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Abstract 20 

Modular response analysis (MRA) is a widely used modeling technique to uncover coupling strengths in 21 

molecular networks under a steady-state condition by means of perturbation experiments. We propose 22 

an extension of this methodology to search genomic data for new associations with a network modeled 23 

by MRA and to improve the predictive accuracy of MRA models. These extensions are illustrated by 24 

exploring the cross talk between estrogen and retinoic acid receptors, two nuclear receptors implicated 25 

in several hormone-driven cancers such as breast. We also present a novel, rigorous and elegant 26 

mathematical derivation of MRA equations, which is the foundation of this work and of an R package 27 

that is freely available at https://github.com/bioinfo-ircm/aiMeRA/. This mathematical analysis should 28 

facilitate MRA understanding by newcomers. 29 

 30 

Author summary 31 

Estrogen and retinoic acid receptors play an important role in several hormone-driven cancers and share 32 

co-regulators and co-repressors that modulate their transcription factor activity. The literature shows 33 

evidence for crosstalk between these two receptors and suggests that spatial competition on the 34 

promoters could be a mechanism. We used MRA to explore the possibility that key co-repressors, i.e., 35 

NRIP1 (RIP140) and LCoR could also mediate crosstalk by exploiting new quantitative (qPCR) and RNA 36 

sequencing data. The transcription factor role of the receptors and the availability of genome-wide data 37 

enabled us to explore extensions of the MRA methodology to explore genome-wide data sets a 38 

posteriori, searching for genes associated with a molecular network that was sampled by perturbation 39 

experiments. Despite nearly two decades of use, we felt that MRA lacked a systematic mathematical 40 

derivation. We present here an elegant and rather simple analysis that should greatly facilitate 41 
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newcomers’ understanding of MRA details. Moreover, an easy-to-use R package is released that should 42 

make MRA accessible to biology labs without mathematical expertise. Quantitative data are embedded 43 

in the R package and RNA sequencing data are available from GEO. 44 

 45 

 46 

 47 

 48 

Introduction 49 

Modular response analysis (MRA) was introduced to infer the coupling between components of a 50 

biological system in a steady-state [1]. It can be applied to components at different levels of details, e.g., 51 

individual genes or subsystems such as pathways or processes. It relies on the perturbation of individual 52 

components, the so-called modules. Various developments of MRA and related methods were recently 53 

reviewed [2] but, despite its success, MRA mathematical derivation was not provided in a systematic 54 

and rigorous manner. We thus reasoned that such an analysis was needed and it would facilitate the 55 

understanding of the methodology for newcomers. It is presented as a result and is the basis of the 56 

development of an open source R library (aiMeRA) that should make MRA accessible to biology labs 57 

without mathematical expertise. We illustrate the use of the aiMeRA package by investigating the 58 

crosstalk between nuclear receptors (NRs) in a breast cancer (BC) cell line. A new extension of the 59 

method is also introduced to perform inferences at the genomic scale. The Blüthgen Lab recently 60 

released another R package to perform MRA computations [3], although with a specific focus on their 61 

particular edge-pruning and associated maximum likelihood extension of MRA [4] that is not our interest 62 

in this study. 63 
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Estrogen receptors (ERs) belong to the NR superfamily, which act as transcription factors activated upon 64 

ligand binding. The two isoforms of ERs (ERα and ERβ) are involved in the control of cell proliferation 65 

and exhibit essential functions in tissue development and homeostasis, in particular in organs related to 66 

reproduction [5]. ERα overexpression is frequently observed in breast, ovarian, endometrial, and other 67 

hormone-driven tumors. The transcriptional activity of ERs is modulated by several coregulatory 68 

complexes including coactivators and corepressors [5]. In the presence of estrogens or any agonist 69 

ligand, ERs interact preferentially with coactivators, or with a specific subclass of corepressors including 70 

nuclear receptor-interacting protein 1 (NRIP1 or RIP140) and Ligand-dependent corepressor (LCoR). 71 

NRIP1 is a corepressor of particular interest because its expression is directly induced by estrogen, i.e., 72 

NRIP1 installs a negative feedback loop to keep ER signaling under control [6]. NRIP1 abnormal 73 

expression is indeed observed in ER-driven tumors [7,8]. LCoR represses transcription of estrogen-74 

induced gene expression [9], and NRIP1 expression was shown to be necessary for LCoR inhibitory 75 

activity in BC cells [10]. 76 

Interestingly, NRIP1 and LCoR function as corepressors for several liganded NRs. For instance, LCoR can 77 

repress vitamin D receptor (VDR), retinoic acid receptors (RARs), and RXR ligand-dependent 78 

transcription [9] in addition to ERs. Moreover, NRIP1 is a known direct target and negative regulator of 79 

RAR transcription [11]. 80 

There is experimental evidence of crosstalk between ER and RAR signaling [12]. For instance, ERα can 81 

suppress the basal expression of retinoic acid (RA)-responsive gene RARβ2, but also turns out to be 82 

necessary for its RA induction [13]. It was also found that ERα activates RARα1 expression in BC cells 83 

[14]. Other authors intersected RAR targets identified by ChIP-seq with ER binding sites to discover a 84 

significant overlap [15]. This work suggested a space competition mechanism for estrogen and RA 85 

signaling in BC. A potential cooperative interaction between RARα and ER was also shown in BC [16]. 86 

Since NRIP1 and LCoR expression can be both regulated by RAR and ER transcription, we can further 87 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.01.30.925800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

hypothesize that these molecules mediate part of ER-RAR crosstalk. The induced expression of NRIP1 88 

and LCoR by one receptor produces molecules able to repress signaling of both receptors subsequently. 89 

We aimed at characterizing the ER-RAR-NRIP1-LCoR network, at the transcriptional level, utilizing 90 

transcript abundance measurements and MRA. Accordingly, we considered a steady-state situation in a 91 

BC (MCF7-derived) cell line that would model BC cells with or without constant estrogenic stimulation. 92 

Perturbation experiments were realized to generate quantitative PCR data unraveling interaction 93 

strengths in the network, i.e., coupling according to MRA principles. 94 

Given the nature of ER and RAR, i.e., transcription factors, and the general ability of MRA to perform 95 

predictions [4], we introduced an extension of the method to perform genome-wide inferences 96 

exploiting mRNA sequencing (RNA-seq) data. For this purpose, we acquired whole transcriptomes under 97 

perturbed conditions identical to those used for qPCR. We first established that MRA could produce 98 

accurate results from RNA-seq data. Next, we asked whether the ER-RAR-NRIP1-LCoR network inferred 99 

by MRA could predict the mRNA abundance of estrogen-targeted genes better than a trivial model. This 100 

extension of MRA, where one or several modules do not experience perturbations, was called 101 

unidirectional to underline the implied absence of potential influence on the other modules. 102 

 103 

 104 

Results 105 

Mathematical derivation 106 

MRA original paper [1] introduced the concept of modeling interdependencies (coupling) within a 107 

biological system modularly. That is, subsystems involving molecules and their relationship at a detailed 108 

level, which would not be the interest of the study, could be captured as a single module with one 109 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.01.30.925800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

measurable quantity defining the overall module activity. For instance, in the case of ERα signaling, it is 110 

possible to represent the complex process of ligand-binding and transcriptional activity by a single 111 

module (Fig. 1). The activity of this module is measured by a reporter gene, which is the luciferase in 112 

MELN cells. NRIP1 and LCoR activities were determined by their respective mRNA abundances. We ask 113 

the question of the direct dependence of each module activity with respect to the other modules 114 

activity. That is, we want to compute (signed) weights to put on the directed edges of Fig. 1. The answer 115 

is searched in a steady-state through successive elementary perturbations of each module activity. 116 

Depending on the application, this framework can be applied to different molecular species and 117 

processes, e.g., protein or metabolite concentrations, protein phosphorylation levels, etc. [2]. 118 

 119 

Fig. 1. MRA general principle. Illustrated with the ERα-NRIP1-LCoR transcriptional network. Each 120 

module’s activity level is given by a measured reporter. Coupling (edge weights) is determined from 121 

perturbation experiments. 122 

 123 

Now, in full generality, we assume that there are 𝑛 modules whose activities are given by 𝑥 ∈ ℝ𝑛. We 124 

further admit the existence of 𝑛 intrinsic parameters, 𝑝 ∈ ℝ𝑛, one per module, which are perturbed by 125 

the elementary perturbations. One can imagine mRNA abundance parameters for perturbations such as 126 

siNRIP1 or siLCoR, and numbers of available ERα-E2 bound complexes for the E2 perturbation. In other 127 

circumstances, perturbations could change affinity constants or other physical characteristics. Finally, 128 

we assume that there exist 𝑓:ℝ𝑛 × ℝ𝑛⟶ℝ𝑛 of class 𝒞1 (continuously differentiable) such that 129 

𝑥̇ = 𝑓(𝑥, 𝑝).                                                                                    (1) 130 
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We do not need to know 𝑓(𝑥, 𝑝) = (𝑓1(𝑥, 𝑝),⋯ , 𝑓𝑛(𝑥, 𝑝))
𝑡 explicitly, but we need one more hypothesis 131 

that is the existence of a time 𝑇 > 0 such that all the solutions we consider for any 𝑝 and initial 132 

conditions of 𝑥, have reached a steady-state, i.e., 133 

𝑥̇ = 0, ∀t > T. 134 

The unperturbed, basal state of the modules is denoted 𝑥0 ∈ ℝ𝑛 and it has corresponding parameters 135 

𝑝0 ∈ ℝ𝑛. According to our hypotheses, 𝑓(𝑥0, 𝑝0) = 0 ⟺ 𝑓𝑖(𝑥
0, 𝑝0) = 0, ∀𝑖 ∈ {1,⋯ , 𝑛}. By the implicit 136 

function theorem, ∀i, there exists open neighborhoods 𝑉𝑖 ×𝑊𝑖 ⊂ ℝ
𝑛−1 × ℝ𝑛 of 137 

(𝑥1
0,⋯ , 𝑥𝑖−1

0 , 𝑥𝑖+1
0 ,⋯ , 𝑥𝑛

0, 𝑝1
0, ⋯ , 𝑝𝑛

0), 𝑈𝑖 ⊂ ℝ of 𝑥𝑖
0, and 𝑔𝑖: 𝑉𝑖 ×𝑊𝑖 ⟶𝑈𝑖  (also 𝒞1) with 138 

𝑓𝑖(𝑥1
0,⋯ , 𝑥𝑖−1

0 , 𝑔𝑖(⋯ ), 𝑥𝑖+1
0 ,⋯ , 𝑥𝑛

0, 𝑝1
0, ⋯ , 𝑝𝑛

0) = 0.                                       (2) 139 

We denote 𝑥(𝑝0 + Δ𝑝), the steady-state corresponding to the changed parameters 𝑝0 + Δ𝑝. We 140 

introduce the notation 𝑥𝑗≠𝑖 to denote all the 𝑥𝑗 but 𝑥𝑖. Now, if we assume that (𝑥𝑗≠𝑖(𝑝
0 + Δ𝑝), 𝑝0 +141 

Δ𝑝) belong to 𝑉𝑖 ×𝑊𝑖  for all the perturbations considered experimentally, then by Taylor’s Formula 142 

𝑥𝑖(𝑝
0 + Δ𝑝) = 𝑥𝑖(𝑝

0) + 𝑔𝑖
′(𝑝0)

(

 
 
 
 
 
 
 

𝑥1(𝑝
0 + Δ𝑝) − 𝑥1(𝑝

0)
⋮

𝑥𝑖−1(𝑝
0 + Δ𝑝) − 𝑥𝑖−1(𝑝

0)

𝑥𝑖+1(𝑝
0 + Δ𝑝) − 𝑥𝑖+1(𝑝

0)
⋮

𝑥𝑛(𝑝
0 + Δ𝑝) − 𝑥𝑛(𝑝

0)
Δ𝑝1
⋮
Δ𝑝𝑛 )

 
 
 
 
 
 
 

+ ℴ(‖Δ𝑝‖).                      (3) 143 

Dividing each side by 𝑥𝑖(𝑝
0), Eq. (3) can be rewritten 144 

𝑥𝑖(𝑝
0 + Δ𝑝) − 𝑥𝑖(𝑝

0)

𝑥𝑖(𝑝
0)

= 145 

∑

𝑥𝑗(𝑝
0)

𝑥𝑖(𝑝
0)

𝜕𝑔𝑖
𝜕𝑥𝑗

(𝑝0) (
𝑥𝑗(𝑝

0 + Δ𝑝) − 𝑥𝑗(𝑝
0)

𝑥𝑗(𝑝
0)

)
𝑛

𝑗=1,𝑗≠𝑖

 146 
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+
1

𝑥𝑖(𝑝
0)
∑

𝜕𝑔𝑖

𝜕𝑝𝑗
(𝑝0)(Δ𝑝𝑗)

𝑛
𝑗=1 + ℴ(‖Δ𝑝‖).                                               (4) 147 

 148 

Since parameter 𝑝𝑗  influences module 𝑗 only, 
𝜕𝑔𝑖

𝜕𝑝𝑗
= 0 if 𝑗 ≠ 𝑖. Moreover, 𝑔𝑖(𝑥𝑗≠𝑖, 𝑝)  = 𝑥𝑖(𝑥𝑗≠𝑖, 𝑝) in 149 

𝑉𝑖 ×𝑊𝑖, and if we denote 150 

Δ𝑥𝑖

xi
=
𝑥𝑖(𝑝

0+Δ𝑝)−𝑥𝑖(𝑝
0)

𝑥𝑖(𝑝
0)

, 151 

and 152 

𝑟𝑖,𝑗 =
𝑥𝑗(𝑝

0)

𝑥𝑖(𝑝
0)

𝜕𝑥𝑖

𝜕𝑥𝑗
(𝑝0), 𝑗 ≠ 𝑖,                                                             (5) 153 

then 154 

Δ𝑥𝑖

𝑥𝑖
= ∑ 𝑟𝑖,𝑗 (

Δ𝑥𝑗

𝑥𝑗
) +

1

𝑥𝑖(𝑝
0)

𝜕𝑥𝑖

𝜕𝑝𝑖
(𝑝0)(Δ𝑝𝑖)𝑗≠𝑖 + ℴ(‖Δ𝑝‖).                                       (6) 155 

We next consider elementary perturbations 𝑞𝑘, 𝑘 ∈ {1,⋯ , 𝑛}, which only perturb module 𝑘, i.e., the 156 

parameter 𝑝𝑘. Neglecting the second-order term ℴ(‖Δ𝑝‖) and writing 157 

(
Δ𝑥𝑖
𝑥𝑖
)
𝑞𝑘

 158 

the relative difference in module 𝑖 activity upon Δ𝑝𝑘 change induced by perturbation 𝑞𝑘, we find 159 

(
Δ𝑥𝑖

𝑥𝑖
)
𝑞𝑘

= ∑ 𝑟𝑖,𝑗 (
Δ𝑥𝑗

𝑥𝑗
)
𝑞𝑘

𝑗≠𝑖 , 𝑘 ≠ 𝑖,                                                         (7) 160 

(
Δ𝑥𝑖

𝑥𝑖
)
𝑞𝑖

= ∑ 𝑟𝑖,𝑗 (
Δ𝑥𝑗

𝑥𝑗
)
𝑞𝑘

𝑗≠𝑖 +
𝜕𝑥𝑖

𝜕𝑝𝑖
(𝑝0) (

Δ𝑝𝑖

𝑥𝑖
).                                                (8) 161 

By defining 𝑟𝑖,𝑖 = −1, we can write Eqs (7) and (8) in matrix form: 162 

𝑟𝑅 = −𝑃,                                                                             (9) 163 
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where 𝑅 is the matrix that contains the experimentally observed relative activity changes 𝑅𝑗,𝑘 =164 

(
Δ𝑥𝑗

𝑥𝑗
)
𝑞𝑘

, 𝑗, 𝑘 ∈ {1,⋯ , 𝑛}. 𝑃 is a diagonal matrix with 𝑃𝑖,𝑖 =
𝜕𝑥𝑖

𝜕𝑝𝑖
(𝑝0) (

Δ𝑝𝑖

𝑥𝑖
), 𝑖 ∈ {1,⋯ , 𝑛}. The system (9) 165 

can be solved in two steps [1]. Firstly, 𝑟 = −𝑃𝑅−1 and because 𝑟𝑖,𝑖 = −1, we have 𝑃𝑖,𝑖(𝑅
−1)𝑖,𝑖 = 1 and 166 

thus 𝑃𝑖,𝑖 =
1

(𝑅−1)𝑖,𝑖
. Secondly, 167 

𝑟 = −[diag(𝑅−1)]−1𝑅−1. 168 

The elements of 𝑅 are defined by (
𝑥𝑖(𝑝

0+Δ𝑝𝑘)−𝑥𝑖(𝑝
0)

𝑥𝑖(𝑝
0)

)
𝑞𝑘

 but as previously suggested [1], we preferred to 169 

estimate this quantity by 170 

𝑅𝑗,𝑘 = 2(
𝑥𝑖(𝑝

0+Δ𝑝𝑘)−𝑥𝑖(𝑝
0)

𝑥𝑖(𝑝
0+Δ𝑝𝑘)+𝑥𝑖(𝑝

0)
)
𝑞𝑘

,                                                       (10) 171 

which avoids divisions by 0 and is numerically more stable. 172 

Finally, from Eq. (5), we see that 𝑟𝑖,𝑗 contains the searched coupling between MRA modules: direct 173 

action of 𝑗 on 𝑖 normalized by the ratio 𝑥𝑗/𝑥𝑖. Similarly, 𝑃𝑖,𝑖 measures the relative effect of 𝑞𝑖 on 𝑥𝑖. We 174 

call it 𝑞𝑖 magnitude. The implicit function theorem provides analytical expressions for 𝑔𝑖′ in terms of 𝑓 175 

partial derivatives, but since 𝑓 is generally unknown, we did not use them. In his seminal work, 176 

Kholodenko made additional hypotheses to show that 𝑟 contains coupling information, which is not 177 

necessary with our derivation. To be rigorous, one should ultimately restrict the model to 178 

neighborhoods included in all the 𝑉𝑖’s, 𝑊𝑖’s, and 𝑈𝑖’s. 179 

MRA models have been largely used for their inference capabilities [4]. Let us define a multiple 180 

perturbation 𝑞 to be the linear combination of elementary perturbations 𝑞𝑘. For instance, a 181 

perturbation on modules 𝑖 and 𝑗 with the same individual magnitudes would be coded by a column 182 

vector 𝑐 with 1’s at positions 𝑖 and 𝑗 and 0’s elsewhere. From Eq. (9), we compute 183 
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(
Δ𝑥

𝑥
)
𝑞
= −𝑟−1𝑃𝑐,                                                                       (11) 184 

with (
Δ𝑥

𝑥
)
𝑞

 the column vector containing the inferred relative changes on each module activity. 185 

Denoting Δ𝑝 the parameter changes induced by 𝑞, individual module activities are given by 186 

(
Δ𝑥𝑖
𝑥𝑖
)
𝑞

= −(𝑟−1𝑃𝑐)𝑖 = 2
𝑥𝑖(𝑝

0 + Δ𝑝) − 𝑥𝑖(𝑝
0)

𝑥𝑖(𝑝
0 + Δ𝑝) + 𝑥𝑖(𝑝

0)
 187 

⟺     𝑥𝑖(𝑝
0 + Δ𝑝) =

𝑥𝑖(𝑝
0)

1+
2

(𝑟−1𝑃𝑐)𝑖

(
2

(𝑟−1𝑃𝑐)𝑖
− 1).                                                                     (12) 188 

 189 

In case elementary perturbations contribute for different amounts to 𝑞, the vector 𝑐 contains 𝑞𝑘’s 190 

relative weights. In every case, linearity between the perturbation strength and its impact on 𝑝 is 191 

assumed. 192 

Confidence intervals (CI) around model parameters are estimated by a bootstrap procedure [17]. We 193 

considered experimental designs with biological and technical replicates. We average the technical 194 

replicates to obtain one activity value per biological replicate. The latter are again averaged to compute 195 

the 𝑅 matrix according to Eq. (10). From the biological replicates, we estimate the variance of each 𝑥𝑖 196 

employing an estimator optimized for a small sample size from Statistical Process Control theory [18,19]. 197 

Finally, a Gaussian distribution is assumed and 106 𝑅 matrices are generated, which are submitted to 198 

MRA computations. The 95% CI is obtained from the 2.5th and 97.5th percentiles. In case 0 is not included 199 

in the CI, the MRA parameter is deemed significant and marked by an asterisk in the figures. 200 

Inferences obtained from Eq. (12) were also complemented by the estimation of CIs following the 201 

principles above. 202 

 203 
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Transcriptional data 204 

ERβ and RARβ expression could not be quantified in MELN cells. We hence learned networks involving 205 

an ERα module, which transcriptional activity was reported by the ERE/luciferase construct. That is, 206 

luciferase mRNA abundance measured ERα activity. ERα mRNA abundance would combine ligand-bound 207 

and free amounts of the receptor, but only the ligand-bound ones matter in the model. We did not try 208 

to distinguish between RARα and RARγ. We estimated their combined transcriptional activity by the 209 

mRNA abundance of the HOXA5 gene and the corresponding MRA module was named RARs. NRIP1 and 210 

LCoR activity were determined by their gene mRNA abundance. Since MELN cells are BC cells, we 211 

considered the E2-, RA-, or E2+RA-stimulated conditions as basal. That is, perturbations at ERα and RARs 212 

were negative (switch to ethanol). Perturbations at NRIP1 and LCoR were achieved by siRNAs, i.e., they 213 

were also negative. 214 

 215 

The ERα-NRIP1-LCoR network 216 

In an unstimulated condition (no E2), it is known that NRIP1 expression induces LCoR expression [10]. 217 

We started by assessing this coupling under the E2 basal condition and found similar coupling (Fig. 2A). 218 

We also observed negative coupling from LCoR to NRIP1, which is logical since NRIP1 is a direct target of 219 

E2-bound ERα and LCoR one of its corepressor. We next inferred the ERα-NRIP1-LCoR network under E2 220 

(Fig. 2B). We could observe the known induction of NRIP1 by ERα with negative feedback [6]. We also 221 

reconstituted the known inhibition of ERα by LCoR [9]. Interestingly, the induction of LCoR upon NRIP1 222 

expression observed in Fig. 2A became a double inhibition via ERα in Fig. 2B. This makes sense since 223 

there is no transcriptional control by NRIP1 alone, it can only modulate ERα activity. Perturbation 224 

magnitudes are in Fig. 2C. Finally, we assessed the validity of the inferred network by checking its 225 
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predictive power. From Fig. 2D, we note a reasonable fidelity of the model and that the relative errors 226 

are commensurate with the CI sizes, i.e., with data variability. 227 

 228 

Fig. 2. ER and RAR separated networks. A. Coupling between the two corepressors under E2 condition. 229 

A 95% CI for each model parameter was estimated and the parameter marked by an asterisk provided 0 230 

was not included (nonzero with 5% significance). B. The ERα-NRIP1-LCoR transcriptional network. C. 231 

ERα, NRIP1, and LCoR perturbation magnitudes. D. Inference of gene expression under the dual siNRIP1 232 

and siLCoR perturbation. E. Similar to A but under RA condition. F. The RARs-NRIP1-LCoR network. G. 233 

Similar to C. H. Similar to D.  234 

 235 

The RARs-NRIP1-LCoR network 236 

Our next endeavor was to build a RARs-NRIP1-LCoR network before switching to the full network with 237 

both NRs. NRIP1 and LCoR coupling under RA stimulation (Fig. 2E) remained similar to its state under E2. 238 

That was expected since these two corepressors are used by several NRs. In Fig. 2F, we reconstituted the 239 

induction of NRIP1 expression by RAR as well as the inhibition of RAR expression by NRIP1 [11]. The 240 

inhibition of RAR by LCoR was also known [9]. Coupling between LCoR and NRIP1 is essentially similar to 241 

Fig. 2B since the NRIP1-to-LCoR arrows featured weak coupling. NRIP1 perturbation magnitude 242 

remained close, but LCoR perturbation changed 2-fold (Fig. 2G) although the same siRNAs were used. 243 

Inferences (Fig.2H) also supported the accuracy of the model. 244 

 245 

The full ERα-RARs-NRIP1-LCoR network 246 
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We followed the same approach as above to construct a full model of ER-RAR crosstalk (Fig. 3A). 247 

Perturbation magnitudes (Fig. 3B) were in the same range as before under the new dual E2 and RA basal 248 

condition. Values for NRIP1 and LCoR were closer to the RAR-NRIP1-LCoR network. No literature reports 249 

coupling with the corepressors NRIP1 and LCoR under this particular condition. Only the crosstalk 250 

between RAR and ER mentioned in the introduction is known [15,16]. We hence first challenged the 251 

model by testing its predictive accuracy (Fig. 3C), which was again satisfying. 252 

 253 

Fig. 3. The ERα-RARs-NRIP1-LCoR network. A. MRA network model. B. Perturbation magnitudes under 254 

the dual E2 and RA stimulation. C. Inferred activity of the modules upon double siRNA inhibition of 255 

NRIP1 and LCoR. 256 

 257 

Interestingly, cross inhibition of ER and RAR signaling acted along two paths. The model shows direct 258 

inhibition of ER transcriptional activity by the RAR module, which was described in the literature [15,16]. 259 

Reciprocal inhibition was suggested but not significant in our data. In agreement with our hypothesis, 260 

we found a parallel crosstalk mechanism through the induction of NRIP1 expression, which could 261 

subsequently repress both RARs and ERα. MRA modeling thus supported the coexistence of the two 262 

phenomena. Although LCoR reversed action on NRIP1 compared to the E2 and RA independent 263 

conditions might counterbalance cross inhibition of the two NRs, the strengths of coupling on the model 264 

edges and the much-attenuated induction of LCoR by NRIP1 suggested that it was not the case. 265 

 266 

MRA models from RNA-seq data 267 

Since MRA relies on module activity relative change (Eqs. (7-8)), absolute quantitation is not necessary. 268 

We thus computed an RARs-NRIP1-LCoR MRA models as HOXA5, NRIP1, and LCoR mRNA abundances 269 
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were available in our RNA-seq data (Fig. 4A). Comparing with the qPCR-based model in Fig. 2F, we notice 270 

that all the significant edges of Fig. 2F plus NRIP1-to-LCoR were recovered. The only change is very weak 271 

coupling LCoR-to-RARs (-0.03) that became slightly positive (0.13) with RNA-seq data. CIs were not 272 

determined for RNA-seq data since only two replicates were available. 273 

 274 

Fig. 4. Genomic-scale inferences. A. RARs-NRIP1-LCoR model trained from RNA-seq data. B. Eight 275 

closest replacement genes for ERE-Luc in the ERα-NRIP1-LCoR model. C. ERα-NRIP1-LCoR models with 276 

ERE-Luc replaced by PGR, trained from qPCR and RNA-seq data. D. Principle of unidirectional MRA. E. 277 

Accuracy of unidirectional MRA inference (udMRA & udMRA.ab) under the E2 condition with double 278 

siNRIP1/siLCoR perturbation versus simple predictors (mean, geometric mean (gMean), and maximum 279 

of the two siRNAs). 280 

 281 

The results above indicated that MRA could be applied to RNA-seq data. We, therefore, decided to 282 

exploit this opportunity by performing a new type of investigation. We used MRA to find a gene that 283 

would function as ERα transcription reporter, and would thus replace the ERE-Luc construct. Existing 284 

ChIP-seq data [20] intersected with our RNA-seq data allowed us to identify 884 genes targeted by ERα 285 

and E2-regulated (edgeR analysis, P-value<0.01, fold-change>2). We hence computed 884 MRA models 286 

with siNRIP1 and siLCoR RNA-seq data, replacing ERE-Luc by each of those genes successively. The genes 287 

with closest Euclidean distances between their model coupling parameters (the 𝑟𝑖,𝑗  matrix) and those of 288 

the original Fig. 2B qPCR model are listed in Fig. 4B. We decided to test PGR and measured its expression 289 

by qPCR. The qPCR- and RNA-seq-based models are featured in Fig. 4C. They accurately reproduced the 290 

original model of Fig. 2B and were very similar to each other, thereby further validating the use of RNA-291 

seq data for MRA model training.  292 
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 293 

Unidirectional MRA on a genome-scale 294 

We reasoned that the ERα-NRIP1-LCoR MRA model might provide means of predicting E2-regulated 295 

gene expression. We hence introduced a modified ERα-NRIP1-LCoR MRA model with one additional 296 

module that cannot influence the other modules (Fig. 4D). The gray unidirectional arrows in Fig. 4D 297 

represent the coupling between NRIP1, LCoR, the ERα module, and the added gene denoted by X. This 298 

coupling can be learned in the E2 basal condition by applying elementary perturbations as above. This 299 

must be repeated for each gene X considered. Gene X mRNA abundance is an 𝑛 + 1th module and, by 300 

hypothesis, 𝑟𝑖,𝑛+1 = 0, ∀𝑖 ∈ {1,⋯ , 𝑛}, since no return arrows exist. From Eq. (7), we can compute 301 

𝑟𝑛+1,𝑗, ∀𝑗 ∈ {1,⋯ , 𝑛}, by solving the system 302 

(
Δ𝑥𝑛+1

𝑥𝑛+1
)
𝑞𝑘

= ∑ 𝑟𝑛+1,𝑗 (
Δ𝑥𝑗

𝑥𝑗
)
𝑞𝑘

𝑛
𝑗=1 , 𝑘 ∈ {1,⋯ , 𝑛}. 303 

The performance of this new type of MRA model (udMRA) was assessed by its ability to predict module 304 

𝑛 + 1 activity under the dual siNRIP1/siLCoR condition, as we did above for the other models. To avoid 305 

trivially successful predictions on genes that would not vary, we limited the benchmark to the 884 genes 306 

above that were also significantly regulated upon siNRIP1 or siLCoR in the E2-stimulated condition. That 307 

left us with 60 genes. In Fig. 4E, we report the relative errors observed applying udMRA and comparing 308 

with naïve predictions. udMRA yielded significantly better estimates of the added module activity. 309 

One could wonder whether perturbation magnitudes during double siRNA interference on the same 310 

biological system remain identical. That is, whether filling the vector 𝑐 in Eq. (11) with 1’s at the 311 

perturbed module indices (what we did so far) is the best option. Eq. (11) is written such that we can try 312 

different values. We searched for optimal coefficients 𝑎 and 𝑏 applied to siNRIP1 and siLCoR 313 

perturbations (at the corresponding indices in vector 𝑐), such that prediction errors of Luciferase, NRIP1, 314 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.01.30.925800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/


16 
 

and LCoR expression (as in Fig. 2D) would be minimal. We found 𝑎 = 1, and 𝑏 = 0.4. Then, we used 315 

those coefficients in the udMRA model to try to predict the expression of the 61 benchmark genes more 316 

accurately. Indeed, we see in Fig. 4E that this new model called udMRA.ab achieved much better 317 

accuracy. 318 

 319 

aiMeRA usage 320 

The R package was designed to be generally applicable; it relies on the formulae presented here. It is 321 

able to work with any quantitative input, including biological and technical replicates. We included 322 

functionality to facilitate the definition of MRA model topologies (Fig. 5A). Model construction only 323 

involves the execution of a few generic R functions and network plots can be generated within R directly 324 

(Fig. 5B). It is also possible to export such graphs in the graphML format for loading into Cytoscape [21]. 325 

More details are provided in the package documentation. aiMeRA is available from GitHub; submission 326 

to Bioconductor is pending. 327 

 328 

Fig. 5. The aiMeRA R package. A. Example R code to load data, prepare them and compute the model. 329 

Note that NRIP1 was called after its common alternative name RIP140. Basal condition is E2 plus RA and 330 

we see that LCoR perturbation is defined as E2+RA+siLCoR. Same logic for RIP140 (=NRIP1). Perturbation 331 

on the HOXA5 module reporting RARs activity is defined as E2, i.e., loss of RA stimulation. Etc. B. Plot of 332 

an MRA model in R using the igraph library. 333 

 334 

 335 

Discussion 336 
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MRA modeling [1,2] is a widely used technique to learn the coupling between the modules of a 337 

biological system from perturbation data sets (Fig. 1). We introduced a new mathematical derivation of 338 

the method and implemented a generic R package called aiMeRA (Fig. 5). Application thereof was 339 

illustrated on an unpublished data set combining specific qPCR and broad RNA-seq data to explore 340 

crosstalk between ER and RAR, two important NRs involved in several tumors such as BC. Data analysis 341 

reconstituted some known interactions (Fig. 2) and supported a novel hypothesis that reciprocal 342 

negative coupling could be mediated by shared corepressors (Fig. 3). 343 

We showed that MRA transcriptional models trained from RNA-seq data are close to those trained from 344 

qPCR (Fig. 4A-C). Which lead us to introduce an innovative application of MRA to probe genes genome-345 

wide, searching for replacement reporters of module activity. That is, new genes that could be 346 

functionally related to an MRA module. In particular, we found that the progesterone receptor gene 347 

(PGR) reported on ligand-bound ERα transcriptional activity accurately. That observation indicates the 348 

potential value of this new use of MRA models since PGR is a widely used reporter of estrogen activity in 349 

BC in the clinic. 350 

We additionally investigated the possibility to build hybrid MRA models (udMRA & udMRA.ab) including 351 

unidirectional coupling to add modules that were not perturbed in the training data set (Fig. 4D). In the 352 

context of the application presented in this report, i.e., the transcriptional activity of a system of 353 

transcription factors, we showed that the ERα-RARs-NRIP1-LCoR udMRA and udMRA.ab models could 354 

outperform naïve predictors (Fig. 4E). Other biological systems might be amenable to such modified 355 

models in the absence of strong back-coupling. The aiMeRA package methods support both RNA-seq 356 

data and udMRA models. 357 

 358 

 359 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.01.30.925800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

 360 

Methods 361 

Cell culture and perturbation experiments 362 

We used MELN cells, an MCF7-derived cell line stably transfected with the estrogen-responsive 363 

luciferase reporter gene ERE-βGlob-Luc-SV-Neo [22]. The cell line was authenticated by short tandem 364 

repeat profiling and tested for mycoplasma contamination. 365 

MELN cells were cultured in phenol red-free Dulbecco’s modified Eagle medium (Gibco) containing 5% 366 

dextran-charcoal treated FCS (Invitrogen) and antibiotics (Gibco). Perturbations at NRIP1 and LCoR were 367 

obtained by siRNAs that were transfected using Interferrin (Polyplus). Perturbations at ERα and RARs 368 

were induced by their respective natural ligands: the hormones estrogen (17β-estradiol or E2 for short) 369 

and all-trans retinoic acid (RA). 370 

MELN cells were obtained in the following conditions: basal (untreated), E2, RA, E2+RA, siNRIP1, siLCOR, 371 

siNRIP1+siLCOR, E2+siNRIP1, E2+siLCOR, E2+siNRIP1+siLCOR, RA+siNRIP1, RA+siLCOR, 372 

RA+siNRIP1+siLCOR, E2+RA+siNRIP1, E2+RA+siLCOR, and E2+RA+siNRIP1+siLCOR. These experiments 373 

were realized in triplicates. Cells were harvested after 18 hours of culture. E2-treated cells received 374 

100nM E2, RA-treated cells 10 uM RA, and untreated cells ethanol. Validations of the response to E2 and 375 

siRNA interference are in Suppl. Fig. 1. 376 

mRNA quantification 377 

RNA was isolated using the Zymo Research kit (Zymo Research) and reverse transcription (RT)-qPCR 378 

assays were done using qScript (VWR) according to the manufacturer’s protocol. Transcripts were 379 

quantified using SensiFAST SYBR (BioLine) on an LC480 instrument. The nucleotide sequences of the 380 

primers used for real-time PCR were: 381 
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RIP140-f (5’- AATGTGCACTTGAGCCATGATG -3’), 382 

RIP140-r (5’- TCGGACACTGGTAAGGCAGG -3’), 383 

LCoR-f (5’- GAACCTAGCGAACAAGACGGTG -3’), 384 

LCoR-r (5’- TGGAGAGTGGCTCAGGGAAGT -3’), 385 

Luciferase-f (5’- CTCACTGAGACTACATCAGC -3’), 386 

Luciferase-r (5’- TCCAGATCCACAACCTTCGC -3’), 387 

HOXA5-f (5’- GCGCAAGCTGCACATAAGTC -3’), 388 

HOXA5-r (5’- GAACTCCTTCTCCAGCTCCA -3’), 389 

ERα-f (5’- TGGAGATCTTCGACATGCTG -3’), 390 

ERα-r (5’- TCCAGAGACTTCAGGGTGCT -3’), 391 

RARα-f (5’- GGATATAGCACACCATCCCC -3’), 392 

RARα-r (5’- TTGTAGATGCGGGGTAGAGG -3’), 393 

PGR-f (5’- CGCGCTCTACCCTGCACTC-3’), 394 

PGR-r (5’-TGAATCCGGCCTCAGGTAGTT-3’). 395 

(RT)-qPCR data are available from the R package. 396 

mRNA sequencing 397 

For two of the triplicates, in each condition, RNA was extracted as above described. Libraries were 398 

prepared with Illumina TruSeq kit and submitted to NextSeq500 sequencing (1x75bp/40M reads). The 399 

first 13 and last 7 bps were cut by an in-house Perl script to eliminate compositional bias. Cut reads were 400 

submitted to sickle to eliminate remaining low-quality regions. Alignments were performed against the 401 
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human genome (hg38) with TopHat v2.10 [23] and read counts extracted with HTSeq-Count [24]. The 402 

read count matrix was normalized with edgeR [25] TMM algorithm. Data are available from GEO under 403 

GSE143956. 404 

aiMeRA library implementation 405 

We implemented the MRA method according to the mathematical formulation above as an R library. 406 

(RT)-qPCR data of this project were embedded in the R library for convenience and to provide an 407 

example. We also included the data used in the MRA original paper [1] such that users can check that 408 

our code gives the same results as those reported in the latter publication. 409 

 410 
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Supporting information captions 486 

Suppl. Fig. 1. A. MELN cells were transfected with either a siRIP140 (siNRIP1), a siLCoR or a combination 487 

of the two siRNAs. RIP140 and LCoR mRNA levels were quantified by real time PCR. Results are corrected 488 

to 28S mRNA and normalized to cells transfected with the control siRNA. B. MELN cells were transfected 489 

as described in A and treated with estradiol (10-7 M) when indicated. Luciferase mRNA expression is 490 

quantified as in A. 491 
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