

1 Can a population targeted by a CRISPR-based homing gene
2 drive be rescued?

3 Nicolas O. Rode^{*}, Virginie Courtier-Orgogozo[†], Florence Débarre[‡]

4 ^{*} CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France

5 [†] Institut Jacques Monod, CNRS UMR7592, Univ. de Paris, 75013 Paris, France

6 [‡] Sorbonne Université, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences-Paris
7 (IEES Paris), place Jussieu, 75005 Paris, France

8 ORCID: 0000-0002-1121-4202 (N.O.R.), 0000-0002-9297-9230 (V. C.-O.), 0000-0003-2497-833X
9 (F.D.)

10 Corresponding authors: E-mails: florence.debarre@normalesup.org; virginie.courtier@ijm.fr;
11 nicolas.rode@inrae.fr

12

13 Keywords: Genetic control, gene drive brake, theoretical model

14 Running title: Rescue of gene drive-targeted population

15 *Article type: Investigation*

16 Abbreviations:

17 CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats

18

19

20 Article summary for Issue Highlights (100 words)

21 Homing gene drive is a new genetic control technology that aims to spread a genetically engineered
22 DNA construct within natural populations even when it impairs fitness. In case of unanticipated
23 damages, it has been proposed to stop homing gene drives by releasing individuals carrying a gene-
24 drive brake; however, the efficiency of such brakes has been little studied. The authors develop a model
25 to investigate the dynamics of a population targeted by a homing drive in absence or in presence of
26 brake. The model provides insights for the design of more efficient brakes and safer gene drives.

27 (96 words)

28 Abstract (250 words):

29 CRISPR-based homing gene drive is a genetic control technique aiming to modify or eradicate natural
30 populations. This technique is based on the release of individuals carrying an engineered piece of DNA
31 that can be preferentially inherited by the progeny. Developing countermeasures is important to control
32 the spread of gene drives, should they result in unanticipated damages. One proposed countermeasure
33 is the introduction of individuals carrying a brake construct that targets and inactivates the drive allele
34 but leaves the wild-type allele unaffected. Here we develop models to investigate the efficiency of such
35 brakes. We consider a variable population size and use a combination of analytical and numerical
36 methods to determine the conditions where a brake can prevent the extinction of a population targeted
37 by an eradication drive. We find that a brake is not guaranteed to prevent eradication and that
38 characteristics of both the brake and the drive affect the likelihood of recovering the wild-type
39 population. In particular, brakes that restore fitness are more efficient than brakes that do not. Our model
40 also indicates that threshold-dependent drives (drives that can spread only when introduced above a
41 threshold) are more amenable to control with a brake than drives that can spread from an arbitrary low
42 introduction frequency (threshold-independent drives). Based on our results, we provide practical
43 recommendations and discuss safety issues.

44

45 Introduction

46 The use of engineered gene drives has been proposed as a technique for population control with
47 potential applications in public health, agriculture and conservation (Burt 2003; Esvelt *et al.* 2014). This
48 technique relies on the release of genetically engineered individuals that can rapidly propagate a
49 transgene of interest into wild populations. Gene drive can be designed to modify, suppress or eradicate
50 various target species (Scott *et al.* 2018; Rode *et al.* 2019). Potential target species include disease
51 vectors (e.g. *Anopheles gambiae*, the main vector of malaria in Africa; Kyrou *et al.* 2018), agricultural
52 pests (e.g. *Drosophila suzukii*, a major pest of soft fruits; Scott *et al.* 2018) or invasive rodents (e.g.
53 invasive house mouse or black rats that threaten biodiversity on islands; Leitschuh *et al.* 2018).

54 Due to the universality of CRISPR genome editing, CRISPR-based gene drives can potentially be
55 applied to a wide variety of organisms (Esvelt *et al.* 2014; Raban *et al.* 2020). Diverse CRISPR-based
56 gene drive systems have already been developed in the laboratory as proofs-of-principle in a few model
57 organisms (homing, split homing, translocation, X-shredder, killer-rescue, cleave-and-rescue and
58 TARE gene drives; Webster *et al.* 2019; see Raban *et al.* 2020 for a review; Champer *et al.* 2020) or as
59 theoretical possibilities (daisy chain drives; Noble *et al.* 2019). Gene drives have so far only been tested
60 in the laboratory and no field trial has been conducted yet.

61 Among these systems, CRISPR-based homing gene drives are the most adaptable to new species and
62 populations and the most advanced in terms of technological development (Raban *et al.* 2020). They
63 involve a piece of DNA that includes a guide RNA (gRNA) gene and a *cas9* gene (encoding the Cas9
64 endonuclease). The gRNA is designed to recognize a specific sequence in a wild-type chromosome, so
65 that in heterozygotes carrying a drive allele and a wild-type allele, the Cas9-gRNA molecular
66 complex will cut the wild-type chromosome at the target site. The resulting double-strand DNA break
67 can then be repaired through homology-directed repair (also known as “gene conversion”), using the
68 drive allele as a template, which is designed to harbor sequences identical to the ones flanking the target
69 site. Consequently, the drive allele is transmitted to the next generation at rates beyond those of regular
70 Mendelian inheritance and, if its parameters allow it, will rapidly spread within the target population.

71 Homing gene drives are sometimes considered as “threshold-independent drives”, i.e. as being able to
72 spread in a population from an arbitrary low introduction frequency (e.g. Marshall and Akbari 2018).
73 Mathematical models of homing gene drives (e.g. Deredec *et al.* 2008; Alphey and Bonsall 2014;
74 Uncless *et al.* 2015; Tanaka *et al.* 2017) have however shown that depending on various parameters
75 (the efficacy of gene conversion, its timing, the fitness cost incurred by the drive allele and its
76 dominance over the wild-type allele), some of the homing gene drives can be threshold-dependent, i.e.
77 only spread if they are introduced above a threshold frequency. Mathematically, when there is an
78 equilibrium at an intermediate frequency of the drive allele ($0 < p_D < 1$) and when this equilibrium is
79 unstable, then the drive is threshold-dependent; the value of the drive allele frequency at this equilibrium
80 is the threshold above which the drive has to be introduced to spread (Deredec *et al.* 2008).

81 Given that gene drives can potentially impact biodiversity, national sovereignty and food security (Oye
82 *et al.* 2014; Akbari *et al.* 2015; DiCarlo *et al.* 2015; NASEM 2016; Montenegro de Wit 2019), there is
83 a crucial need to develop strategies to minimize the risks of unintentional spread (e.g. following the
84 escape of gene drive individuals from a laboratory) and to mitigate unanticipated or premeditated and
85 malevolent harm to humans or the environment. For example, a CRISPR-based eradication drive may
86 spread into a non-target population or species (Noble *et al.* 2018; Courtier-Orgogozo *et al.* 2019a; Rode
87 *et al.* 2019); a modification drive may alter the target population in an unexpected, detrimental manner;
88 or a gene drive could be used as bioweapon (Gurwitz 2014). Decreasing the environmental risks

89 associated with the development of this technology can be achieved by designing safer gene drives
90 whose spread can be controlled spatially or temporally (Marshall and Akbari 2018; Raban *et al.* 2020)
91 and by developing countermeasures to stop the spread of an ongoing gene drive (Esvelt *et al.* 2014;
92 Gantz and Bier 2016; Vella *et al.* 2017).

93 Several countermeasure strategies for CRISPR-based homing gene drives have been proposed. One
94 strategy is to use gene drives whose non-Mendelian transmission is conditional on the presence of
95 synthetic molecules in the environment of the target species, so that the removal of the synthetic
96 molecule is expected to stop the spread of the gene drive, and natural selection to remove the drive from
97 the population (Esvelt *et al.* 2014; Del Amo *et al.* 2020). However, the development of such molecule-
98 dependent drives is still at its infancy and may have to be tailored for each ecosystem and target species.
99 Another strategy is to introduce resistant individuals carrying a modified target locus that prevents
100 homing (“synthetic resistant” (SR) allele; Burt 2003; Champer *et al.* 2016; Vella *et al.* 2017). However,
101 this strategy results in a modified population with 100% resistant individuals and does not allow the
102 recovery of the original wild-type population. In addition, synthetic resistant alleles are predicted to be
103 rather ineffective against replacement drives with small fitness costs (Vella *et al.* 2017), because of the
104 limited selective advantage of synthetic resistant alleles. Alternatively, it has been proposed to release
105 suppressor individuals that carry a new piece of DNA which will eventually lead to the knock-out of
106 the initial gene drive (Esvelt *et al.* 2014; Marshall and Akbari 2018). These alternative countermeasures
107 rely on gene conversion and can be used against virtually any type of CRISPR-based homing gene
108 drive. Two types can be distinguished. The first type are countermeasures that include the *cas9* gene
109 and that can target either the drive allele only (reversal drives *sensu* Esvelt *et al.* 2014; overwriting
110 drives; DiCarlo *et al.* 2015) or both the drive and wild-type alleles (immunizing reversal drive (IRD);
111 Esvelt *et al.* 2014; Vella *et al.* 2017). However, with these strategies, a functional *cas9* gene will remain
112 in the final population, which may increase the risk of subsequent genetic modifications such as
113 translocations, and possible negative environmental outcomes (Courtier-Orgogozo *et al.* 2019b). The
114 second type are countermeasures that do not encode *cas9* and rely instead on the *cas9* gene present in
115 the initial gene drive construct. They can be contained in a single locus (ERACR: element for reversing
116 the autocatalytic chain reaction, Gantz and Bier 2016; CATCHA: Cas9-triggered chain ablation, Wu *et*
117 *al.* 2016), or be across two loci (CHACR: construct hitchhiking on the autocatalytic chain reaction,
118 Gantz and Bier 2016). These countermeasures might be safer for the environment, due to the absence
119 of a functional *cas9* gene. To our knowledge, only the CATCHA brakes have been implemented in the
120 lab (Supplemental Material, Figure S1); CHACR may be slow to spread due to its two-locus structure,
121 while ERACR may be sensitive to the evolution of resistance at its target sites (*cas9*-flanking sequences
122 whose mutation does not affect enzyme function).

123 We focus here on the -- in our opinion -- best gene-drive-based countermeasures proposed so far, the
124 *cas9*-devoid reversal drives (CATCHA, ERACR), which we call hereafter “brakes” for simplicity. In
125 drive/brake heterozygotes, the encoded guide RNA(s) target and inactivate the *cas9* gene of the initial
126 gene drive construct. Such brakes should be especially efficient, because even in absence of homology-
127 directed repair, the drive’s *cas9* gene (targeted by the brake) is expected to be inactivated. However, for
128 simplicity, we will not model this additional scenario here.

129 Although mathematical modelling of the effects of brakes has been recommended (Wu *et al.* 2016), to
130 our knowledge only two such studies have been published (Vella *et al.* 2017; Girardin *et al.* 2019).
131 Vella *et al.* found that the introduction of a brake leads to a polymorphic equilibrium with transient
132 oscillatory dynamics (Figure 2d,e in Vella *et al.* 2017). They also showed that brakes with smaller
133 fitness costs increased the likelihood of long-term eradication of the homing gene drive (Figure 3 in
134 Vella *et al.* 2017). We note that because Vella *et al.* (2017) assumed 100% cleavage and germline

135 conversion, the drive they modeled was threshold-independent (Deredec *et al.* 2008). Girardin *et al.*
136 (2019) considered a spatial model, and found that a brake could stop a spatially spreading drive only if
137 the drive was threshold-dependent, and that threshold-independent drives led to an infinite spatial chase
138 of the drive by the brake. While both studies provided insights on our ability to control an ongoing gene
139 drive, they had limitations. First, Vella *et al.* (2017) used classical population-genetic frameworks, and
140 focused on allele frequency dynamics, ignoring changes in population size. Changes in total population
141 size were also not the focus of Girardin *et al.* (2019). Both studies omitted potential demographic
142 feedbacks on allele frequency changes, which are likely to be important for eradication drives. It thus
143 remains unknown whether a brake can prevent the extinction of a population targeted by an eradication
144 drive. Second, both studies used deterministic models. Vella *et al.* acknowledged that oscillations of the
145 allele frequencies in their model could lead to the stochastic loss of an allele. Similar oscillations were
146 observed by Girardin *et al.* (2019), but their implications were not explored.

147 To address some of the limitations of previous models and examine further the effectiveness of brakes,
148 we model here the dynamics of a population targeted by a drive, into which brake-carrying individuals
149 are released. We consider a variable population size and its potential feedback onto gene frequency
150 changes, and we also develop a stochastic version of the model. We compare two timings of gene
151 conversion for gene drive and brake alleles (in the germline or zygote, Figure 1) and explore the role of
152 parameters such as level of dominance, cleavage efficiency, brake-associated fitness costs (whether or
153 not it restores fitness), and the type of fitness component targeted by the gene drive (embryo survival,
154 fecundity or adult death rate). We contrast brakes that restore fitness with those that do not.
155 Implementing brakes that restore fitness (i.e. “specific brakes”) require prior knowledge of the gene
156 disrupted by the homing drive in order to include in the brake a recoded version of this gene along with
157 a gRNA that targets the *cas9* sequence of the drive allele. With brakes that restore fitness, drive-brake
158 heterozygous individuals have higher fitness than drive homozygotes, but may have lower fitness than
159 wild-type homozygotes (as they may incur a small fitness cost due to the expression of the gRNA).
160 Implementing CATCHA brakes that do not restore fitness (i.e. “universal brakes”) does not require
161 prior knowledge of the gene disrupted by the homing drive, because such brakes only include a gRNA
162 that targets the *cas9* sequence of the drive allele. With brakes that do not restore fitness, drive-brake
163 heterozygous individuals have the same fitness as drive homozygotes.

164 Eradication drives currently under development target genes involved in female development in various
165 human-disease vectors (Kyrou *et al.* 2018) or agricultural pests (Li and Scott 2016). These drives are
166 threshold-independent and pose the greatest risks of unwanted spread. We focus on this type of
167 eradication drives in the numerical part of our study. We aim at finding the characteristics of the brakes
168 that can efficiently stop an ongoing gene drive and allow the recovery of a wild-type population.

169 Methods

170 Analytical model

171 With three different alleles in the population (wild-type 0, drive *D* and brake *B*), we need to follow the
172 dynamics of six diploid genotypes. We denote by $G = \{00, 0D, DD, 0B, DB, BB\}$ the set of all possible
173 genotypes. To take into account gene drives that affect population size (as do e.g. eradication drives),
174 we consider the densities of individuals of each genotype and do not focus solely on genotype
175 frequencies as previous models did (Deredec *et al.* 2008; Unckless *et al.* 2015; Vella *et al.* 2017;
176 Girardin *et al.* 2019). We denote the density of individuals of genotype g by N_g and the total population

177 density by N (omitting the time dependence (t) for concision; $N = \sum_g N_g$). We consider three traits
 178 affecting fitness that can vary among genotypes: the survival of zygotes (ω_g), the death rate of adults
 179 (d_g), and the fecundity of adults (β_g). We assume that reproduction is density-dependent: it depends on
 180 the total population size N , following a classical logistic regulation with carrying capacity K . The death
 181 rate, on the other hand, is density-independent. The change over time in the density of individuals of
 182 genotype g is given by

$$\frac{d N_g}{d t} = \omega_g V_g N(1 - N/K) - d_g N_g, \quad (1)$$

183 where V_g corresponds to the production of new individuals of genotype g through sexual reproduction
 184 and depends on the abundances of all genotypes, their fecundities β_g , but also on the timing of gene
 185 conversion. The formulas of the V_g terms for each timing of gene conversion are given in the Appendix
 186 (and also provided in the supplementary Mathematica file).

187 We consider that gene conversion in $0D$ or DB heterozygous individuals can either occur in the
 188 germline or in the zygote (Figure 1). When gene conversion occurs in the germline, $0D$ and DB
 189 heterozygous individuals produce more than 50% of D and B gametes respectively. When gene
 190 conversion occurs in newly formed zygotes (i.e. immediately after fertilization), $0D$ and
 191 DB heterozygous individuals are converted into DD and BB homozygotes respectively and have the
 192 corresponding traits. For both types of gene conversion, we denote the probabilities of successful gene
 193 conversion by drive and by brake alleles by c_D and c_B respectively.

194 Numerical explorations

195 While our analytic results are obtained with generic parameters, numerical explorations require specific
 196 parameter values. The number of parameter combinations to explore being very vast, we make a few
 197 assumptions to reduce it. First, we consider that drive and brake affect either (i) zygote survival (ω),
 198 (ii) adult survival (d) or (iii) adult fecundity (β), all other parameters remaining equal across genotypes.
 199 To model an eradication drive, we chose ω_{DD} , d_{DD} or β_{DD} such that a 100% drive population is not
 200 viable, and we standardised the parameters to yield the same negative equilibrium value of population
 201 size (specifically, we set $\frac{d_{DD}}{\omega_{DD} b_{DD}^2} = 1.1$, see Table S3 and Mathematica Appendix for details). We
 202 consider that either the brake allele does not restore the fitness loss due to the drive allele (i.e. it has the
 203 same fitness as the drive allele), or that the brake allele restores partially the fitness loss and has a small
 204 fitness cost compared to the wild-type allele (i.e. it contains a specific cargo that helps to restore fitness).
 205 We use the same dominance parameter, h , for both drive and brake alleles. This choice is justified both
 206 when the brake restores and when it does not restore fitness (see the Appendix). For juvenile survival,
 207 the parameters of heterozygotes therefore read:

$$\begin{aligned} \omega_{0D} &= (1 - h)\omega_{00} + h\omega_{DD} \\ \omega_{0B} &= (1 - h)\omega_{00} + h\omega_{BB} \\ \omega_{DB} &= (1 - h)\omega_{BB} + h\omega_{DD}, \end{aligned} \quad (2)$$

208 and likewise for d and β parameters. In the numerical part of the study, we consider either complete
 209 recessivity ($h = 0$) or codominance ($h = 0.5$).

210 We have 24 combinations of parameters (2 timings of gene conversion x 3 traits affected x dominance
211 values x 2 types of brake). For each of them, we consider different timings of introduction of the brake
212 in the population; the timing is given in terms of the current frequency f_I of the drive allele in the
213 population at the time at which the brake is introduced. The $N^{(0)}_{0B}$ parameter represents the number of
214 released wild-type/brake heterozygous individuals. Unless stated, we assume that $N^{(0)}_{0B} = 100$. Other
215 parameters are shown in tables S1-S3.

216 Reformulating the model

217 Our model is initially defined in terms of genotype densities (equation 1). To simplify the analyses, we
218 reparametrize the model in terms of total population size N , allele frequencies p_D and p_B (we have $p_0 =$
219 $1 - p_D - p_B$), and deviations from Hardy-Weinberg for each of the three heterozygotes
220 (δ_{0D} , δ_{0B} , δ_{DB}):

$$N = N_{00} + N_{0D} + N_{DD} + N_{0B} + N_{DB} + N_{BB}, \quad (3a)$$

$$p_D = \frac{N_{DD} + \frac{1}{2}N_{0D} + \frac{1}{2}N_{DB}}{N}, \quad (3b)$$

$$\delta_{0D} = \frac{N_{0D}}{N} - 2p_D p_0, \quad (3c)$$

221 and likewise for p_B , δ_{0B} and δ_{DB} (the full equations are calculated in the supplementary Mathematica
222 file).

223 As usual with most continuous-time models (Nagylaki and Crow 1974), we cannot neglect deviations
224 from Hardy-Weinberg frequencies here (unlike models with discrete, non-overlapping generations).
225 The reformulated model (system (3)) also highlights interactions between total population size N and
226 changes in allele frequencies (i.e., eco-evolutionary feedbacks). The population growth rate depends on
227 population composition, since fecundity or survival parameters are genotype-dependent. Reciprocally,
228 changes in allele frequencies depend on the size of the population. This is because gene conversion,
229 which modifies allele frequencies, takes place upon reproduction (either in the germline, or in the newly
230 formed zygote). Given that reproduction is negatively density-dependent, changes in the frequencies of
231 drive and brake alleles slow down when population size is larger.

232 Stability analyses

233 We use the reformulated version of the model (system (3)) to find evolutionary equilibria and analyse
234 their stabilities.

235 Model without the brake

236 We first study the properties of our model when the brake is absent (setting all variables containing the
237 brake allele equal to zero). We determine the equilibrium states where only one allele is present (i.e.
238 boundary equilibria). At the wild-type-only equilibrium, we have $N = K(1 - \frac{d_{00}}{\omega_{00} b_{00}^2})$, $p_D = 0$, $\delta_{0D} =$
239 0 (see Mathematica Appendix for details). At the drive-only equilibrium, the size of the population
240 depends on the type of drive. Since we only consider eradication drives here (i.e. drives such that a
241 drive-only population is not viable), we have $N = 0$, $p_D = 1$, $\delta_{0D} = 0$ at the drive-only equilibrium
242 (for completeness though, we included in the Mathematica appendix a separate stability analysis of the

243 drive-only equilibrium for replacement drives). Generic formulas for interior equilibria (i.e. for which
244 $0 < p_D < 1$) could not be found analytically.

245 Model with the brake

246 For simplicity, in the full model with the three alleles, we only study the stability of the wild-type-only
247 equilibrium ($N = K(1 - \frac{d_{00}}{\omega_{00} b_{00}^2})$, $p_D = 0$, $p_B = 0$, $\delta_{0D} = 0$, $\delta_{0B} = 0$, $\delta_{DB} = 0$).

248 Numerical solutions and stochastic simulations

249 Deterministic solutions of the model

250 To test the robustness of the equilibrium states predicted by our analytical model, we solve the model
251 numerically for specific sets of parameters, using the original formulation in equation (1). We use
252 parameter values for a threshold-independent eradication drive (i.e. as explained in the result section
253 below, conditions where, according to the stability analysis of our model, the wild-type population
254 cannot be recovered after the introduction of the brake). Time is discretized; we consider small fixed
255 time steps $dt = 0.005$. When the system undergoes oscillations, genotype densities can go down to
256 extremely small values, possibly below computer precision. We therefore set a critical value $thr =$
257 0.01, below which the density of a genotype is considered to be zero.

258 Stochastic simulations

259 To explore the effect of stochasticity on our model, we implement a stochastic version of it using a
260 Gillespie algorithm (Gillespie 1977), directly translating the system of Ordinary Differential Equations
261 (system (1) and the Appendix) into a stochastic simulation. In short, the algorithm goes as follows.
262 Within a time step we (i) compute the rates (or “propensities”) of all possible events (birth and death
263 probabilities of each of the five genotypes); (ii) randomly pick one event (the higher the event's rate,
264 the more likely its occurrence); (iii) update the population according to the event that has taken place;
265 (iv) draw the time interval that lasted the step (according to an exponential distribution parameterized
266 by the sum of all propensities). For each set of parameter values, we run 10000 simulations, each of
267 them until a maximum time value ($t_{max} = 25000$) or until the population goes extinct. For each
268 simulation, we list the different types of outcome (i.e., WT recovery after introduction of the brake,
269 coexistence between the wild type and either the brake or both the initial gene drive and the brake,
270 extinction before or after the introduction of the brake, drive loss before brake introduction).

271 Data availability

272 Supplemental Material Files S1-S2 is available at Figshare:
273 <https://doi.org/10.6084/m9.figshare.11982285.v1>

274 File S1 contains a supplemental script for the analytical model (Mathematica notebook). File S2
275 contains scripts for numerical explorations and stochastic simulations.

276 Results

277 To assess the efficiency of various types of brakes to control gene drives, we use a combination of
278 (i) analytical techniques (stability analysis of the deterministic model), (ii) numerical solutions of the

279 deterministic model, and (iii) stochastic simulations. The stability analysis (i) is done with generic
280 parameters. For the numerical steps of our exploration of the model ((ii) and (iii)), we use specific
281 parameters corresponding to threshold-independent eradication drives, i.e. drives that spread from very
282 low frequencies, and whose fixation leads to the extinction of the population.

283 There are four categories of homing drives

284 To better understand the dynamics of the full model with three alleles (wild-type, drive, brake), we first
285 study the model in the absence of brake. This analysis is done using generic parameters, separately for
286 each timing of gene conversion (zygote vs. germline conversion).

287 In this two-allele version of the model, there are two boundary equilibria: drive loss (the wild-type allele
288 is fixed) and drive fixation. These two equilibria can be locally stable or unstable, so that there are up
289 to four possible combinations of stabilities and therefore four possible outcomes: (i) drive loss, (ii)
290 coexistence of the drive and wild-type alleles, (iii) drive fixation, (iv) bistability (Deredec *et al.* 2008;
291 Alphey and Bonsall 2014; Unckless *et al.* 2015; Noble *et al.* 2017; Vella *et al.* 2017; Girardin *et al.*
292 2019). Drives in (ii) and (iii) will invade the wild-type population from an arbitrary low frequency and
293 are “threshold-independent” (Marshall and Akbari 2018). Drives in (iv) can either spread and fix when
294 the drive allele is introduced at a high enough frequency or will be lost when their introduction
295 frequency is below a given threshold (i.e. there is a bistability). This type of drive is “threshold-
296 dependent” (Akbari *et al.* 2013; Marshall and Akbari 2018). The parameter ranges corresponding to
297 each outcome are illustrated in Supplemental Material, Figures S2-S3, for replacement and eradication
298 drives; they are consistent with the findings of previous studies (Deredec *et al.* 2008; Unckless *et al.*
299 2015; Vella *et al.* 2017; Girardin *et al.* 2019). The eradication drives used so far in laboratory studies
300 (Kyrou *et al.* 2018) (large fitness cost, high conversion efficiency, recessivity and conversion in the
301 germline) correspond to threshold-independent drives.

302 Stability analyses indicate that a brake can recover the wild-type 303 population only if the drive is threshold-dependent

304 When the brake allele has lower fitness than the wild-type allele, the wild-type, drive and brake alleles,
305 are involved in non-transitive interactions (rock-paper-scissors type; Vella *et al.* 2017): the wild-type is
306 converted into a drive by the drive, the drive is converted into a brake by the brake, and the brake is
307 costly compared to the wild-type. A high frequency of the wild-type, drive or brake in the population
308 favors the drive, brake or wild-type respectively. Such negative frequency-dependent selection can
309 result in the coexistence of the three alleles.

310 In the analytical model with the three alleles, we find that the conditions for the local stability of the
311 wild-type-only equilibrium are the same as in the model without brake (details of the calculations are
312 presented in the supplementary Mathematica file). In other words, our stability analysis indicates that
313 the introduction of a brake can successfully restore a wild-type population only under two conditions.
314 First, quite trivially, the wild-type population can be recovered when the population is targeted by a
315 drive that would be lost in the absence of brake (drive loss equilibrium above; we ignore this case
316 thereafter). Second, the wild-type population can be recovered when it is targeted by a threshold-
317 dependent drive (i.e. with parameters corresponding to a bistability in the model without brake, see
318 above). In this case, introducing the brake allele can decrease the frequency of the drive allele below its
319 invasion threshold; the drive is then lost. Once the drive is lost, if it is, the brake loses the competition
320 against the wild-type allele because of its fitness cost, and the wild-type population is finally recovered.

321
322 Numerical explorations of the deterministic model and stochastic
323 simulations show that brakes can stop threshold-independent drives
324 under certain conditions

325 Numerical solutions of the deterministic model

326 The introduction of a brake in a population targeted by a threshold-independent drive may lead to
327 oscillations of large amplitude. During these oscillations, the densities of some genotypes may reach
328 extremely low values. Analytically, no allele should get lost in these oscillations because we assumed
329 infinite population sizes in the analysis. Biologically, this is not realistic: however big a population, an
330 extremely low density may correspond to less than one individual, and thus to the loss of an allele from
331 the population. Computationally as well, these oscillations are challenging, because they may lead to
332 values below the minimum number that a computer can represent, and therefore to the failure of
333 numerical solutions. To solve both issues, we set a critical density below which a genotype is considered
334 absent from the population and we numerically integrate our model to further explore the effect of the
335 introduction of a brake in a population targeted by a threshold-independent eradication drive. Cutting
336 large amplitude cycles means that alleles can be lost. The dynamics of the frequencies of the three
337 alleles and of population size (scaled by the equilibrium density of the wild-type population) are shown
338 in Figure 2. These dynamics depend on the trait that is affected by the drive and the brake (fecundity,
339 adult mortality, or zygote survival; lines in Figure 2), the level of dominance (columns in Figure 2), and
340 whether the brake restores fitness or not (Supplemental Material, Figures S4 vs. Figure 2).

341 The addition of a critical minimum density leads to outcomes that were not predicted by our stability
342 analysis. Contrary to the predictions of the stability analysis for threshold-independent drives, in Figures
343 2(a) and 2(f), the drive is lost, allowing for population recovery. This is because the density of drive-
344 carrying individuals reaches so small values at some point that the drive allele is considered extinct.
345 Then, the brake allele being costly compared to the wild-type allele, it decreases in frequency and is
346 lost as well. In Figure 2(b), the population goes extinct. This is because the overall population density
347 goes down to very small values.

348 As expected, with our parameters, the wild-type population is more rarely recovered with a brake that
349 does not restore fitness than with a brake that does (compare Figures 2 to S4, and S5 to S6).

350 We hypothesized that allele loss would happen when the amplitude of oscillations increases (i.e. when
351 the interior equilibrium, where the three alleles coexist, is unstable). However, even when the amplitude
352 of oscillations decreases (i.e. when the interior equilibrium is locally stable), the initial oscillations can
353 be substantial, hindering our ability to predict the outcome. In addition, the outcome itself depends on
354 non-biological contingencies such as the time interval at which the solutions are calculated and the
355 critical density below which a genotype is considered extinct. As a consequence, a brake is not
356 guaranteed to prevent the eradication of a population targeted by a threshold-independent drive.

357 Stochastic simulations

358 We complemented our exploration with stochastic simulations. Notably, having integer numbers of
359 individuals of each genotype avoids the arbitrary choice of a critical density below which a genotype is
360 considered extinct. Importantly, the parameters that we chose in our simulations correspond to a large
361 wild-type population size (an expected density of $N^* = 10000$); the diversity of observed outcomes is

362 due to the large amplitude of oscillations in genotype densities triggered by the introduction of the
363 brake.

364 Among the different parameters investigated, whether or not the brake restored fitness has the highest
365 impact on the recovery of the wild type population (Figure 3 vs. 4 and 5 vs. 6). Our stochastic
366 simulations show that in many instances, the brake does not prevent population extinction when it does
367 not restore fitness (Figures 3 and 5). In contrast, the drive allele is always lost when the brake restores
368 fitness (Figures 4 and 6), resulting either in the full recovery of the wild-type population, or in a
369 coexistence between the wild type and the brake at the time at which the simulation ended ($t_{max} =$
370 2500). Noteworthily, as the fitness of the brake approaches that of the wild-type allele, the time
371 necessary to recover 100% wild-type individuals increases.

372 When the brake does not restore fitness, the recovery of the wild-type population is more frequent when
373 gene conversion occurs in the zygote than when it occurs in the germline, especially for recessive drives
374 and brakes ($h = 0$, Figure 3 vs. 5). When the brake restores fitness, the timing of conversion has little
375 effect on the final outcome (compare Figure 4 with Figure 6). The likelihood of recovering a 100%
376 wild-type population often decreases with drive frequency at brake introduction, i.e. with later brake
377 introductions. Early brake introductions (i.e. introductions when the drive frequency is still low) may
378 nevertheless fail, for instance due to stochastic loss of the brake. The effects of other parameters such
379 as the type of trait targeted or the level of dominance are more difficult to predict. The most frequent
380 outcome in stochastic simulations was often different from the outcome predicted by deterministic
381 models. For example, population extinction is the most frequent outcome of some of the stochastic
382 simulations, while the corresponding deterministic model predicts the recovery of the wild-type
383 population (e.g. Figures 3(a), 5(b)). We conclude, in agreement with the results of Vella *et al.* (2017)
384 using infinite population size, that a brake is not guaranteed to prevent the eradication of a population
385 targeted by a threshold-independent eradication drive.

386 Discussion

387 We developed a model to investigate the consequences of introducing a brake allele in a population
388 targeted by a CRISPR-based homing gene drive. In contrast to previous models that assumed 100%
389 cleavage efficiency in the germline and only considered threshold-independent gene drives (Vella *et al.*
390 2017; Girardin *et al.* 2019), our model also considers imperfect cleavage and threshold-dependent gene
391 drives. Our framework also extends previously published models, which focused on allele frequencies
392 (ignoring fluctuations in population density, Vella *et al.* 2017; Girardin *et al.* 2019). By accounting for
393 the effects of both the initial gene drive and the brake on population size, our model represents a first
394 step towards the explicit integration of changes in population size into the prediction of the dynamics
395 of wild-type, gene drive and brake alleles. While we concentrate here our numerical explorations on
396 eradication drives and threshold-independent drives, our model can also be used to study the dynamics
397 of replacement drives and their brakes, by adapting parameter values. Our model can form a basis for
398 future studies investigating the effect of CRISPR-based brakes against other types of gene drives (e.g.
399 split gene drives; Li *et al.* 2020), to check whether these alternatives might be easier to control.

400 Our model does not account for the potential evolution of resistance against gene drives. Such resistance
401 can be due to cleavage repair by non-homologous end joining or to natural variation at the target locus,
402 and can occur frequently after the release of gene drive individuals (Drury *et al.* 2017; Unckless *et al.*
403 2017; Bull *et al.* 2019). However, several strategies are under way to prevent the evolution of gene drive
404 resistance, such as the use of multiple gRNAs (Champer *et al.* 2018; Oberhofer *et al.* 2018; Edgington

405 *et al.* 2020) or the targeting of a functionally constrained locus whose mutations are highly deleterious
406 and cannot increase in frequency (e.g. Kyrou *et al.* 2018). Given these efforts to limit the evolution of
407 resistance against gene drives, we chose not to include this feature in our model. In addition, Vella *et*
408 *al.* (2017) investigated the evolution of resistance at the target locus in addition to the introduction of a
409 countermeasure and found that the qualitative behavior of the brake remains unchanged (polymorphic
410 equilibrium of all alleles).

411 Furthermore, we did not model the evolution of resistance against brakes either. Developing new brake
412 constructs to counter resistance would be both costly and time consuming, so that developing brakes
413 that are the least sensible to the evolution of resistance is important. So far only CATCHA brakes have
414 been developed in the laboratory (Wu *et al.* 2016). If resistant alleles were to form, for the types of
415 brakes we investigated, the consequences would differ between ERACR and CATCHA brakes. For
416 ERACR brakes, mutations arising in flanking sequences targeted by the brake could prevent cleavage
417 and conversion of the drive into a brake. If these mutations do not alter the rate of conversion of the
418 wild-type allele into a drive allele, a drive resistant to the ERACR brake could continue spreading. Thus,
419 ERACR brake could fail to prevent a population from extinction. For CATCHA brakes, mutations in
420 the target *cas9* sequence would result in non-functional Cas9 enzymes. These brake-resistant alleles
421 would have the same fitness cost as the drive allele, but without the gene-conversion advantage of the
422 drive. Should they appear, they would be expected to remain at a low frequency in the population.
423 Overall, we thus expect CATCHA brakes to overcome the evolution of resistance against brake while
424 ERACR brakes would not, so we recommend using the former.

425 Overall, our model shows that the success of recovering the wild-type population using a brake depends
426 both on the type of brake introduced and the type of gene drive targeted. More specifically, our
427 conclusions depend on the method chosen to explore the model. Our stability analysis indicates that the
428 wild-type population can only be recovered after the introduction of a brake if the drive is threshold-
429 dependent. Nevertheless, our numerical integration of the model -- including a critical population
430 density to avoid unrealistically low genotype densities -- and stochastic simulations show that the wild-
431 type population can also be recovered in certain cases when a threshold-independent drive is used. In
432 these cases, brakes that restore fitness can better control a gene drive than universal brakes that do not.
433 However, we could not draw general conclusions on the effect of other parameters (e.g. fitness trait
434 affected by the drive, dominance level, timing of conversion, and frequency of the drive for introducing
435 the brake) on the final outcome.

436 Our model shows that, even when the brake is introduced when the eradication drive is still at a low
437 frequency, the frequency of the eradication drive continues to increase and results in a strong population
438 bottleneck (e.g. Figure 2a). Such a strong bottleneck could result in a long term alteration of the
439 recovered wild-type population (e.g. due to inbreeding depression). This point is important to keep in
440 mind even though it is not explicitly incorporated in our model.

441 Our study has practical implications. First, we advise against using universal brakes as the sole
442 countermeasure because they are not guaranteed to succeed and stop a drive. In contrast, we recommend
443 using specific brakes which include a recoded version of the gene disrupted by the initial gene drive.
444 Since they restore fitness, they are more likely to be effective: they spread at a faster rate and increase
445 the chances of recovering a population of wild-type individuals. To reduce potential environmental
446 risks, we recommend that the development of homing gene drives goes in pair with the co-development
447 of such specific brakes. Although they are not guaranteed to successfully restore a 100% wild-type
448 population, specific brakes currently represent the best countermeasure against the spread of homing
449 drives following an escape from a laboratory. We also recommend laboratory studies to assess the

450 efficacy of brakes using experimental evolution under controlled conditions. Second, because they are
451 easier to control with brake, we believe that threshold-dependent homing gene drives are a safer
452 alternative to threshold-independent homing drives, that are currently being developed in laboratories.
453 These threshold-independent homing drives are characterized by large and recessive large fitness costs,
454 high conversion efficiency and germline conversion (e.g. Kyrou *et al.* 2018). Several studies (Tanaka
455 *et al.* 2017; Min *et al.* 2018) have recommended the use of spatially and/or temporally limited threshold-
456 dependent homing drives, because they are less likely to spread into non-target populations. However,
457 we emphasize that it might be difficult in practice to implement a threshold-dependent drive whose
458 threshold remains as expected for several reasons. First, theoretical models show that the range of
459 parameter values for threshold-dependent gene drives is larger when conversion occurs in the zygote
460 than when it occurs in the germline (compare Figures 1 and 4 in Derec *et al.* 2008; Figure S2-S3). So
461 ideally, it might be better to use drives with conversion in the zygote. Nevertheless, such drives are
462 more difficult to create and so far all successful homing drives have been engineered with germline
463 promoters (Table 2 in Courtier-Orgogozo *et al.* 2019b). A few conserved genes are expressed in the
464 germline of all animals (*nanos*, *vasa*, *piwi*; Extavour and Akam 2003; Juliano *et al.* 2010) and their
465 promoters constitute preferred tools for engineering gene drive constructs in various animal species, in
466 contrast to zygotically expressed genes, which tend to be less conserved across taxa (Heyn *et al.* 2014).
467 Second, “real life” ecological conditions are likely to alter the genetic parameters of any gene drive, in
468 particular its fitness cost. Fitness costs are difficult to estimate in the field and can vary either across
469 genomic backgrounds, spatially or temporally (Marshall and Hay 2012; Backus and Delborne 2019).
470 Hence, depending on ecological conditions, the threshold value for the invasion of a threshold-
471 dependent homing drive could change, or even decrease to 0. Thus, a homing drive that is threshold-
472 dependent in the laboratory might turn into a threshold-independent drive in the wild.

473 Conclusion

474 Our model is a step towards the development of more complex analytical models of gene drive that
475 account for the feedback between population demography and evolution. Our results suggest that the
476 recessive eradication drives with germline conversion currently developed in mosquitoes (e.g. Kyrou *et*
477 *al.* 2018) are likely to be threshold-independent and could be particularly difficult to control using
478 brakes. In addition, our results show that a brake that carries a version of the gene disrupted by the
479 initial gene drive, and therefore restores fitness, can prevent the extinction of the target population under
480 certain conditions. We recommend that the development of countermeasures should go in pair with the
481 development of drives. Given the diversity of outcomes that we find and the difficulty to precisely
482 estimate the relevant parameters determining each outcome, specific experimental studies will be
483 necessary to confirm modelling outcomes that a given brake can indeed stop the spread of drives. A
484 brake should not be considered reliable before population experiments are carried out.

485

486 Acknowledgements:

487 We thank Arnaud Martin for discussions. Funding for this project was provided by European Research
488 Council (FP7/2007-2013 Grant Agreement no. 337579) to VCO, ANR-14-ACHN-0003 and ANR-19-
489 CE45-0009-01 to FD and the CeMEB LabEx/University of Montpellier (ANR-10-LABX-04-01) and
490 an INRAE-SPE starting grant to NOR.

491 Author contributions: VCO brought the research topic, all authors developed the model, FD did the
492 analysis, implemented numerical solutions, ran stochastic simulations. All authors analysed data and
493 wrote the manuscript.

494

495 **Literature cited**

496
497 Akbari O. S., K. D. Matzen, J. M. Marshall, H. Huang, C. M. Ward, *et al.*, 2013 A synthetic gene
498 drive system for local, reversible modification and suppression of insect populations. *Curr.*
499 *Biol.* 23: 671–677.

500 Akbari O. S., H. J. Bellen, E. Bier, S. L. Bullock, A. Burt, *et al.*, 2015 Safeguarding gene drive
501 experiments in the laboratory. *Science* 349: 927–929.

502 Alphey N., and M. B. Bonsall, 2014 Interplay of population genetics and dynamics in the genetic
503 control of mosquitoes. *J. R. Soc. Interface* 11: 20131071.

504 Backus G. A., and J. A. Delborne, 2019 Threshold-dependent gene drives in the wild: spread,
505 controllability, and ecological uncertainty. *BioScience* 69: 900–907.

506 Bull J. J., C. H. Remien, R. Gomulkiewicz, and S. M. Krone, 2019 Spatial structure undermines
507 parasite suppression by gene drive cargo, (D. Lahr, Ed.). *PeerJ* 7: e7921.
508 <https://doi.org/10.7717/peerj.7921>

509 Burt A., 2003 Site-specific selfish genes as tools for the control and genetic engineering of natural
510 populations. *Proc. R. Soc. B Biol. Sci.* 270: 921–928. <https://doi.org/10.1098/rspb.2002.2319>

511 Champer J., A. Buchman, and O. S. Akbari, 2016 Cheating evolution: engineering gene drives to
512 manipulate the fate of wild populations. *Nat. Rev. Genet.* 17: 146–159.
513 <https://doi.org/10.1038/nrg.2015.34>

514 Champer J., J. Liu, S. Y. Oh, R. Reeves, A. Luthra, *et al.*, 2018 Reducing resistance allele formation
515 in CRISPR gene drive. *Proc. Natl. Acad. Sci.* 115: 5522–5527.
516 <https://doi.org/10.1073/pnas.1720354115>

517 Champer J., E. Lee, E. Yang, C. Liu, A. G. Clark, *et al.*, 2020 A toxin-antidote CRISPR gene drive
518 system for regional population modification. *Nat. Commun.* 11: 1082.

519 https://doi.org/10.1038/s41467-020-14960-3

520 Courtier-Orgogozo V., A. Danchin, P.-H. Gouyon, and C. Boëte, 2019a Evaluating the Probability of
521 CRISPR-based Gene Drive Contaminating Another Species. bioRxiv 776609.

522 Courtier-Orgogozo V., A. Danchin, P.-H. Gouyon, and C. Boëte, 2019b Evaluating the Probability of
523 CRISPR-based Gene Drive Contaminating Another Species. BioRxiv 776609.

524 Del Amo V. L., A. L. Bishop, J. B. Bennett, X. Feng, J. M. Marshall, *et al.*, 2020 A
525 transcomplementing gene drive provides a flexible platform for laboratory investigation and
526 potential field deployment. Nat. Commun. 11: 1–12.

527 Derec A., A. Burt, and H. C. J. Godfray, 2008 The Population Genetics of Using Homing
528 Endonuclease Genes in Vector and Pest Management. Genetics 179: 2013–2026.
529 https://doi.org/10.1534/genetics.108.089037

530 DiCarlo J. E., A. Chavez, S. L. Dietz, K. M. Esvelt, and G. M. Church, 2015 Safeguarding CRISPR-
531 Cas9 gene drives in yeast. Nat. Biotechnol. 33: 1250–1255. https://doi.org/10.1038/nbt.3412

532 Drury D. W., A. L. Dapper, D. J. Siniard, G. E. Zentner, and M. J. Wade, 2017 CRISPR/Cas9 gene
533 drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 8.

534 Edgington M. P., T. Harvey-Samuel, and L. Alphey, 2020 Population-level multiplexing, a promising
535 strategy to manage the evolution of resistance against gene drives targeting a neutral locus.
536 Evol. Appl. n/a. https://doi.org/10.1111/eva.12945

537 Esvelt K. M., A. L. Smidler, F. Catteruccia, and G. M. Church, 2014 Emerging technology:
538 concerning RNA-guided gene drives for the alteration of wild populations. Elife 3: e03401.

539 Extavour C. G., and M. Akam, 2003 Mechanisms of germ cell specification across the metazoans:
540 epigenesis and preformation. Development 130: 5869–5884.

541 Gantz V. M., and E. Bier, 2016 The dawn of active genetics. BioEssays 38: 50–63.
542 https://doi.org/10.1002/bies.201500102

543 Gillespie D. T., 1977 Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81:
544 2340–2361.

545 Girardin L., V. Calvez, and F. Débarre, 2019 Catch me if you can: a spatial model for a brake-driven
546 gene drive reversal. Bull. Math. Biol. 81: 5054–5088.

547 Gurwitz D., 2014 Gene drives raise dual-use concerns. *Science* 345: 1010–1010.

548 Heyn P., M. Kircher, A. Dahl, J. Kelso, P. Tomancak, *et al.*, 2014 The earliest transcribed zygotic
549 genes are short, newly evolved, and different across species. *Cell Rep.* 6: 285–292.

550 Juliano C. E., S. Z. Swartz, and G. M. Wessel, 2010 A conserved germline multipotency program.
551 *Development* 137: 4113–4126.

552 Kyrou K., A. M. Hammond, R. Galizi, N. Kranjc, A. Burt, *et al.*, 2018 A CRISPR–Cas9 gene drive
553 targeting doublesex causes complete population suppression in caged *Anopheles gambiae*
554 mosquitoes. *Nat. Biotechnol.* <https://doi.org/10.1038/nbt.4245>

555 Leitschuh C. M., D. Kanavy, G. A. Backus, R. X. Valdez, M. Serr, *et al.*, 2018 Developing gene drive
556 technologies to eradicate invasive rodents from islands. *J. Responsible Innov.* 5: S121–S138.
557 <https://doi.org/10.1080/23299460.2017.1365232>

558 Li F., and M. J. Scott, 2016 CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci in
559 the invasive pest, *Drosophila suzukii*. *Biochem. Biophys. Res. Commun.* 469: 911–916.

560 Marshall J. M., and B. A. Hay, 2012 Confinement of gene drive systems to local populations: a
561 comparative analysis. *J. Theor. Biol.* 294: 153–171.

562 Marshall J. M., and O. S. Akbari, 2018 Can CRISPR-Based Gene Drive Be Confined in the Wild? A
563 Question for Molecular and Population Biology. *ACS Chem. Biol.* 13: 424–430.
564 <https://doi.org/10.1021/acschembio.7b00923>

565 Montenegro de Wit M., 2019 Gene driving the farm: who decides, who owns, and who benefits?
566 *Agroecol. Sustain. Food Syst.* 43: 1054–1074.

567 Nagylaki T., and J. F. Crow, 1974 Continuous selective models. *Theor. Popul. Biol.* 5: 257–283.

568 NASEM, 2016 *Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and*
569 *Aligning Research with Public Values*. National Academies Press, Washington, D.C.

570 Noble C., J. Olejarz, K. M. Esveld, G. M. Church, and M. A. Nowak, 2017 Evolutionary dynamics of
571 CRISPR gene drives. *Sci. Adv.* 8.

572 Noble C., B. Adlam, G. M. Church, K. M. Esveld, and M. A. Nowak, 2018 Current CRISPR gene
573 drive systems are likely to be highly invasive in wild populations. *eLife* 7: e33423.

574 Noble C., J. Min, J. Olejarz, J. Buchthal, A. Chavez, *et al.*, 2019 Daisy-chain gene drives for the

575 alteration of local populations. Proc. Natl. Acad. Sci. 116: 8275–8282.

576 Oberhofer G., T. Ivy, and B. A. Hay, 2018 Behavior of homing endonuclease gene drives targeting
577 genes required for viability or female fertility with multiplexed guide RNAs. Proc. Natl.
578 Acad. Sci. 115: E9343. <https://doi.org/10.1073/pnas.1805278115>

579 Oye K. A., K. Esvelt, E. Appleton, F. Catteruccia, G. Church, *et al.*, 2014 Regulating gene drives.
580 Science 345: 626–628. <https://doi.org/10.1126/science.1254287>

581 Raban R. R., J. M. Marshall, and O. S. Akbari, 2020 Progress towards engineering gene drives for
582 population control. J. Exp. Biol. 223.

583 Rode N. O., A. Estoup, D. Bourguet, V. Courtier-Orgogozo, and F. Débarre, 2019 Population
584 management using gene drive: molecular design, models of spread dynamics and assessment
585 of ecological risks. Conserv. Genet. 20: 671–690. <https://doi.org/10.1007/s10592-019-01165-5>

587 Scott M. J., F. Gould, M. Lorenzen, N. Grubbs, O. Edwards, *et al.*, 2018 Agricultural production:
588 assessment of the potential use of Cas9-mediated gene drive systems for agricultural pest
589 control. J. Responsible Innov. 5: S98–S120. <https://doi.org/10.1080/23299460.2017.1410343>

590 Tanaka H., H. A. Stone, and D. R. Nelson, 2017 Spatial gene drives and pushed genetic waves. Proc.
591 Natl. Acad. Sci. 114: 8452–8457.

592 Unckless R. L., P. W. Messer, T. Connallon, and A. G. Clark, 2015 Modeling the Manipulation of
593 Natural Populations by the Mutagenic Chain Reaction. Genetics 201: 425–431.
594 <https://doi.org/10.1534/genetics.115.177592>

595 Unckless R. L., A. G. Clark, and P. W. Messer, 2017 Evolution of Resistance Against CRISPR/Cas9
596 Gene Drive. Genetics 205: 827–841. <https://doi.org/10.1534/genetics.116.197285>

597 Vella M. R., C. E. Gunning, A. L. Lloyd, and F. Gould, 2017 Evaluating strategies for reversing
598 CRISPR-Cas9 gene drives. Sci. Rep. 7. <https://doi.org/10.1038/s41598-017-10633-2>

599 Webster S. H., M. R. Vella, and M. J. Scott, 2019 Development and testing of a novel Killer-Rescue
600 self-limiting gene drive system in *Drosophila melanogaster*. bioRxiv 680629.
601 <https://doi.org/10.1101/680629>

602 Wu B., L. Luo, and X. J. Gao, 2016 Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat.

603 Biotechnol. 34: 137–138. <https://doi.org/10.1038/nbt.3444>

604

605

606 Appendix

607 In the main text, the change over time in the density of individuals of genotype g is given by

$$608 \quad \frac{dN_g}{dt} = \omega_g V_g N(1 - N/K) - d_g N_g.$$

609 We provide below the expressions for V_g for the two timings of gene conversion that we
610 consider in the article.

611 Germline conversion

612 When gene conversion takes place in the germline, individuals born heterozygous remain
613 heterozygous as adults, their life-history parameters are those of heterozygotes, but then gene
614 conversion takes place in the germline, and if successful, predominantly one type of gamete
615 is produced by the individual. We have

$$616 \quad V_{00} = \frac{\gamma_0^2}{N^2}, V_{0D} = \frac{2\gamma_0\gamma_D}{N^2}, V_{DD} = \frac{\gamma_D^2}{N^2}, V_{0B} = \frac{2\gamma_0\gamma_B}{N^2}, V_{DB} = \frac{2\gamma_D\gamma_B}{N^2}, V_{BB} = \frac{\gamma_B^2}{N^2},$$

617 where

$$618 \quad \gamma_0 = \beta_{00}N_{00} + \frac{1}{2}\beta_{0D}N_{0D}(1 - c_D) + \frac{1}{2}\beta_{0B}N_{0B},$$

$$619 \quad \gamma_D = \beta_{DD}N_{DD} + \frac{1}{2}\beta_{0D}N_{0D}(1 + c_D) + \frac{1}{2}\beta_{DB}N_{DB}(1 - c_B),$$

$$620 \quad \gamma_B = \beta_{BB}N_{BB} + \frac{1}{2}\beta_{0B}N_{0B} + \frac{1}{2}\beta_{DB}N_{DB}(1 + c_B).$$

621 Zygote conversion

622 When conversion takes place in zygotes, and when gene conversion is successful, an initially
623 heterozygous zygote becomes homozygous, and develops into a homozygous adult. We have

$$624 \quad V_{00} = \frac{\gamma_0^2}{N^2}, V_{0D} = (1 - c_D)\frac{2\gamma_0\gamma_D}{N^2}, V_{DD} = c_D\frac{2\gamma_0\gamma_D}{N^2} + \frac{\gamma_D^2}{N^2},$$

$$625 \quad V_{0B} = \frac{2\gamma_0\gamma_B}{N^2}, V_{DB} = (1 - c_B)\frac{2\gamma_D\gamma_B}{N^2}, V_{BB} = c_B\frac{2\gamma_D\gamma_B}{N^2} + \frac{\gamma_B^2}{N^2},$$

626 where

$$627 \quad \gamma_0 = \beta_{00}N_{00} + \frac{1}{2}\beta_{0D}N_{0D} + \frac{1}{2}\beta_{0B}N_{0B},$$

$$628 \quad \gamma_D = \beta_{DD}N_{DD} + \frac{1}{2}\beta_{0D}N_{0D} + \frac{1}{2}\beta_{DB}N_{DB},$$

$$629 \quad \gamma_B = \beta_{BB}N_{BB} + \frac{1}{2}\beta_{0B}N_{0B} + \frac{1}{2}\beta_{DB}N_{DB}.$$

630

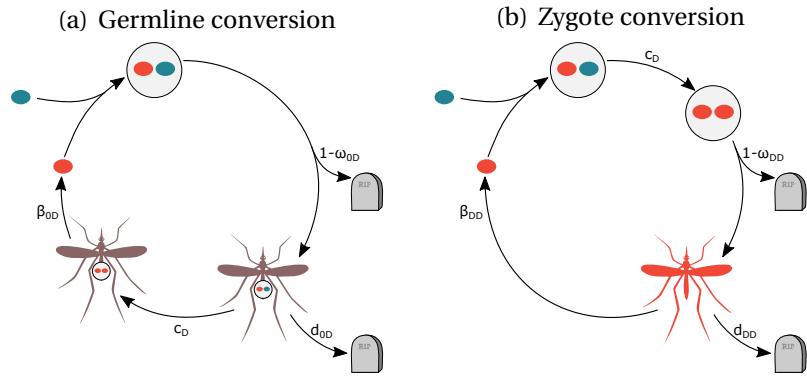
631 Hypotheses regarding dominance

632 Here we justify why we can consider that the dominance parameter h is the same for all alleles.
633 Let us first assume that the brake allele does not restore fitness. Under this scenario, the brake
634 and gene drive alleles are genetically equivalent so that they have the same fitness ($\omega_{DD}=\omega_{BB}$)
635 and the same dominance ($\omega_{0D}=\omega_{0B}$). This is consistent with having the same dominance
636 parameter:

637

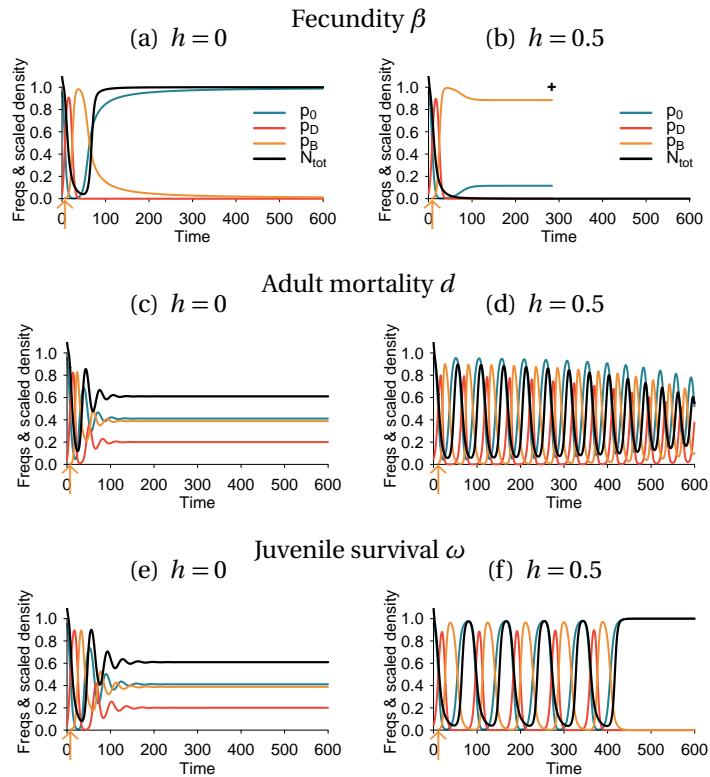
$$\begin{aligned}\omega_{0D} &= (1 - h)\omega_{00} + h\omega_{DD} \\ \omega_{0B} &= (1 - h)\omega_{00} + h\omega_{BB} = (1 - h)\omega_{00} + h\omega_{DD} = \omega_{0D} \\ \omega_{DB} &= (1 - h)\omega_{BB} + h\omega_{DD} = (1 - h)\omega_{DD} + h\omega_{DD} = \omega_{DD},\end{aligned}$$

638 and likewise for d and β parameters.


639 Now let us assume that the brake allele does restore fitness. Under this scenario, the brake and
640 wild-type alleles are genetically equivalent so that they have the same fitness ($\omega_{00} \sim \omega_{BB}$) and
641 the same dominance ($\omega_{0D} \sim \omega_{DB}$). This is also consistent with having the same dominance
642 parameter::

$$\begin{aligned}\omega_{0D} &= (1 - h)\omega_{00} + h\omega_{DD} \\ \omega_{0B} &= (1 - h)\omega_{00} + h\omega_{BB} \simeq (1 - h)\omega_{00} + h\omega_{00} \simeq \omega_{00} \\ \omega_{DB} &= (1 - h)\omega_{BB} + h\omega_{DD} \simeq (1 - h)\omega_{00} + h\omega_{DD} \simeq \omega_{0D},\end{aligned}$$

643 and likewise for d and β parameters. Therefore we can assume that dominance levels are equal
644 across the three different types of heterozygotes both when the brake does and does not restore
645 fitness.


646

Figures

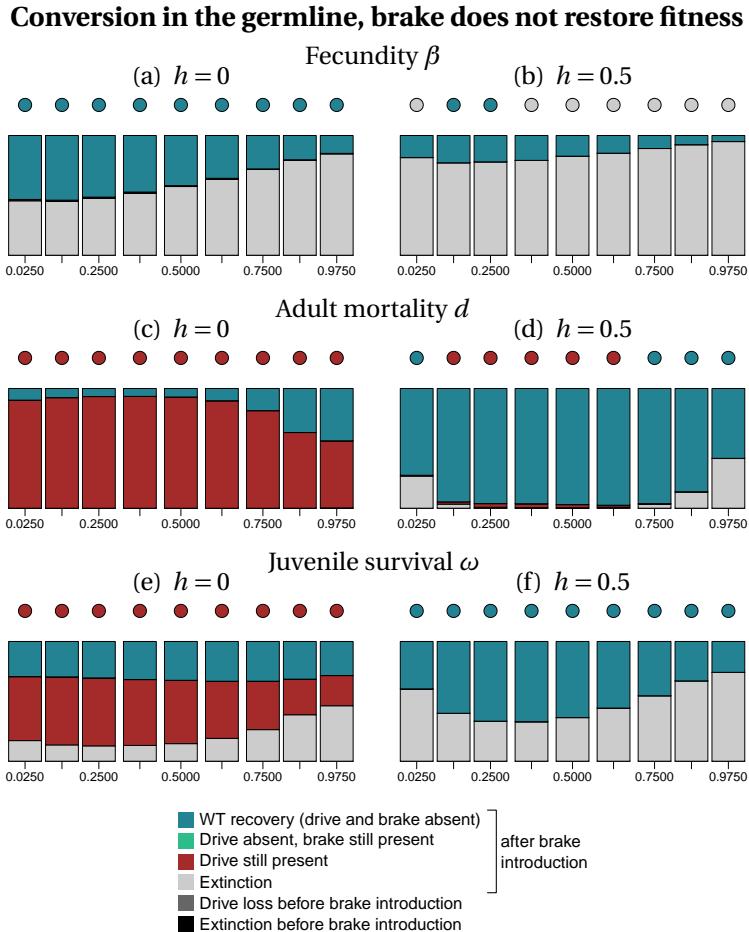
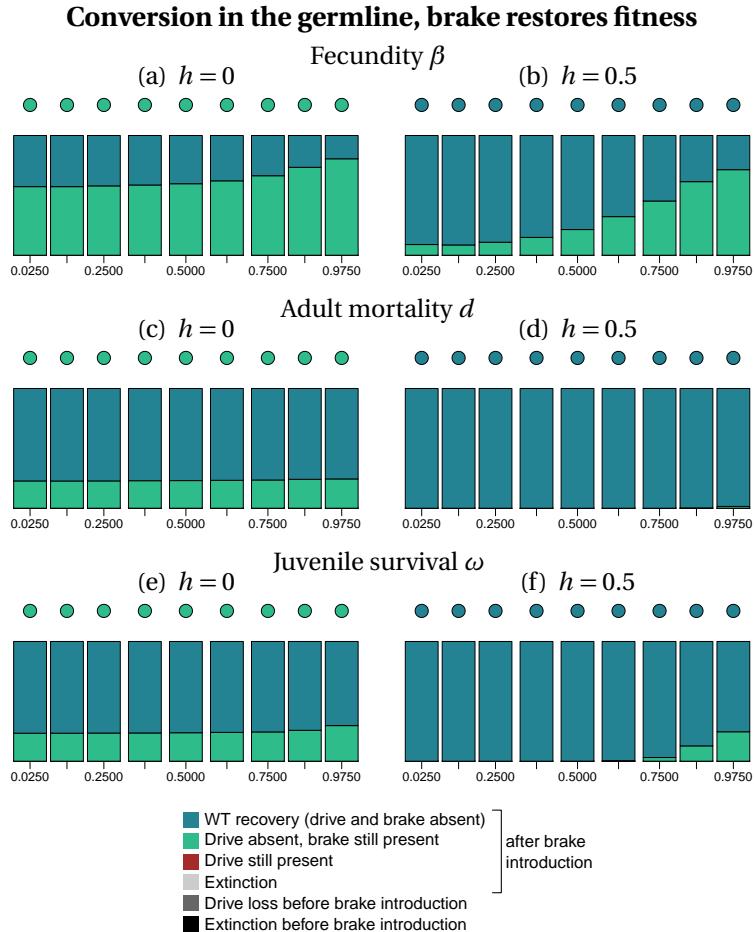
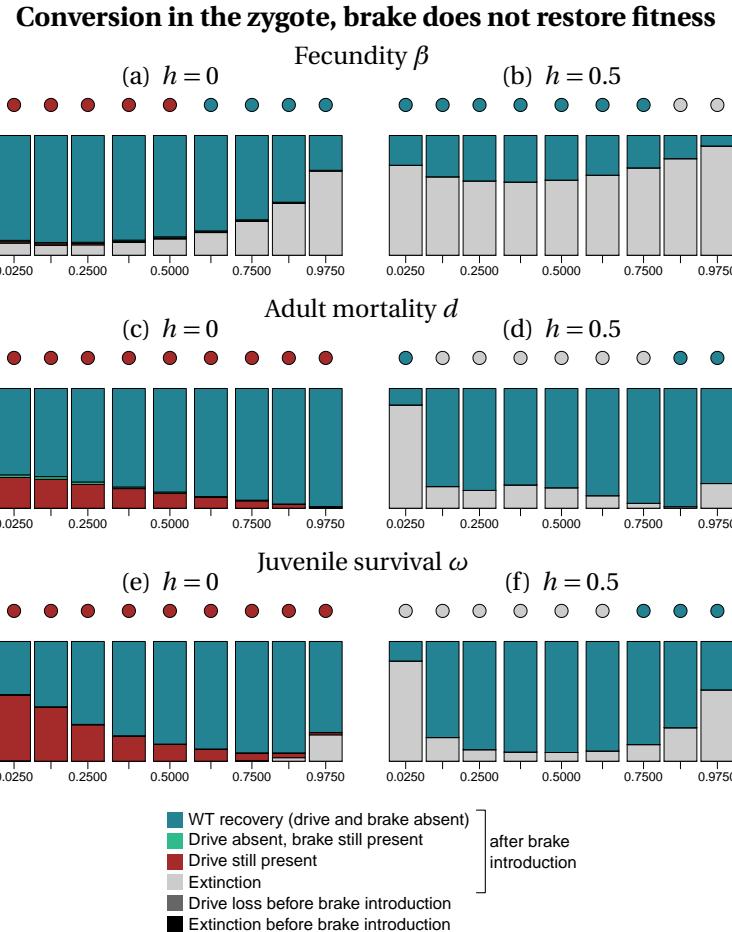


Figure 1: Life-cycles with the two timings of gene conversion, germline (a) and zygote (b). The blue color corresponds to the wild-type allele, the red color to the drive allele and drive-homozygous individuals; the drive/wild-type heterozygous individual is represented in purple. The tombstone represents death. Notation: 0: WT, D: drive; c probability of gene conversion; ω : zygote survival; d : adult mortality; β : adult fecundity.


Conversion in the germline, brake does not restore fitness


Figure 2: Deterministic dynamics of the frequencies of each allele in the population, and scaled total population size (black curve). Conversion takes place in the germline, and the brake does not restore fitness. Population size is scaled relative to the equilibrium size of a 100% wild-type population ($K(1 - d_{00}/(\beta_{00}^2 \omega_{00}))$). The arrow indicates the timing of drive introduction, here chosen to be when the drive allele is at 50% ($f_I = 0.5$). A cross indicates population extinction. Simulation parameters are listed in Tables S1–S3.

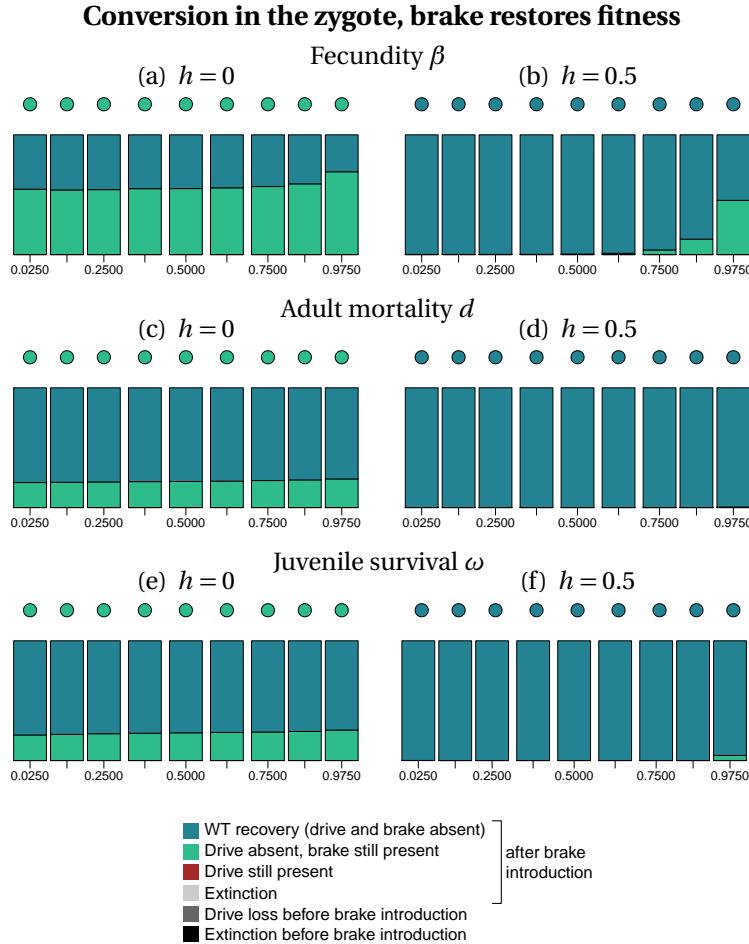
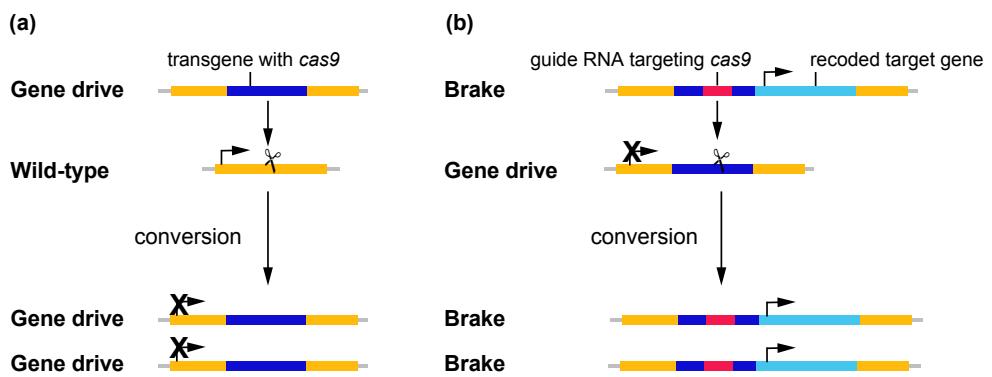

Figure 3: Frequency of each type of outcome in the simulations (color-coded), depending on the frequency of drive f_I at the time at which the brake is introduced (horizontal axis), on the dominance coefficient h (columns) and on the trait that is affected by the drive and the brake (rows). The dots show, with the same color code, the output of the deterministic model. Simulation parameters are listed in Tables S1–S3.

Figure 4: Frequency of each type of outcome in the simulations (color-coded), depending on the frequency of drive f_I at the time at which the brake is introduced (horizontal axis), on the dominance coefficient h (columns) and on the trait that is affected by the drive and the brake (rows). The dots show, with the same color code, the output of the deterministic model. Simulation parameters are listed in Tables S1–S3.

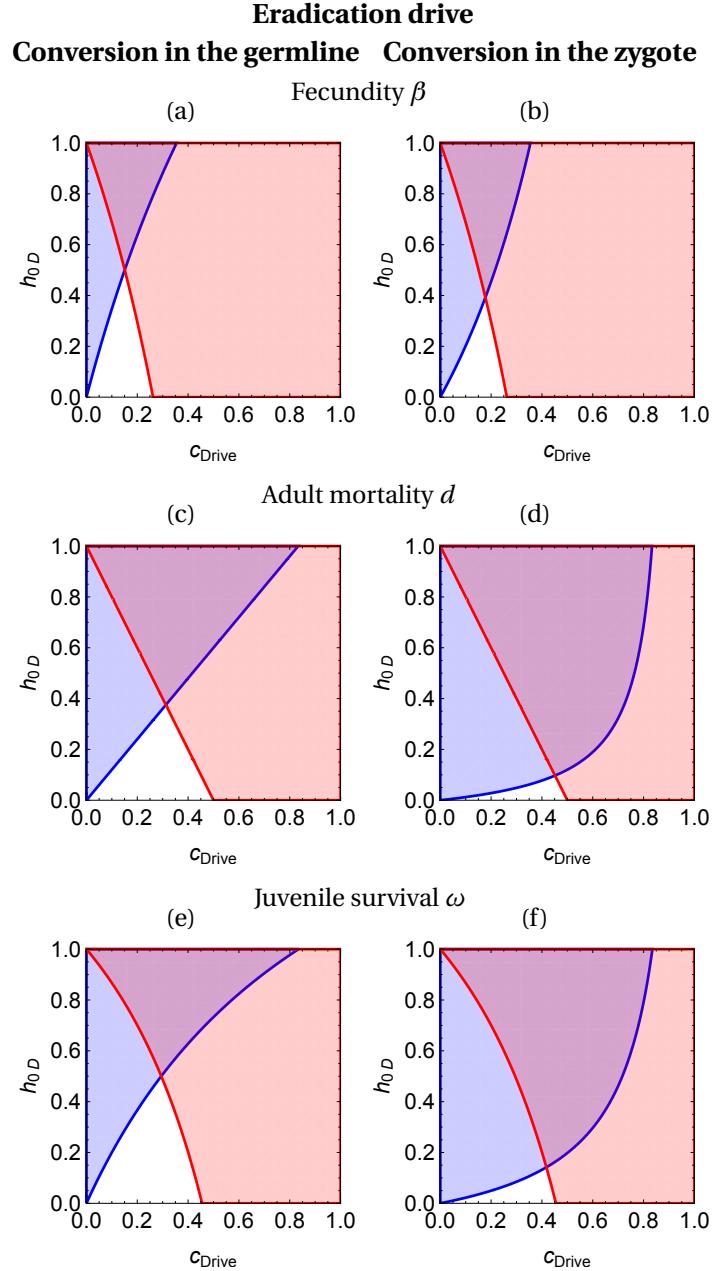
Figure 5: Frequency of each type of outcome in the simulations (color-coded), depending on the frequency of drive f_I at the time at which the brake is introduced (horizontal axis), on the dominance coefficient h (columns) and on the trait that is affected by the drive and the brake (rows). The dots show, with the same color code, the output of the deterministic model. Simulation parameters are listed in Tables S1–S3.

Figure 6: Frequency of each type of outcome in the simulations (color-coded), depending on the frequency of drive f_I at the time at which the brake is introduced (horizontal axis), on the dominance coefficient h (columns) and on the trait that is affected by the drive and the brake (rows). The dots show, with the same color code, the output of the deterministic model. Simulation parameters are listed in Tables S1–S3.

K	Carrying capacity	25000
c_D	Probability of gene conversion by a drive	0.9
c_B	Probability of gene conversion by a brake	0.8
$N_{0D}^{(0)}$	Initial number of introduced drive-WT individuals	1000
$N_{0B}^{(0)}$	Initial number of introduced brake-WT individuals	100
t_{\max}	Maximum time of the simulations	2500


Table S1: Fixed parameters

f_I	Frequency of the drive allele in the population when the brake is introduced	$\{0.025, 0.1375, 0.25, 0.375, 0.5, 0.625, 0.75, 0.8625, 0.975\}$
$h_{D0} = h_{B0} = h_{DB} = h$	Dominance parameter	$\{0, 0.5\}$


Table S2: Varying parameters

	Scenario # Brake... Effects on	(1) (2) (3)			(4) (5) (6)		
		does not restore fitness			restores fitness		
		d	ω	β	d	ω	β
Adult death rate	d_{00}	0.6	0.6	0.6	0.6	0.6	0.6
	d_{DD}	1.1	0.6	0.6	1.1	0.6	0.6
	d_{BB}	1.1	0.6	0.6	0.64	0.6	0.6
Juvenile survival	ω_{00}	1.0	1.0	1.0	1.0	1.0	1.0
	ω_{DD}	1.0	0.545	1.0	1.0	0.545	1.0
	ω_{BB}	1.0	0.545	1.0	1.0	0.938	1.0
Adult fecundity	β_{00}	1.0	1.0	1.0	1.0	1.0	1.0
	β_{DD}	1.0	1.0	0.738	1.0	1.0	0.738
	β_{BB}	1.0	1.0	0.738	1.0	1.0	0.968

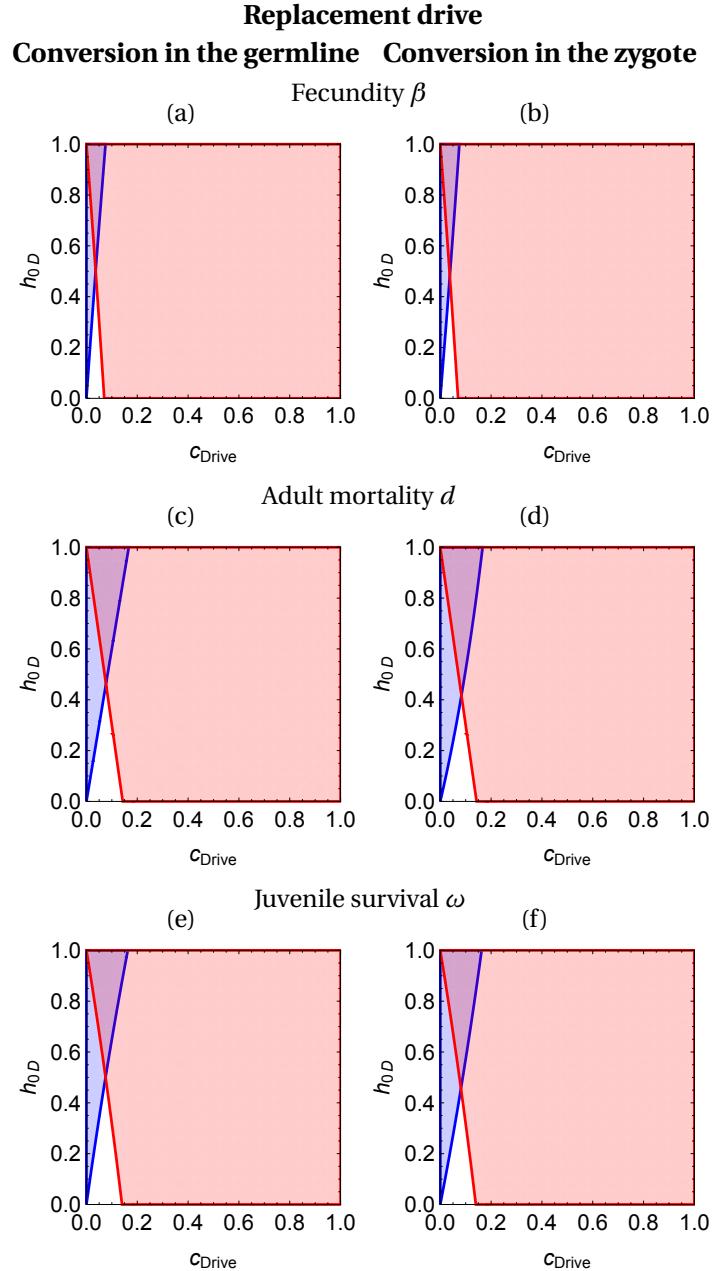

Table S3: Parameters for the different scenarios, depending on whether the brake restores fitness (modulo a small cost) or not, and on which life-history parameter is affected (adult survival d , zygote survival ω , adult fecundity β).

Figure S1: Gene conversions: (a) Conversion of the wild-type allele into a gene drive allele and (b) conversion of the gene drive allele into a brake allele that restores fitness. The brake construct includes a functional version (light blue) of the target gene (light orange) disrupted by the gene drive.

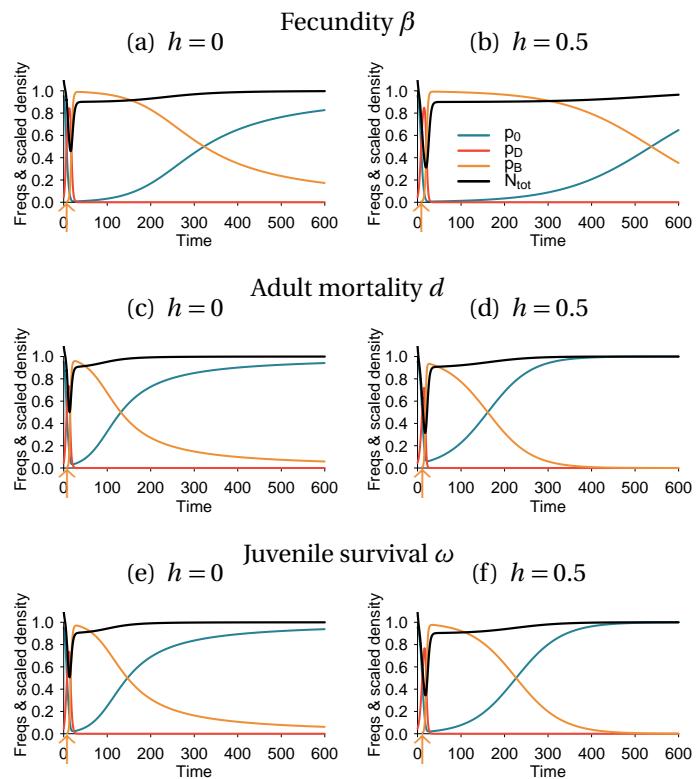
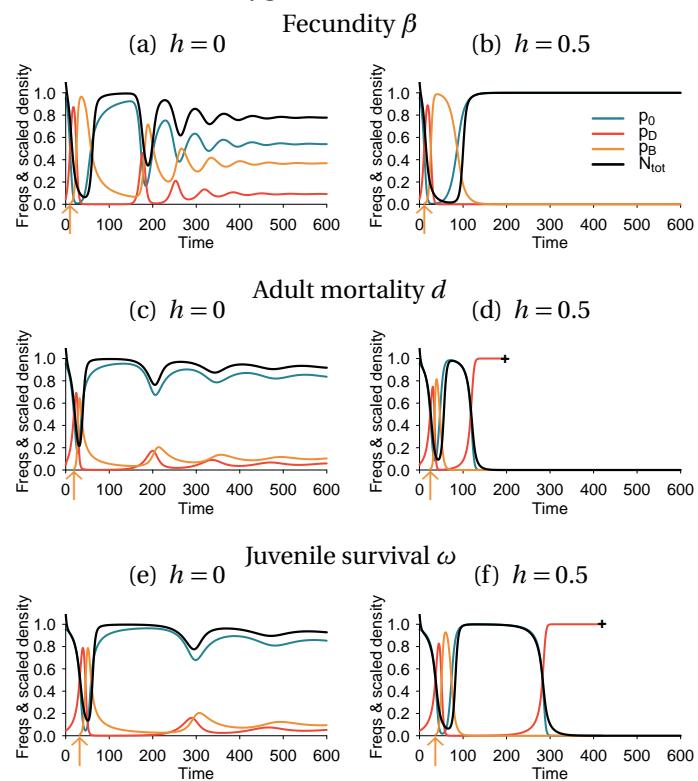
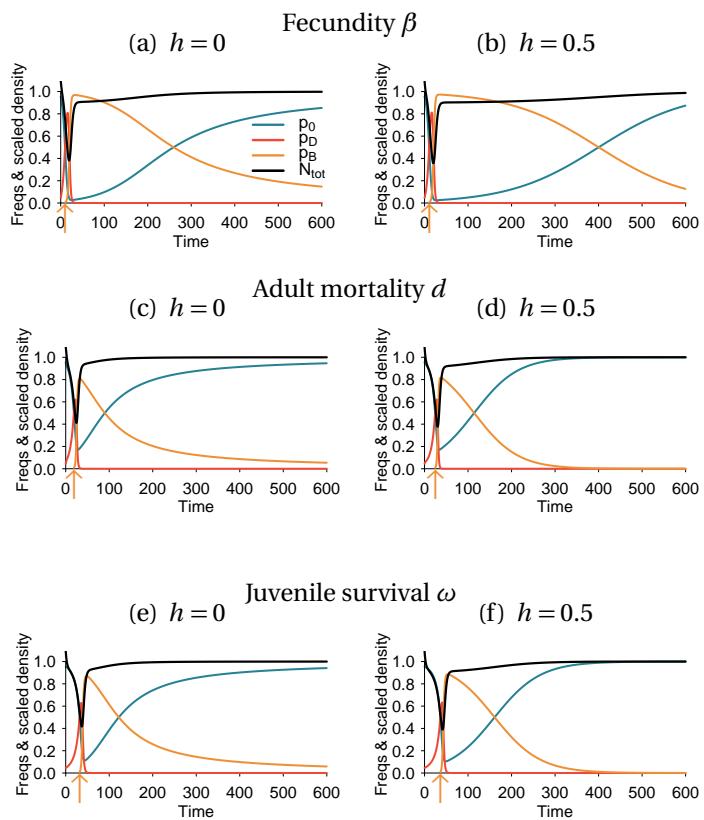


Figure S2: Local stabilities of the drive-only and the wild-type only equilibria in the absence of brake, for an eradication drive. The wild-type only equilibrium is locally stable in the blue-shaded region left of the blue curve; the drive-only equilibrium is locally stable in the red-shaded region right of the red curve. Neither equilibrium is locally stable in the white area, in which the two alleles coexist. Both equilibria are locally stable in the purple area; the final outcome depends on the initial conditions (bistability). Drives whose parameters put them in the purple area are threshold-dependent. Parameters are listed in Tables S1–S3.


Figure S3: Local stabilities of the drive-only and the wild-type only equilibria in the absence of brake, for a replacement drive. The legend is the same as figure S2.

Conversion in the germline, brake restores fitness


Figure S4: Same legend as figure 2.

Conversion in the zygote, brake does not restore fitness

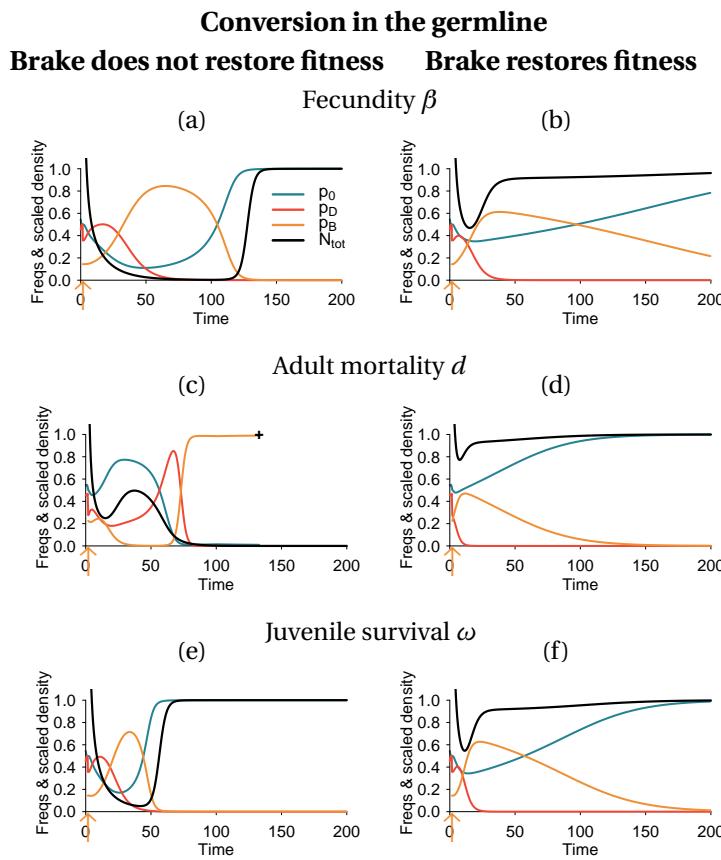


Figure S5: Same as figure 2

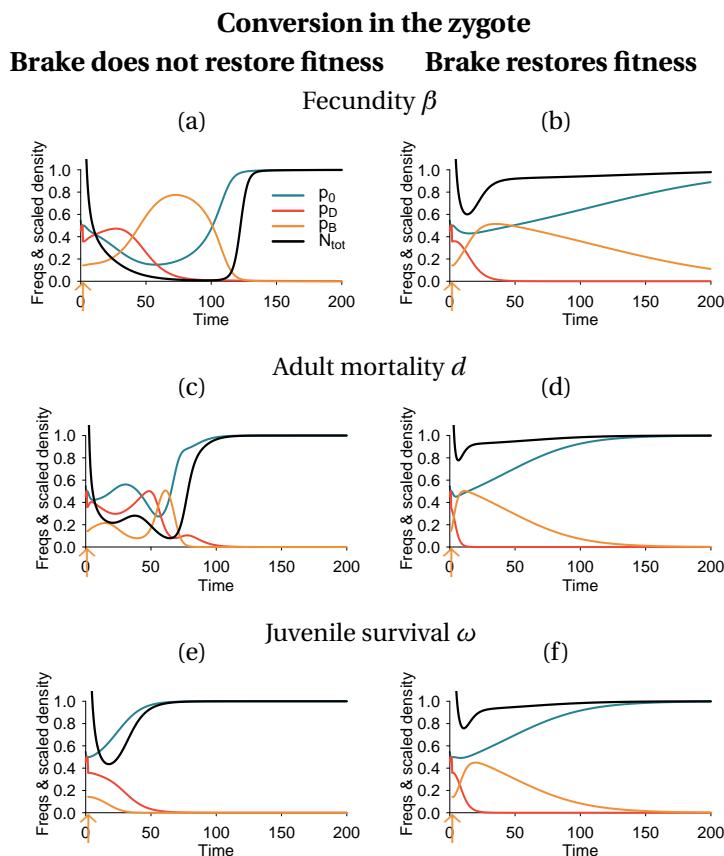

Conversion in the zygote, brake restores fitness

Figure S6: Same as figure 2

Figure S7: Deterministic dynamics when the drive is threshold-dependent; conversion takes place in the germline. Parameters are the same as in the other figures, except for the dominance parameter ($h = 1$) and for conversion efficiencies ($c_D = 0.3$, $c_B = 0.25$ in panels (a)–(b); $c_D = 0.6$, $c_B = 0.55$ in panels (c)–(d); $c_D = 0.5$, $c_B = 0.45$ in panels (e)–(f)). Introduction densities are $N_{0D} = 10^5$ and $N_{0B} = 10^4$.

Figure S8: Deterministic dynamics when the drive is threshold-dependent; conversion takes place in the zygote. See figure S7 for parameter values.