum of mice 3 h p.i., note: **d** potential mucus
896 discharge (red asterisk) and tannic acid staining (black secretion) revealing complex carbohydrate
897 in the host cell cytoplasm and between cells (inset, red arrow); **e** host cell cytoskeleton
898 reorganization of actin filaments adjacent and parallel to the cuticle of the larvae (inset, white
899 arrowheads). **f** Larvae infecting several IECs in the caecum of mice at 24 h p.i. Host cells display
900 DNA condensation and fragmentation (pyknotic nuclei, characteristic for the onset of apoptosis)
901 and numerous mitochondria. **g** Toluidine blue-stained (scale bar 20 μ m) and TEM images of
902 transverse sections from caecum of mice infected with *T. muris*, showing a syncytial tunnel formed
903 by L1 whipworm larvae through IECs (72 h p.i.) and depicting liquefaction of cells (inset I, red
904 asterisk) and nuclei in early stages of apoptosis (inset II). N, nuclei.

905

906 **Figure 2. Caecaloid - *T. muris* *in vitro* model reproduces *in vivo* infection and reveals**
907 **intricate path of syncytial tunnels burrowed by whipworm L1 larvae.**

908 **a-b** Confocal immunofluorescence (IF) images of caecaloids infected with whipworm L1 larvae for
909 24 h. **a** Orthogonal slice visualising enterocyte microvilli (villin staining in red) above the larvae
910 (white arrowheads). Scale bar 20 μ m. **b** Complete z-stack projection and selected and cropped
911 volume showing larvae infecting different IECs. In red, **(I)** Dclk-1, marker of tuft cells; **(II)** Ki-67,
912 marker of proliferating cells, stem and TA cells. In green, the lectins *Ulex europaeus* agglutinin

913 (UEA) and *Sambucus nigra* (SNA) bind mucins in goblet cells; in blue and aqua, DAPI stains nuclei
914 of IECs and larvae, respectively; and in white, Phalloidin binds to F-actin. Scale bar 20 μ m. **c**
915 Scanning and transmission EM images from caecaloids infected with *T. muris* for 24 h, showing
916 whipworm L1 larvae within enterocytes and goblet cells. Blue lines show the cellular membranes of
917 the host cells. **d** Complete z-stack projection and selected and cropped volume of confocal IF
918 images of syncytial tunnels (white arrowheads) in caecaloids infected with L1 whipworm larvae for
919 24 h. In red, **(I)** Dclk-1, marker of tuft cells; **(II)** ZO-1 protein, binding tight junctions; in green, the
920 lectins UEA and SNA bind mucins in goblet cells; in blue and aqua, DAPI stains nuclei of IECs and
921 larvae, respectively; and in white, Phalloidin binds to F-actin. Scales bar for **(I)** 50 μ m, and **(II)**
922 20 μ m. Inset in **I** corresponds to figure **b (I)**.

923

924 **Figure 3. Whipworm L1 larvae invade caecal epithelium by degrading the overlaying mucus**
925 **layer.**

926 **a** MUC2 purified from LS174T cell lysates was incubated with or without 400 L1 larvae at 37°C for
927 24 h before being subjected to rate zonal centrifugation on linear 6-8M GuHCl gradients (fraction1
928 - low GuHCl; fraction 24 – high GuHCl). After centrifugation tubes were emptied from the top and
929 the fractions probed with a MUC2 antibody. Data are shown as staining intensity arbitrary units (a.
930 u). Results are represented as the mean +/- Standard Error of the Mean (SEM) of 3 independent
931 experiments. **b** Caecaloid mucus degradation by L1 larvae at 72 h p.i. Transwells were washed
932 with 0.2 M urea in PBS to recover mucus. Washes were subjected to rate zonal centrifugation on
933 linear 5-25% sucrose gradients. After centrifugation tubes were emptied from the top and the
934 fractions were stained with Periodic Acid Schiff's (PAS) to detect the mucins. Data are shown as
935 percentage of intensity. Results are represented as the mean +/- SEM of 3 replicas of two
936 caecaloid lines. **c** Representative images of a toluidine blue-stained transverse sections from
937 caecaloids uninfected and infected with *T. muris* larvae for 24 h showing degradation (asterisk) of
938 the overlaying mucus layer immediate above the infected cells. Scale bar 20 μ m.

939

940 **Figure 4. Close interactions between *T. muris* whipworm larvae and IECs at syncytial
941 tunnels during early infection of caecaloids.**

942 **a** Selected confocal IF 2D images from a z-stack showing IECs left behind in the tunnel are
943 necrotic (propidium iodide (red) and caspase 3/7 (green) positive), while IECs infected by worm
944 are alive after 72h p.i. In blue and aqua, DAPI stains nuclei of IECs and larvae, respectively; and in
945 white, Phalloidin binds to F-actin. Scale bar 50 μ m. **b-d** Representative TEM images of transverse
946 sections of caecaloids infected with *T. muris* L1 larvae, showing host-parasite interactions during
947 early infection: **b** Host cell actin fibres surround the cuticle of the worm (inset I) and desmosomes
948 (red asterisks) are still present (inset II) at 24 h p.i. **c** Liquefied cell (inset I, asterisk), numerous
949 mitochondria and nuclei in early stages of apoptosis (inset II) at 72 h p.i. **d** Numerous mitochondria
950 (inset I) and lysosomes in host cells, some actively discharging over the worm cuticle (insets II and
951 III). N, nuclei; white arrowheads, actin filaments; red asterisks, lysosomes.

952
953 **Figure 5. Perturbations on desmosomes, but not in tight junctions, in host cells of
954 whipworm larvae during early infection of caecaloids.**

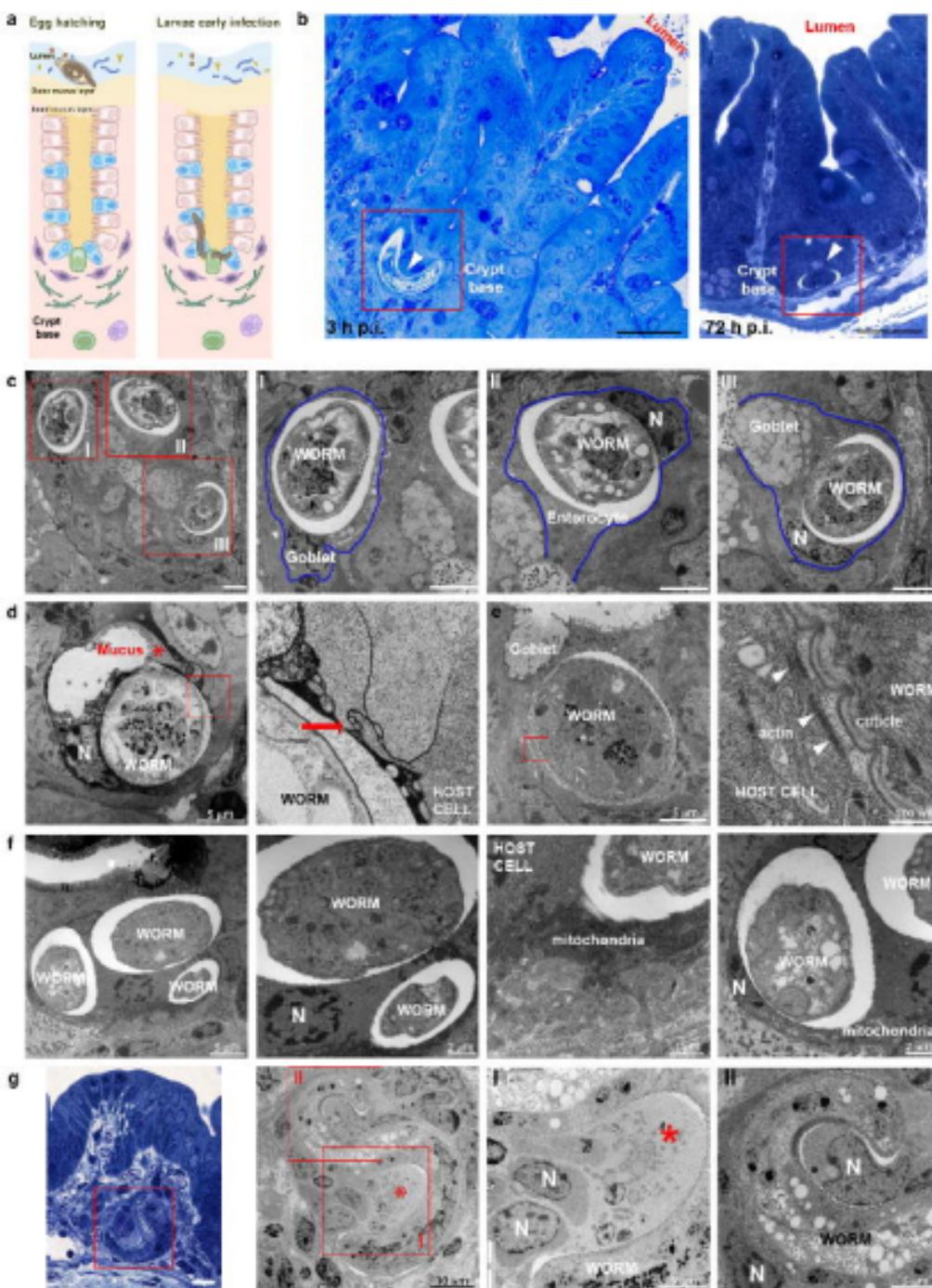
955 **a** Z-stack projection of confocal IF images of larva in syncytial tunnel in caecaloids infected with L1
956 whipworm larvae for 24 h. In red, ZO-1 protein binds tight junctions; in green, the lectins UEA and
957 SNA bind mucins in goblet cells; in blue and aqua, DAPI stains nuclei of IECs and larvae,
958 respectively; and in white, Phalloidin binds to F-actin. Scale bar 10 μ m. **b** Representative TEM
959 images of transverse sections of *T. muris*-infected caecaloids (72 h p.i.) and desmosomes
960 (arrowheads) joining infected and adjacent cells (insets I and II), cells 1mm distant to the worm
961 from infected caecaloids (inset III), and cells from uninfected caecaloids. Scale bars for
962 desmosome images 100nm. Desmosome separation in nm was measured in host cells from four
963 independent worms. Measurements adjacent n=62, distant n=37 and uninfected n=50.
964 ****p<0.0001 Kruskal Wallis test and Dunn's comparisons among groups.

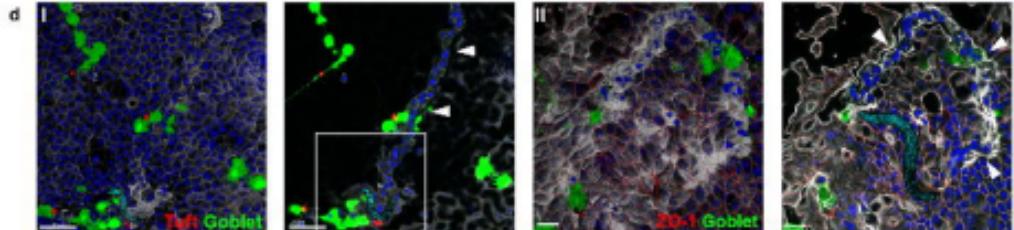
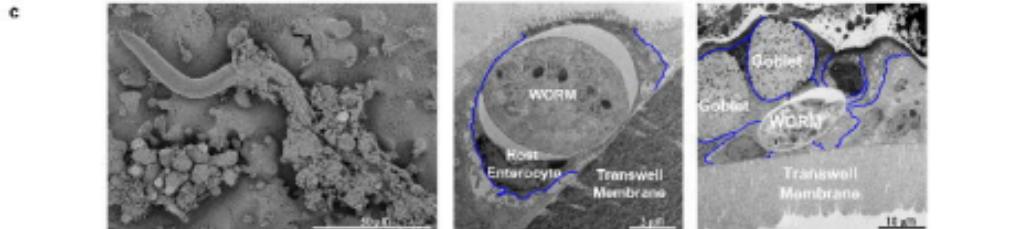
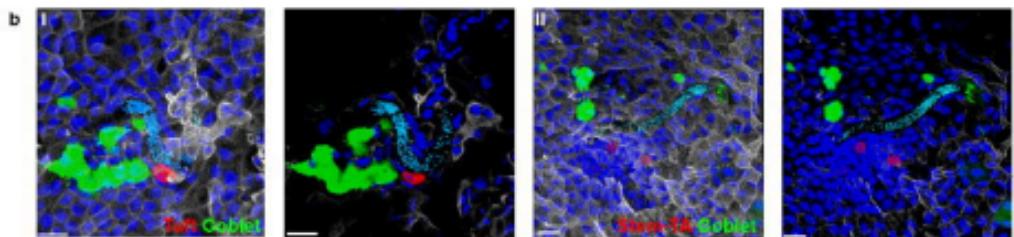
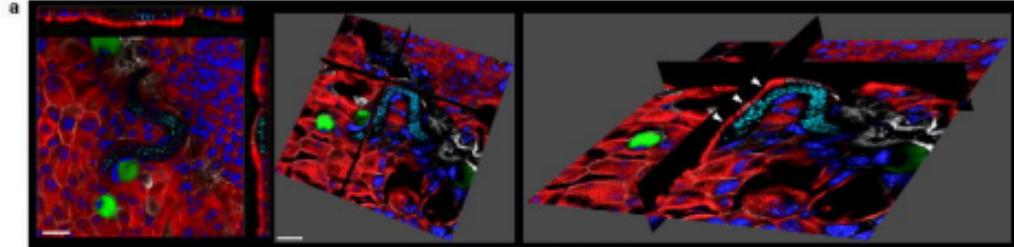
965

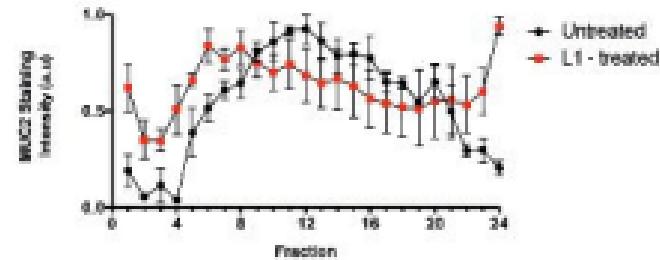
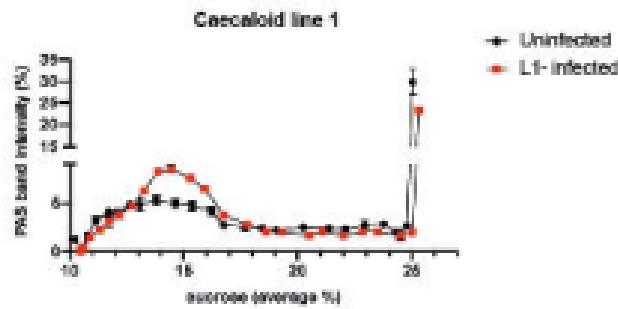
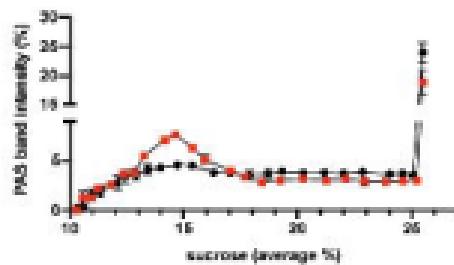
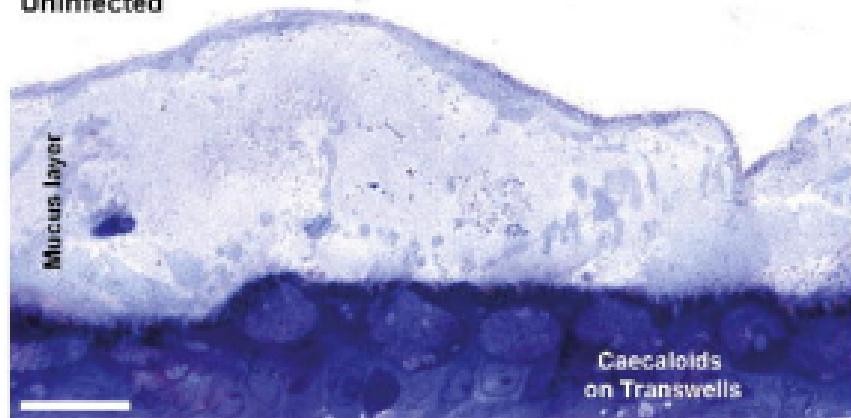
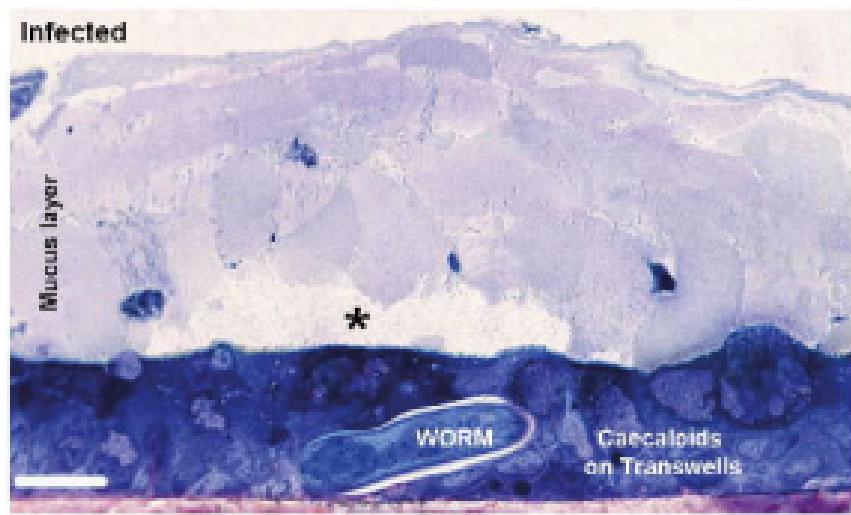
966 **Figure 6. Host IECs responses to early infection with whipworms are dominated by a type-I
967 IFN signature.**

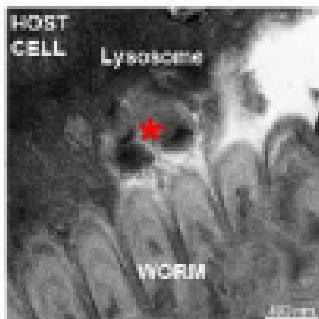
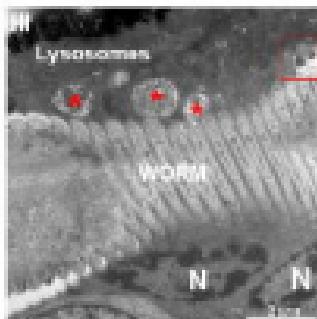
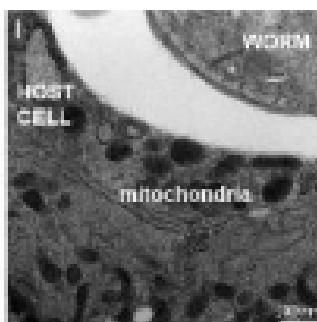
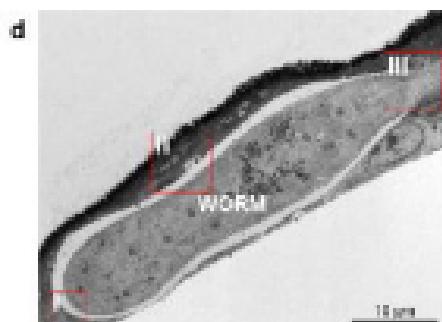
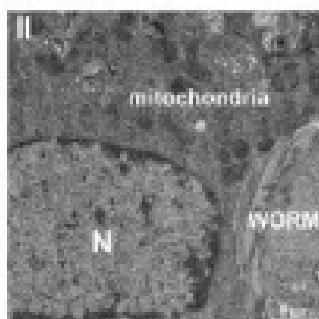
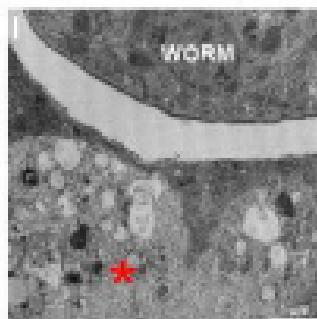
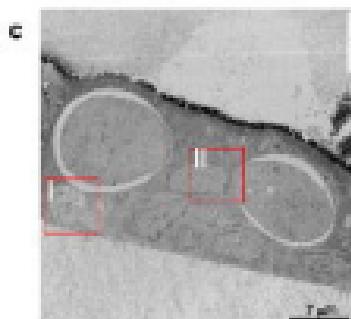
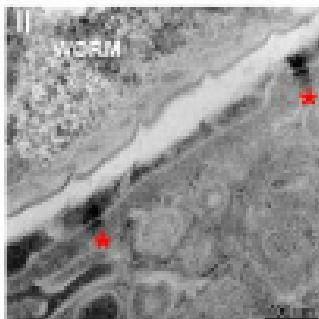
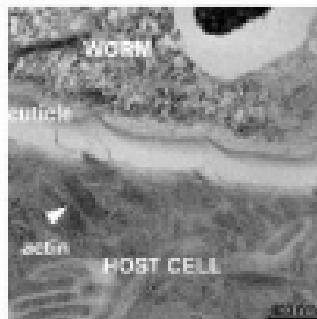
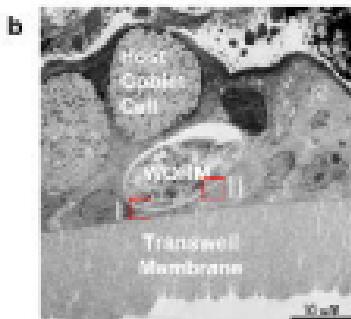
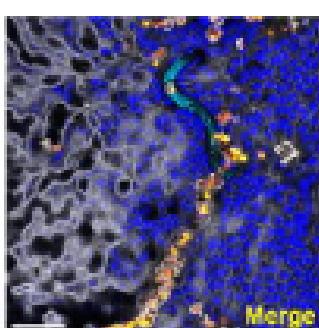
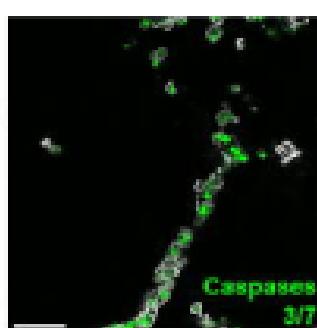
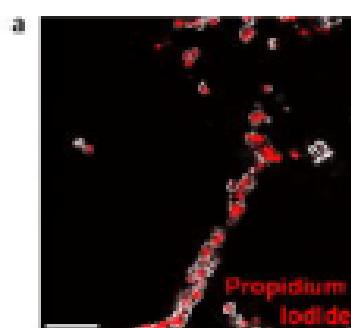
968 **a** Bulk RNA-seq data from complete caecum and caecal IECs of *T. muris*-infected and uninfected
969 mice at days 7, and 1 and 3 p.i., respectively, were analysed by gene set enrichment analysis
970 (GSEA) for cell signature genes in the IFN alpha pathway. All analyses have false discovery rate
971 (FDR) adjusted p values: Caecum, 0.013; day 1 (D1) IEC, 0.025; day 3 (D3) IEC, 0.026. **b** Uniform
972 manifold approximation and projection (UMAP) plots from single cell RNA-seq analysis of 22422
973 EpCAM⁺CD45⁻ cells. IEC populations (colour coded) in the caecum of control (n=8, 4 mice for each
974 time point) and *T. muris*-infected mice after 1 and 3 days p.i. (n=4 mice for each time point). **c** Dot
975 plot of the top marker genes for each cell type. The relative size of each dot represents the fraction
976 of cells per cluster that expresses each marker; the colour represents the average (scaled) gene
977 expression. **d** Increased relative abundance of the Enterocyte *Isg15* cluster upon 72 h of *T. muris*
978 infection. The size of the clusters, expressed as a proportion of the total number of cells per
979 individual, was compared across four biological replicates at each time point for uninfected and *T.*
980 *muris*-infected mice. Mean +/- standard deviation is shown (* p<0.05, two-tailed t test).

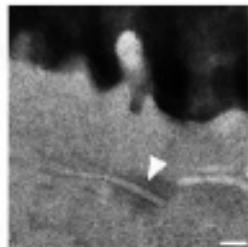
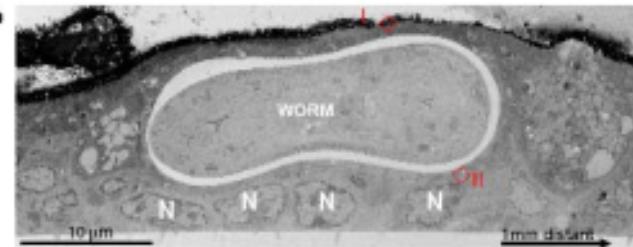
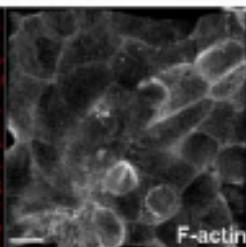
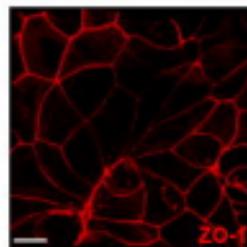
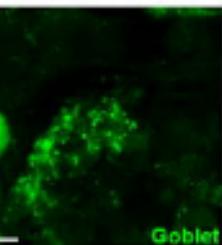
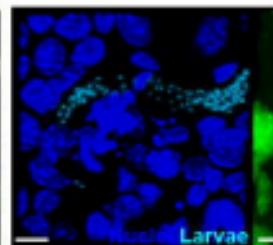
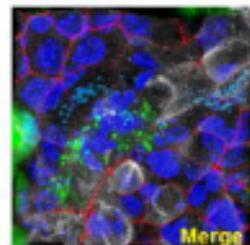
981

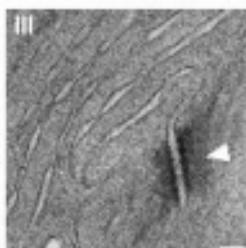
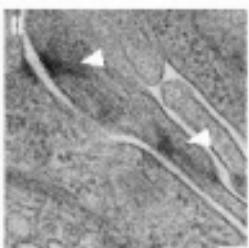
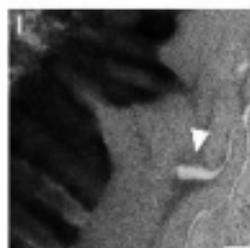

982 **Figure 7. Expansion of crypts with enterocytes expressing *Isg15* upon whipworm infection.**
983 Representative images of expression of *Isg15* (green) and *Krt20* (magenta), visualised by mRNA
984 ISH by HCR, in the caecum of **a** uninfected mice and **b** *T.muris*-infected mice after 72 h of
985 infection. Dashed white lines show the extent of “islands” of *Isg15*⁺ crypts. **c** The number of *Isg15*⁺
986 crypts in a caecal section was calculated as a percentage of the total number of crypts. Three
987 caecal sections (technical replicates) per mouse were quantified, with three mice analysed per
988 condition (uninfected, 24 and 72 h p.i.), **p=0.0045, ***p=0.0002 Kruskal Wallis test and Dunn’s
989 comparisons among groups. For each condition, dots representing technical replicates are
990 coloured identically. **d** Detection of *T. muris* *p43* transcripts (by HCR) and **e** *p43* protein (by IF)
991 facilitated location of worms within infected caecal tissue. **f** In some instances, worms were located
992 near islands of *Isg15*⁺ enterocytes, **g** while in other cases, worms were found away from these
993 islands. Scale bars: a/aⁱ and b/bⁱ=60 μ m; d and e = 25 μ m; f/fⁱ and g/gⁱ=30 μ m.





994

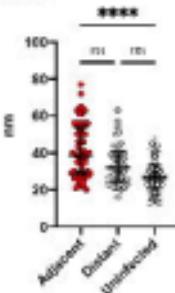





995

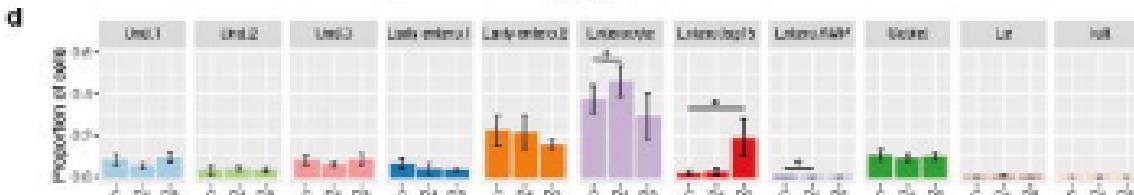
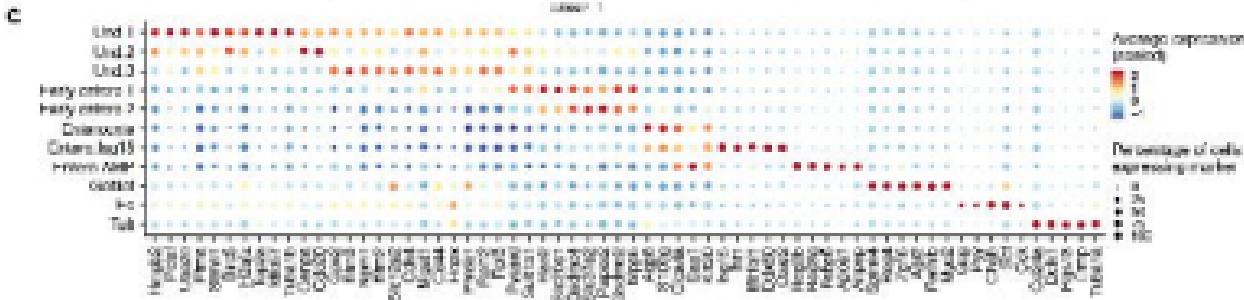
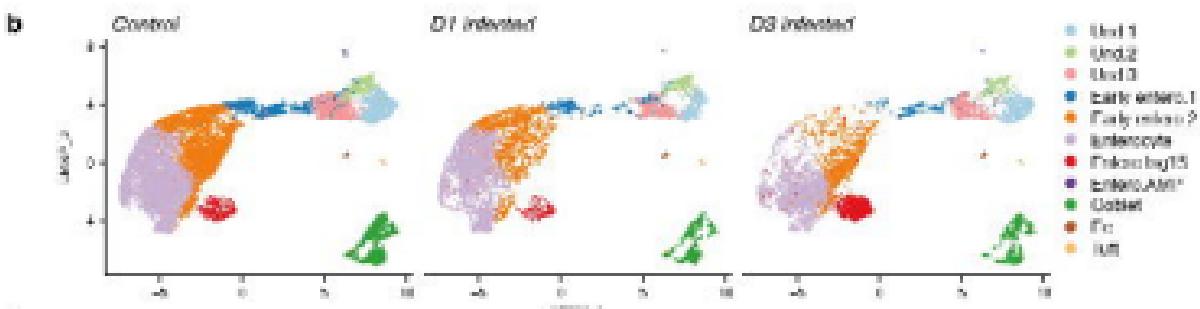













996

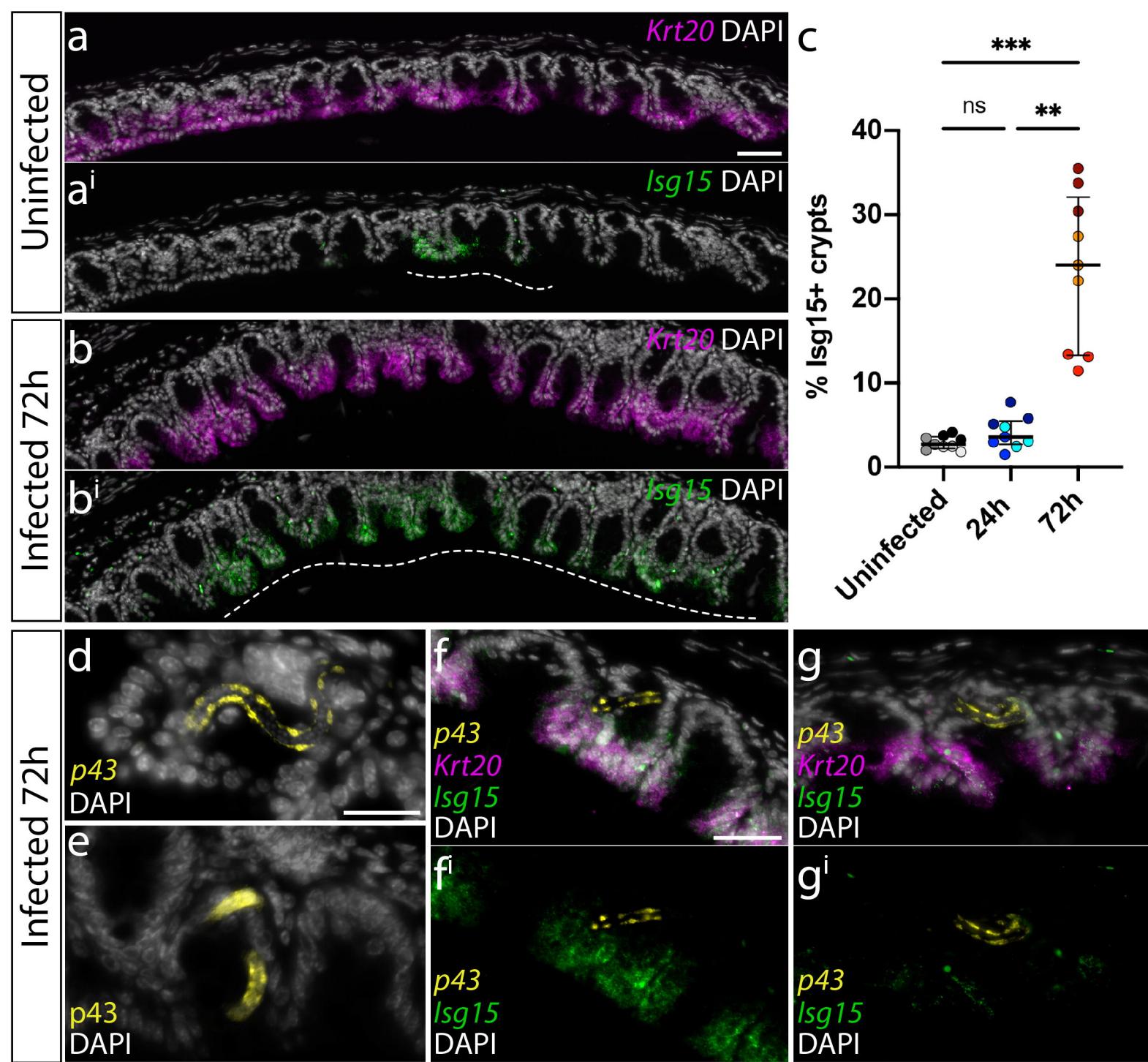







997

a**b****Caecaloid line 2****c****Uninfected****Infected**


Uninfected


Adjacent to worm 1

Adjacent to worm 2

Distant to worm

