10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.925800; this version posted March 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

aiMeRA: A generic modular response analysis R package and its application to

estrogen and retinoic acid receptors crosstalk

Gabriel Jimenez-Dominguez?3, Patrice Ravel“%3, Stéphan Jalaguier??, Vincent Cavaillés*>>" and

Jacques Colinge®?3”

lInserm U1194, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
2University of Montpellier, Montpellier, France

3ICM, Institut régional du Cancer de Montpellier, Montpellier, France

*Corresponding authors

E-mails: vincent.cavailles@inserm.fr, jacques.colinge@inserm.fr



mailto:vincent.cavailles@inserm.fr
mailto:jacques.colinge@inserm.fr
https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.925800; this version posted March 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Abstract

Modular response analysis (MRA) is a widely used modeling technique to uncover coupling strengths in
molecular networks under a steady-state condition by means of perturbation experiments. We propose
an extension of this methodology to search genomic data for new associations with a network modeled
by MRA and to improve the predictive accuracy of MRA models. These extensions are illustrated by
exploring the cross talk between estrogen and retinoic acid receptors, two nuclear receptors implicated
in several hormone-driven cancers such as breast. We also present a novel, rigorous and elegant
mathematical derivation of MRA equations, which is the foundation of this work and of an R package

that is freely available at https://github.com/bioinfo-ircm/aiMeRA/. This mathematical analysis should

facilitate MRA understanding by newcomers.

Author summary

Estrogen and retinoic acid receptors play an important role in several hormone-driven cancers and share
co-regulators and co-repressors that modulate their transcription factor activity. The literature shows
evidence for crosstalk between these two receptors and suggests that spatial competition on the
promoters could be a mechanism. We used MRA to explore the possibility that key co-repressors, i.e.,
NRIP1 (RIP140) and LCoR could also mediate crosstalk by exploiting new quantitative (QPCR) and RNA
sequencing data. The transcription factor role of the receptors and the availability of genome-wide data
enabled us to explore extensions of the MRA methodology to explore genome-wide data sets a
posteriori, searching for genes associated with a molecular network that was sampled by perturbation
experiments. Despite nearly two decades of use, we felt that MRA lacked a systematic mathematical

derivation. We present here an elegant and rather simple analysis that should greatly facilitate
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newcomers’ understanding of MRA details. Moreover, an easy-to-use R package is released that should
make MRA accessible to biology labs without mathematical expertise. Quantitative data are embedded

in the R package and RNA sequencing data are available from GEO.

Introduction

Modular response analysis (MRA) was introduced to infer the coupling between components of a
biological system in a steady-state [1]. It can be applied to components at different levels of details, e.g.,
individual genes or subsystems such as pathways or processes. It relies on the perturbation of individual
components, the so-called modules. Various developments of MRA and related methods were recently
reviewed [2] but, despite its success, MRA mathematical derivation was not provided in a systematic
and rigorous manner. We thus reasoned that such an analysis was needed and it would facilitate the
understanding of the methodology for newcomers. It is presented as a result and is the basis of the
development of an open source R library (aiMeRA) that should make MRA accessible to biology labs
without mathematical expertise. We illustrate the use of the aiMeRA package by investigating the
crosstalk between nuclear receptors (NRs) in a breast cancer (BC) cell line. A new extension of the
method is also introduced to perform inferences at the genomic scale. The Bliithgen Lab recently
released another R package to perform MRA computations [3], although with a specific focus on their
particular edge-pruning and associated maximum likelihood extension of MRA [4] that is not our interest

in this study.
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Estrogen receptors (ERs) belong to the NR superfamily, which act as transcription factors activated upon
ligand binding. The two isoforms of ERs (ERa and ER) are involved in the control of cell proliferation
and exhibit essential functions in tissue development and homeostasis, in particular in organs related to
reproduction [5]. ERa overexpression is frequently observed in breast, ovarian, endometrial, and other
hormone-driven tumors. The transcriptional activity of ERs is modulated by several coregulatory
complexes including coactivators and corepressors [5]. In the presence of estrogens or any agonist
ligand, ERs interact preferentially with coactivators, or with a specific subclass of corepressors including
nuclear receptor-interacting protein 1 (NRIP1 or RIP140) and Ligand-dependent corepressor (LCoR).
NRIP1 is a corepressor of particular interest because its expression is directly induced by estrogen, i.e.,
NRIP1 installs a negative feedback loop to keep ER signaling under control [6]. NRIP1 abnormal
expression is indeed observed in ER-driven tumors [7,8]. LCoR represses transcription of estrogen-
induced gene expression [9], and NRIP1 expression was shown to be necessary for LCoR inhibitory

activity in BC cells [10].

Interestingly, NRIP1 and LCoR function as corepressors for several liganded NRs. For instance, LCoR can
repress vitamin D receptor (VDR), retinoic acid receptors (RARs), and RXR ligand-dependent
transcription [9] in addition to ERs. Moreover, NRIP1 is a known direct target and negative regulator of

RAR transcription [11].

There is experimental evidence of crosstalk between ER and RAR signaling [12]. For instance, ERa can
suppress the basal expression of retinoic acid (RA)-responsive gene RARB2, but also turns out to be
necessary for its RA induction [13]. It was also found that ERa activates RARal expression in BC cells
[14]. Other authors intersected RAR targets identified by ChIP-seq with ER binding sites to discover a
significant overlap [15]. This work suggested a space competition mechanism for estrogen and RA
signaling in BC. A potential cooperative interaction between RARa and ER was also shown in BC [16].
Since NRIP1 and LCoR expression can be both regulated by RAR and ER transcription, we can further

4


https://doi.org/10.1101/2020.01.30.925800
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.925800; this version posted March 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

88  hypothesize that these molecules mediate part of ER-RAR crosstalk. The induced expression of NRIP1

89  and LCoR by one receptor produces molecules able to repress signaling of both receptors subsequently.

90 We aimed at characterizing the ER-RAR-NRIP1-LCoR network, at the transcriptional level, utilizing

91 transcript abundance measurements and MRA. Accordingly, we considered a steady-state situationin a
92 BC (MCF7-derived) cell line that would model BC cells with or without constant estrogenic stimulation.
93 Perturbation experiments were realized to generate quantitative PCR data unraveling interaction

94 strengths in the network, i.e., coupling according to MRA principles.

95 Given the nature of ER and RAR, i.e., transcription factors, and the general ability of MRA to perform

96  predictions [4], we introduced an extension of the method to perform genome-wide inferences

97  exploiting mRNA sequencing (RNA-seq) data. For this purpose, we acquired whole transcriptomes under

98  perturbed conditions identical to those used for gPCR. We first established that MRA could produce

99 accurate results from RNA-seq data. Next, we asked whether the ER-RAR-NRIP1-LCoR network inferred
100 by MRA could predict the mRNA abundance of estrogen-targeted genes better than a trivial model. This
101 extension of MRA, where one or several modules do not experience perturbations, was called

102  unidirectional to underline the implied absence of potential influence on the other modules.

103

104

105 Results

106 Mathematical derivation

107 MRA original paper [1] introduced the concept of modeling interdependencies (coupling) within a
108 biological system modularly. That is, subsystems involving molecules and their relationship at a detailed

109  level, which would not be the interest of the study, could be captured as a single module with one
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110  measurable quantity defining the overall module activity. For instance, in the case of ERa signaling, it is
111 possible to represent the complex process of ligand-binding and transcriptional activity by a single

112 module (Fig. 1). The activity of this module is measured by a reporter gene, which is the luciferase in
113 MELN cells. NRIP1 and LCoR activities were determined by their respective mRNA abundances. We ask
114  the question of the direct dependence of each module activity with respect to the other modules

115 activity. That is, we want to compute (signed) weights to put on the directed edges of Fig. 1. The answer
116 is searched in a steady-state through successive elementary perturbations of each module activity.

117 Depending on the application, this framework can be applied to different molecular species and

118  processes, e.g., protein or metabolite concentrations, protein phosphorylation levels, etc. [2].
119

120  Fig. 1. MRA general principle. lllustrated with the ERa-NRIP1-LCoR transcriptional network. Each
121 module’s activity level is given by a measured reporter. Coupling (edge weights) is determined from

122 perturbation experiments.
123

124 Now, in full generality, we assume that there are n modules whose activities are given by x € R™. We
125  further admit the existence of n intrinsic parameters, p € R", one per module, which are perturbed by
126  the elementary perturbations. One can imagine mRNA abundance parameters for perturbations such as
127  siNRIP1 or siLCoR, and numbers of available ERa-E2 bound complexes for the E2 perturbation. In other
128  circumstances, perturbations could change affinity constants or other physical characteristics. Finally,

129  we assume that there exist f: R" X R” — R" of class C* (continuously differentiable) such that

130 x = f(x,p). (1)
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131  We do not need to know f(x,p) = (f1(x,p), -, fn(x, )t explicitly, but we need one more hypothesis
132 thatis the existence of a time T > 0 such that all the solutions we consider for any p and initial

133 conditions of x, have reached a steady-state, i.e.,
134 x=0vt>T.

135  The unperturbed, basal state of the modules is denoted x° € R™ and it has corresponding parameters
136  p° € R™. According to our hypotheses, f(x% p°%) = 0 © f;(x% p°) = 0,Vi € {1,---,n}. By the implicit
137  function theorem, Vi, there exists open neighborhoods V; X W; ¢ R®*™! x R" of

138 (), xl L, xl e 1P, pD), Uy € Rofxp, and g;: V; X W; — U; (also €1) with

139 filx, e x g, gi G ) x s XY, o) = 0. (2)

140  We denote x(p° + Ap), the steady-state corresponding to the changed parameters p° + Ap. We
141  introduce the notation x;.; to denote all the x; but x;. Now, if we assume that (xj;ti(p0 + Ap),p° +

142 Ap) belong to V; X W; for all the perturbations considered experimentally, then by Taylor’s Formula

x1(p° + AI?) —x,(p%)

xi—1(p° + Ap) — x;_1(°)

xi+1(P0 + Ap) — xi+1(p0)

143 x;(p° + Ap) = x;(P°) + g; ") : + o (|aplD). (3)

x,(p° + Ap) — x,(P%)
Apl

Apy,
144  Dividing each side by x;(p°), Eq. (3) can be rewritten

xi(p° + Ap) — xi(p%) _

145
x;(p°)

noox®)ag o (%@° +8p) — x(°)
146 Z xi(po)a_xj(po)< x;(p°) )

j=1j#i
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1 ag;
ad + s i 5o %) (8p)) + o llaplD. @)
148

149  Since parameter p; influences module j only, Z—i‘: = 0if j # i. Moreover, g;(Xj+;,P) = X;(Xjx;, p) in
]
150 V; X W;, and if we denote

Ax; _ xi(p°+4p)-xi(p°)

Bt CREC
152 and
x;(p° 0x; . .
153 iy = 2D, 24, )
154  then
Ax; Axj 1 dx;
155 < = ZjiTij (7,’) + o ap, @ (Ap) + o (lAplD. (6)

156 We next consider elementary perturbations qy, k € {1, -+, n}, which only perturb module k, i.e., the

157  parameter py. Neglecting the second-order term ¢ (||Ap||) and writing

Axi
s (&

Xi /g

159  the relative difference in module i activity upon Ap; change induced by perturbation g, we find

Ax; Ax; .
160 () =Sjuiny (x—') Jk#1, (7)
Lk 17 qx
M _ oo (A% 9%xi 0y (Api
161 (xi )Ch' = j=iTij (xj >Qk + ap; ®°) (xi ) (8)

162 By definingr;; = —1, we can write Eqs (7) and (8) in matrix form:

163 rR = —P, (9)
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164  where R is the matrix that contains the experimentally observed relative activity changes R; , =

165 (Axﬁ) ,J,k € {1,---,n}. P is a diagonal matrix with P; ; = z—:’: ®°) (%), i € {1,---,n}. The system (9)
I aqx i i
166  can be solved in two steps [1]. Firstly, 7 = —PR~! and because r;; = —1, we have P;;(R™");; = 1 and

167 thusP;; = ﬁ Secondly,

168 r = —[diag(R"1)]"*R~L.

xi(p°+Apx)—xi(p°)
x;(p®)

169  The elements of R are defined by ( ) but as previously suggested [1], we preferred to

dr
170 estimate this quantity by
o (%i(P°+8pr)—xi(p°)
i Rjw =2 (xi(p°+Apk)+xi(p°))qk’ (10)

172 which avoids divisions by 0 and is numerically more stable.

173 Finally, from Eq. (5), we see that r; ; contains the searched coupling between MRA modules: direct

174 action of j on i normalized by the ratio x;/x;. Similarly, P; ; measures the relative effect of g; on x;. We
175  call it g; magnitude. The implicit function theorem provides analytical expressions for g;’ in terms of f
176 partial derivatives, but since f is generally unknown, we did not use them. In his seminal work,

177 Kholodenko made additional hypotheses to show that r contains coupling information, which is not
178  necessary with our derivation. To be rigorous, one should ultimately restrict the model to

179  neighborhoods included in all the V;’s, W;’s, and U;’s.

180 MRA models have been largely used for their inference capabilities [4]. Let us define a multiple
181  perturbation g to be the linear combination of elementary perturbations g,. For instance, a
182 perturbation on modules i and j with the same individual magnitudes would be coded by a column

183  vector ¢ with 1’s at positions i and j and O’s elsewhere. From Eq. (9), we compute
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184 (Ax—")q — —r-1pc, (11)

(A - . . -
185  with (?x) the column vector containing the inferred relative changes on each module activity.
q

186 Denoting Ap the parameter changes induced by g, individual module activities are given by

Ax; x;(p° + Ap) — x;(p°
187 (x_l> = —(r"1Pc); = legpo - AP) L(po)
i/q i(? + Ap) + x;(p°)
188 o x(°+ap) = ) (s -1) (12)
L 1+(7_+Pc)i (T_lpc)i :
189

190 In case elementary perturbations contribute for different amounts to g, the vector ¢ contains q;’s
191 relative weights. In every case, linearity between the perturbation strength and its impact on p is

192 assumed.

193  Confidence intervals (Cl) around model parameters are estimated by a bootstrap procedure [17]. We
194  considered experimental designs with biological and technical replicates. We average the technical

195 replicates to obtain one activity value per biological replicate. The latter are again averaged to compute
196  the R matrix according to Eq. (10). From the biological replicates, we estimate the variance of each x;
197  employing an estimator optimized for a small sample size from Statistical Process Control theory [18,19].
198 Finally, a Gaussian distribution is assumed and 10® R matrices are generated, which are submitted to
199 MRA computations. The 95% Cl is obtained from the 2.5 and 97.5™ percentiles. In case 0 is not included

200 inthe Cl, the MRA parameter is deemed significant and marked by an asterisk in the figures.

201 Inferences obtained from Eq. (12) were also complemented by the estimation of Cls following the

202 principles above.

203

10
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204  Transcriptional data

205 ERP and RARP expression could not be quantified in MELN cells. We hence learned networks involving
206  an ERa module, which transcriptional activity was reported by the ERE/luciferase construct. That is,

207 luciferase mRNA abundance measured ERa activity. ERa mRNA abundance would combine ligand-bound
208 and free amounts of the receptor, but only the ligand-bound ones matter in the model. We did not try
209  todistinguish between RARa and RARy. We estimated their combined transcriptional activity by the

210  mRNA abundance of the HOXA5 gene and the corresponding MRA module was named RARs. NRIP1 and
211 LCoR activity were determined by their gene mRNA abundance. Since MELN cells are BC cells, we

212 considered the E2-, RA-, or E2+RA-stimulated conditions as basal. That is, perturbations at ERa and RARs
213  were negative (switch to ethanol). Perturbations at NRIP1 and LCoR were achieved by siRNAs, i.e., they

214 were also negative.

215

216 The ERa-NRIP1-LCoR network

217 In an unstimulated condition (no E2), it is known that NRIP1 expression induces LCoR expression [10].
218  We started by assessing this coupling under the E2 basal condition and found similar coupling (Fig. 2A).
219  We also observed negative coupling from LCoR to NRIP1, which is logical since NRIP1 is a direct target of
220 E2-bound ERa and LCoR one of its corepressor. We next inferred the ERa-NRIP1-LCoR network under E2
221 (Fig. 2B). We could observe the known induction of NRIP1 by ERa with negative feedback [6]. We also
222 reconstituted the known inhibition of ERa by LCoR [9]. Interestingly, the induction of LCoR upon NRIP1
223 expression observed in Fig. 2A became a double inhibition via ERa in Fig. 2B. This makes sense since

224  there is no transcriptional control by NRIP1 alone, it can only modulate ERa activity. Perturbation

225 magnitudes are in Fig. 2C. Finally, we assessed the validity of the inferred network by checking its

11
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226  predictive power. From Fig. 2D, we note a reasonable fidelity of the model and that the relative errors

227 are commensurate with the Cl sizes, i.e., with data variability.

228

229  Fig. 2. ER and RAR separated networks. A. Coupling between the two corepressors under E2 condition.
230 A 95% Cl for each model parameter was estimated and the parameter marked by an asterisk provided 0
231  was not included (nonzero with 5% significance). B. The ERa-NRIP1-LCoR transcriptional network. C.
232 ERa, NRIP1, and LCoR perturbation magnitudes. D. Inference of gene expression under the dual siNRIP1
233 and siLCoR perturbation. E. Similar to A but under RA condition. F. The RARs-NRIP1-LCoR network. G.

234 Similar to C. H. Similar to D.

235

236 The RARs-NRIP1-LCoR network

237  Our next endeavor was to build a RARs-NRIP1-LCoR network before switching to the full network with
238  both NRs. NRIP1 and LCoR coupling under RA stimulation (Fig. 2E) remained similar to its state under E2.
239  That was expected since these two corepressors are used by several NRs. In Fig. 2F, we reconstituted the
240  induction of NRIP1 expression by RAR as well as the inhibition of RAR expression by NRIP1 [11]. The

241 inhibition of RAR by LCoR was also known [9]. Coupling between LCoR and NRIP1 is essentially similar to
242 Fig. 2B since the NRIP1-to-LCoR arrows featured weak coupling. NRIP1 perturbation magnitude

243 remained close, but LCoR perturbation changed 2-fold (Fig. 2G) although the same siRNAs were used.

244 Inferences (Fig.2H) also supported the accuracy of the model.

245

246 The full ERa-RARs-NRIP1-LCoR network

12
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247  We followed the same approach as above to construct a full model of ER-RAR crosstalk (Fig. 3A).

248 Perturbation magnitudes (Fig. 3B) were in the same range as before under the new dual E2 and RA basal
249  condition. Values for NRIP1 and LCoR were closer to the RAR-NRIP1-LCoR network. No literature reports
250  coupling with the corepressors NRIP1 and LCoR under this particular condition. Only the crosstalk

251 between RAR and ER mentioned in the introduction is known [15,16]. We hence first challenged the

252 model by testing its predictive accuracy (Fig. 3C), which was again satisfying.

253

254  Fig. 3. The ERa-RARs-NRIP1-LCoR network. A. MRA network model. B. Perturbation magnitudes under
255  the dual E2 and RA stimulation. C. Inferred activity of the modules upon double siRNA inhibition of

256 NRIP1 and LCoR.

257

258 Interestingly, cross inhibition of ER and RAR signaling acted along two paths. The model shows direct
259 inhibition of ER transcriptional activity by the RAR module, which was described in the literature [15,16].
260 Reciprocal inhibition was suggested but not significant in our data. In agreement with our hypothesis,
261  we found a parallel crosstalk mechanism through the induction of NRIP1 expression, which could

262  subsequently repress both RARs and ERa. MRA modeling thus supported the coexistence of the two

263  phenomena. Although LCoR reversed action on NRIP1 compared to the E2 and RA independent

264  conditions might counterbalance cross inhibition of the two NRs, the strengths of coupling on the model

265  edges and the much-attenuated induction of LCoR by NRIP1 suggested that it was not the case.

266

267  MRA models from RNA-seq data

268 Since MRA relies on module activity relative change (Egs. (7-8)), absolute quantitation is not necessary.

269 We thus computed an RARs-NRIP1-LCoR MRA models as HOXAS5, NRIP1, and LCoR mRNA abundances

13
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270  were available in our RNA-seq data (Fig. 4A). Comparing with the gPCR-based model in Fig. 2F, we notice
271  that all the significant edges of Fig. 2F plus NRIP1-to-LCoR were recovered. The only change is very weak
272 coupling LCoR-to-RARs (-0.03) that became slightly positive (0.13) with RNA-seq data. Cls were not

273 determined for RNA-seq data since only two replicates were available.
274

275 Fig. 4. Genomic-scale inferences. A. RARs-NRIP1-LCoR model trained from RNA-seq data. B. Eight

276 closest replacement genes for ERE-Luc in the ERa-NRIP1-LCoR model. C. ERa-NRIP1-LCoR models with
277 ERE-Luc replaced by PGR, trained from gPCR and RNA-seq data. D. Principle of unidirectional MRA. E.
278  Accuracy of unidirectional MRA inference (uUdMRA & udMRA.ab) under the E2 condition with double
279  siNRIP1/siLCoR perturbation versus simple predictors (mean, geometric mean (gMean), and maximum

280  of the two siRNAs).
281

282  The results above indicated that MRA could be applied to RNA-seq data. We, therefore, decided to

283  exploit this opportunity by performing a new type of investigation. We used MRA to find a gene that
284  would function as ERa transcription reporter, and would thus replace the ERE-Luc construct. Existing
285  ChIP-seq data [20] intersected with our RNA-seq data allowed us to identify 884 genes targeted by ERa
286  and E2-regulated (edgeR analysis, P-value<0.01, fold-change>2). We hence computed 884 MRA models
287  with siNRIP1 and siLCoR RNA-seq data, replacing ERE-Luc by each of those genes successively. The genes
288  with closest Euclidean distances between their model coupling parameters (the r; ; matrix) and those of
289  the original Fig. 2B qPCR model are listed in Fig. 4B. We decided to test PGR and measured its expression
290 by gPCR. The gPCR- and RNA-seg-based models are featured in Fig. 4C. They accurately reproduced the
291  original model of Fig. 2B and were very similar to each other, thereby further validating the use of RNA-

292  seq data for MRA model training.
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293
294  Unidirectional MRA on a genome-scale

295  We reasoned that the ERa-NRIP1-LCoR MRA model might provide means of predicting E2-regulated
296  gene expression. We hence introduced a modified ERa-NRIP1-LCoR MRA model with one additional
297  module that cannot influence the other modules (Fig. 4D). The gray unidirectional arrows in Fig. 4D
298 represent the coupling between NRIP1, LCoR, the ERa module, and the added gene denoted by X. This
299 coupling can be learned in the E2 basal condition by applying elementary perturbations as above. This
300 must be repeated for each gene X considered. Gene X mRNA abundance is an n + 1™ module and, by
301  hypothesis, 1,41 = 0, Vi € {1, ---,n}, since no return arrows exist. From Eq. (7), we can compute

302 7Th41,, VJ € {1,---,n}, by solving the system

A"f') kel n)

Axy,
303 (Be2) =3
dk

Xn+1 ax Xj

304  The performance of this new type of MRA model (udMRA) was assessed by its ability to predict module
305 n + 1 activity under the dual siNRIP1/siLCoR condition, as we did above for the other models. To avoid
306 trivially successful predictions on genes that would not vary, we limited the benchmark to the 884 genes
307  above that were also significantly regulated upon siNRIP1 or siLCoR in the E2-stimulated condition. That
308 left us with 60 genes. In Fig. 4E, we report the relative errors observed applying udMRA and comparing

309  with naive predictions. udMRA yielded significantly better estimates of the added module activity.

310  One could wonder whether perturbation magnitudes during double siRNA interference on the same
311 biological system remain identical. That is, whether filling the vector ¢ in Eq. (11) with 1’s at the

312 perturbed module indices (what we did so far) is the best option. Eq. (11) is written such that we can try
313  different values. We searched for optimal coefficients a and b applied to siNRIP1 and siLCoR

314 perturbations (at the corresponding indices in vector c), such that prediction errors of Luciferase, NRIP1,
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315 and LCoR expression (as in Fig. 2D) would be minimal. We found a = 1, and b = 0.4. Then, we used
316  those coefficients in the udMRA model to try to predict the expression of the 61 benchmark genes more
317  accurately. Indeed, we see in Fig. 4E that this new model called udMRA.ab achieved much better

318 accuracy.

319

320 aiMeRA usage

321 The R package was designed to be generally applicable; it relies on the formulae presented here. It is
322 able to work with any quantitative input, including biological and technical replicates. We included

323  functionality to facilitate the definition of MRA model topologies (Fig. 5A). Model construction only

324  involves the execution of a few generic R functions and network plots can be generated within R directly
325 (Fig. 5B). It is also possible to export such graphs in the graphML format for loading into Cytoscape [21].
326 More details are provided in the package documentation. aiMeRA is available from GitHub; submission

327  to Bioconductor is pending.

328

329  Fig. 5. The aiMeRA R package. A. Example R code to load data, prepare them and compute the model.
330  Note that NRIP1 was called after its common alternative name RIP140. Basal condition is E2 plus RA and
331  we see that LCoR perturbation is defined as E2+RA+siLCoR. Same logic for RIP140 (=NRIP1). Perturbation
332  onthe HOXAS5 module reporting RARs activity is defined as E2, i.e., loss of RA stimulation. Etc. B. Plot of

333  an MRA model in R using the igraph library.

334

335

336 Discussion
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337 MRA modeling [1,2] is a widely used technique to learn the coupling between the modules of a

338  biological system from perturbation data sets (Fig. 1). We introduced a new mathematical derivation of
339 the method and implemented a generic R package called aiMeRA (Fig. 5). Application thereof was

340 illustrated on an unpublished data set combining specific gPCR and broad RNA-seq data to explore

341 crosstalk between ER and RAR, two important NRs involved in several tumors such as BC. Data analysis
342 reconstituted some known interactions (Fig. 2) and supported a novel hypothesis that reciprocal

343 negative coupling could be mediated by shared corepressors (Fig. 3).

344 We showed that MRA transcriptional models trained from RNA-seq data are close to those trained from
345  gPCR (Fig. 4A-C). Which lead us to introduce an innovative application of MRA to probe genes genome-
346  wide, searching for replacement reporters of module activity. That is, new genes that could be

347  functionally related to an MRA module. In particular, we found that the progesterone receptor gene
348  (PGR) reported on ligand-bound ERa transcriptional activity accurately. That observation indicates the
349  potential value of this new use of MRA models since PGR is a widely used reporter of estrogen activity in

350 BC in the clinic.

351  We additionally investigated the possibility to build hybrid MRA models (uUdMRA & udMRA.ab) including
352 unidirectional coupling to add modules that were not perturbed in the training data set (Fig. 4D). In the
353  context of the application presented in this report, i.e., the transcriptional activity of a system of

354 transcription factors, we showed that the ERa-RARs-NRIP1-LCoR udMRA and udMRA.ab models could
355  outperform naive predictors (Fig. 4E). Other biological systems might be amenable to such modified
356  models in the absence of strong back-coupling. The aiMeRA package methods support both RNA-seq

357 data and udMRA models.

358

359
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360

361 Methods

362  Cell culture and perturbation experiments

363  We used MELN cells, an MCF7-derived cell line stably transfected with the estrogen-responsive
364 luciferase reporter gene ERE-BGlob-Luc-SV-Neo [22]. The cell line was authenticated by short tandem

365 repeat profiling and tested for mycoplasma contamination.

366 MELN cells were cultured in phenol red-free Dulbecco’s modified Eagle medium (Gibco) containing 5%
367  dextran-charcoal treated FCS (Invitrogen) and antibiotics (Gibco). Perturbations at NRIP1 and LCoR were
368  obtained by siRNAs that were transfected using Interferrin (Polyplus). Perturbations at ERa and RARs
369  were induced by their respective natural ligands: the hormones estrogen (17B-estradiol or E2 for short)

370  and all-trans retinoic acid (RA).

371 MELN cells were obtained in the following conditions: basal (untreated), E2, RA, E2+RA, siNRIP1, siLCOR,
372 SiNRIP1+siLCOR, E2+siNRIP1, E2+siLCOR, E2+siNRIP1+siLCOR, RA+siNRIP1, RA+siLCOR,

373 RA+siNRIP1+siLCOR, E2+RA+siNRIP1, E2+RA+siLCOR, and E2+RA+siNRIP1+siLCOR. These experiments
374  were realized in triplicates. Cells were harvested after 18 hours of culture. E2-treated cells received

375 100nM E2, RA-treated cells 10 uM RA, and untreated cells ethanol. Validations of the response to E2 and

376  siRNA interference are in Suppl. Fig. 1.

377  mRNA quantification

378 RNA was isolated using the Zymo Research kit (Zymo Research) and reverse transcription (RT)-qPCR
379 assays were done using gScript (VWR) according to the manufacturer’s protocol. Transcripts were
380 quantified using SensiFAST SYBR (BioLine) on an LC480 instrument. The nucleotide sequences of the

381 primers used for real-time PCR were:
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382 RIP140-f (5’- AATGTGCACTTGAGCCATGATG -3'),

383 RIP140-r (5’- TCGGACACTGGTAAGGCAGG -3’),

384  LCoR-f(5- GAACCTAGCGAACAAGACGGTG -3'),

385 LCoR-r (5'- TGGAGAGTGGCTCAGGGAAGT -3),

386 Luciferase-f (5’- CTCACTGAGACTACATCAGC -3’),

387 Luciferase-r (5’- TCCAGATCCACAACCTTCGC -3'),

388  HOXAS5-f (5'- GCGCAAGCTGCACATAAGTC -3’),

389  HOXAS5-r (5'- GAACTCCTTCTCCAGCTCCA -3),

390 ERa-f (5’- TGGAGATCTTCGACATGCTG -3’),

391 ERa-r (5'- TCCAGAGACTTCAGGGTGCT -3’),

392 RARa-f (5’- GGATATAGCACACCATCCCC -3’),

393 RARa-r (5’- TTGTAGATGCGGGGTAGAGG -3’),

394  PGR-f (5’- CGCGCTCTACCCTGCACTC-3’),

395 PGR-r (5'-TGAATCCGGCCTCAGGTAGTT-3’).

396  (RT)-qPCR data are available from the R package.

397 mRNA sequencing

398 For two of the triplicates, in each condition, RNA was extracted as above described. Libraries were
399  prepared with lllumina TruSeq kit and submitted to NextSeq500 sequencing (1x75bp/40M reads). The
400 first 13 and last 7 bps were cut by an in-house Perl script to eliminate compositional bias. Cut reads were

401 submitted to sickle to eliminate remaining low-quality regions. Alignments were performed against the
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402 human genome (hg38) with TopHat v2.10 [23] and read counts extracted with HTSeq-Count [24]. The
403 read count matrix was normalized with edgeR [25] TMM algorithm. Data are available from GEO under

404  GSE143956.

405 aiMeRA library implementation

406 We implemented the MRA method according to the mathematical formulation above as an R library.
407 (RT)-gPCR data of this project were embedded in the R library for convenience and to provide an
408 example. We also included the data used in the MRA original paper [1] such that users can check that

409 our code gives the same results as those reported in the latter publication.

410
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Supporting information captions

Suppl. Fig. 1. A. MELN cells were transfected with either a siRIP140 (siNRIP1), a siLCoR or a combination

of the two siRNAs. RIP140 and LCoR mRNA levels were quantified by real time PCR. Results are corrected

to 285 mRNA and normalized to cells transfected with the control siRNA. B. MELN cells were transfected

as described in A and treated with estradiol (107 M) when indicated. Luciferase mRNA expression is

quantified as in A.
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495 Figure 1

496

Basal condition E2, double siNRIP1/siLCOR perturbation

Module Exper. Inferred 95% CI Rel. error (%)
LCoR 0.70 0.58 [0.47;0.73] 13.9
RIP140 0.40 0.41 [0.33; 0.50] 7.5
Luciferase 245 344 [2.41; 543] 40.4

1 = expression under basal condition

H
Basal condition RA, double siNRIP1/siLCOR perturbation
Module Exper. Inferred 95% Cl Rel. error (%)
LCoR 0.70 0.55 [0.32; 0.84] 20.8
RIP140 0.40 0.37 [0.32; 0.42] 7.6
Hoxa3 2.14 1.96 [1.17;3.39] 83
497 1 = expression under basal condition
498 Figure 2
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Basal condition E2 & RA, double siNRIP1/siLCOR perturbation

Module Exper. Inferred 95% Cl Rel. error (%)
LCoR 0.55 0.52 [0.29; 0.83] 5.0
RIP140 0.36 0.38 [0.31; 0.47] 6.5
Luciferase 3.05 1.99 [1.61; 2.61] 30.9
Hoxas 2.45 1.70 [0.83;3.30] 34.7
499 1 = expression under basal condition
500 Figure 3
501
502
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library(aiMeRA)

# load data and define the model topolcgy
data=data.setup(list{estrl_A, estrl_B,estr2_A,
estr2_B,estr3_A,estr3_B})

data=data2sdmean{data)

matp=read.rules(c("E2+RA+siLCoR->LCoR",
"E2+RA+siRIP140->RIP140",
"E2->Hoxa5","RA->Luciferase",
"E2+RA->0"}))

# compute the model, CIs, and plot
res=mra{datagmean,matp)
inter=interval(data$mean,sd.ex,rules,nrep=2)
netgraph(res,inter = inter)

RIP140

Hoxa5

506 Luciferase

507 Figure 5
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