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Abstract

Long-read RNA sequencing techniques are establishing themselves as the primary sequencing

technique to study the transcriptome landscape. Many such analyses are dependent on read

alignments. However, the error rate and sequencing length of long-read technologies create
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new challenges for accurately aligning these reads. We present an alignment method uLTRA

based on a novel two-pass collinear chaining algorithm. Furthermore, uLTRA can be used both

as a stand-alone aligner and as a wrapper around minimap2 for improved alignments in gene

regions. We show that uLTRA produces higher accuracy over state-of-the-art aligners with

substantially higher accuracy for small exons on simulated and synthetic data. On biological

data where true read location is unknown, we show several examples where uLTRA aligns to

known and novel isoforms with exon structures that are not detected with other aligners. uLTRA

is available at https://github.com/ksahlin/ultra.

Introduction

The transcriptome has been identified as an important link between DNA and phenotype and is

therefore analyzed in various biological and biomedical studies. For these analyses, RNA

sequencing has established itself as the primary experimental method. Some of the most

common transcriptome analyses using RNA sequencing data include predicting and detecting

isoforms and quantifying their abundance in the sample. These analyses are fundamentally

underpinned by the alignment of reads to genomes. As a transcriptomic read can contain

multiple exons, alignment algorithms are required to handle split alignment of a read to multiple

exonic regions of the genome, referred to as a spliced alignment.

Spliced alignment is a challenging computational problem, and a plethora of different alignment

algorithms have been proposed for splice alignment of short-read RNA-seq, with some of the

key algorithmic advances given in TopHat (Trapnell, Pachter, and Salzberg 2009), STAR (Dobin

et al. 2013), HISAT (Kim, Langmead, and Salzberg 2015), GMAP (Wu et al. 2016), and HISAT2
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(Kim et al. 2019). While short-read RNA sequencing has shown unprecedented insights into

transcriptional complexities of various organisms, the read-length makes it difficult to detect

isoforms with complicated splicing structure and limits quantification of isoform abundance

(Zhang et al. 2017).

Long read transcriptome sequencing protocols such as Pacific Biosciences (PacBio) Iso-Seq

sequencing (B. Wang et al. 2016) and Oxford Nanopore Technologies (ONT) cDNA and direct

RNA sequencing (Workman et al. 2019) are now establishing themselves as the primary

sequencing techniques to detect novel isoforms. Long-read sequencing technologies can

sequence transcripts from end-to-end, providing the full isoforms structure and therefore offer

accurate isoform detection and quantification. Such protocols have opened up the possibility to

investigate the isoform landscape for genes with multiple gene copies (Sahlin et al. 2018) and

complex splicing patterns (Tseng et al. 2019), as well as to accurately decipher allele (Tilgner et

al. 2014) and cell specific (Gupta et al. 2018) isoforms. However, the long-read technologies

also offer new algorithmic challenges because of the higher error rate and longer sequencing

length which makes most short read alignment algorithms unsuitable for long read splice

alignment (Križanović et al. 2018). Therefore, long transcriptomic reads have, similarly to short

reads, prompted splice alignment algorithm development. Some short-read aligners have been

modified for long-read splice alignment (Dobin et al. 2013; Wu et al. 2016), while other aligners

designed for splice alignment of long reads (Li 2018; Marić et al., n.d.; Liu et al. 2019; Boratyn et

al. 2019). A recent method also suggested improving long-read splice alignments using

ensemble prediction of splice sites (Parker et al. 2021) . First, splice sites present in the sample

are predicted using an ensemble of reads aligned in the region. In a second step, reads are

aligned again using the predictions as a guide. There are also methods for post-correction of
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long read splice alignments using ensemble-based predictions (Workman et al. 2019). However,

methods that use alignments from multiple reads to form consensus splice site predictions may

over-correct less abundant splice sites and other rare events. Due to this limitation, it is desired

to have an accurate aligner that individually considers the best alignment for each read.

A particularly challenging task of long-read splice alignment is alignment to very small exons

(<30nt). Firstly, because their length small exons can be highly repetitive in the genome and be

shorter than the required seed match length of the aligner. Secondly, even if the size is larger

than the minimum seed match length, a small exon is less likely to contain seed matches if

there are errors present. The inability to align a read to small exons may cause downstream

analysis tools to predict and quantify erroneous isoforms. In addition, we show in this study that

splice aligners that use junction-specific alignment penalties can create spurious junctions by

overfitting alignments to canonical splice sites such as GT-AG junctions.

To alleviate these limitations, we have designed and implemented a splice alignment algorithm

uLTRA that aligns long-reads to a genome using an exon annotation. uLTRA uses a novel

two-pass collinear chaining algorithm. In the first pass, uLTRA uses maximal exact matches

(MEMs) between reads and the transcriptome as seeds, which is more robust and informative

than a fixed-length seed approach employed by many seed-and-extend methods (Wu et al.

2016; Li 2018; Dobin et al. 2013; Marić et al., n.d.; Liu et al. 2019; Kent 2002). Candidate genes

regions are then identified from the MEM chaining solution. In the second pass, we employ a

second chaining algorithm. The second chaining algorithm in uLTRA allows approximate

sequence matches and formulates a novel chaining problem that incorporates approximate

matches, overlap, and gap costs into the formulation. The second pass also includes all the
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annotated exons of the candidate gene(s) including exons that did not have a MEM. This extra

inclusion allows alignment to very small exons, and differ from other two-pass alignment

methods such as deSALT (Liu et al. 2019) and Graphmap2 (Marić et al., n.d.). Since the core

algorithm of uLTRA is designed for accurate alignments around annotated gene regions, it limits

finding novel gene regions. However, uLTRA also includes a setting where it wraps around

minimap2. In this setting, uLTRA uses minimap2’s primary alignments outside the regions

indexed by uLTRA and chooses the preferred alignment of the two aligners in gene regions.

We demonstrate using controlled datasets that uLTRA, both as a stand-alone aligner and as a

wrapper around minimap2, produces more accurate alignments than other aligners, particularly

for small exons. We also use a dataset with ONT sequencing of synthetic SIRV transcripts

(known isoforms) to demonstrate that uLTRA aligns more reads to transcripts that are known to

be in the sample. Furthermore, we show on biological data from both PacBio and ONT that

uLTRA aligns more reads to annotated isoforms and has alignments to more distinct isoform

structures. Finally, we demonstrate that uLTRA produces alignments to known and novel

isoform structures in the PacBio Alzheimer dataset that are not found by other aligners. These

isoform structures come from genes that have been studied or linked to Alzheimer's disease

and motivate the utility of our method for a range of downstream analysis tasks such as isoform

prediction and detection, splice-site analysis, isoform quantification and more. uLTRA is

available at https://github.com/ksahlin/ultra.
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Results

uLTRA Overview

uLTRA solves the algorithmic problem of chaining with overlaps to find alignments. The method

consists of three steps. An overview of uLTRA is shown in Figure 1. We first construct

subsequences of the genome referred to as parts, flanks, and segments (Fig 1A; details in Step

1 in Methods). This step is similar to the indexing step in other alignment algorithms, where the

data structures do not need to be reconstructed for new sequencing datasets.

To align reads, uLTRA first finds maximal exact matches (MEMs) between the reads and the

parts and flanks using slaMEM (Fernandes and Freitas 2014) (Fig. 1B). Each read will have a

set of MEMs to the genome reference sequences (e.g., a set of chromosomes). Furthermore,

we partition the instances within chromosomes if two consecutive MEMs on the chromosome

are separated by more than a parameter threshold provided to uLTRA. For each instance,

uLTRA finds a collinear chain of MEMs covering as much of the read as possible (allowing

overlaps of MEMs in the read). We use Algorithm 1 in (Mäkinen and Sahlin 2020) to find such

optimal chaining (see Step 2 in Methods). The optimal solutions to the instances produce

candidate alignment sites.

In the third step, each solution to the MEM chaining is processed as follows. The MEMs in the

chaining solution overlap distinct segments on the genome (segments defined in methods

section; see Fig. 1B for illustration). Each segment belongs to a set of at least one gene. uLTRA

aligns these segments together with all small exons (from the same genes) using edlib (Šošić
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and Šikić 2017). Each such alignment produces a maximal approximate match (MAMs; defined

in methods section), and uLTRA uses all MAMs with alignment accuracy greater than a

threshold T as input for the next chaining problem. There can be several MAMs of the same

segment (or small exon) within a read. In the chaining of MAMs, we, roughly, optimize the total

weight of MAMs covering the read while penalizing gaps and overlaps between MAMs. Here,

weight is defined by the alignment accuracy and the length of the match (see Step 3 in

Methods). The final set of MAMs produced from the optimal solution(s) constitutes a final set of

segments on the genome (Fig. 1C). Finally, we align the final set of segments to the read using

parasail (Daily 2016) (semi-global mode), which produces the final alignment(s) and cigar

strings to the genome.

When uLTRA is used as a wrapper around minimap2, it runs minimap2 and parses minimap2’s

alignments to find primary alignments outside the regions indexed by uLTRA. These alignments

are not considered for alignment with uLTRA. uLTRA then proceeds to align all remaining reads.

In a final step, uLTRA compares the reads that have been aligned with both aligners and selects

the best alignment based on edit distance to the genome. The final output SAM-file consists of

the best alignments to uLTRA-indexed regions and the alignments of minimap2 outside the

regions indexed by uLTRA.
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Figure 1. Overview of uLTRA alignment algorithm. (A) Segments, Parts and Flanks are stored and

indexed for alignment. Small exons and segments below a threshold (indicated with < T in figure) are not

indexed for MAM chaining but stored for the MAM chaining. (B) In the alignment step, MEMs in the reads

to the parts and flanks are computed. Collinear chain(s) of MEMs covering as much of the read as

possible are found for each read. (C) The solution consists of MEMs that overlap segments and/or flanks.

These segments and flanks are linked to gene IDs. All the overlapping segments and flanks to the same

gene IDs, including the small exons and segments excluded from the indexing, are retrieved and aligned

to the read to form a set of MAMs. Collinear chains of MAMs are found by optimizing for coverage and

alignment identity. The collinear chaining solution of MAMs is used to produce the final alignment of the

read to the genome.

Evaluation overview
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We evaluated uLTRA against the two state-of-the-art transcriptomic long-read aligners

minimap2 and deSALT. We also attempted to evaluate GraphMap2 but were unsuccessful in

installing the aligner on one system and received segmentation fault on another (see

supplementary note A). Several additional alignment methods can perform splice alignment of

long transcriptomic reads such as BBMAP (Bushnell 2014), GMAP (Wu et al. 2016) STAR

(Dobin et al. 2013), and HISAT2 (Kim et al. 2019) . A recent benchmarking (Križanović et al.

2018) showed that GMAP performed the best among the tools compared on long noisy reads

from complex genomes such as the human genome. Additional recent methods not included in

(Križanović et al. 2018) include Graphmap2 (Marić et al. 2019), minimap2 (Li 2018), deSALT

(Liu et al. 2019), and Magic-BLAST (Boratyn et al. 2019). However, in (Liu et al. 2019), the

authors showed that deSALT, minimap2 outperformed GMAP across a large range of datasets,

while in (Boratyn et al. 2019), which compared performance on both short and long reads,

minimap2 performed the best for long noisy reads. Therefore, we compare uLTRA the more

recent and best performing aligners minimap2 and deSALT. We run minimap2 and deSALT both

with and without annotations as all three aligners support such modes. A tool that is run with

annotations has ‘_GTF’ appended to its name. We also run uLTRA both as a stand-alone tool

(labelled uLTRA) and as a wrapper around minimap2 (labelled uLTRA_mm2). Details for how

the aligners were run are found in Supplementary Note A.

Dataset Nr reads Median
read length

Median
error rate

Genome Annotation

Simulated ENS 234,207 890 0.0% GRCh38.p1
2

Gencode
v34**

SIM_ANN 1,000,000 864 8.6% GRCh38.p1
2

Gencode
v34**

SIM_NIC 1,000,000 1,272 8.6% GRCh38.p1 Gencode
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2 v34**

Synthetic SIRV 1,514,274 538 6.9%* SIRV
genome

SIRV
annotation
C_170612a

Biological ALZ 4,277,293 2,699 1.2%* GRCh38.p1
2

Gencode
v34**

DROS 3,646,342 559 7.0%* BDGP6.28 Ensembl
v100

Table 1 Datasets included in evaluation. *Measured from minimap2’s alignments. Due to biological

sequence variations, the error rate may be lower than the number presented here. ** Includes alternative

haplotypes.

​We used three in silico, one synthetic, and two biological datasets (Table 1) to evaluate the

alignment algorithms. Of the biological datasets, two were from ONT and one from the PacBio

Iso-Seq protocol. We used simulated datasets with known annotations to investigate the

accuracy of spliced alignments as a whole, and of individual exons as a function of exon size.

We used the synthetic SIRV data to investigate how aligners perform when aligning real

sequencing reads to isoforms structures known to be in the sample. Finally, for the biological

data where we do not have the ground truth annotations we measured the concordance in

alignments between alignment methods. We also demonstrate that relying on alignment

concordance as a proxy for alignment accuracy can be misleading due to similar alignment

biases between aligners. We also report runtime and memory usage.

Alignment accuracy

We used three in silico datasets to test the alignment accuracy in a controlled setting (Table 1).

First, we used 234,207 distinct cDNA sequences downloaded from ENSEMBL (denoted ENS)

without introducing any simulated errors. We then simulated a dataset of 1,000,000 reads
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uniformly at random from the 234,207 ENSEMBL sequences with a mean error rate of 8.6%

(denoted SIM_ANN for simulated annotated transcripts). Finally, to test the ability to align to

transcripts containing novel combinations of exons, we simulated a dataset with the same error

rate as SIM_ANN, that we call SIM_NIC for simulated Novel-In-Catalog transcripts. This dataset

consists of reads from transcripts with novel exon combinations that we generated from

gencode annotations (release 34, including haplotype scaffold annotations). See supplementary

note B for details on the simulations. Since we have the true exon annotation of each read, we

classify the read alignments as correct, inexact, exon difference, incorrect location, and

unaligned. For details of these classifications, see Supplementary note B.

For SIM_ANN, which contains simulated reads from annotated transcripts, uLTRA has the

highest fraction of correct alignments (93.6%) with a 2.8% percentage point increase compared

to the second-best performing tool  deSALT_GTF (Fig. 2A). uLTRA also substantially reduces

errors classified as exon differences compared to the other aligners. Furthermore, we observed

that uLTRA achieves considerably higher accuracy than other aligners for small exons (Fig. 2B).

uLTRA_mm2 is further able to slightly increase accuracy over uLTRA (94.0%). For comparison,

when minimap2 is run as a stand-alone tool, it has an accuracy of 87.9% (Fig. 2A). We

observed similar trends for the ENS dataset (Fig. S1).

As for the SIM_NIC, which contains only reads with novel combinations of exons, uLTRA's

accuracy is comparable to the ENS and SIM_ANN datasets (Fig. S2A). However, on this

dataset uLTRA has a 9.6% percentage point more correctly aligned reads compared to the

second-best performing aligner deSALT_GTF (Fig. S2A), and a 24.4% percentage point

increase to minimap2. Our results show that the accuracy is substantially lower for the other
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aligners across exons sizes on this dataset (Fig. S2B), which disputes the explanation that the

decrease in accuracy is caused solely by a larger fraction of smaller exons in the SIM_NIC

dataset. The decreased accuracy may be explained by the fact that transcripts are simulated

from all the reference sequences present in the Gencode release 34 (including haplotype

scaffold annotations). This simulation will, therefore, produce more reads from transcripts with

similar gene copies. As uLTRA's accuracy remains similar to the other two datasets, it highlights

the accuracy of aligning transcripts also to a reference genome with alternative haplotypes.

Similarly to the other simulated datasets, uLTRA_mm2 has the highest accuracy (95.0%) which

slightly improves over uLTRA as a stand-alone aligner.

A B

Figure 2. Alignment results on simulated data for the SIM_ANN dataset. (A) Percentage of reads in each

respective category. (B) The fraction of correctly aligned exons (y-axis) as a function of exon size (x-axis).
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Splice site annotation performance on SIRV

We used the subset of 59 isoforms with distinct splice site positions from the ONT cDNA SIRV

dataset (Sahlin and Medvedev 2021) to investigate alignment performance around splice sites

(for details see Suppl. Note C). In this dataset, as the sequenced isoforms are known, we have

a complete isoform annotation. We computed all alignments that had perfect matching splice

sites to the annotations and denoted these reads as Full Splice Matches (FSM) following the

notation in (Tardaguila et al. 2018). With the SIRV dataset, we have the properties of real ONT

sequencing errors and genes, each expressing several known isoforms. The downside with

SIRV data is that it does not represent the sequence complexity of a genome. For minimap2

and deSALT, we used non-default alignment parameters not to penalize non-canonical splice

sites as much as in biological data. After this modification, we observed substantially improved

alignment performance over default parameters (for details, see Suppl. Note A).

While sequencing bias may distort the read coverage per isoform and produce a dataset with

different coverage distribution to what is present in the sample, the E0 mix contains transcripts

at roughly equal abundances. In large, we observe similar distribution in the number of FSM

alignments per isoform (Fig. S3) for all the aligners, but minimap2, minimap2_GTF, and deSALT

produce less FSM alignments compared to deSALT_GTF, uLTRA, and uLTRA_mm2 across

most isoforms. A notable difference is that minimap2 only aligns FSM reads to 54 unique

isoforms, even after employing specific alignment parameters for SIRV data (Suppl. Note A). In

comparison, deSALT and uLTRA in both settings were able to align FSM reads to all 59 unique

isoforms.
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There are some exceptions that we will now discuss. Firstly, both deSALT and minimap2 in

annotation-free and annotation-provided settings align substantially fewer reads to SIRV503

than uLTRA and uLTRA_mm2. SIRV503 contains an 8nt long exon that deSALT and minimap2

do not align to in the large majority of reads containing the exon. Secondly, minimap_GTF does

not align any reads to SIRV511, SIRV708, SIRV304, SIRV403, and SIRV408, while the

annotation-free version of minimap2 does. Instead, we can see that minimap_GTF aligns a

substantially larger fraction of reads to, e.g., SIRV506. Without setting specific alignment

parameters for this dataset (Suppl. Note A), we observed that deSALT_GTF did not align any

reads to SIRV511 and SIRV708. Such cases show that using specific alignment parameters for

non-canonical splice sites may introduce alignment bias from overfitting to specific isoforms.

Thirdly, comparing the two reference-free alignment methods minimap2 and deSALT, we

observe that deSALT produces substantially fewer FSM alignments to minimap2 across most

isoforms.

Overall, we observed more evenly distributed FSM alignment across the SIRV isoforms with

both uLTRA and uLTRA_mm2. While there is no ground truth for this dataset, an equal

abundance of isoforms is expected in this dataset from the design of the SIRV E0 mix.

Furthermore, the number of FSM isoforms between uLTRA and uLTRA_mm2 alignments stays

consistent.

Evaluating alignments on biological data

We used an Alzheimer brain Iso-Seq dataset (denoted ALZ) and an ONT cDNA sequencing

dataset from Drosophila (Sahlin and Medvedev 2021) (denoted DROS). Both datasets have
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been processed with respective bioinformatics pipelines to select only the reads containing

full-length transcripts (for details see Suppl. Note D).

We neither have the correct read annotations, nor are we guaranteed to have a complete gene

annotation for the biological datasets, which presents a challenge when evaluating accuracy.

We took the following approaches. We first compared the aligned read categories between

alignment algorithms following the definitions in (Tardaguila et al. 2018) (presented in the next

section). Secondly, we looked at the alignment concordance between methods. Here we

investigated concordance with respect to both alignment location on the genome and

concordance in the categories of reads. Thirdly, we provide several examples of uniquely

detected isoforms by uLTRA (and uLTRA_mm2), which demonstrate that alignment

concordance analysis without ground truth has caveats.

Alignment categories on biological data

We evaluated alignment categories to the previously annotated database using the categories

defined in (Tardaguila et al. 2018). As in (Tardaguila et al. 2018), we classify an alignment of a

read to the genome as a Full Splice Match (FSM), Incomplete Splice Match (ISM), Novel In

Catalog (NIC), Novel Not in Catalog (NNC), or NO_SPLICE. An FSM alignment means that the

combination of splice junctions in the read alignment has been observed and annotated as an

isoform. An ISM alignment means that the combination of splice junctions is in the annotation,

but it is missing junctions compared to the annotated models in either the 3’ or 5’ end. A NIC

alignment consists of junctions that all appear in the annotation, but not together in a single

isoform. An NNC alignment means that the read aligns with at least one junction that is not in
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the annotation, while NO_SPLICE are all alignments without splice sites. See (Tardaguila et al.

2018) for details regarding these definitions.

In (Tardaguila et al. 2018), the authors noted that a higher fraction of isoforms represented by

FSM and NIC reads could be validated using orthogonal techniques compared to the NNC

reads, where the large majority could be validated and may stem from sequencing artifacts or

misalignments. As we neither know the true isoforms present in the samples nor have a

complete annotation of all isoforms on the genome, comparing the alignment categories

between alignment methods does not evaluate alignment performance. Nevertheless, the

categories can be compared between aligners for general insight on alignment concordance.

Furthermore, these alignment categories are important for various downstream isoform

detection and classification methods such as SQANTI (Tardaguila et al. 2018), TAMA (Kuo et

al. 2020),  or TALON (Wyman et al., 2019). Therefore, we present the results here.

Figure 3. Number of reads annotated in different splicing categories for DROS (A) and ALZ (B).
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Overall, the aligners and their different modes produce a similar distribution of the different

alignment categories on both the DROS and ALZ datasets (Fig. 3). We observe that uLTRA,

uLTRA_mm2 and deSALT_GTF align more FSM reads than deSALT, minimap2 and

minimap2_GTF. In the ALZ dataset, uLTRA has many unaligned reads due to a large fraction of

reads (17.6%) aligning outside uLTRA indexed regions. We observe that the other aligners,

including uLTRA_mm2, have no unaligned reads. Instead, they attribute a larger fraction of

reads in the category NO_SPLICE (Fig. 3B). It is known that a substantial fraction of reads in

long-read transcriptome sequencing data is coming from so-called intra-priming reads

(Tardaguila et al. 2018). These reads are characterized by aligning without splice junctions to an

unannotated genome location that contains a poly-A stretch downstream from their 3′ end.

While not fully characterized, these reads are likely to be artifacts in the sequencing protocol

and often filtered out in downstream analysis (Tardaguila et al. 2018).

As for the number of unique isoforms aligned to in the ALZ dataset, uLTRA has FSM alignments

to more unique isoforms (39,384) compared to uLTRA_mm2 (36,776), deSALT_GTF (36,244),

minimap2 (34,831), minimap2_GTF (34,495), and deSALT (34,421). We observed this trend

also in the DROS dataset, where uLTRA had FSM alignments to 13,950 unique isoforms

compared to uLTRA_mm2 (13,464), deSALT_GTF (13,367), minimap2 (13,092),

minimap2_GTF (13,039), and deSALT (12,847). uLTRA also aligns a higher fraction of NIC

reads in both the DROS and ALZ datasets (Fig. 3). While there is no ground truth for the

datasets, likely, the substantial increase in unique isoforms by uLTRA as a stand-alone tool

comes from the inability to align reads to genomic and pseudo-gene regions. Therefore, it is

beneficial not to be limited to alignments around gene regions when aligning datasets where

genomic contamination or novel gene regions exist.
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We further investigated concordance in alignments between uLTRA_mm2, deSALT_GTF, and

minimap2. They represent the best setting for each aligner, respectively, based on our accuracy

evaluation on simulated data (Fig. 2, Fig. S1-2) and alignment consistency analysis on the

synthetic SIRV data (Fig. S3).

Alignment concordance on biological data

We first looked at a relaxed measure of alignment concordance. We define a read to have

concordant alignments between two methods if the two alignments have a non-zero overlap on

the genome (based on the start and stop coordinates). Note that this definition only captures

discordance if the read aligns to different genes, not smaller differences around exons. A caveat

with this definition occurs when measuring alignment concordance between more than two

aligners. An alignment spanning positions A to C in one alignment may overlap with two disjoint

alignments A to B and B+1 to C. In this case, we treat all the alignments as discordant. Finally,

there are genes with multiple identical copies on the genome. In these cases, the alignment

methods may choose different alignment locations simply by randomly picking a location. With

these limitations in mind, we observed 90.3% and 98.6%% of all aligned reads had concordant

genomic positions in DROS and ALZ, respectively (Fig. S4). This indicates that the mapping

region is largely consistent between aligners and that most of the variability occurs in

alignments around exons. The lower alignment concordance for the DROS dataset may result

from a higher median error rate combined with a shorter average read length. In the DROS

dataset, the second-largest category was the alignment concordance between uLTRA_mm2

and deSALT_GTF (5.7%; Fig. S4A).
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We also looked at alignment concordance broken down individually within the classes FSM,

ISM, NIC, NNC, and NO_SPLICE. For the FSM, ISM, NIC classes where splice sites are known,

we classify an alignment as concordant between aligners if all the splice sites are identical. For

NNC and NO_SPLICE, we use genomic overlap as described above. We observed a large

concordance of alignments in the categories FSM, ISM, and NO_SPLICE and a slightly lower

concordance for the categories NIC and NNC in both DROS (Fig. S5) and ALZ (Fig. S6)

datasets. However, the NIC and NNC categories contain fewer reads (Fig. 3).

Finally, we also looked in more depth at the concordance of unique isoforms that had FSM

predictions (Fig. S7). We observed a large concordance in the predicted FSMs. In total, 93.6%

and 90.1% of the total unique isoforms with FSM alignments were aligned to by all the three

methods on both datasets, for DROS and ALZ, respectively. The second largest category was

isoforms aligned to by both uLTRA_mm2 and deSALT_GTF (2.2% and 4.3% for DROS and ALZ

respectively).

Caveats of assessing alignments based on concordance

We further investigated some of the isoform structures uniquely aligned to by uLTRA_mm2 and

observed that in several cases, uLTRA’s alignments were correct. This analysis highlights that

alignment concordance between aligners may not indicate correct alignment as concordance

can come from the same algorithmic decisions between aligners such as customized alignment

penalties for canonical regions or inability to align to very short exons.
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FSM isoforms uniquely found by uLTRA

On the DROS dataset, uLTRA_mm2 aligned 338 FSM reads to 104 distinct isoforms (0.8% of

total distinct isoforms) that minimap2 and deSALT_GTF did not align to. Of these isoforms, 7

had more than ten reads aligned, while most other isoforms had a coverage of 1-10 reads (Fig.

S8A). For the ALZ dataset, uLTRA aligned a total of 9,130 FSM reads to 571 distinct isoforms

(1.6% of total distinct isoforms) that minimap2 and deSALT_GTF did not align to. A total of 109

of these isoforms had more than 10 reads aligned, while most other isoforms had a coverage of

1-10 reads (Fig. S8).

We manually inspected a subset of the more abundant uniquely predicted isoforms by

uLTRA_mm2 for the ALZ dataset using IGV (Robinson et al. 2011). We observed that some of

these isoforms contained small exons (<10nt) that after manual inspection appeared correctly

aligned to (Fig. S9). However, deSALT_GTF and minimap2 agreed on a different splicing

structure, with the small exons put as an insertion or substitutions in the 5’ or 3’ ends of

upstream or downstream exons. These alignments would show up as concordant between

deSALT_GTF and minimap2_GTF in our previous analysis, although they are unlikely to be

correct. The isoforms in Figure S9 come from the genes AP2, APBB, HNRNPM, and DCTN2,

which come from gene families that have appeared in studies related Alzhemers's disease (Tian

et al. 2013) (Tanahashi and Tabira 1999) (Geuens, Bouhy, and Timmerman 2016) or other

neurodegenerative disorders (Boland et al. 2018). All of these genes are supported by more

than 100 reads and have perfect alignment across the junctions in uLTRA_mm2’s alignments.

In addition, we highlight another case of a potential subtle misalignment (Fig. S10) that makes

the best fit FSM isoform go undetected. This potential misalignment is caused by using GT-AG
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specific alignment penalties and causes 500 reads to support a GT-AG splice junction in

deSALT_GTF and minimap2. In this example, uLTRA_mm2's alignments support a GC-AG

junction. While we have no ground truth, and an insertion of one nucleotide near the splice site

is plausible, uLTRA_mm2's alignments best fit the data (omitting prior belief of GT-AG junction)

and also supports a previously annotated isoform. The PRNP gene has also been studied in

Alzheimer's disease (Bagyinszky et al. 2019).

Finally, we illustrate an example (Fig. S11) of an instance of 161 reads where all three aligners

have discordant alignments, caused by a segment of 9nt from a transcript from the SPOCK

gene, which has also appeared in studies on neurodegenerative disorders (Charbonnier et al.

1997). Here, uLTRA_mm2 and deSALT_GTF align the 9nt portion of the read corresponding to

two different exons while minimap2 does not align this region. Both uLTRA_mm2 and

deSALT_GTF alignments are FSM but to different isoforms, and both upstream and

downstream junctions are GT-AG. With this information, it is ambiguous as to which alignment is

the correct one.

NIC isoforms uniquely found by uLTRA

We also observed that uLTRA_mm2 aligns more reads as NIC alignments compared to

deSALT_GTF and minimap2 (Fig. 3, Fig. S5C, and S6C). Many of these NIC reads could be

spurious due to inaccuracies in uLTRA_mm2 alignments when both upstream and downstream

flanks of the junction contain the same nucleotide. We looked at the most abundant NIC

uniquely aligned to by uLTRA_mm2, a transcript from the MBP gene (Fig. S12; predicted by 943

20

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2020.09.02.279208doi: bioRxiv preprint 

https://paperpile.com/c/iibbTS/veWB
https://paperpile.com/c/iibbTS/fSaE
https://paperpile.com/c/iibbTS/fSaE
https://doi.org/10.1101/2020.09.02.279208
http://creativecommons.org/licenses/by-nc/4.0/


reads). uLTRA aligned reads to this NIC because of the homopolymer length difference of C's in

the reads, together with that both the upstream and downstream junction contained C's.

However, deSALT_GTF and minimap2 always aligned to the CT-AC junction by creating

insertions of C at downstream junctions if needed (matching an FSM), while uLTRA_mm2

chooses a CT-TA junction for the reads where the homopolymer length was four cytosine

nucleotides (creating a NIC). It is ambiguous as to what is the correct isoform in this example.

As for the uniquely predicted FSMs, the NICs also contained predictions with small exons (in

total 50 unique NIC isoforms have exons smaller than 20nt). We manually inspected some of

the more abundant predictions of which, similarly to the FSMs with small exons, the data

supports their correctness (Fig. S13 A-C). The three isoforms presented in Fig. S13 are highly

supported isoforms from the MICU1, SEPTIN7, and APBB1 genes and are, furthermore, novel

with respect to the Gencode v34 annotation and have appeared in studies on Alzheimer’s

disease (X. Wang et al. 2018) (Calvo-Rodriguez et al. 2020) (Tanahashi and Tabira 1999).

Runtime and memory usage

We used a 128Gb memory node with 20 cores. We tested the tools using both 4 and 19 cores

(leaving one core for the main process) to study parallelization performance. We measured user

time (total time from start to finish) and peak memory usage (highest memory usage across the

program lifetime).

Dataset uLTRA uLTRA_
mm2

minimap2 minimap2_GTF deSALT deSALT_G
TF

ENS 52m 1h 11m 43m 45m 18m 17
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SIM_AN
N

2h 47m 4h 00m 2h 42m 2h 48m 1h 20m 1h 23

SIM_NIC 3h 21m 6h 40m 4h 35m 4h 42m 1h 46m 1h 55m

SIRV 35m 50m 13m 13m 6m 7m

ALZ 16h 9m 17h 32m 9h 4m 9h 47m 10h 16m 10h 17m

DROS 1h 17m 1h 37m 18m 25m 23m 23m

Table 2. Runtime of alignment using 4 cores.

Using 4 cores, we observe that deSALT is the fastest tool except on the largest dataset (ALZ)

where minimap2 is the fastest (Table 2). The relative runtime difference between uLTRA and

deSALT decreases with the organism's size and the number of reads on our datasets. For

example, on the two smaller datasets SIRV and DROS, deSALT is about 6 times and 4 times

faster, respectively. While on the largest datasets, SIM_NIC and ALZ, deSALT is about 2 times

and 1.6 times faster, respectively (Table 2). uLTRA has a similar or faster runtime than

minimap2 on ENS, SIM_ANN, and SIM_NIC, respectively, but is slower on the other datasets.

Using uLTRA as a wrapper around minimap2 increases the runtime slightly, but it is substantially

less costly than running both aligners separately. For the ALZ dataset, running uLTRA_mm2 is

only about 8% slower than only running uLTRA. Overall, while uLTRA and uLTRA_mm2 have a

slightly larger runtime than minimap2 and deSALT, the practical difference, particularly for the

larger datasets, is not major.

When we supply 19 cores for alignment, we see similar trends as to using 4 cores. The

alignment time difference between uLTRA and the other aligners is the largest for smaller

datasets such as SIRV and DROS, and evens out for larger datasets SIM_NIC and ALZ (Table

S1). For example, uLTRA is about 80% slower on the ALZ dataset than both minimap2 and

deSALT.
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Dataset uLTRA uLTRA_
mm2

minimap2 minimap2_GTF deSALT deSALT_G
TF

ENS 15Gb 20Gb 17Gb 22Gb 38Gb 38Gb

SIM_ANN 17Gb 21Gb 18Gb 18Gb 38Gb 38Gb

SIM_NIC 19Gb 23Gb 19Gb 19Gb 39Gb 39Gb

SIRV 6Gb 8Gb 3Gb 3Gb 2Gb 2Gb

ALZ 52Gb 64Gb 20Gb 19Gb 50Gb 40Gb

DROS 12Gb 17Gb 7Gb 6Gb 13Gb 13Gb

Table 3. Peak memory usage of alignment using 4 cores.

As for memory usage during alignment using 4 cores, minimap2 and uLTRA have similar

memory footprints across the three simulated datasets, but uLTRA uses about 1.7-2.6 times

more memory on the biological datasets (Table 3). deSALT uses the most memory on the

simulated datasets and has a memory footprint similar to uLTRA on the ALZ dataset but uses

lower memory on the SIRV and DROS. When parallelizing over 19 cores, the relative memory

usage between minimap2 and uLTRA stays largely the same (Table S2). However, deSALT

slightly decreases its relative memory footprint compared to minimap2 and uLTRA.

For indexing, uLTRA and minimap2 are relatively fast, while deSALT is slower (Table 4). uLTRA

used the smallest amount of memory (Table 5), which is not surprising as it is processing a

smaller region of the genome.

Dataset uLTRA minimap2 deSALT

HG38 23m 5m 2h 49m

SIRV 0m 0m 1m
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DROS 3m 0m 9m

Table 4. Runtime of indexing.

Dataset uLTRA minimap2 deSALT

HG38 7Gb 19Gb 74Gb

SIRV 0Gb 0Gb 2Gb

Drosophila 3Gb 2Gb 6Gb

Table  5. Peak memory usage of indexing.

Discussion

Splice alignment is an algorithmic problem central for the detection and prediction and

quantification of isoforms. We have presented a novel splice alignment algorithm, and its

implementation uLTRA. uLTRA aligns long transcriptomic reads to a genome using an

annotation of coding regions. In addition, uLTRA can also run as a wrapper around minimap2. In

this mode, it refines alignments around gene regions. uLTRA outputs alignments in SAM-format,

and classifies the splice alignments according to the classification given in (Tardaguila et al.

2018) under an optional tag in the SAM-file. We evaluated uLTRA on simulated, synthetic, and

biological data, and our analysis highlights some of the challenges with splice alignment and the

current state-of-the-art approaches.

Using simulated data, we demonstrated uLTRA’s increased accuracy over other aligners.

Particularly, uLTRA outperformed other state-of-the-art splice aligners when aligning reads to

small exons. We also observed that uLTRA had high accuracy when aligning reads that could
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come from alternative haplotype sequences and novel isoform structures (Fig. S2), while other

methods had a substantial decrease in accuracy on this dataset.

We used synthetic data to investigate the performance of alignment algorithms when aligning

reads to known splice sites. Our experiments demonstrate that uLTRA aligns a much higher

percentage of reads to known isoforms in the data. This holds true when running uLTRA as a

wrapper around minimap2, indicating that uLTRA’s alignments are preferred based on edit

distance of the alignments. Furthermore, uLTRA’s FSM alignments are distributed across the 59

isoforms with distinct splice-sites without indication of alignment bias towards specific isoforms

as other aligners have (Fig. S3).

On biological data we demonstrated several examples where uLTRA aligns reads to the correct

isoform structure while the other aligners do not. We showed several examples where isoforms

containing small exons were misaligned (Fig. S9, S11). We also illustrated that employing

junction specific alignment penalties may lead to concordant but erroneous alignment around

junctions (Fig. S10). Finally, we observed cases where homopolymer differences in reads may

lead to subtle alignment differences causing alignment to novel junctions (Fig. S12). In

summary, the examples we provide on biological data demonstrate that using simple

concordance analysis between aligners to measure accuracy can be misleading. Furthermore,

the examples (Fig. S9-S13) came from genes that have been studied or linked to Alzheimer's

disease with many of them highly abundant. As several of these isoforms may not be detected

with other alignment software, we demonstrated the utility of uLTRA and highlighted the

significance of further development of splice alignment techniques.
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We observed a large fraction of reads in the biological dataset that came from genomic regions

in Homo Sapiens and Drosophila that are two well-annotated genomes. The large majority of

these reads were aligned as NO_SPLICE (Fig. 3) and are likely to be intra-priming artifacts

produced by long-read protocols (Tardaguila et al. 2018). In such cases, having an aligner that

is not limited to aligning to only gene regions is preferred, as uLTRA will either not align them

(as is the case for most of these reads; Fig. 3), or worse, overfit them to gene regions. We

observed that this is resolved by using uLTRA as a wrapper around minimap2. Overall, our

experiments on simulated, synthetic, and biological data indicated that uLTRA_mm2 (i.e.,

uLTRA as a wrapper around minimap2) produced the most favorable alignments at the cost of

an increased runtime.

As alignment to pan-genome graphs has demonstrated its advantage over linear genomes

(Garrison et al. 2018), it is of interest to explore such approaches in a transcriptomic setting. Our

alignment strategy facilitates the addition of variant sequences in a relatively straightforward

manner by adding alternative segments to uLTRA’s index (containing variations obtained from

variant annotation file). We, therefore, aim to continue working on uLTRA in this direction.

Conclusion

We present a new splice alignment algorithm and its implementation uLTRA. Our method

models splice alignment as a two-pass collinear chaining problem with a novel exon chaining

formulation. Our analysis highlights some of the challenges with splice alignment and the

current state-of-the-art approaches. We show that uLTRA substantially improves
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splice-alignment accuracy of long RNA-seq reads using biological, spike-in, and simulated

datasets. Furthermore, uLTRA can be used both as a stand-alone aligner and as a wrapper

around minimap2 to handle reads aligning to unannotated regions. Furthermore, we

demonstrate several examples on biological data where uLTRA aligns reads to previously

annotated and novel isoform structures that other aligners did not detect. This highlights the

immediate utility that uLTRA has when profiling a new transcriptome.

Methods

Step 1: Indexing and processing the genome annotation

A part is defined as the smallest genomic region fully covering a set of overlapping exons (Fig.

1). By construction, parts are disjoint regions of the genome. Flanks are constructed by taking

regions of size F nucleotides downstream and upstream of parts. If two parts are separated with

a distance of less than F nucleotides, then the non-overlapping region between the two parts is

chosen as a flank region (Fig. 1).  By construction, flanks are disjoint regions, both to each other

and to parts. Finally, segments are constructed from start and end coordinates of exons.

Segments are constructed for each part individually as follows. For a sorted array of exon start

and stop coordinates within a part, a segment is constructed for each pair of adjacent(𝑥
𝑖
, 𝑥

𝑖+1
)

coordinates in the array if where is a parameter to uLTRA (set to 25). If𝑥
𝑖+1

− 𝑥
𝑖

≥ 𝑋 𝑋

, uLTRA iteratively attempts to add segments in each direction until success. That𝑥
𝑖+1

− 𝑥
𝑖

< 𝑋

is, uLTRA attempts to add and for until first success in each(𝑥
𝑖−𝑘

, 𝑥
𝑖+1

) (𝑥
𝑖
, 𝑥

𝑖+1+𝑘
) 𝑘 = 1,  2,...,
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direction. Finally, there may be parts where (see exon e7 in Fig. 1). Small segments,𝑦 − 𝑥 < 𝑋

exons, or parts have a lower probability of containing a MEM (and therefore be omitted from

alignment). We address this complication as follows. uLTRA stores all exons and segments

smaller than a threshold in a container that links gene ID to the small segments. This data

structure will be queried, and all small segments will be included, whenever there are MEMs to

segments linked to the same gene ID.

Step 2: Collinear chaining with MEMs

A Maximal Exact Match (MEM) ([a..b],[c..d]) means that genome segment [a..b] matches read

segment [c..d], and that such match cannot be extended to either direction. We use notation

A[i].x to denote the endpoints of MEMs for x ∈ {a,b,c,d}. Let array A[1..n] contain the MEMs.

A chain S is a collinear subset of A, meaning that S[i].a<S[i+1].a and S[i].c<S[i+1].c for 0<i<n

(i.e. satisfying the weak precedence (Mäkinen and Sahlin 2020)). Coverage(S) is defined as the

number of identities in an alignment induced by S, i.e., the length of the anchor-restricted LCS

(longest common subsequence) of reference and the read, where anchor now means a MEM

(Mäkinen and Sahlin 2020): If there are no overlaps between MEMs in chain S, Coverage(S) is

the overall length of MEMs in S, but if there are, the score is adjusted by adding only the

minimum length of the non-overlapping parts of the consecutive MEM intervals (Mäkinen and

Sahlin 2020). Here we look for chains that have no overlaps in the genome, so for finding S that

maximizes Coverage(S), we use Algorithm 1 in (Mäkinen and Sahlin 2020) that runs in O(n log

n) time.
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Step 3: Collinear chaining of MAMs

We refer to an approximate match, as an alignment of a genome segment [a..b] to a read

segment [c..d] with an accuracy higher than a threshold (parameter to uLTRA) . Here, accuracy

is defined as the number of matches divided by the length of the alignment. We find

approximate matches of the genome segment by aligning it in semi-global mode to the read

using edlib. The length of the alignment is defined by the genome segment’s first and last

nucleotide coordinates.  A Maximal Approximate Match (MAM) ([a..b],[c..d]) means that genome

segment [a..b] matches approximately read segment [c..d] and that no other approximate match

has higher accuracy on the read. Furthermore, we let be the penalty for eachλ ∈ [0, 1]

nucleotide that overlap (on the read) between two MAMs and the penalty for theδ ∈ [0, 1]

distance between two MAMs (on the read). Let array contain the MAMs where we use𝐴[1,..., 𝑁]

the following notation: , to denote the genome start, genome𝐴[𝑖]. 𝑎,𝐴[𝑖]. 𝑏 𝐴[𝑖]. 𝑐,𝐴[𝑖]. 𝑑 𝐴[𝑖]. 𝑎𝑐𝑐

stop, read start, read stop, and accuracy of MAM . Let be a chain of the MAMs in𝑖 𝑆 [1,..., 𝑚] 𝐴

under the weak precedence constraint (Mäkinen and Sahlin 2020). For two MAMs in , we𝑥, 𝑦 𝐴

introduce the following functions. Let , (the𝑣(𝑥) = (𝑥. 𝑑 − 𝑥. 𝑐) 𝑜(𝑥, 𝑦) = 𝑚𝑎𝑥{0,  𝑥. 𝑑 − 𝑦. 𝑐}

overlap), and (the distance between MAMs) on the read, then the𝑑(𝑥, 𝑦) = max {0, 𝑦. 𝑐 − 𝑥. 𝑑}

of a MAM-chain is defined as𝑠𝑐𝑜𝑟𝑒(𝑆 )

,
𝑖=1

𝑚

∑ (𝑣(𝑆[𝑖])
 

−  𝑜(𝑆[𝑖 − 1],  𝑆[𝑖]) )𝑆[𝑖]. 𝑎𝑐𝑐 −
 
 λ𝑜(𝑆[𝑖 − 1],  𝑆[𝑖])

 
− δ 𝑑 (𝑆[𝑖 − 1],  𝑆[𝑖])

where 𝑜(𝑆[0],  𝑆[1]) = 𝑑(𝑆[0],  𝑆[1]) =  0
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We find the chain . This formulation intuitively selects the solution with𝑆𝑚𝑎𝑥 =
𝑐ℎ𝑎𝑖𝑛𝑠 𝑆

max 𝑠𝑐𝑜𝑟𝑒(𝑆 )

the best coverage and accuracy, while penalizing overlapping MAMs or MAMs that occur far

apart. This formulation is solved with a dynamic programming algorithm: Sort array by𝐴[1,..., 𝑁]

values . Let be the target array, where we wish to store for each the𝐴[𝑖]. 𝑎 𝑊[0,..., 𝑁] 𝑊[𝑖]

maximum score over chains ending at MAM . To compute , one can consider adding𝐴[𝑖] 𝑊[𝑖]

to chains ending at , with . This increases the score by𝐴[𝑖] 𝐴[𝑖'] ∀𝑖' < 𝑖 𝐴[𝑖']. 𝑐 < 𝐴[𝑖]. 𝑐

After𝑤(𝑖', 𝑖) = (𝑣(𝐴[𝑖]) −  𝑜(𝐴[𝑖'],  𝐴[𝑖]) )𝐴[𝑖]. 𝑎𝑐𝑐 − λ 𝑜(𝐴[𝑖'],  𝐴[𝑖]) − δ 𝑑 (𝐴[𝑖'],  𝐴[𝑖]).

initializing , we can set to the maximum over for with𝑊[0] = 0 𝑊[𝑖] 𝑊[𝑖'] + 𝑤(𝑖', 𝑖) 0 ≤ 𝑖' < 𝑖

from left to right, and the maximum scoring chain can be traced back starting𝐴[𝑖']. 𝑐 < 𝐴[𝑖]. 𝑐

from the maximum value in . Although this computation takes quadratic time, in𝑊[1,.., 𝑁]

practice the instances of segments are small enough to be solved quickly.  It is not known

whether our formulation allowing weighted hits, overlap, and gap penalties can be solved in

subquadratic time, although recent breakthroughs have been made for chaining problems

allowing overlap and gap costs (Jain, Gibney, and Thankachan, 2021).

Wrapping around minimap2

uLTRA can be used as a wrapper around minimap2 to detect alignments outside annotated

regions. In this mode, uLTRA first runs minimap2. After reads have been aligned with minimap2,

uLTRA parses minimap2’s alignments to find reads with primary alignments outside the regions

indexed by uLTRA. A read with more than a fraction of nucleotides (parameter to uLTRA;𝑋

used here) out of the total aligned nucleotides is considered genomic and not realigned𝑋 = 0. 1

with uLTRA. We use an interval-tree data structure to hold the indexed regions to find overlap of

a read and indexed regions. This permits an query time, where is the number of𝑂(𝑙𝑜𝑔 𝑄) 𝑄
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intervals on the chromosome to which the read is aligned. The alignments that are classified as

genomic are not aligned with uLTRA. uLTRA then proceeds to align all remaining reads.

Instead, uLTRA will report minimap2’s primary alignments for these reads. uLTRA then

proceeds to align all reads not classified as genomic as described. In a final step, uLTRA

compares the reads that have been aligned with both aligners and selects the best alignment

based on edit distance to the genome. The final output SAM-file consists of the best alignments

to uLTRA-indexed regions and minimap2’s alignments of genomic reads.

Implementation

Chaining of MEMs

In the implementation, the optimal solution instance is found through backtracking. If several

possible tracebacks paths lead to the same optimal value for a given optimal value in the

traceback vector, uLTRA will always choose the closest MEM, i.e., the one with the highest

index j. This means that the mem with the closest genomic coordinate is chosen if several exist.

If several optimal chaining solutions are found, i.e., several positions in the vector traceback

vector have the optimal value, uLTRA will report all of the solutions by backtracking each

instance (as described above). This is not a rare case since there can be identical or highly

similar gene copies annotated on the genome that give the same optimal value.

Since each read can have several chaining instances to solve, uLTRA pre-calculates the

theoretical maximum MEM coverage that an instance can have, which is upper bounded by the

sum of all the regions covered by mems in the reads. uLTRA then solves the chaining instances
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by highest upper bound on coverage. If at any point the upper bound drops below a drop-off

threshold (parameter to uLTRA) the current best solution uLTRA skips to calculate the rest of

the instances. There is also a parameter to limit the number of reported alignments.

Chaining of MAMs

MAMs are formed by aligning segments and exons with at least an alignment identity of X%

(default 60), and in case of exons between 5-8 nucleotides in length, an exact match is required.

Exons of 4bp or less are ignored because of the potential blowup in the number of matches

across the read. Similarly to the MEM chaining, the traceback will choose the MAM with the

highest index j.

Alignment reporting

The exons that are included in an optimal solution of the MAM chaining are concatenated into

an augmented reference, and the read is aligned to this reference using parasail in semi-global

mode. The alignment score and cigar string are computed from the alignment. Among all MAM

instances for a read, the highest scoring one is selected as the primary alignment. If a read has

multiple best scoring alignments, the one with the shortest genomic span of the alignment is

reported, and if still a tie, an FSM is preferred over the other read labels.

A read is assigned as unaligned if the alignment score is lower than X*m*r, where r is the read

length, m is the match score (set to 2 in parasail; see Suppl. Note A for details), and X is a

parameter to uLTRA (set to 0.5). The default setting roughly corresponds to classifying a read

as unaligned if it has more than 25% errors, or if a larger segment of the read is from, e.g., from

a region that is not included in the indexing.
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Output

uLTRA outputs alignments in SAM-file format with genomic coordinates as annotated by the

transcript database. In addition, uLTRA outputs an annotation of the alignment following the

definitions in (Tardaguila et al. 2018) in the SAM-file in the optional field “CN”.

Data access

The biological and synthetic datasets are publicly available datasets. The pacbio Alzheimer

dataset can be downloaded at

https://downloads.pacbcloud.com/public/dataset/Alzheimer2019_IsoSeq/. The drosophila ONT

and SIRV datasets can be downloaded from ENA under project accession number

PRJEB34849. The Ensembl cDNA was downloaded from

https://www.ensembl.org/biomart/martview/. All scripts used for simulating datasets and to run

the evaluation are found at https://github.com/ksahlin/ultra/tree/master/evaluation. The source

code of uLTRA is available at https://github.com/ksahlin/ultra.
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