

1 **Title**

2 Multi-modal Nonlinear Optical and Thermal Imaging Platform for Label-Free Characterization
3 of Biological Tissue

4 **Authors**

5 Wilson R Adams,¹ Brian Mehl,² Eric Lieser,² Manqing Wang,³ Shane Patton,² Graham A
6 Throckmorton,¹ J Logan Jenkins,¹ Jeremy B Ford,¹ Rekha Gautam,¹ Jeff Brooker,² E. Duco
7 Jansen,^{1,4} Anita Mahadevan-Jansen^{1,4,*}

8 **Affiliations**

9 ¹Vanderbilt University, Dept of Biomedical Engineering, Nashville, TN, 37235, USA.

10 ²Thorlabs Imaging Research, Sterling, VA, USA.

11 ³Chongqing University, College of Bioengineering, Chongqing, China.

12 ⁴Vanderbilt University Medical Center, Dept of Neurosurgery, Nashville, TN, 37232, USA

13 [*anita.mahadevan-jansen@vanderbilt.edu](mailto:anita.mahadevan-jansen@vanderbilt.edu)

14 **Abstract**

15 The ability to characterize the combined structural, functional, and thermal properties of
16 biophysically dynamic samples is needed to address critical questions related to tissue structure,
17 physiological dynamics, and disease progression. Towards this, we have developed an imaging
18 platform that enables multiple nonlinear imaging modalities to be combined with thermal
19 imaging on a common sample. Here we demonstrate label-free multimodal imaging of live cells,
20 excised tissues, and live rodent brain models. While potential applications of this technology are
21 wide-ranging, we expect it to be especially useful in addressing biomedical research questions
22 aimed at the biomolecular and biophysical properties of tissue and their physiology.

23 **Main Text – [6468/15000 words]**

24 With increased focus on high-speed biological processes at molecular, chemical, and biophysical
25 levels, there has come a critical need to develop tools that can keep pace with the number of
26 active research areas in biomedicine. Technical developments in nonlinear optical microscopy
27 have revolutionized our ability to study biophysical and biochemical properties of tissues, both in
28 terms of the wide range of samples, improved contrast modalities, and unprecedented speeds at
29 which imaging is now possible. However, combining direct spatial temperature measurements
30 alongside multiphoton modes of contrast have not been widely adopted. Multiphoton imaging
31 approaches have enabled deep-tissue imaging across numerous model systems, gleaning
32 important insights on the structure and function of cells and tissues (1, 2) while thermal imaging
33 can yield complementary information to relate to study metabolism, circulation, and immune
34 response. Temperature plays a crucial role in biology yet has yet to be extensively demonstrated
35 in any substantial capacity towards biological microscopy applications. Thus, instrumentation to
36 explore the structural, functional, and thermal properties of tissue would prove useful in studying
37 biophysical dynamics in tissue physiology.

38 Multiphoton fluorescence (MPF) and second harmonic generation (SHG), are particularly
39 useful in highlighting tissue structure and function (3, 4). Calcium, voltage, and molecule-
40 sensitive reporters continue to push the boundaries of multiphoton applications in biomedical
41 research. Vibrational spectroscopic contrast using nonlinear Raman imaging (NRI), namely
42 coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), has
43 shown particularly wide-ranging applicability. These include rapid identification of tumor
44 margins (5), high-dimensional structural labeling (6), other biological processes such as drug
45 delivery (7), neurotransmitter release (8), and electrophysiological dynamics (9). Such imaging
46 can highlight the molecular organization and biochemical composition of tissue over time—

47 offering a glimpse into sub- and inter-molecular dynamics without using exogenous labels.
48 Multiplexing functional, biochemical, and biophysical (e.g. temperature) contrast in cells and
49 tissues can offer a unique tool in evaluating and imaging biological and physiological processes
50 that may not be possible with the same degree of exploratory power in separate instruments (1).

51 Nonlinear optical microscopy is inherently suitable for multimodal imaging applications.
52 Integrating the different modalities that fall under nonlinear microscopy can help alleviate
53 unnecessary system complexity while providing complementary information about tissue
54 structure and function. Notably, CARS, SRS, MPF, and SHG are all optical processes that can
55 occur and be detected simultaneously or sequentially by selecting the appropriate filters and
56 detectors for the techniques used. Several groups have demonstrated selective combinations of
57 nonlinear imaging strategies to address a range of biological questions, *in vitro* and *in vivo* (10),
58 particularly sensing fast biological processes such as neuronal action potentials and calcium
59 activity with combined SRS and calcium-sensitive MPF (9). Integration of SRS with optical
60 coherence tomography (OCT) has been shown to augment nonspecific scattering-based contrast
61 with vibrational specificity to image lipid distributions in excised human adipose tissue (11).
62 More recently, researchers have employed four or more nonlinear imaging modalities, including
63 CARS, MPF, SHG, and third harmonic generation for live tissue and intravital imaging towards
64 wound healing and cancer metastasis (12, 13). While most of these demonstrated approaches
65 have been applied towards observing biological processes over the span of multiple hours at the
66 molecular and biochemical levels, they are limited in their ability to observe snapshots of sub-
67 second functional, biochemical, and thermal processes.
68 The influence of temperature in physiological and biochemical processes – particularly
69 surrounding sample damage and physiological modulation - has recently become an area of
70 prominence across biomedical research disciplines (14-16). As optical imaging and perturbation
71 technologies continue to advance biomedical research, it becomes critical to consider
72 thermodynamic effects particularly on live specimens albeit practically difficult. A flexible
73 imaging system that incorporates molecular, biochemical, and biophysical information from cells
74 to tissues, *in vitro* to *in vivo*, would enable the study of rapid and dynamic biophysical processes
75 from multiple perspectives.

76 Measuring temperatures in biological samples at high resolutions spatially and temporally
77 has proven difficult and continues to be an active area of research. Groups have multiplexed
78 blackbody thermal imaging and fluorescence microscopy at cellular resolutions *in vitro* (17, 18),
79 however water absorption generally obscures the ability to visualize cell morphology with
80 thermal imaging alone. Moreover, optical components that suffice for use between 0.4 and 14
81 μm wavelengths to encompass visible optical and thermal infrared imaging are not readily
82 available. Finite element heat transfer modeling and Monte Carlo simulations of photon transport
83 in scattering media is often regarded as the benchmark approach for temperature estimation of
84 dynamic photothermal processes in biological samples with high water concentrations (19).
85 Several indirect approaches have been demonstrated including temperature-dependent changes in
86 fluorophore emission, and probe beam deflection microscopy (16, 19, 20). Several indirect
87 approaches have been demonstrated including temperature-dependent changes in fluorophore
88 emission, and probe beam deflection microscopy (16, 20). While point-based methods (utilizing
89 thermocouples, customized miniature sensors, or intrinsic fluorescence of rare-earth doped glass
90 waveguides) are more direct, they sacrifice spatial information obtained with temperature
91 mapping (21). Previous work has utilized thermal imaging with laser speckle imaging to study
92 cerebral blood flow changes during different methods of anesthesia (22). However, despite the

93 potential utility of combining thermal imaging with multimodal nonlinear microscopy, such a
94 combination has not been previously reported. A system that can combine multimodal nonlinear
95 microscopy with thermal imaging would offer unprecedented flexibility to study biological
96 processes in real time.

97 The goal of this project is to integrate multiple nonlinear imaging methods with thermal
98 imaging so that biophysical, biochemical, and molecular information from dynamic biological
99 processes may be imaged with micron level spatial resolution and millisecond level temporal
100 resolution. Towards this effort, we present an imaging platform that integrates single-band
101 CARS, SRS, MPF, SHG, and wide field thermal microscopy (ThM) for characterizing tissues at
102 varying time scales. Applications of our imaging system are demonstrated imaging both *in vitro*
103 with neural cell cultures and tissue specimen as well as *in vivo* with acute craniotomy rat
104 preparations. Our platform offers a novel approach enabling imaging techniques with otherwise
105 incompatible optical paths (due to physical limitations of hardware) to be applied on a common
106 sample. We demonstrate that this platform provides a robust tool for researchers to probe the
107 physiology of dynamic biological systems, through the unique integration of vibrational
108 spectroscopic, functional fluorescence, and thermal contrast.

109 **System Design**

110 The framework of the Multimodal Advanced Nonlinear and Thermal Imaging System, or
111 MANTIS, is a three-armed imaging turret (Customized Bergamo II Platform, Thorlabs Imaging
112 Research, Sterling, VA, USA) that respectively images a sample with either nonlinear imaging,
113 thermal imaging, or widefield white light reflectance imaging which is reconfigurable to adapt
114 additional measurement approaches (Fig. 1A). The mechanical arrangement of distinct imaging
115 arms allows for modalities with incompatible optical instrumentation (e.g. ultrafast near infrared
116 imaging with endogenous shortwave infrared measurements) to be performed sequentially
117 without disturbing or repositioning the sample. A FLIR SC8300-series high-speed indium-
118 antimonide CCD camera equipped with a 4X germanium imaging objective (FLIR Systems Inc.,
119 Nashua, NH, USA | Fig. 1B) is attached to the thermal imaging arm of the microscope. The
120 thermal camera relies on the endogenous black/grey body emission of a sample between 3-5 μ m
121 wavelength under the assumption of homogenous emissivity to infer sample temperatures.

122 The nonlinear imaging section of MANTIS, depicted in Fig. 1C with a simplified
123 schematic, is coupled to two nonlinear laser sources supplying femtosecond (Insight DS+,
124 Spectra Physics, Fremont, CA, USA) and picosecond (picoEmerald S, A.P.E, Berlin, DE) laser
125 lines. Higher spectral bandwidth (\sim 15nm) femtosecond laser pulses provides high peak powers
126 necessary for optimal multiphoton and higher harmonic generation *in vivo* (1). The picosecond
127 laser has narrower bandwidth (\sim 0.5nm, or 10cm $^{-1}$), which is critical for maintaining the spectral
128 resolution necessary for single-band nonlinear Raman imaging while minimizing power at the
129 sample for safe *in vivo* applications (<20mW average power) (23). Both laser systems operate
130 with a pulse repetition rate of 80MHz and output two beams necessary for pump and stokes
131 excitation of NRI contrast processes. The shorter wavelength tunable laser line undergoes a
132 tunable path length delay while the longer wavelength laser line is intensity-modulated at
133 20MHz via an electro-optical modulator (Thorlabs, Newton, NJ, USA) to facilitate SRS. Each
134 laser's output is spatially and temporally co-linear and directed with a series of mirrors into the
135 scan head of the nonlinear imaging arm of MANTIS.

136 The imaging optics of the nonlinear imaging arm are based on conventional upright laser-
137 scanning microscopy. The scanning optics consist of a pair of galvanometric mirrors (Thorlabs,
138 Newton, NJ, USA), which are imaged onto the back focal plane of a commercial objective lens

139 (Olympus XLUMPLFLN, 20X 1.0NA | Nikon CFI Apochromat NIR 60X, 1.0NA) via a 4f
140 optical relay. This scan relay performs a fixed 4X magnification of the laser beam diameter to
141 accommodate the back-aperture pupil size of the largest objective lenses we use relative to the
142 entrance beam diameter (SL50-2P2 & TL200-2P2, Thorlabs, Newton, NJ, USA). Two epi-
143 detection ports with a photomultiplier tube (CARS/MPF/SHG | GaAsP Amplified PMT,
144 Thorlabs, USA) and a large area 50-V reverse-biased photodiode (SRS | A.P.E. GmbH, Berlin,
145 DE) are used for imaging epi-detected contrast. Two additional detachable forward detection
146 ports were also built to accommodate coherent imaging modalities in transparent samples in
147 transmission mode. Stimulated Raman loss for SRS was demodulated via a commercial lock-in-
148 amplifier (A.P.E. GmbH, Berlin, DE). All emission filters and excitation wavelengths included
149 with the system are summarized in Table S1 (Semrock, Brattleboro, VT, USA). Scanning and
150 detection hardware for imaging is controlled through ThorImageLS version 2.1, 3.0, or 3.2
151 (Thorlabs Imaging Research, Sterling, VA, USA). All images shown are raw with linear
152 intensity rescaling, with all analysis being performed in FIJI (24).

153 The third imaging arm of MANTIS initially features a color complementary metal oxide
154 semiconductor (CMOS) camera (Thorlabs Inc., Newton, NJ, USA) with a variable focal length
155 lens (Navitar Inc., Rochester, NY, USA) for widefield white-light reflectance imaging of
156 samples (Fig. 1A). However, this arm was built into the imaging system to readily enable
157 integration of additional contrast modalities that may be further incompatible with multimodal
158 nonlinear microscopy – such as interferometric contrast or stereoscopic surgical guidance. Each
159 arm is locked into position by a custom-designed spring-loaded locking system against the
160 rotating turret base (Fig. 1A). The maximum fields of view of each imaging arm is ~800 μ m-x-
161 800 μ m for nonlinear microscopy with a 20X objective, 3mm-x-4mm for thermal microscopy
162 with a 4X objective, and 50mm-x-50mm for widefield white light reflectance imaging.

163 **System Performance**

164 To achieve high-speed imaging at subcellular resolution, MANTIS was designed to resolve at
165 least 1- μ m lateral resolution in the nonlinear imaging arm. Performance was verified on a series
166 of standards, (Fig. 2), with measured axial and lateral resolutions for each modality summarized
167 in Table S2 (data summarized in Table S1). Images of 0.5- μ m diameter polystyrene (PS, latex,
168 Polysciences Inc. Warrington, PA, USA) beads with CARS and SRS were obtained to generate
169 a point spread function (PSF), which is reported here as the full-width half-maximum intensity
170 cross-section of beads fit to a Gaussian curve. Fluorescent bead calibration standards with a 250-
171 nm diameter (Polysciences Inc. Warrington, PA, USA) were used to measure the PSF of MPF.
172 All PSF calculations were performed using the MetroloJ plugin in FIJI (25). Measured
173 resolutions, reported in Table S2, are on par with results published literature when imaging with
174 numerical apertures approaching 1.0 (3, 23, 26). Spectral separation of polymethyl-methacrylate
175 (PMMA, acrylic, Polysciences Inc. Warrington, PA, USA)) and PS beads with single-band SRS
176 are shown in Fig. 2B. Acrylic (PMMA) beads are depicted using the 2927-cm⁻¹ band – an
177 asymmetric CH₃ resonance- (yellow), and latex (PS) beads are depicted spectrally separate with
178 the 3053-cm⁻¹ band – an asymmetric CH₂ resonance- in blue. The signal-to-noise ratio (SNR),
179 measured at the edge of a vegetable oil meniscus at the 2927-cm⁻¹ band with SRS (Fig. S2), was
180 calculated to be 34.6 (27).

181 Resolution standards to verify SHG imaging resolution are not commercially available. In
182 place of a controlled standard, a collagen-rich biological sample (a porcine mitral valve) was
183 imaged at a high spatial sampling density (250-nm/px) and the finest resolvable fibrillar
184 structures were measured as a proxy for lateral resolution. Sample images of mitral valve

185 collagen are shown in Fig. 2E and Fig. S3. Example calculations of fibril diameter are show in
186 Fig. S1. Fibrillar collagen bundles and quaternary structure are clearly visualized. While fibrillar
187 structures vary substantially in diameter (3), the resolving power of SHG on MANTIS (Table 2)
188 is well within our targeted resolution goals being able to resolve sub-micron spatial features.

189 The FLIR thermal camera resolution was estimated by identifying the smallest resolvable
190 group on a 1951 United States Air Force resolution target. Resolving group 6, element 4 equates
191 to a lateral resolution of 6.9- μm . The depth of focus of the thermal camera is about 40- μm , based
192 on an f/4.0 aperture stop of the objective lens in the thermal camera. Since the depth of focus of
193 the thermal camera is substantially larger than the depth of focus of the nonlinear imaging
194 system, registration in the axial dimension straightforward. The factory measured temperature
195 resolution is specified to be 0.1°C. The nonlinear and thermal microscopy field view were
196 independently adjusted to centrally registered the corner of a 10- μm grid target. Switching
197 between thermal and nonlinear microscopy fields of view was found to repeatable within 1- μm
198 radial to imaging turret rotation and 10- μm tangent to imaging turret rotation (Fig. 1A, yellow
199 arrows). Since field of view of the thermal camera is nearly four times that of the nonlinear
200 microscopy field of view – making the coincidence of each modality’s field of view with each
201 other straight-forward Figure S5. Once aligned, the fields of view were observed to remain well
202 registered for more than a week following initial alignment. It takes about 90-180 seconds to
203 switch between nonlinear and thermal imaging arms over the same sample. The sub-millimeter
204 repeatability of positioning multiple imaging arms readily enables multiplexing of thermal and
205 nonlinear microscopy on the same field of view without needing to reposition the sample.

206 *In vitro* Imaging

207 To verify the capability of MANTIS to perform *in vitro* imaging, cultured NG108 cells – a
208 spiking neuron-astrocytoma hybridoma cell line - were imaged with CARS and MPF, as seen in
209 Fig. 3. Briefly, cells were plated on poly-D-lysine coated cover glass for 48hr prior to imaging
210 and maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%v/v
211 fetal bovine serum and 5mM L-glutamine. 12-hours prior to imaging, medium was replaced with
212 DMEM containing 3%v/v FBS to morphologically differentiate adherent cells. Performing
213 CARS imaging at 2830- cm^{-1} resonance highlights a lipid-dominant CH_2 symmetric stretch mode,
214 which relates to cellular projections and lipid-rich intracellular contents such as organelles, lipid
215 droplets, and vesicles (Fig. 3A). Autofluorescence from NADH and FAD can be used to
216 extrapolate metabolic information relating to relative aerobic metabolism dynamics and
217 metabolic cofactor distribution throughout the cell. Together, combined CARS and MPF
218 demonstrate the structural and functional capacities of multimodal nonlinear imaging *in vitro*
219 (Fig. 3B and C). Blackbody thermal imaging of cells in media in an upright configuration was
220 not feasible due to the strong absorption of water in the wavelength range measured by the
221 thermal camera (3 to 5- μm). Imaging with cellular resolution with thermal microscopy is
222 possible in an upright configuration (Figure S4A), with the ability to resolve cellular temperature
223 distribution. However, once medium is introduced to the imaging field of view (Figure S4B),
224 cellular morphology is occluded due to strong water absorption of the sensed wavelength range.
225 This has been addressed by others by utilizing inverted imaging configurations (17, 28, 29),
226 however resolvable cellular morphology were not demonstrated.

227 Combined SHG and MPF was demonstrated on fresh *ex vivo* porcine mitral valve
228 samples (Figure S5). Tissue samples were harvested from porcine cardiac tissue postmortem and
229 stored in phosphate buffered saline for 72hrs prior to imaging. Samples were mounted on a
230 standard microscopy slide and imaged through leveled and supported cover glass in contact with

231 the tissue surface. Simultaneous autofluorescence and SHG under 930-nm illumination with the
232 femtosecond laser source yielded high resolution microstructure of endogenous elastin and
233 collagen, free of exogenous labeling (30). Changes in collagen and elastin can dangerously
234 disrupt the structure and function of heart valves (31). Having methods to study new
235 interventions to improve heart valve function could be valuable to cardiac biomechanics
236 researchers. Combining SHG with SRS at 2880-cm⁻¹ to broadly highlight lipids allows for the
237 visualization of tissue architecture in unfixed frozen sections of murine cervix (Figure S6).
238 Distinct chemical and structural differences are notable between the epithelium and stroma of the
239 cervix. The stroma is dense with collagen and low in cellular content, while the epithelium is rich
240 in lipids and proteins due to cellularization. The lamina propria of blood vessels are also
241 discernable with SHG, appearing as fine tubular structures with strong SHG signal, providing an
242 indication of tissue vascularization. Visualizing the changes in vasculature, cellular, extracellular
243 matrix protein distribution throughout cervix shows potential for studying parturition processes
244 and cancer progression in the cervix without the need for exogenous labelling.

245 Fig. 4, Figure S6, and Figure S7 demonstrate multimodal nonlinear imaging with CARS,
246 SRS, SHG, and MPF in an *ex vivo* rat sciatic nerve preparation. Nerves were harvested from
247 Sprague-Dawley rats and imaged immediately postmortem. Contrast from CARS and SRS
248 primarily highlights myelin (Figure S7B&C). The CARS and SRS images correspond well with
249 the MPF images of FluoroMyelin green (ThermoFisher Inc | Figure S7E, Figure S8C and D) but
250 are less prone to heterogeneous dye uptake. While myelin plays a major functional role in nerve
251 signal conduction, collagen is a major structural component of the sciatic nerve that provides a
252 protective exterior sheath and additional mechanical stability within the nerve. Collagen contrast
253 from SHG can be used to visualize the epineurium and fascicle-residing collagen (Figure S9).
254 These four modalities together therefore offer key structural insight to the sciatic nerve and can
255 be used to study nerve injury, regeneration, and disease. Furthermore, the ability to flexibly
256 apply these techniques to different sample types, between live cells and excised tissue specimen,
257 highlights a key design goal of the imaging platform.

258 The key advancement allowed by the MANTIS platform is the ability to multiplex
259 optically incompatible imaging techniques such as thermal imaging with nonlinear optical
260 microscopy. Thermal imaging can be used to evaluate fast photothermal processes, such as
261 infrared neural stimulation (32, 33), with coregistered contrast from nonlinear imaging
262 modalities to study real time biophysical dynamics. To assess the multimodal capabilities of
263 MANTIS, readout of multimodal nonlinear contrast was directly correlated with high-speed
264 temperature changes during infrared neural stimulation in a fresh *ex vivo* sciatic nerve
265 preparation (Fig. 4). Point-scanned line repeats were employed to obtain high framerate
266 nonlinear signals during IR stimulation. Intriguingly, our results show a notable decrease in
267 nonlinear signals that tracks closely with temperature increases over the period of one second.
268 Notably, SHG signals did not exhibit a discernable decrease in signal, which is attributable to the
269 lack of collagen present through where line scans were acquired (center of the field of view, Fig.
270 4). However, decreases in SHG signal during IR stimulation have been verified in other FOVs,
271 suggesting this signal decrease is a more general physical phenomenon. Decreases in nonlinear
272 signal were found to be caused by a defocusing artifact induced by the spatial thermal gradient
273 inherent to infrared neural stimulation in the microscope's field of view. Resolving photothermal
274 effects of IR heating in biological tissues at high speed, such as during INS, will provide
275 invaluable information in studying *in vivo* applications of INS.

276 ***In vivo* Imaging**

277 An acute craniotomy preparation in an anesthetized rat model was utilized to validate the *in vivo*
278 capabilities of MANTIS. All animal use protocols were approved by Vanderbilt University
279 Institute for Animal Care and Use Committee (VU-IACUC). Sprague-Dawley rats were
280 anesthetized with intraperitoneal injections of ketamine (40-80mg/kg) and xylazine (10mg/kg)
281 for 40 minutes prior to surgery. Anesthetic depth was monitored every 10 minutes and
282 maintained with follow-up half-dose anesthetic injections every 90-120 minutes as needed.
283 Animals were mounted in a stereotaxic frame under the microscope objective while a 2mm-x-
284 2mm section of skull and dura mater overlying the somatosensory cortex was carefully removed.
285 Tissue hydration was maintained with sterile saline throughout imaging. Animals were sacrificed
286 by anesthetic overdose and cervical dislocation following experiments. During imaging
287 experiments, pixel dwell times needed to be increased to 8- μ s to account for signal loss in
288 moving the SRS detection path into an epi-detection configuration. Epi-SRS detection was
289 implemented by replacing the dichroic mirror immediately preceding to the objective in the
290 incident light path with a polarizing beam splitter cube and quarter wave plate (23). Images were
291 initially acquired at a high spatial sampling density (0.5- μ m/px, 800x800 px) with a 0.2Hz
292 framerate. However, reducing the spatial sampling density and overall image sizes (3 μ m/px,
293 256x256 px) over a comparable field of view, we were able to achieve 2Hz framerates.
294 Subsequently, repeated point-based line scanning could be implemented with a 488Hz line rate
295 to observe faster biophysical dynamics. This flexibility emphasizes the trade-offs between spatial
296 and temporal sampling in nonlinear microscopy approaches *in vivo*. Acquiring images using
297 CARS, MPF, or SHG needed to be performed sequentially, due to the availability of only one
298 PMT detector at the time of experiments. However, any one of the three PMT-requiring
299 modalities can be multiplexed with SRS contrast, since SRS uses a separate detector in an
300 adjacent detection path. Excitation and detection wavelengths are summarized in Table S1.

301 Examples of *in vivo* images can be seen in Fig. 5. A lipid-rich CARS resonance at
302 2850cm⁻¹ (Fig. 5C) and a protein-dominant SRS resonance at 2930cm⁻¹ (Fig. 5B) appears to
303 highlight superficial cellular features as well as vascular perfusion within blood vessels.
304 Autofluorescence contrast from blue and green detection channels are most commonly used to
305 measure endogenous NADH (Fig. 5G, Table S1) and FAD (Fig. 5E, Table S1). This diffuse
306 NADH signal is likely arising from the neuropil at the pial surface of the cortex, while FAD
307 tends to present more sparsely superficially in the outer cortex *in vivo*; this weak fluorescence is
308 often spectrally indistinct from other biological autofluorescence (34, 35). Contrast from SHG
309 (Fig. 5 revealed unknown morphologies, which may be due to cytoskeletal structures across the
310 pial surface, but is more likely to be residual collagen from the dura mater after surgical
311 preparation. Thermal imaging (Fig. 5H) of the brain surface appears to reveal mostly
312 topographical contrast - vasculature is clearly visible. The lack of optical penetration depth of
313 measured wavelengths of the thermal camera are likely responsible for the brain surface
314 topographical contrast. Temperature fluctuations across the surface of the brain appear to be
315 minimal, even with breathing, heart rate, and motion artifacts. Larger vessels appear slightly
316 warmer than smaller vessels. Focusing artifacts appeared to have some effect on the accurate
317 approximation of the brain surface temperature within 1°C – particularly noticeable at the edges
318 of the field of view, which likely arise from out of focus signal from underlying bulk tissue due
319 to the high degree of surface curvature in the sample (Fig. 5H). Cellular morphologies were not
320 apparent in thermal images of the brain surface. Thermal imaging of the brain surface was
321 capable of acquisition speeds approaching 180Hz framerates with a full field of view. This

322 imaging rate can be substantially increased to 500Hz or more by cropping the image sensor
323 readout without loss in spatial resolution or pixel binning without reduction in field of view. The
324 vessel morphologies visible between thermal and CARS/SRS contrast made fine registration of
325 thermal and nonlinear imaging fields straightforward with rigid registration of manually labelled
326 image features.

327 **Combined Multimodal Nonlinear and Thermal Microscopy**

328 Infrared neural stimulation (INS) utilizes pulsed short-wave infrared laser light to transiently
329 invoke a thermal gradient in neural tissue resulting in activation of neural cells. One of the major
330 concerns about neuromodulation with rapid targeted thermal gradients is that the change in
331 temperature could cause cell damage. Cells are naturally prone to damage at elevated
332 temperatures; however, the role of temperature-time history is often underappreciated in the
333 context of biological thermodynamics. Integrating fast nonlinear and thermal microscopy offers
334 a particularly useful platform for studying the physical and functional impacts of INS on neural
335 cells.

336 The ability to correlate high resolution temporal and spatial thermal information (Fig.
337 6E&F) with the functional information afforded by nonlinear imaging (Fig. 6A-D), available in
338 the MANTIS platform offers a unique opportunity to visualize biochemical, biophysical, and
339 biomolecular dynamics of cultured NG108 cells during INS. An 8ms pulse of 1875nm infrared
340 light was delivered to the cells via a 400 μ m diameter optical fiber at average radiant exposures
341 spanning 0.5 (stimulating) and 3J/cm² (damaging) while imaging at 10Hz framerates.
342 Multiphoton fluorescence of cells imaged in saline containing a damage indicator, propidium
343 iodide (PI, 1uM concentration, Fig. 6C, Table S2), differentiated healthy and damaged cells due
344 to IR exposure. Increases in relative fluorescence greater than 3% were presumed to be
345 indicative of cell damage. Simultaneously, SRS imaging at a CH₃ resonance (2930cm⁻¹,
346 lipid/protein) provides endogenous biochemical information of cells during INS. In this study,
347 SRS images were primarily used to segment cell morphologies to extract viability status (MPF)
348 and interpolate thermodynamics (thermal imaging).

349 Thermal images during INS were acquired at 34Hz framerates after all nonlinear imaging
350 and stimulation experiments were completed. Temperature information is not simultaneously
351 available with nonlinear observations due to physical limitations. Since the thermal properties of
352 cells mounted in imaging saline behave thermodynamically like water upon INS, post-hoc
353 registration of thermal information with *a priori* knowledge of thermal and nonlinear fields of
354 view was used. Multimodal image registration was performed with an iterative closest point
355 algorithm implemented in MATLAB to register manually selected features of a fluorescent target
356 (Chroma, Rochester, NY, USA) observable in both nonlinear and thermal imaging modes. Cell
357 centroids were calculated from cell morphologies identified with SRS (Fig. 6A) in FIJI utilizing
358 a seeded watershed segmentation algorithm (24, 36). Spatial transformations from
359 aforementioned field of view registration were applied to the cell centroid positions to obtain
360 their positions in the thermal camera field of view. Cell positions in the thermal camera field of
361 view were used to interpolate temperature-time and temperature-space thermal data on a per-cell
362 basis utilizing built-in 2D interpolation functions in MATLAB.

363 Since the stimulating IR light (1875nm) is strongly absorbed by water, the immersion
364 medium required for nonlinear imaging had a substantial impact on the heating of cells, leading
365 to potentially large discrepancies in thermal imaging measurements. To minimize optical
366 absorption of 1875nm stimulation light by the aqueous immersion medium necessary for the
367 nonlinear microscopy objective (Olympus XLUMPLNFL 20X, 1.0NA), spectroscopic-grade

368 deuterated water (Sigma Aldrich, St. Louis, MO, USA) was used as an immersion medium (33).
369 Cells remained immersed in normal imaging media and were separated from heavy water by the
370 coverslip on which the cells were mounted. The reduction in IR absorption in the objective lens
371 immersion media was enough to allow for representative spatial thermal measurements of INS
372 on aqueous cellular samples with the thermal camera. Functional observations of cell death
373 aligned well with peak spatial temperature maps (Fig. 6E, inset). It is expected that absolute
374 temperature measurements at the sample are likely to differ with and without the presence of
375 deuterated immersion medium during INS, however the spatial and temporal dynamics of IR-
376 induced cellular thermal gradients are expected to remain consistent and comparable across all
377 exposure conditions. With this assumption, physiological comparisons can be effectively drawn
378 with the understanding that the observed absolute temperatures are likely slightly higher than
379 during nonlinear image experiments where immersion medium may impact INS.

380 Spatially registered observations of cell functional, chemical, and temperature dynamics
381 is only made possible by a combined and accurately coregistered nonlinear and thermal imaging
382 platform such as the MANTIS platform. From these multimodal imaging experiments, we
383 observed that cells that experience more rapid changes in temperatures as a function of time were
384 more likely to be damaged (Fig. 6E, F). Damaged cells are more likely to be located near low
385 spatial thermal gradient values, which correspond to local maxima in spatial heating profiles
386 (Fig. 6E, inset). However, cells outside the fiber illumination would be expected to present
387 similar spatial thermal gradients as cells at peak levels of heating - introducing some
388 heterogeneity in the spatial thermal gradient information. Considering spatial and temporal
389 thermal gradient information together clarifies the thermodynamic difference between heated and
390 unheated cells. Numerous cells appear to survive rapid temperature changes while others do not,
391 however damaged cells are far more likely to undergo rapid heating. This observation
392 demonstrates the variability in cell physiological responses due to INS. Distinct increases in
393 mean multiphoton fluorescence timeseries indicate cell damage within 30 seconds of IR
394 exposure. Cell damage appears to coincide with increases in mean SRS CH₃ signal following IR
395 stimulation. The basis for SRS signal increase is currently unclear, though we speculate
396 attribution to endogenous cellular damage responses (e.g. lipid vacuolization, organelle damage,
397 and increased chaperone protein expression such as heat shock proteins). There remains to be
398 extensive validation of changes in endogenous SRS signal in the context of live cell imaging and
399 damage beyond lipid storage and cell membrane dynamics. Experimentally, SRS images were
400 primarily used in Fig. 6 to identify, segment, and locate cells for temperature and viability data
401 calculations. However, this platform readily enables such explorations into the molecular basis of
402 SRS signal changes simultaneously with more established live cell fluorescence imaging probes.

403 Discussion

404 We demonstrate the first imaging system that combines CARS, SRS, MPF, SHG, and thermal
405 imaging into a single microscope for biomedical imaging applications. The similarities in
406 illumination and detection instrumentation needed for nonlinear excitation has been exploited in
407 the past to design multimodal imaging platforms. But as demonstrated here, our novel system
408 design includes a movable turret that allows for overlaying these different modalities to achieve a
409 more complete picture of biological processes to be imaged. This logically suggests that another
410 imaging modality that typically could not be integrated into a nonlinear optical microscopy path
411 may be similarly incorporated. Such flexibility of optical microscopy design provides the
412 opportunity to study physiology in unique and dynamic ways.

413 The proposed imaging system, MANTIS, was built with modularity and expandability in
414 mind. On the nonlinear imaging arm, the current configuration has four optional detection ports -
415 two each in the epi- and forward detection configurations. Additional channels can easily be
416 added to expand simultaneous imaging capabilities based on research needs. Lock-in detection
417 arms can be refitted with the appropriate optical filters for transient absorption imaging. Sum-
418 frequency generation imaging can also be readily integrated for studying ordered molecular
419 orientation and interfacial phenomena in biological samples. The widefield reflectance imaging
420 arm may be useful for integrating laser speckle, diffuse reflectance, optical coherence
421 tomography and microscopy, or spatial frequency domain imaging with the correct illumination
422 optics to map tissue blood flow, oxygenation, and optical properties. Furthermore, the widefield
423 reflectance and thermal imaging arm were built on detachable 96-mm optical rails so that other
424 imaging methods may be integrated based on future research needs. The multi-armed imaging
425 concept can also yield more utility out of a condensed instrument footprint, which may be useful
426 in places where laboratory floorspace is limited.

427 The scanning optics used in nonlinear imaging arm can achieve 1kHz scan rates. A
428 galvo-scanning pair was chosen over a faster galvo-resonant scanning pair, which typically offer
429 an order of magnitude increase in scanning rates. By doing so, improved control over image
430 sampling densities can be achieved to readily span subcellular and multicellular scales. This is
431 exemplified by the difference in sampling density observed between Fig. 3 and Fig. 5. As
432 demonstrated in Fig. 4, our imaging system can perform nonlinear imaging with line scans
433 approaching 0.5kHz with detectable amounts of signal. This is enough to resolve high-speed
434 biophysical dynamics, such as during neural modulation or optogenetic stimulation, from a
435 functional, chemical, and physical standpoint. Kilohertz bandwidth scanning rates are sufficient
436 to achieve visualization of neuronal action potentials as demonstrated by Lee *et al.* with balanced
437 detection SRS and calcium fluorescence microscopy (9).

438 Both femtosecond and picosecond lasers were included in the design of MANTIS for
439 signal and spectral resolution considerations. The bandwidth of the picosecond laser source
440 (around 0.5nm) allows for higher spectral resolutions (around 10cm^{-1}) which is critical for
441 nonlinear Raman imaging (37). However, the peak powers of the picosecond source are orders of
442 magnitude lower than that of the femtosecond laser, yielding less signal during multiphoton
443 fluorescence and higher harmonic imaging. At the time of construction, the use of broadband
444 nonlinear Raman techniques, such as pulse shaping and spectral focusing had yet to be realized
445 for fast imaging *in vivo* (38). As such, design considerations to optimize narrow band spectral
446 resolution and *in vivo* imaging speed were a priority. A number of broadband spectral NRI
447 techniques have since been described (39, 40), with a handful demonstrated *in vivo* (10). The
448 flexibility of the existing instrumentation on MANTIS readily allows for the integration such
449 broadband approaches.

450 Using blackbody thermal microscopy to characterize sample temperatures in conjunction
451 with nonlinear imaging, or any laser-scanning microscopy approach, has yet to be previously
452 published. Estimating temperature with a thermal camera provides a more direct measurement
453 than other approaches, such as fluorescence-based methods. The ability to measure thermal
454 information alongside the functional and structural information offered by nonlinear microscopy
455 provides a unique instrument to explore new questions in biophysics, particularly *ex vivo* and *in*
456 *vivo*. Practically, thermally microscopy presents some advantages and drawbacks depending on
457 the model systems being imaged. We have found that high resolution fluorescence microscopy
458 can be difficult to interpret in highly thermally dynamic systems with high numerical apertures at

459 high imaging speeds, which became apparent in applying infrared neural stimulation in sciatic
460 nerve (Fig. 4) as well as in cells. Having thermal information to contrast and systematically
461 compensate for thermally induced effects is something that our imaging platform lends itself to
462 accomplish. Since imaging depth with thermal microscopy is limited due to the optical
463 penetration depth of water in the 3-5 μ m wavelength spectral regime, this means that SWIR based
464 imaging methods are ideally suited for measuring surface temperatures in water-dominant
465 samples such as biological tissues. This is even more apparent *in vitro*, where imaging through
466 any amount of aqueous medium occludes cellular morphology (Figure S4). While others have
467 demonstrated blackbody thermal imaging of cells via inverted microscopy through cover glass
468 (17, 18), visualizing cell morphology with thermal imaging has not been previously
469 demonstrated. Thermal microscopy on MANTIS can be performed readily and reliably on
470 tissues *ex vivo* (Fig. 4F) and *in vivo* (Fig. 5H). Topographical features such as blood vessels
471 tissue surfaces are clearly visible. The pronounced topography of these anatomical features is
472 helpful when performing fine registration nonlinear and thermal imaging fields. Temperature at
473 aqueous interfaces are useful in approximating spatial temperature distributions *in vitro*.
474 Combining surface temperatures with finite element heat transfer modeling and precise control
475 over sample thermodynamics can be used to render volumetric estimates of temperature *in vitro*
476 (18). In combination with fluorescence or other nonlinear imaging modalities, imaging the
477 thermodynamics of adherent cells *in vitro* or in tissues with thermal microscopy could be quite
478 useful. Consequently, multimodal methods almost become an essential requirement to correlate
479 temperature and real-time cellular observations. Our microscopy platform readily allows such
480 observation to be made and flexibly conFig.d to address a wide range of biological and
481 physiological questions.

482 As expected, cell viability at elevated temporal thermal gradients values is more likely to
483 result in cell death than at lower gradient values (Fig. 6F, axes histograms). However, as evident
484 by the overlap in cell viability as a function of thermodynamics in Fig. 6F, peak thermal
485 gradients are not absolutely predictive (Fig. 6F, scatter plot). While cells heated quickly are more
486 likely to become damaged, rapid heating is not necessarily a death sentence for cells. The
487 variability in thermally evoked cell damage illustrates the need for tools to study underlying
488 functional and biomolecular dynamics evoked by IR light on a cell-to-cell basis. Exposure time
489 and time after exposure becomes a crucial dimension of cellular physiology to explore in the
490 context of infrared neural stimulation. Endogenous lipid/protein signals (Fig. 6A&B) and a
491 fluorescence marker for cell damage (Fig. 6C&D) on average appear to increase following strong
492 levels of INS. Registration of thermal and nonlinear imaging fields within a couple of microns is
493 key to enable direct correlation of temperature-time dynamics with cell functionality since cells
494 are not readily visible with thermal imaging.

495 To practically extend this imaging platform, cell viability markers can easily be
496 substituted for calcium sensors, voltage probes, FRET constructs, or gene transcription assays,
497 alongside hyperspectral or bio-orthogonal SRS approaches, to systematically study the functional
498 impact of INS on other aspects of cellular physiology. SRS often provides relatively nonspecific
499 biomolecular information relative to fluorescence imaging strategies; combining functional
500 fluorescence and SRS imaging strategies during INS can expand the current understanding of the
501 impact of cellular physiological dynamics on SRS signals. Similar approaches can be used to
502 understand the effects of rapid temperature changes on more specific aspects of cellular
503 physiology to improve our general understanding of the impact of thermodynamics on cell
504 physiology.

505 Beyond INS, similar approaches as demonstrated in Fig. 6 may readily be adapted to
506 study laser tissue interactions associated with optogenetic or nanoplasmonic neuromodulation,
507 laser preconditioning of immunological response, and photodynamic therapy of infectious or
508 cancerous model systems where temperature changes may have a substantial impact. These types
509 of experiments are readily enabled only by an imaging platform that integrates nonlinear and
510 thermal microscopy with high enough spatial and temporal resolution capabilities to study the
511 processes at hand. While neuroscientific questions provide a valuable benchmark in terms of
512 evaluating imaging speed in the context of biology, this platform is just as applicable to other
513 areas of biomedical research.

514 Undoubtedly, an imaging platform that simultaneously integrates thermal and nonlinear
515 imaging would be practically important in answering many questions in the afore mentioned
516 disciplines. It becomes technically difficult to accommodate the disparity in optical detection
517 wavelengths for use in a broad range of cellular, tissue, and live animal preparations. Tradeoffs
518 between sample flexibility and optical access were major considerations in the imaging system's
519 three-armed design. Inherent hardware limitations prevent the design a truly simultaneous
520 multimodal nonlinear and thermal imaging system. Nonetheless, the MANTIS platform offers a
521 novel approach to creatively answer fundamental and translationally relevant questions about
522 biology and thermodynamics which are applicable broadly to biomedical research.

523 Conclusion

524 We present a novel and flexible multimodal optical imaging system that combines nonlinear and
525 thermal microscopies for biomedical imaging applications. Our platform can be used to overlay
526 functional, structural, and biochemical information from a single specimen tracked over time at
527 high speed and spatial resolution. Such approaches can be applied to study dynamic biophysical
528 processes in cells and tissues, *in vitro* and *in vivo*. In conjunction with continually expanding
529 molecular biology tools, this instrument and related imaging methods will aid in studying
530 physiological and biochemical processes from multiple perspectives in many fields including
531 neuroscience, cancer biology, metabolic disease, tissue biomechanics, and much more.

532 **References**

- 533 1. S. Yue, M. N. Slipchenko, J. X. Cheng, Multimodal Nonlinear Optical Microscopy.
Laser Photon Rev **5**, (2011).
- 534 2. W. R. Zipfel, R. M. Williams, W. W. Webb, Nonlinear magic: multiphoton microscopy
535 in the biosciences. *Nat Biotechnol* **21**, 1369-1377 (2003).
- 536 3. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler,
537 Three-dimensional high-resolution second-harmonic generation imaging of endogenous
538 structural proteins in biological tissues. *Biophys J* **82**, 493-508 (2002).
- 539 4. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. *Nat Methods* **2**, 932-940
540 (2005).
- 541 5. M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A.
542 Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D.
543 Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, D. A. Orringer, Detection of human brain tumor
544 infiltration with quantitative stimulated Raman scattering microscopy. *Sci Transl Med* **7**,
545 309ra163 (2015).
- 546 6. L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W.
547 Cornish, W. Min, Super-multiplex vibrational imaging. *Nature* **544**, 465-470 (2017).
- 548 7. M. Lee, W. J. Tipping, A. Serrels, A. N. Hulme, V. G. Brunton, in *Proc of SPIE*. (2017),
549 vol. 10069, pp. 100690T-100690T-100698.
- 550 8. D. Fu, W. Yang, X. S. Xie, Label-free Imaging of Neurotransmitter Acetylcholine at
551 Neuromuscular Junctions with Stimulated Raman Scattering. *J Am Chem Soc* **139**, 583-586
552 (2017).
- 553 9. H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P. Y. Shih, C. S. Liao, B. Bungart, X. M. Xu, R.
554 Drenan, E. Bartlett, J. X. Cheng, Label-Free Vibrational Spectroscopic Imaging of Neuronal
555 Membrane Potential. *J Phys Chem Lett* **8**, 1932-1936 (2017).
- 556 10. D. Zhang, P. Wang, M. N. Slipchenko, J. X. Cheng, Fast vibrational imaging of single
557 cells and tissues by stimulated Raman scattering microscopy. *Acc Chem Res* **47**, 2282-2290
558 (2014).
- 559 11. F. E. Robles, K. C. Zhou, M. C. Fischer, W. S. Warren, Stimulated Raman scattering
560 spectroscopic optical coherence tomography. *Optica* **4**, 243-246 (2017).
- 561 12. H. Tu, Y. Liu, M. Marjanovic, E. J. Chaney, S. You, Y. Zhao, S. A. Boppart,
562 Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the
563 tumor microenvironment. *Sci Adv* **3**, e1600675 (2017).
- 564 13. S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, H. J.
565 Sterenborg, Label-free optical imaging technologies for rapid translation and use during
566 intraoperative surgical and tumor margin assessment. *Journal of biomedical optics* **23**, 021104
567 (2017).
- 568 14. S. F. Owen, M. H. Liu, A. C. Kreitzer, Thermal constraints on in vivo optogenetic
569 manipulations. *Nat Neurosci* **22**, 1061-1065 (2019).
- 570 15. A. Picot, S. Dominguez, C. Liu, I. W. Chen, D. Tanese, E. Ronzitti, P. Berto, E.
571 Papagiakoumou, D. Oron, G. Tessier, B. C. Forget, V. Emiliani, Temperature Rise under Two-
572 Photon Optogenetic Brain Stimulation. *Cell Rep* **24**, 1243-1253 e1245 (2018).
- 573 16. K. Podgorski, G. Ranganathan, Brain heating induced by near-infrared lasers during
574 multiphoton microscopy. *J Neurophysiol* **116**, 1012-1023 (2016).

576 17. M. L. Denton, E. M. Ahmed, G. D. Noojin, A. J. Tijerina, G. Gamboa, C. C. Gonzalez,
577 B. A. Rockwell, Effect of ambient temperature and intracellular pigmentation on photothermal
578 damage rate kinetics. *J Biomed Opt* **24**, 1-15 (2019).

579 18. A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, H. T. Beier, Action potential block in
580 neurons by infrared light. *Neurophotonics* **3**, 040501 (2016).

581 19. B. Choi, A. J. Welch, Analysis of thermal relaxation during laser irradiation of tissue.
582 *Lasers Surg Med* **29**, 351-359 (2001).

583 20. D. Moreau, C. Lefort, R. Burke, P. Leveque, R. P. O'Connor, Rhodamine B as an optical
584 thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields.
585 *Biomed Opt Express* **6**, 4105-4117 (2015).

586 21. J. B. Ford, M. Ganguly, M. E. Poorman, W. A. Grissom, M. W. Jenkins, H. J. Chiel, E.
587 D. Jansen, Identifying the Role of Block Length in Neural Heat Block to Reduce Temperatures
588 During Infrared Neural Inhibition. *Lasers Surg Med* **52**, 259-275 (2020).

589 22. T. Suzuki, N. Oishi, H. Fukuyama, Simultaneous infrared thermal imaging and laser
590 speckle imaging of brain temperature and cerebral blood flow in rats. *J Biomed Opt* **24**, 1-11
591 (2018).

592 23. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang,
593 X. S. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering
594 microscopy. *Science* **322**, 1857-1861 (2008).

595 24. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
596 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K.
597 Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis.
598 *Nat Methods* **9**, 676-682 (2012).

599 25. C. C. Matthews, Fabrice P. , in *ImageJ User & Developer Conference*. (2010).

600 26. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, W. W. Webb, Multiphoton fluorescence
601 excitation: new spectral windows for biological nonlinear microscopy. *Proc Natl Acad Sci U S A*
602 **93**, 10763-10768 (1996).

603 27. D. Zhang, M. N. Slipchenko, J. X. Cheng, Highly Sensitive Vibrational Imaging by
604 Femtosecond Pulse Stimulated Raman Loss. *J Phys Chem Lett* **2**, 1248-1253 (2011).

605 28. T. Y. Choi, M. L. Denton, G. D. Noojin, L. E. Estlack, R. Shrestha, B. A. Rockwell, R.
606 Thomas, D. Kim, Thermal evaluation of laser exposures in an in vitro retinal model by
607 microthermal sensing. *J Biomed Opt* **19**, 97003 (2014).

608 29. M. L. Denton, G. D. Noojin, M. S. Foltz, C. D. Clark, 3rd, L. E. Estlack, B. A. Rockwell,
609 R. J. Thomas, Spatially correlated microthermography maps threshold temperature in laser-
610 induced damage. *J Biomed Opt* **16**, 036003 (2011).

611 30. K. Tilbury, J. Hocker, B. L. Wen, N. Sandbo, V. Singh, P. J. Campagnola, Second
612 harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic
613 pulmonary fibrosis. *J Biomed Opt* **19**, 086014 (2014).

614 31. M. Prunotto, P. P. Caimmi, M. Bongiovanni, Cellular pathology of mitral valve prolapse.
615 *Cardiovasc Pathol* **19**, e113-117 (2010).

616 32. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, E. D. Jansen,
617 Biophysical mechanisms of transient optical stimulation of peripheral nerve. *Biophys J* **93**, 2567-
618 2580 (2007).

619 33. M. G. Shapiro, K. Homma, S. Villarreal, C. P. Richter, F. Bezanilla, Infrared light excites
620 cells by changing their electrical capacitance. *Nat Commun* **3**, 736 (2012).

621 34. E. Stuntz, Y. Gong, D. Sood, V. Liaudanskaya, D. Pouli, K. P. Quinn, C. Alonzo, Z. Liu,
622 D. L. Kaplan, I. Georgakoudi, Endogenous Two-Photon Excited Fluorescence Imaging
623 Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. *Sci Rep* **7**,
624 1041 (2017).

625 35. M. A. Yaseen, J. Sutin, W. Wu, B. Fu, H. Uhlirova, A. Devor, D. A. Boas, S. Sakadzic,
626 Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in
627 vivo. *Biomed Opt Express* **8**, 2368-2385 (2017).

628 36. D. Legland, I. Arganda-Carreras, P. Andrey, MorphoLibJ: integrated library and plugins
629 for mathematical morphology with ImageJ. *Bioinformatics* **32**, 3532-3534 (2016).

630 37. C. Y. Lin, J. L. Suhalim, C. L. Nien, M. D. Milkovic, M. Diem, J. V. Jester, E. O.
631 Potma, Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal
632 component analysis of meibomian glands. *J Biomed Opt* **16**, 021104 (2011).

633 38. D. Fu, G. Holtom, C. Freudiger, X. Zhang, X. S. Xie, Hyperspectral imaging with
634 stimulated Raman scattering by chirped femtosecond lasers. *J Phys Chem B* **117**, 4634-4640
635 (2013).

636 39. C. E. Dedic, T. R. Meyer, J. B. Michael, Single-shot ultrafast coherent anti-Stokes Raman
637 scattering of vibrational/rotational nonequilibrium. *Optica* **4**, 563 (2017).

638 40. C. H. Camp, Jr., Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N.
639 Rich, J. D. Lathia, M. T. Cicerone, High-Speed Coherent Raman Fingerprint Imaging of
640 Biological Tissues. *Nat Photonics* **8**, 627-634 (2014).

641

642 **Funding**

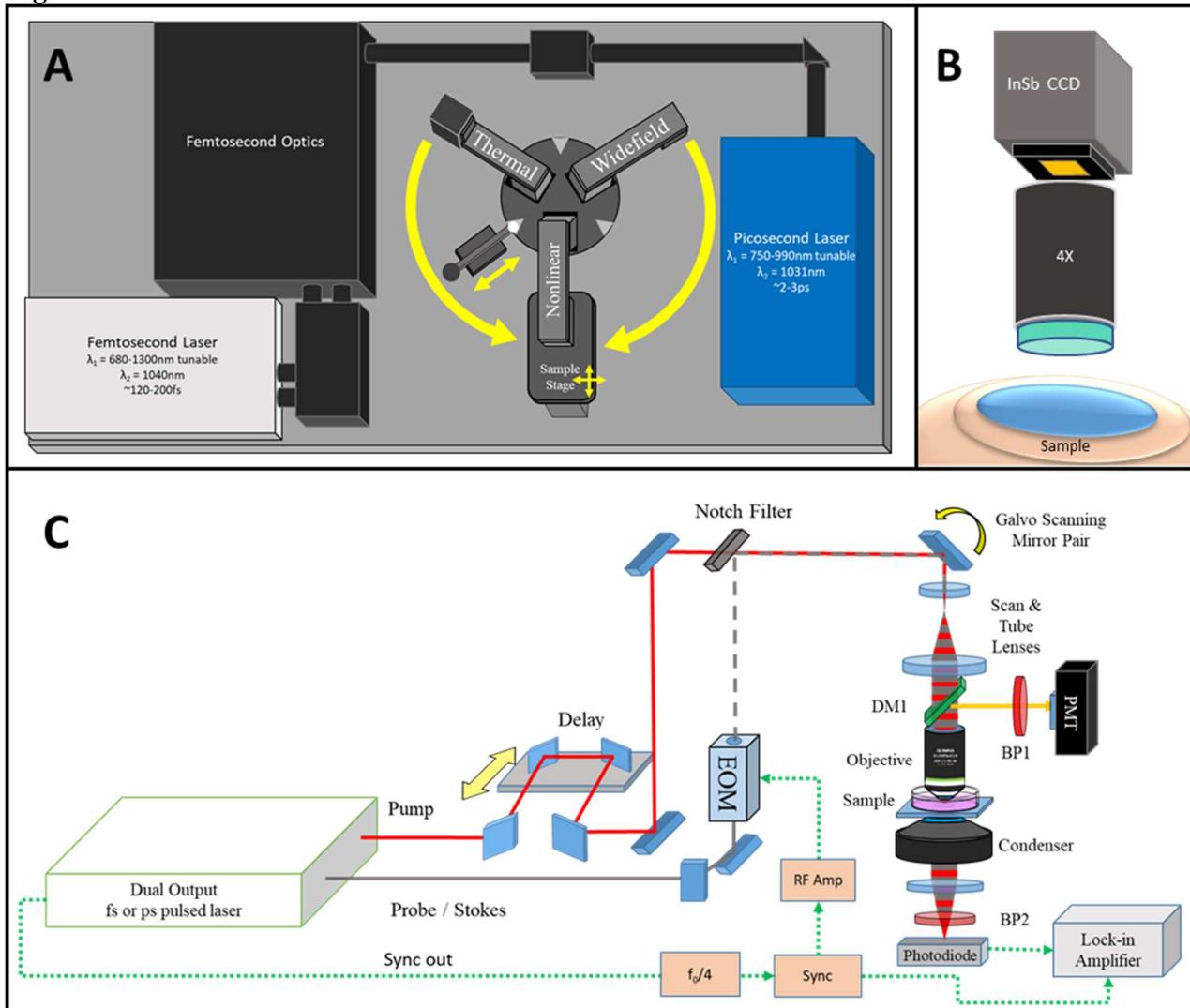
643 Funding for this work was provided by the following grants: AFOSR DURIP FA9550-15-1-
644 0328, AFOSR FA9550-14-1-0303, AFOSR FA 9550-17-1-0374. WRA was supported through
645 the ASEE NDSEG Fellowship.

646 **Acknowledgements**

647 The authors would also like to thank Dr. Bryan Millis, Dr. Christine O'Brien, and Dr. Andrea
648 Locke for their feedback and guidance on the manuscript. The authors would also like to thank
649 Dr. Matthew Bersi, Joshua Bender, and Dr. W David Merryman for providing the porcine mitral
650 valve samples.

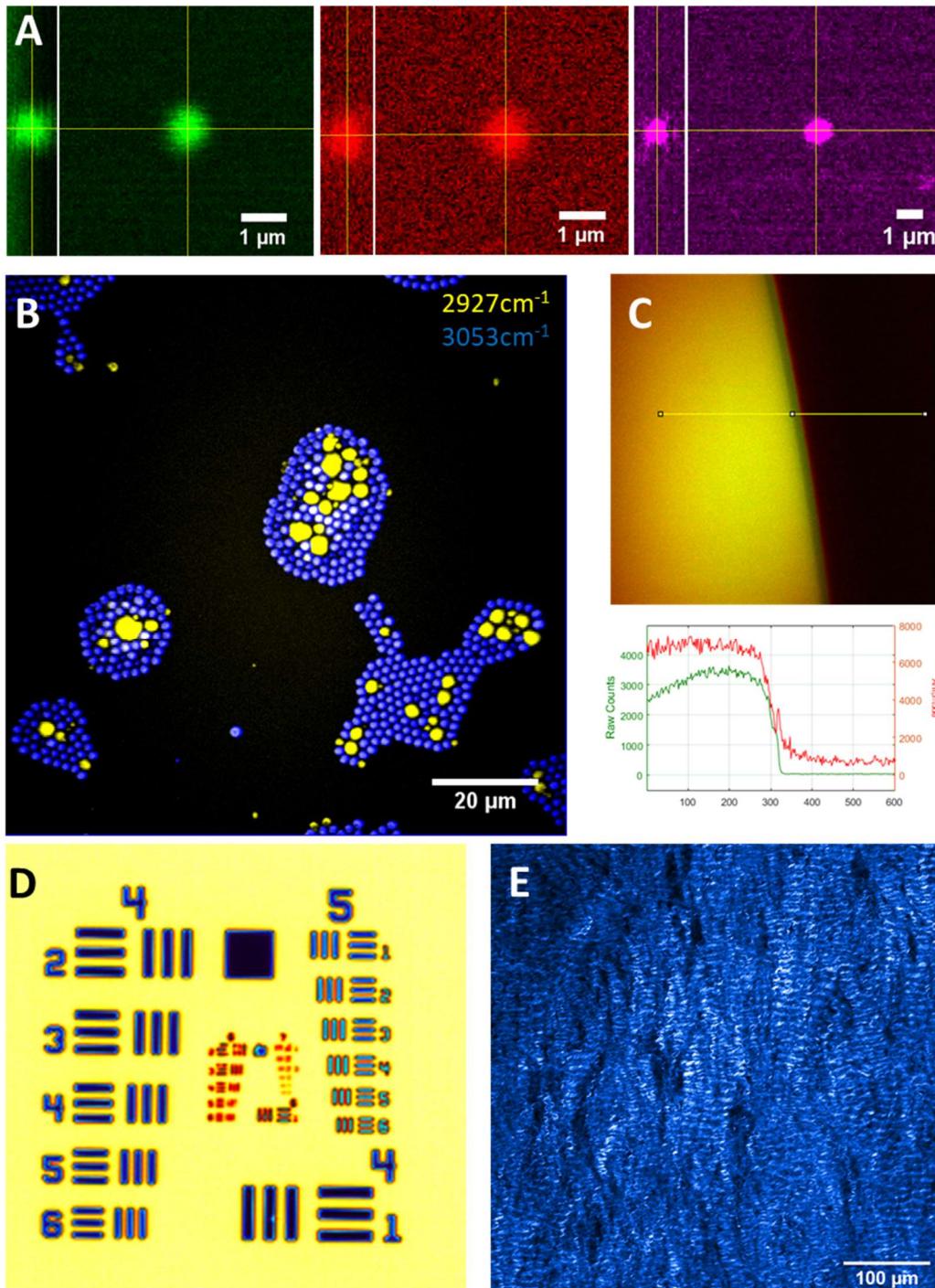
651 **Author Contributions**

652 AMJ, EDJ, and JB conceived the idea for the manuscript. WRA, BM, EL, SP, JB and AMJ
653 designed, and built the imaging system. AMJ and EDJ secured funding support for the published
654 work. MW performed *in vivo* surgical preparations and assisted in imaging. RG, GT, JLJ, and
655 JBF provided samples and experimental guidance imaging tissue samples. WRA assisted in all
656 sample preparations, performed all imaging experiments, image processing, data analysis, and
657 prepared the manuscript. All authors contributed to editing manuscript.


658 **Data Access**

659 Any raw data and processing scripts are readily available from the corresponding authors upon
660 request.

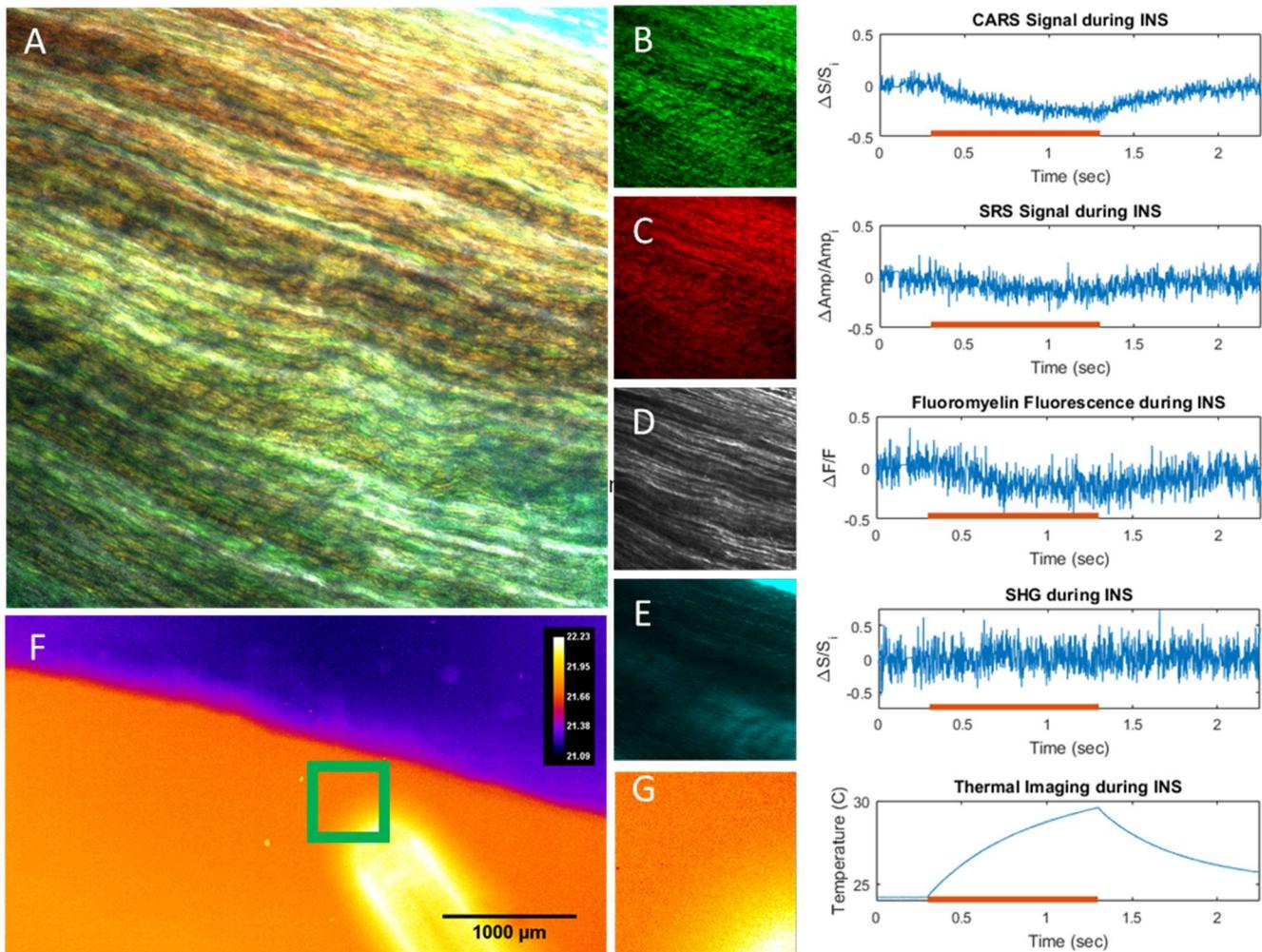
661 **Conflicts of Interest Statement**

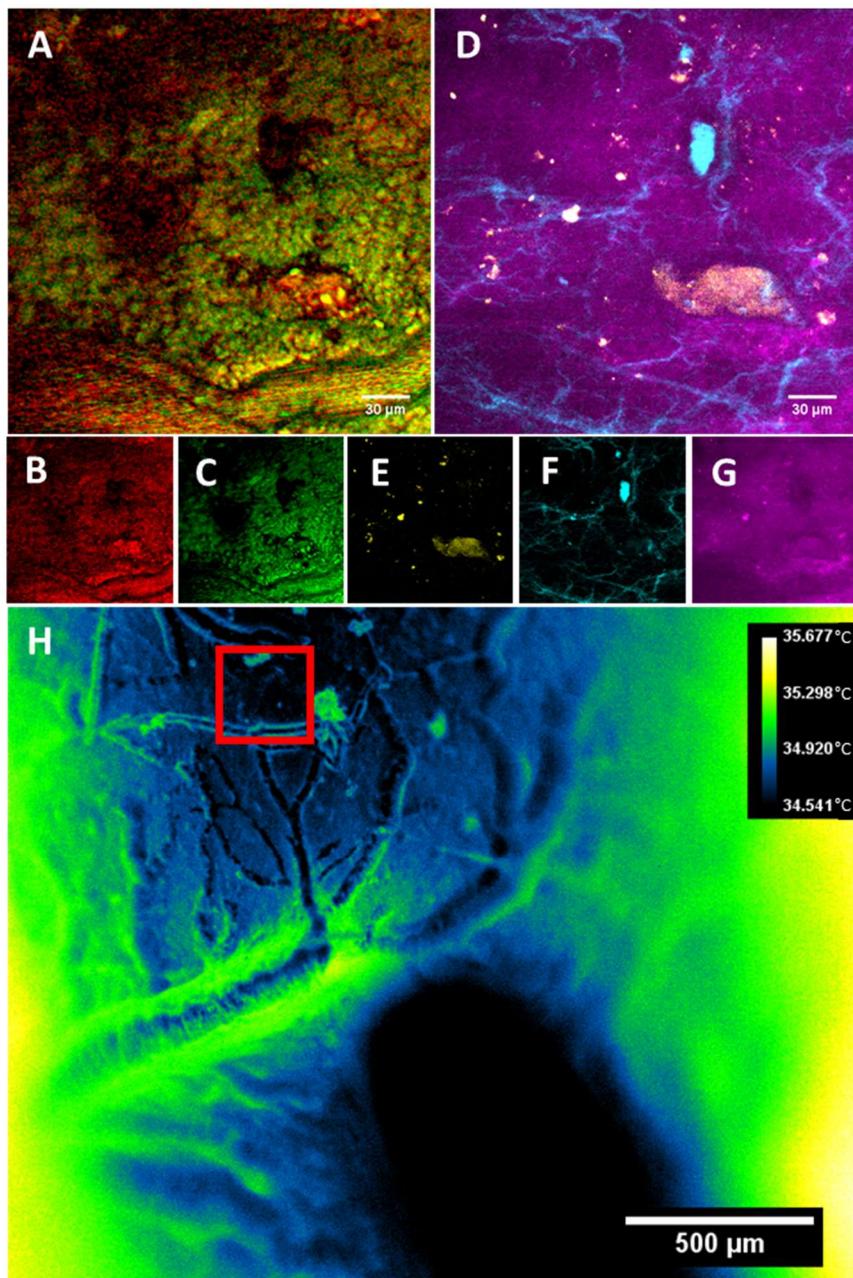

662 BM, EL, SP, and JB are employees of Thorlabs Imaging Research, LLC. The remaining authors
663 report no additional conflicts of interest.

665 **Figures**

666

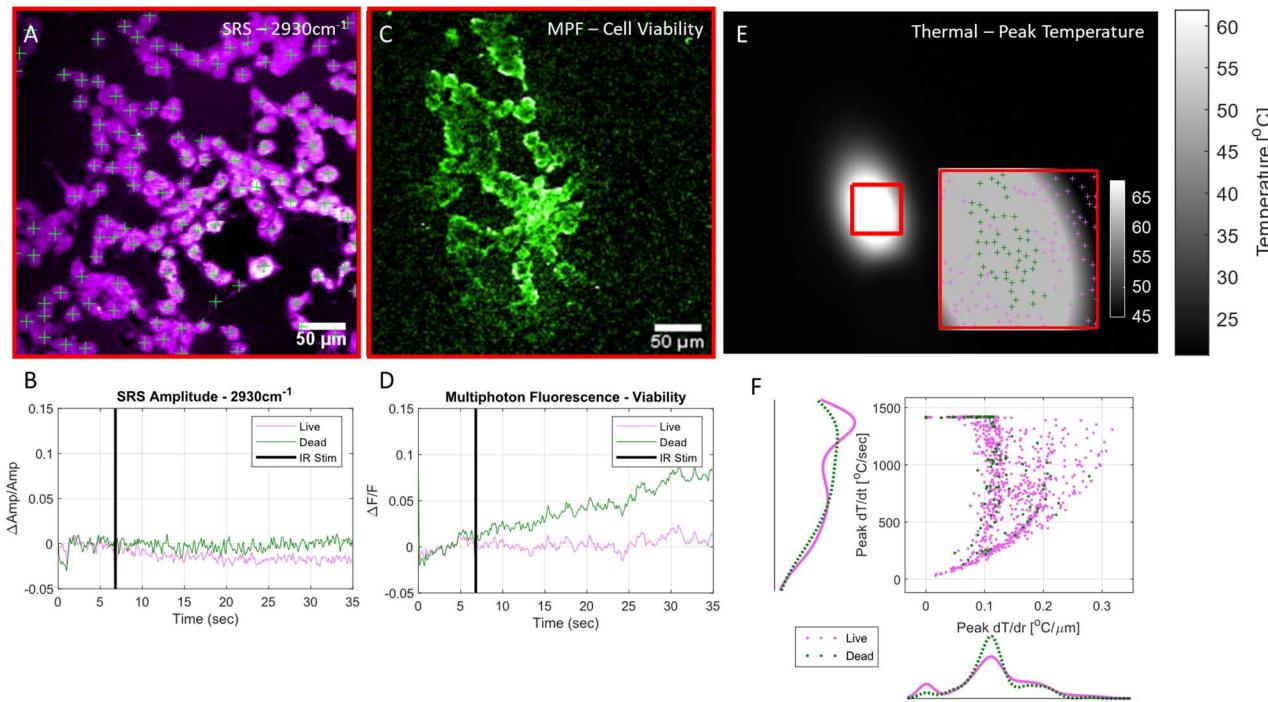
667 **Fig. 1: MANTIS System Design.** A) The layout of MANTIS. Capable of performing multimodal
668 nonlinear and thermal imaging over the same sample. Additionally, white light imaging on a third
669 imaging arm is available for further expansion of the system. B) Schematic of wide-field thermal
670 microscopy, which infers the temperature of a sample based on the blackbody emission observed between
671 wavelengths of 3 and 5 μm . C) General optical schematic of a multimodal nonlinear imaging system
672 capable of integrating CARS, SRS, MPF and SHG imaging. DM – dichroic mirror, BP – bandpass filter,
673 PMT – photomultiplier tube, EOM – electro-optical modulator, InSb CCD – indium antimonide charge
674 coupled device.


675


676 **Fig. 2: MANTIS System Performance.** A) Resolution of CARS (Green), SRS (Red) with a 1 μm
677 polystyrene bead, and Multiphoton Fluorescence (Magenta) with a 500-nm yellow-fluorescent
678 polystyrene bead. Measured resolutions summarized in Table S1. B) Preparation of mixed beads
679 containing 2 μm polystyrene beads (blue, 2927 cm⁻¹) with 1-10 μm PMMA beads (yellow, 3053 cm⁻¹).
680 Peaks specific to each bead type C) CARS (Green) and SRS (Red) of signal-to-noise profile measured at
681 a vegetable oil – air meniscus at 2927 cm⁻¹. D) Thermal Imaging of a 1951 U.S. Air Force Target. E) SHG
682 imaging of a porcine mitral valve ex vivo.

683

684 **Fig. 3: *in vitro* imaging capabilities of MANTIS.** NG108 cells observed with CARS (A) at 2830cm^{-1} , a
685 protein-dominant peak, NADH autofluorescence (B), FAD autofluorescence (C), and as a composite
686 overlay of the three channels (D). Images were acquired separately and coregistered together with a rigid
687 transformation.



695

696 **Fig. 5: Multimodal images from a rat brain in vivo.** A) Composite image of B (SRS, 2930cm⁻¹) and C
697 (CARS, 2850cm⁻¹) highlighting lipid and protein-dominated signals, respectively. D) Composite image of
698 the same field of view in A of E (Green autofluorescence), F (SHG signal), and G (Blue autofluorescence,
699 likely NADH). (H) Thermal images of the brain surface, temperatures shown in °C.

700

701

702 **Fig. 6: Fast Multimodal Nonlinear and Thermal Microscopy of NG108 cells during in infrared**
703 **neural stimulation** – Examples of an A) SRS average intensity projection image of cells with indicated
704 centroids and (B) pooled average SRS timeseries of live (magenta) and damaged (green) cells during IR
705 stimulation across all observed cells. (C) Example of a normalized sum intensity projection of cell
706 viability image timeseries used to indicate cell viability via uptake and fluorescence of propidium iodide.
707 (D) Average pooled MPF timeseries of all observed live and damaged cells during INS. Increases in MPF
708 signal after INS above 3% dF/F over 30 seconds were considered damaged/dead. (E) Thermal images of
709 NG108 sample preparation during peak temperatures of INS. Registration of thermal and nonlinear fields
710 of view (E, inset) allows for precise spatial temperature mapping. Cellular details are not observable due
711 to strong absorption by the aqueous imaging medium. Coupled with high speed thermal imaging, (F) high
712 resolution temporal and spatial thermal observations can be directly correlated with functional cellular
713 outcomes such as cell viability. Data shows results of 10 different experiments including 3 different INS
714 intensity conditions, $n = 1144$ cells.

715 **Supplemental Materials**

716 **Table S1:** Summary of emission filters and excitation wavelengths used for multimodal imaging.
717 All filters obtained from Semrock (Brattleboro, VT, USA).

718 **Table S2:** Summary of measured system resolutions across multiple imaging modalities.

719 **Table S3:** Detailed summary of point spread function calculations for nonlinear imaging
720 modalities.

721 **Figure S1:** Sample Lateral Resolution Characterization for SHG imaging in a porcine mitral
722 valve sample. Gaussian fitting performed in FIJI.

723 **Figure S2:** Signal to Noise calculation with a Vegetable Oil meniscus in FIJI. SNR was
724 calculated to be 34.6.

725 **Figure S3:** To-scale representation of the overlap of multimodal imaging fields of view for the 3
726 imaging arms of MANTIS.

727 **Figure S4:** Thermal images of cultured 3T3 Fibroblasts. A) Cells imaged without any aqueous
728 medium. B) Image of aqueous medium front advancing over cells. The absorption of water in the
729 short-wave infrared is high, making cell culture medium difficult to image through with
730 blackbody thermal contrast.

731 **Figure S5:** Porcine Mitral Valve imaging with endogenous autofluorescence from elastin (left)
732 and collagen SHG (right). Image width is 520- μ m.

733 **Figure S6:** Simultaneous SHG (cyan) and SRS (2880-cm-1, lipid dominant resonance, orange)
734 imaging of an unstained murine cervix unfixed frozen section. The stroma (dense in collagen)
735 and epithelium are easily discernable based on relative concentrations on ratio of SHG and SRS
736 signals. Blood vessels lamina propria are also visible with SHG contrast.

737 **Figure S7:** Composite multimode images of an *ex vivo* rat sciatic nerve. (A) CARS signal at
738 2927cm⁻¹ (B, green), SRS signal at 2927cm⁻¹ (C, red), SHG signal (D, cyan), and multiphoton
739 fluorescence of FluoroMyelin Green (E, Grey). All scale bars are 100um.

740 **Figure S8:** Ex vivo rat sciatic nerve samples imaged with multimodal nonlinear imaging from
741 Supp. Fig. S7. Two different modalities can be combined in different ways to visualize tissue
742 structure.

743 **Figure S9:** Supplementary Figure 9: Ex vivo rat sciatic nerve samples imaged with SRS (red,
744 myelin at 2927cm-1) and SHG (cyan, collagen). Rescaled SHG images are shown to highlight
745 intrafascicular collagen, which is in lower abundance and overall signal then epineurial collagen.

746 **Supplementary Tables**

Table S1: Summary of emission filters and excitation wavelengths used for multimodal imaging. All filters obtained from Semrock (Brattleboro, VT, USA).

Contrast	Filter (Center/Passband FWHM)	Excitation Wavelengths
CH-band CARS	625nm/90nm	792-803nm & 1040nm
SRS	890nm/310nm	792-803nm & 1040nm
NADH/Blue Fluorescence	460nm/30nm	780nm
FAD/Green Fluorescence	525nm/30nm	934nm
SHG	460nm/30nm	900nm
Propidium Iodide / Orange Fluorescence	625nm/90nm	1040nm

747

Table S2: Summary of measured system resolutions across multiple imaging modalities.

Modality	Lateral Resolution (μ m)	Axial Resolution (μ m)
CARS	0.632	3.009
SRS	0.833	3.136
MPF	0.359	1.502
SHG	0.388	X
Thermal	6.9	X

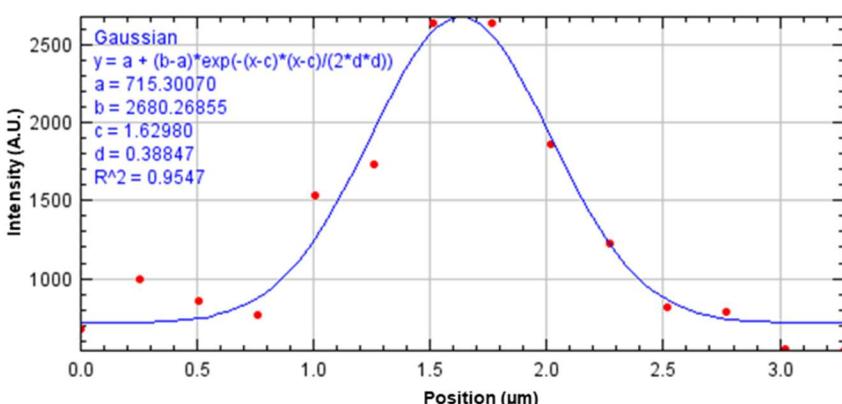
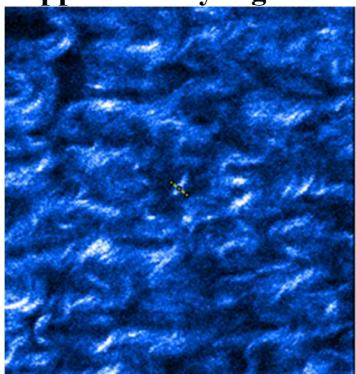
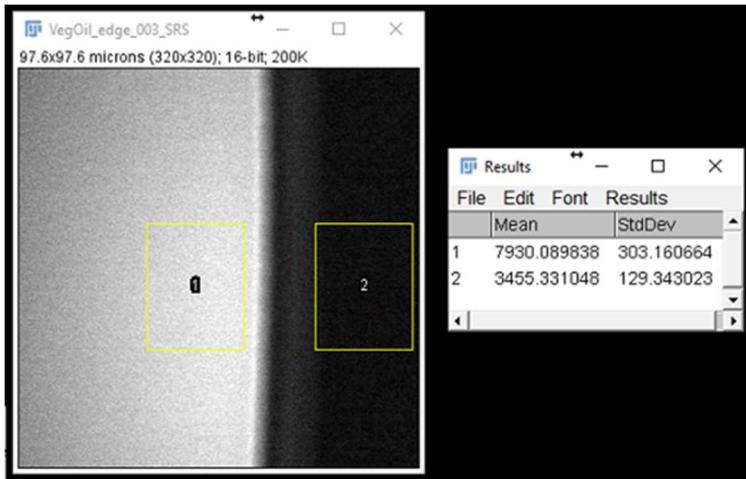


748
749

Table S3: Detailed summary of point spread function calculations for nonlinear imaging modalities.

CARS					
				Mean	STD
x	0.646	0.615	0.636	x	0.6323
y	0.773	0.69	0.772	y	0.7450
z	2.758	3.282	2.986	z	3.0087
SRS					
x	0.849	0.743	0.906	x	0.8327
y	0.896	0.793	0.86	y	0.8497
z	3.36	2.813	3.235	z	3.1360
MPF					
x	0.379	0.272	0.426	x	0.3590
y	0.286	0.413	0.377	y	0.3587
z	1.473	1.432	1.601	z	1.5020
SHG					
L	0.388	0.383	0.433	L	0.4013
					0.0275


750
751
752

753 **Supplementary Figures:**

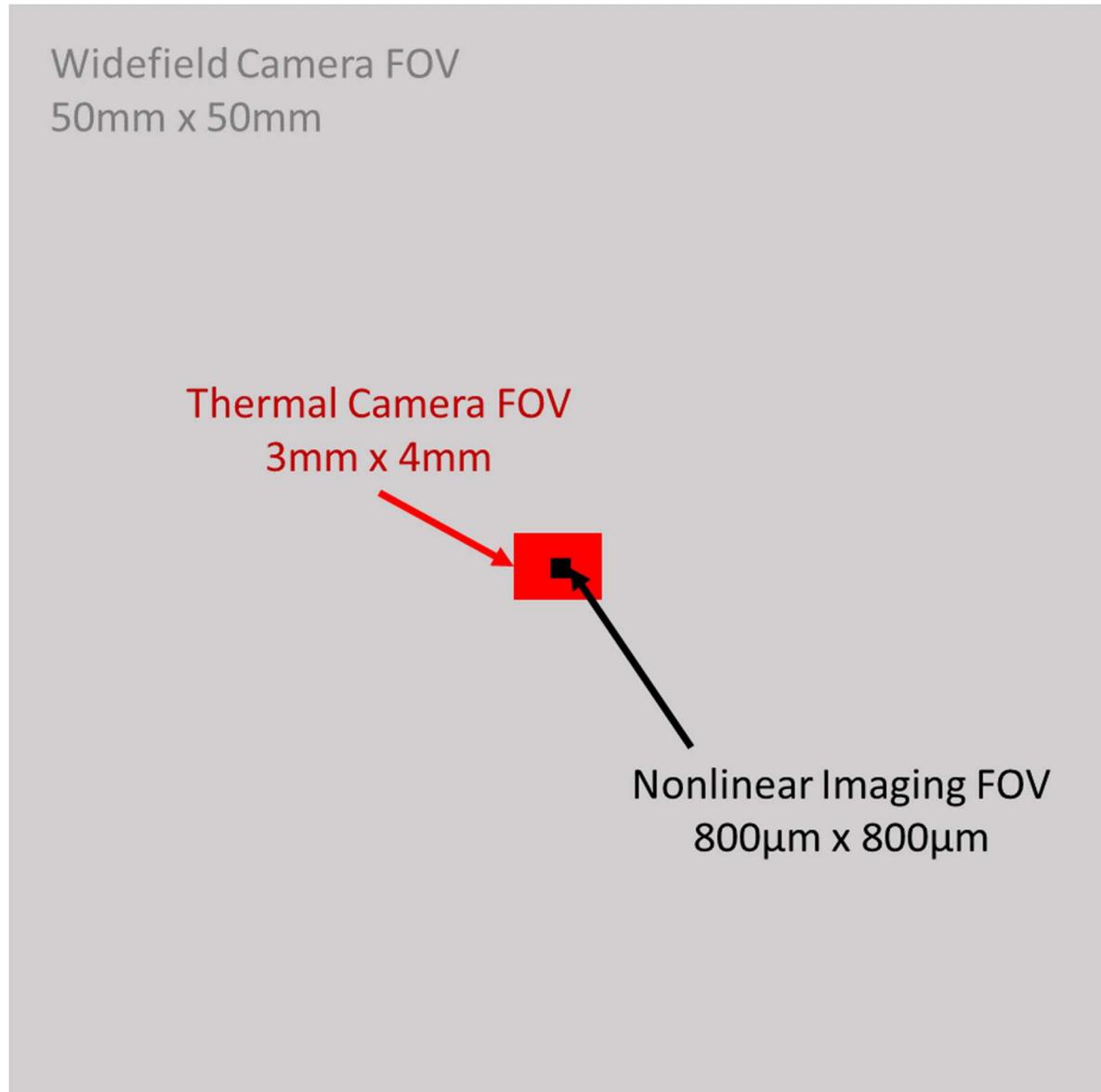

754
755
756

Figure S1: Sample Lateral Resolution Characterization for SHG imaging in a porcine mitral valve sample. Gaussian fitting performed in FIJI.

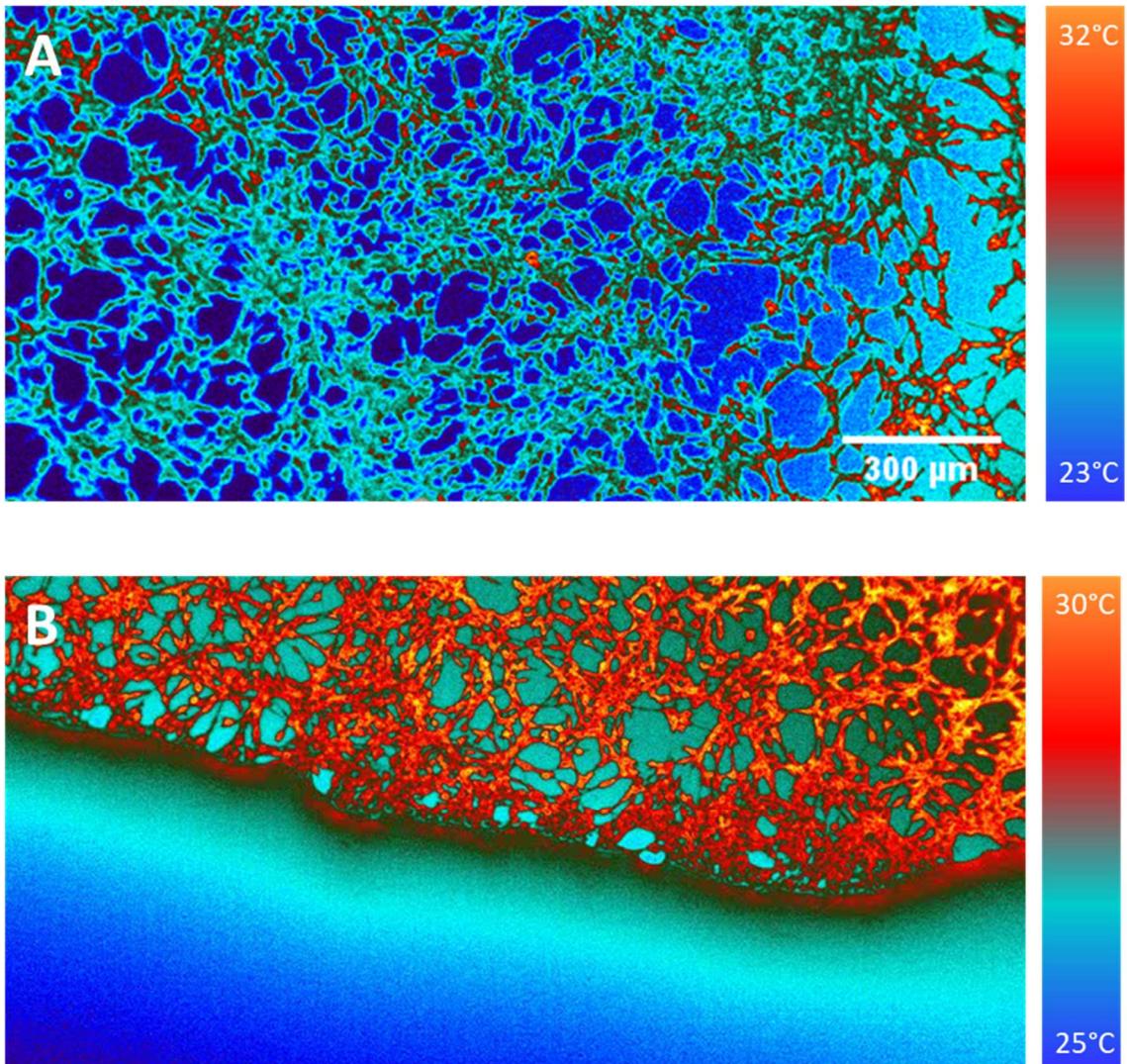
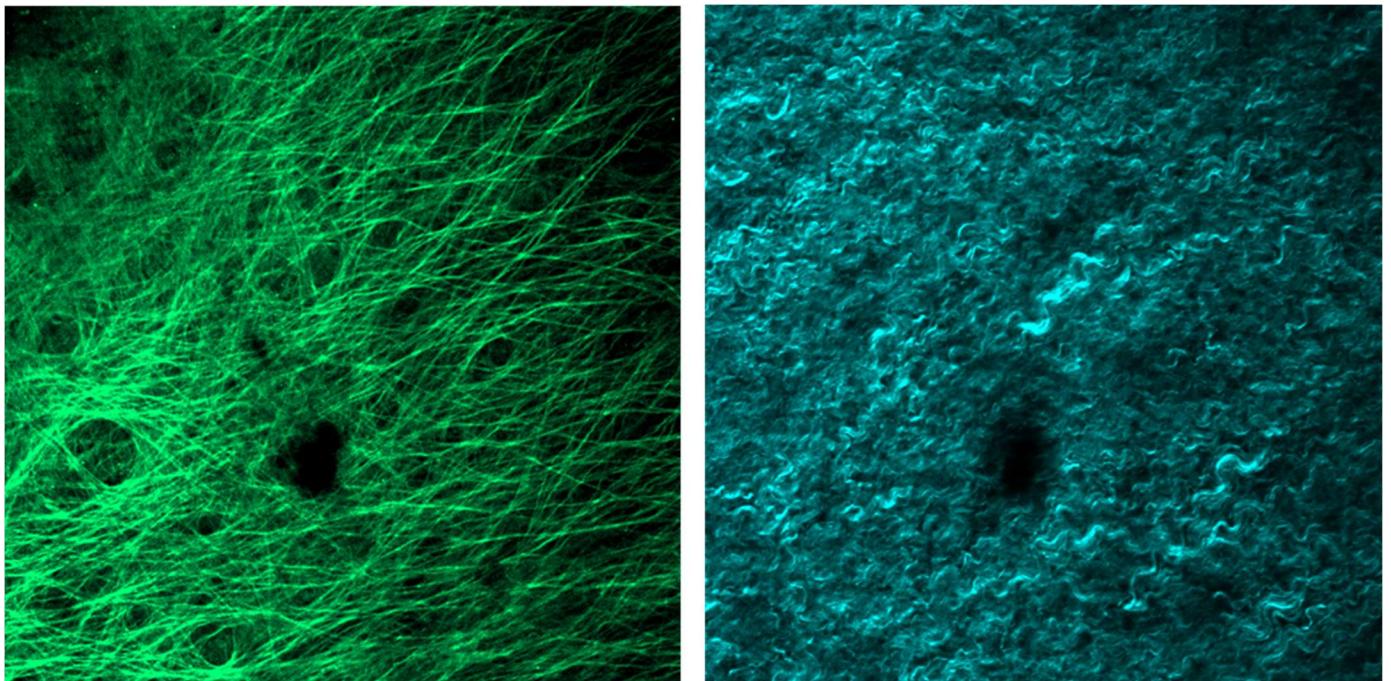
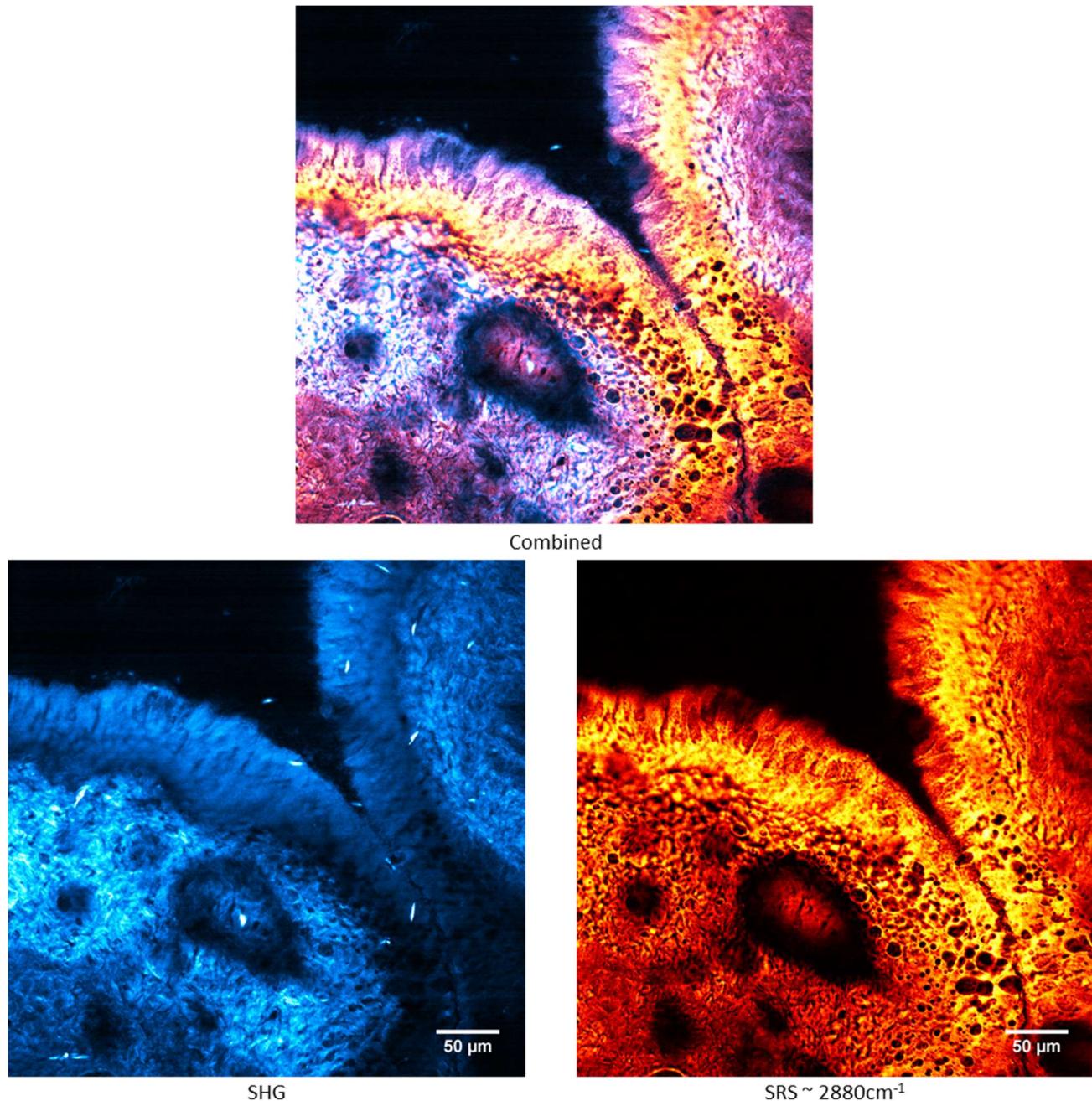

757
758
759

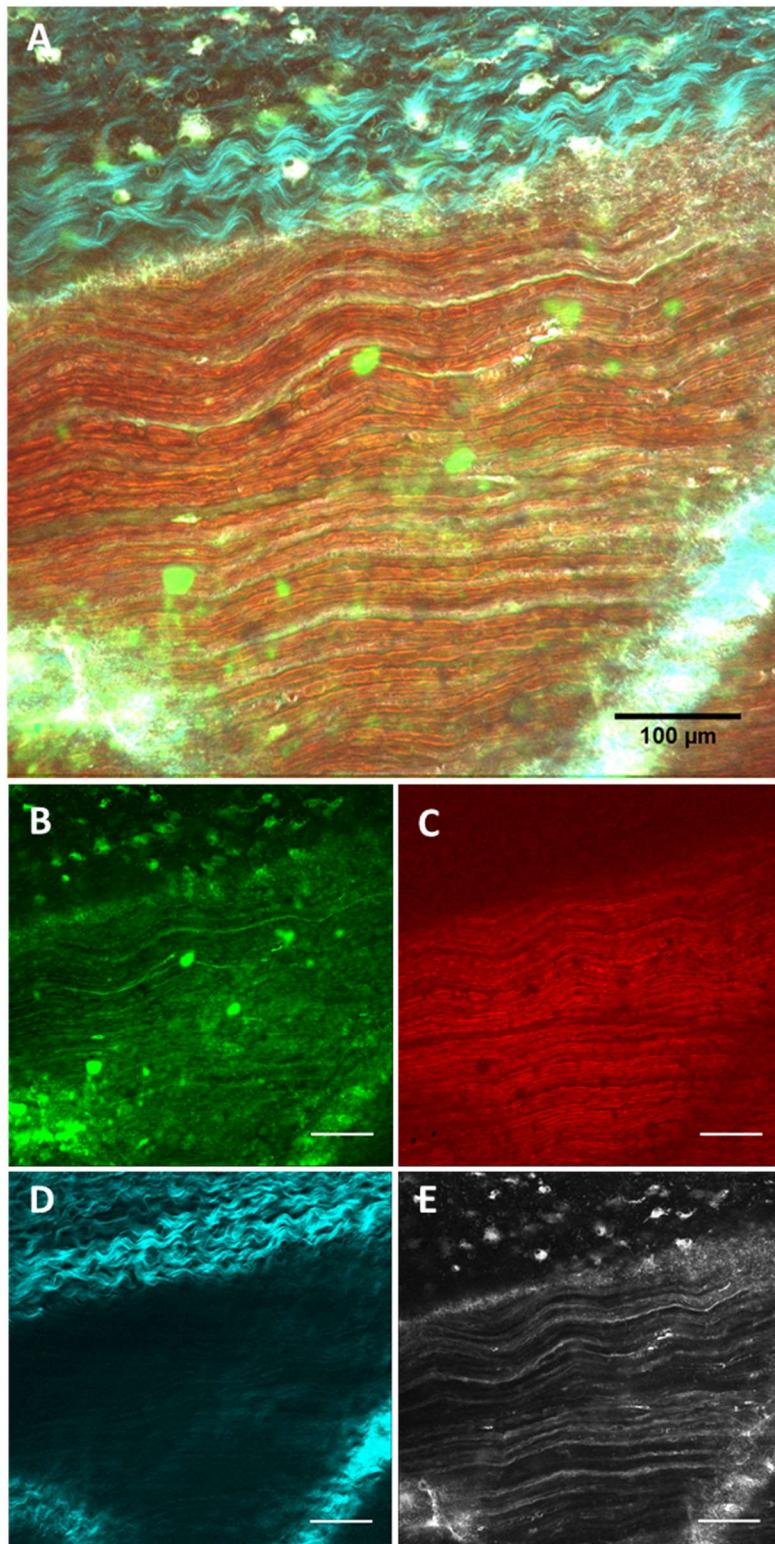
Figure S2: Signal to Noise calculation with a Vegetable Oil meniscus in FIJI. SNR was calculated to be 34.6.


760

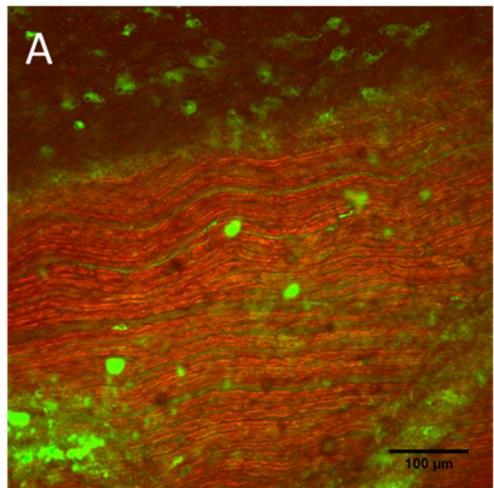
761 Figure S3: To-scale representation of the overlap of multimodal imaging fields of view for the 3 imaging
762 arms of MANTIS.


763

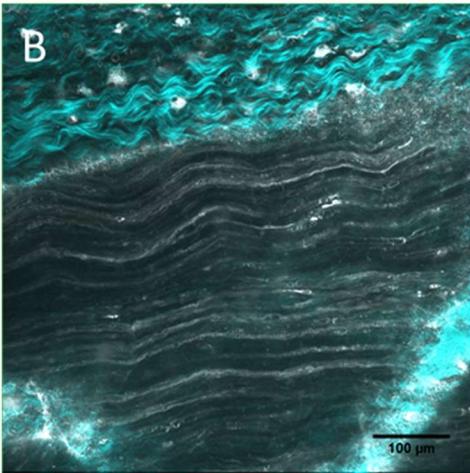
764 Figure S4: Thermal images of cultured 3T3 Fibroblasts. A) Cells imaged without any aqueous medium.
765 B) Image of aqueous medium front advancing over cells. The absorption of water in the short-wave
766 infrared is high, making cell culture medium difficult to image through with blackbody thermal contrast.


767

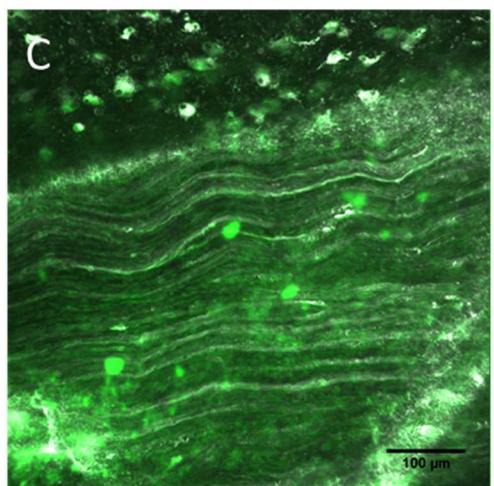
768 Figure S5: Porcine Mitral Valve imaging with endogenous autofluorescence from elastin (left) and
769 collagen SHG (right). Image width is 520- μ m.

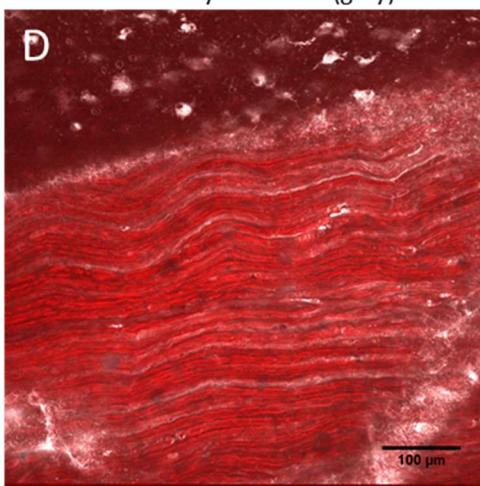

770

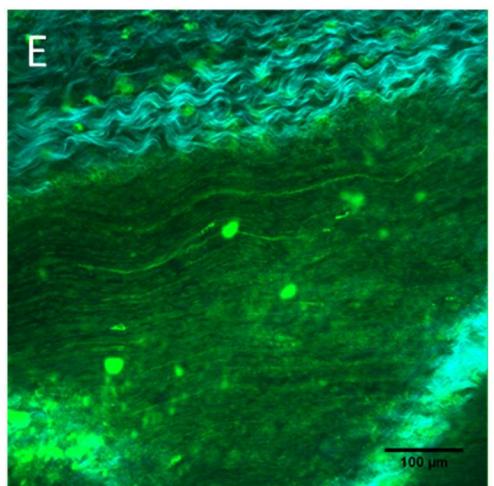
771 Figure S6: Simultaneous SHG (cyan) and SRS (2880-cm-1, lipid dominant resonance, orange) imaging of
772 an unstained murine cervix unfixed frozen section. The stroma (dense in collagen) and epithelium are
773 easily discernable based on relative concentrations on ratio of SHG and SRS signals. Blood vessels
774 lamina propria are also visible with SHG contrast.

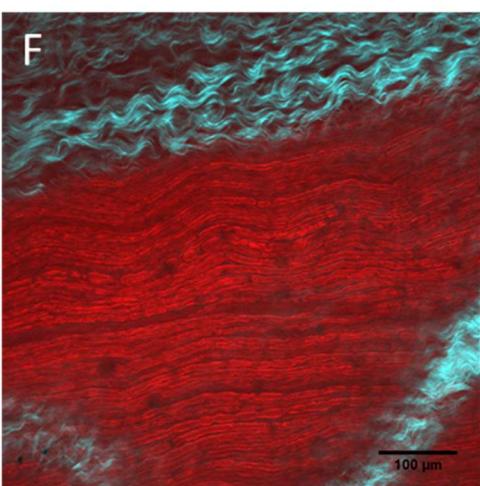


775

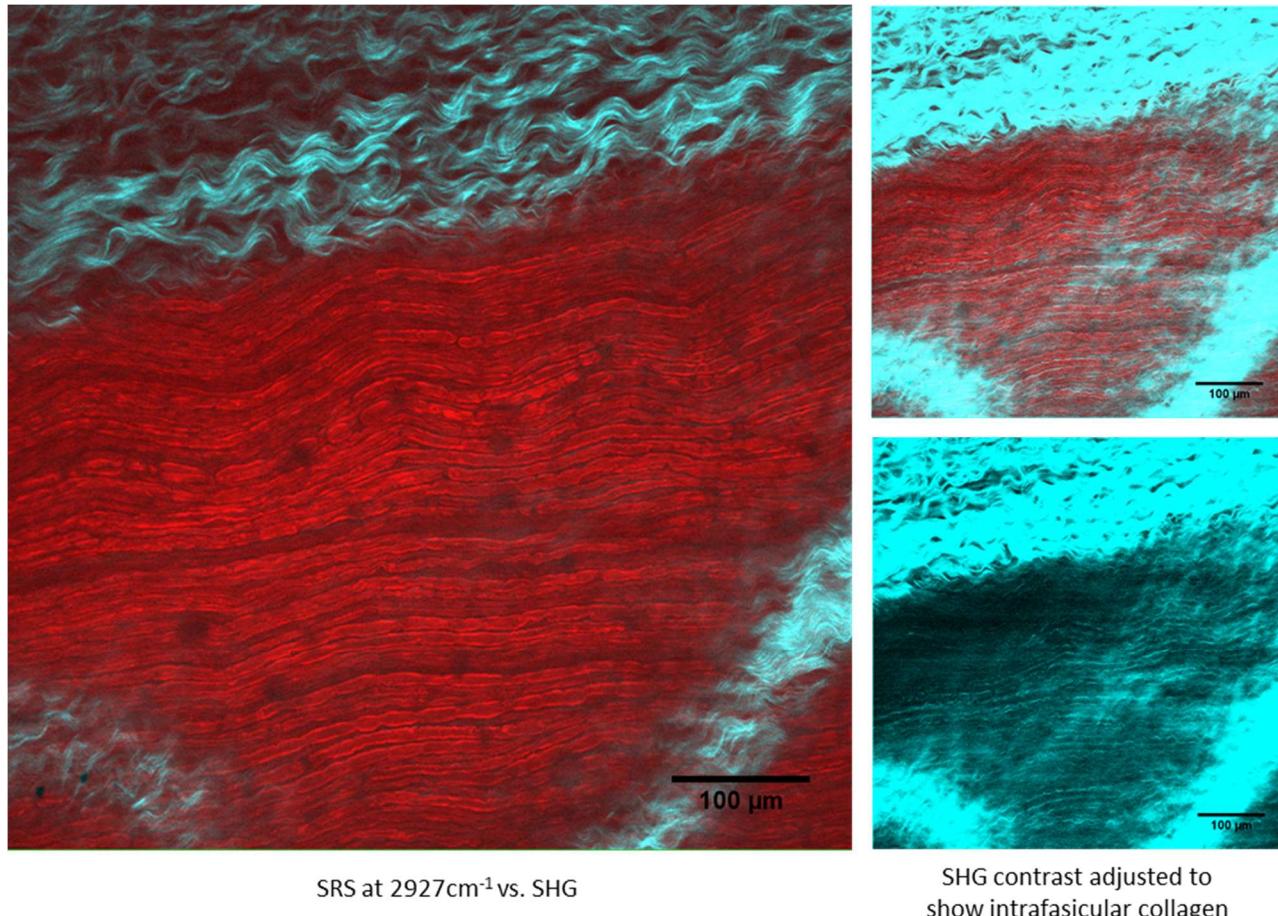

776 Figure S7: Composite multimode image of an *ex vivo* rat sciatic nerve. (A) CARS signal at 2927cm⁻¹ (B,
777 green), SRS signal at 2927cm⁻¹ (C, red), SHG signal (D, cyan), and multiphoton fluorescence of
778 FluoroMyelin Green (E, Grey). All scale bars are 100um.


CARS (green) | SRS at 2927-cm⁻¹(red)


SHG (cyan) | Multiphoton Fluorescence of FluoroMyelin Green (grey)


CARS at 2927-cm⁻¹ (green) | Multiphoton Fluorescence of FluoroMyelin Green (grey)

SRS at 2927-cm⁻¹(red) | Multiphoton Fluorescence of FluoroMyelin Green (grey)



CARS at 2927-cm⁻¹(green) | SHG (cyan)

SRS at 2927-cm⁻¹(red) | SHG (cyan)

780 Figure S8: Ex vivo rat sciatic nerve samples imaged with multimodal nonlinear imaging from Supp. Fig.
781 7. (A-F) Two different modalities can be combined in different ways to visualize tissue structure.

782
783 Figure S9: Ex vivo rat sciatic nerve samples imaged with SRS (red, myelin at 2927cm⁻¹) and SHG,
784 collagen. Rescaled SHG images are shown to highlight intrafascicular collagen, which is in lower
785 abundance and overall signal than epineurial collagen.