

1                   **Uniparental nuclear inheritance following bisexual mating in fungi**

2

3

4                   Vikas Yadav, Sheng Sun, and Joseph Heitman\*

5

6                   Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham,  
7                   NC 27710, USA

8

9

10

11

12

13

14

15

16

17

18

19

20                \*Corresponding author

21                Joseph Heitman  
22                Box 3546, 322 CARL Building, Research Drive  
23                Department of Molecular Genetics and Microbiology  
24                Duke University Medical Center  
25                Durham, NC 27710  
26                Phone: 919-684-2824  
27                Fax: 919-684-2790  
28                Email: [heitm001@duke.edu](mailto:heitm001@duke.edu)

29

30                Running title: Pseudosexual reproduction in *Cryptococcus*

31

32                Keywords: Hybridogenesis; Meiosis; Nuclear migration, Dikaryotic fungi; Sexual parasitism,  
33                Pseudosexual reproduction.

## 1 Abstract

2 Some remarkable animal species require an opposite-sex partner for their sexual  
3 development but discard the partner's genome before gamete formation, generating hemi-clonal  
4 progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed  
5 pseudosexual reproduction, in a basidiomycete human fungal pathogen, *Cryptococcus*  
6 *neoformans*, where exclusive uniparental inheritance of nuclear genetic material was observed  
7 during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins  
8 revealed instances where only one of the parental nuclei was present in the terminal sporulating  
9 basidium. Whole-genome sequencing revealed the nuclear genome of the progeny was identical  
10 with one or the other parental genome. Pseudosexual reproduction was also detected in natural  
11 isolate crosses where it resulted in mainly *MAT* $\alpha$  progeny, a bias observed in *Cryptococcus*  
12 ecological distribution as well. The meiotic recombinase Dmc1 was found to be critical for  
13 pseudosexual reproduction. These findings reveal a novel, and potentially ecologically  
14 significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis  
15 in animals.

16

## 1      **Introduction**

2              Most multicellular organisms in nature undergo (bi)sexual reproduction involving two  
3      partners of the opposite sex to produce progeny. In most cases, following fusion of the two  
4      haploid gametes, the diploid zygote receives one copy of the genetic material from each parent.  
5      To produce these haploid gametes, a diploid germ cell of the organism undergoes meiosis, which  
6      involves recombination between the two parental genomes, generating recombinant progeny.  
7      Recombination confers benefits by bringing together beneficial mutations and segregating away  
8      deleterious ones (Dimijian, 2005; Meirmans, 2009). In contrast, some organisms undergo variant  
9      forms of sexual reproduction, including parthenogenesis, gynogenesis, androgenesis, and  
10     hybridogenesis, and, in doing so, produce clonal or hemi-clonal progeny (Avise, 2015; Neaves &  
11     Baumann, 2011).

12              In parthenogenesis, a female produces clonal progeny from its eggs without any  
13      contribution from a male partner (Avise, 2015; Hörandl, 2009). Gynogenesis and androgenesis  
14      occur when the fusion of an egg with a sperm induces cell division to produce clonal female or  
15      male zygotes, respectively (Lehtonen, Schmidt, Heubel, & Kokko, 2013). During  
16      hybridogenesis, an egg from one species fuses with the sperm from another species to generate a  
17      hybrid diploid zygote (Lavanchy & Schwander, 2019). However, one of the parental genomes is  
18      excluded during development, in a process termed genome exclusion that occurs before  
19      gametogenesis. The remaining parental genome undergoes replication followed by meiosis to  
20      produce an egg or a sperm. The sperm or egg then fuses with an opposite-sex gamete to generate  
21      a hemiclonal progeny. Because only one parent contributes genetic material to the progeny, but  
22      both parents are physically required, this phenomenon has been termed sexual parasitism  
23      (Lehtonen et al., 2013; Umphrey, 2006). While most of the reported cases of hybridogenesis are  
24      from female populations, recent reports suggest that it may also occur in male populations of  
25      some species (Dolezalkova et al., 2016; Schwander & Oldroyd, 2016). Currently hybridogenesis  
26      has only been observed in the animal kingdom in some species of frogs, fishes, and snakes.  
27      Plants also exhibit parthenogenesis (aka apomixis), along with gynogenesis and androgenesis  
28      (Lehtonen et al., 2013; Mirzaghaderi & Horandl, 2016).

29              Unlike animals, most fungi do not have sex chromosomes; instead, cell-type identity is  
30      defined by the mating-type (*MAT*) locus (Heitman, 2015; Heitman, Sun, & James, 2013). While  
31      many fungi are heterothallic, with opposite mating-types in different individuals, and undergo

1 sexual reproduction involving two partners of compatible mating-types, other fungi are  
2 homothallic, with opposite mating-types within the same organism, and can undergo sexual  
3 production during solo culture in the absence of a mating partner. One class of homothallic fungi  
4 undergoes unisexual reproduction, during which cells of a single mating type undergo sexual  
5 reproduction to produce clonal progeny, similar to parthenogenesis (Heitman, 2015; Lee, Ni, Li,  
6 Shertz, & Heitman, 2010). Gynogenesis and hybridogenesis have not been identified in the  
7 fungal kingdom thus far.

8 *Cryptococcus neoformans* is a basidiomycete human fungal pathogen that exists as either  
9 one of two mating types, *MATa* or *MATα* (Sun, Coelho, David-Palma, Priest, & Heitman, 2019).  
10 During sexual reproduction, two haploid yeast cells of opposite mating type interact and undergo  
11 cell-cell fusion (Kwon-Chung, 1975, 1976; Sun, Priest, & Heitman, 2019). The resulting  
12 dikaryotic zygote then undergoes a morphological transition and develops into hyphae whose  
13 termini mature to form basidia. In the basidium, the two parental nuclei fuse (karyogamy), and  
14 the resulting diploid nucleus undergoes meiosis to produce four daughter nuclei (Idnurm, 2010;  
15 Kwon-Chung, 1976; Sun, Priest, et al., 2019; Zhao, Lin, Fan, & Lin, 2019). These four haploid  
16 nuclei repeatedly divide via mitosis and bud from the surface of the basidium to produce four  
17 long spore chains. Interestingly, apart from this canonical heterothallic sexual reproduction, a  
18 closely related species, *C. deneoformans* can undergo unisexual reproduction (Lin, Hull, &  
19 Heitman, 2005; Roth, Sun, Billmyre, Heitman, & Magwene, 2018; Sun, Billmyre, Mieczkowski,  
20 & Heitman, 2014).

21 In a previous study, we generated a genome-shuffled strain of *C. neoformans*, VYD135 $\alpha$ ,  
22 by using the CRISPR-Cas9 system targeting centromeric transposons in the lab strain H99 $\alpha$ .  
23 This led to multiple centromere-mediated chromosome arm exchanges in strain VYD135 $\alpha$  when  
24 compared to the parental strain H99 $\alpha$ , without any detectable changes in gene content in the two  
25 genomes (Yadav, Sun, Coelho, & Heitman, 2020). Additionally, strain VYD135 $\alpha$  exhibits  
26 severe sporulation defects when mated with strain KN99 $\mathbf{a}$  (which is congenic with strain H99 $\alpha$   
27 but has the opposite mating type) likely due to the extensive chromosomal rearrangements  
28 introduced into the VYD135 $\alpha$  strain. In this study, we show that the genome-shuffle strain  
29 VYD135 $\alpha$  can in fact produce spores in crosses with *MATa* *C. neoformans* strains after  
30 prolonged mating. Analysis of these spores reveals that the products from an individual basidium  
31 contain genetic material derived from only one of the two parents. Whole-genome sequencing of

1 the progeny revealed an absence of recombination between the two parental genomes. The  
2 mitochondria in these progeny were found to always be inherited from the *MATa* parent,  
3 consistent with known mitochondrial uniparental inheritance (UPI) patterns in *C. neoformans*  
4 (Sun, Fu, Ianiri, & Heitman, 2020). Using strains with differentially fluorescently labeled nuclei,  
5 we discovered that in a few hyphal branches as well as in basidia, only one of the two parental  
6 nuclei was present and produced spores, termed uniparental nuclear inheritance. We also  
7 observed the occurrence of such uniparental nuclear inheritance in wild-type and natural isolate  
8 crosses. Furthermore, we found that the meiotic recombinase Dmc1 plays a central role during  
9 this unusual mode of reproduction of *C. neoformans*. Overall, this mode of sexual reproduction  
10 of *C. neoformans* exhibits striking parallels with hybridogenesis in animals.

11

## 12 **Results**

### 13 **Chromosomal translocation strain exhibits unusual sexual reproduction**

14 Previously, we generated a strain (VYD135 $\alpha$ ) with eight centromere-mediated  
15 chromosome translocations compared to the wild-type parental isolate H99 $\alpha$  (Yadav et al.,  
16 2020). Co-incubation of the wild-type strain KN99 $\alpha$  with the genome-shuffle strain VYD135 $\alpha$   
17 resulted in hyphal development and basidia production, but no spores were observed during a  
18 standard two-week incubation. However, when sporulation was assessed at later time points in  
19 the VYD135 $\alpha$  x KN99 $\alpha$  cross, we observed a limited number of sporulating basidia  
20 (16/1201=1.3%) after five weeks of mating compared to much greater level sporulation in the  
21 wild-type H99 $\alpha$  x KN99 $\alpha$  cross (524/599 = 88%) (Figure 1A-D). None of these strains exhibited  
22 any filamentation on their own even after 5-weeks of incubation, indicating the sporulation  
23 events are not a result of unisexual reproduction (Figure 1A-B). To analyze this delayed  
24 sporulation process in detail, spores from individual basidia were dissected and germinated to  
25 yield viable F1 progeny. As expected, genotyping of the mating-type locus in the H99 $\alpha$  x KN99 $\alpha$   
26 progeny revealed the presence of both mating types in spores derived from each basidium  
27 (Figure 1E and G, Table 1). On the other hand, the same analysis for VYD135 $\alpha$  x KN99 $\alpha$   
28 revealed that all germinating progeny from each individual basidia possessed either only the  
29 *MAT $\alpha$*  or the *MATa* alleles (Figure 1E and G, Table 1). PCR assays also revealed that the  
30 mitochondria in all of these progeny were inherited from the *MATa* parent, in accord with known

1 UPI (Figure 1F-G). These results suggest the inheritance of only one of the parental nuclei in the  
2 VYD135 $\alpha$  x KN99 $\alpha$  F1 progeny. The presence of mitochondria from the *MAT $\alpha$*  parent further  
3 confirmed that these progeny were not the products of unisexual reproduction.  
4

5 **Fluorescence microscopy reveals uniparental nuclear inheritance after mating**

6 Next, we tested whether the uniparental inheritance detected at the *MAT* locus also  
7 applies to the entire nuclear genome. To address this, we established a fluorescence-based assay  
8 where the nucleus of strains H99 $\alpha$  and VYD135 $\alpha$  was labeled with GFP-H4, whereas the  
9 KN99 $\alpha$  nucleus was marked with mCherry-H4. In a wild-type cross (H99 $\alpha$  x KN99 $\alpha$ ), the nuclei  
10 in the hyphae as well as in the spores are yellow to orange because both nuclei are in a common  
11 cytoplasm and thus incorporate both the GFP- and the mCherry-tagged histone H4 proteins  
12 (Figure S1A and B). We hypothesized that in the cases of uniparental nuclear inheritance, only  
13 one of the nuclei would reach the terminal basidium and thus would harbor only one fluorescent  
14 nuclear color signal (Figure S1A).

15 After establishing this fluorescent tagging system using wild-type strains, H99 $\alpha$  x KN99 $\alpha$   
16 and shuffle-strain VYD135 $\alpha$  x KN99 $\alpha$  crosses with fluorescently labeled strains were examined.  
17 In the wild-type cross, most of the basidia formed robust spore chains with both fluorescent  
18 colors observed in them while a small population (~1%) of basidia exhibited spore chains with  
19 only one color, representing uniparental nuclear inheritance (Figure 2A and S2A). On the other  
20 hand, the majority of the basidia population in the shuffle-strain VYD135 $\alpha$  x KN99 $\alpha$  cross did  
21 not exhibit sporulation, and the two parental nuclei appeared fused but undivided (Figure 2B and  
22 S2B). A few basidia (~1%) bore spore chains with only one fluorescent color, marking  
23 uniparental nuclear inheritance events. While the basidia with uniparental nuclear inheritance in  
24 the H99 $\alpha$  x KN99 $\alpha$  cross were a small fraction (~1%) of sporulating basidia, the uniparental  
25 basidia accounted for all of the sporulating basidia in the VYD135 $\alpha$  x KN99 $\alpha$  cross. Taken  
26 together, these results show that the uniparental nuclear inheritance leads to the generation of  
27 clonal progeny but requires mating, cell-cell fusion between parents of two opposite mating  
28 types. Thus, this process defies the main purpose of sexual reproduction, which is to produce  
29 recombinant progeny from two parents. Based on these observations, we define the process of  
30 uniparental nuclear inheritance during mating in *C. neoformans* as pseudosexual reproduction  
31 (and it is referred to as such hereafter). The progeny obtained via this process will be referred to

1 as the uniparental progeny because they inherit a nuclear genome derived from only one of the  
2 two parents.

3  
4 **Pseudosexual reproduction also occurs in natural isolates**

5 After establishing the pseudosexual reproduction of lab strains, we sought to determine  
6 whether such events also occur with natural isolates. For this purpose, we selected two wild-type  
7 natural isolates, Bt63a and IUM96-2828a (referred to as IUM96a hereafter) (Desjardins et al.,  
8 2017; Keller, Viviani, Esposto, Cogliati, & Wickes, 2003; Litvintseva et al., 2003). IUM96a  
9 belongs to the same lineage as H99 $\alpha$ /KN99a (VNI) and exhibits approximately 0.1% genome  
10 divergence from the H99 $\alpha$  reference genome. Bt63a belongs to a different lineage of the *C.*  
11 *neoformans* species (VNBI) and exhibits ~0.5% genetic divergence from the H99 $\alpha$ /KN99a  
12 genome. Both the Bt63a and the IUM96a genomes exhibit one reciprocal chromosome  
13 translocation with H99 $\alpha$  and, as a result, share a total of ten chromosome-level changes with the  
14 genome-shuffle strain VYD135 $\alpha$  (Figure 3A). None of these strains are self-filamentous even  
15 after prolonged incubation on mating media but both mate efficiently with both H99 $\alpha$  and  
16 VYD135 $\alpha$  (S3A).

17 During mating, the H99 $\alpha$  x Bt63a cross rapidly (within a week) producing robust  
18 sporulation from most of the basidia observed. The VYD135 $\alpha$  x Bt63a cross underwent a low  
19 frequency of sporulation (12 spore-producing basidia/840 basidia=1.4%) in 2 to 3 weeks (Figure  
20 S3B). Dissection of spores from the H99 $\alpha$  x Bt63a cross revealed a low germination frequency  
21 (average of 25%) with two of the basidia showing no spore germination at all (Table S1). This  
22 result is consistent with previous results and the low germination frequency could be explained  
23 by the genetic divergence between the two strains (Morrow et al., 2012). Genotyping of  
24 germinated spores from the H99 $\alpha$  x Bt63a cross revealed both MATa and MAT $\alpha$  progeny from  
25 individual basidia, with almost 75% of the meiotic events generating progeny that were  
26 heterozygous for the MAT locus (Figure S3C and Table S1). For the VYD135 $\alpha$  x Bt63a cross,  
27 spores from 15/20 basidia germinated and displayed higher germination frequency than the  
28 H99 $\alpha$  x Bt63a cross (Table S1). Interestingly, all germinated progeny harbored only the MAT $\alpha$   
29 mating-type whereas the mitochondria were in all cases inherited from the MATa parent (Figure  
30 S3C). These results suggest pseudosexual reproduction also occurs with Bt63a and accounts for

1 the high germination frequency of progeny from the VYD135 $\alpha$  x Bt63 $\mathbf{a}$  cross. The occurrence of  
2 pseudosexual reproduction was also identified using the fluorescence-based assay with crosses  
3 between the GFP-H4 tagged VDY135 $\alpha$  and mCherry-H4 tagged Bt63 $\mathbf{a}$  strains (Figure S4).

4 Mating assays with strain IUM96 $\mathbf{a}$  also revealed a low level of sporulation  
5 (19/842=2.3%) with VYD135 $\alpha$  but a high sporulation frequency with H99 $\alpha$  (91%) (Figure  
6 S3D). Analysis of progeny from crosses involving IUM96 $\mathbf{a}$  revealed a similar pattern to what  
7 was observed with crosses involving KN99 $\mathbf{a}$ . The progeny from H99 $\alpha$  x IUM96 $\mathbf{a}$  exhibited  
8 variable basidia-specific germination frequency and inherited both *MAT $\mathbf{a}$*  and *MAT $\alpha$*  in each  
9 basidium, whereas VYD135 $\alpha$  x IUM96 $\mathbf{a}$  progeny from each basidium inherited exclusively  
10 either *MAT $\mathbf{a}$*  or *MAT $\alpha$*  (Figure S3E, Table S2). Interestingly, we observed co-incident  
11 uniparental *MAT* inheritance and a high germination frequency in progeny of basidia 7, 8, and 9  
12 from the H99 $\alpha$  x IUM96 $\mathbf{a}$  cross as well (Figure S3E, Table S2). Taken together, these results  
13 suggest that this unusual mode of sexual reproduction occurs with multiple natural isolates. We  
14 further propose that pseudosexual reproduction occurs in nature in parallel with standard sexual  
15 reproduction.

16

## 17 **Uniparental progeny completely lack signs of recombination between the two parents**

18 As mentioned previously, H99 $\alpha$  (as well as the H99 $\alpha$ -derived strain VYD135 $\alpha$ ) and  
19 Bt63 $\mathbf{a}$  have approximately 0.5% genetic divergence. The occurrence of pseudosexual  
20 reproduction in the VYD135 $\alpha$  x Bt63 $\mathbf{a}$  cross allowed us to test if the two parental genomes  
21 recombine with each other during development. We subjected some of the VYD135 $\alpha$  x Bt63 $\mathbf{a}$ ,  
22 as well as the H99 $\alpha$  x Bt63 $\mathbf{a}$ , progeny to whole-genome sequencing. As expected, for the H99 $\alpha$   
23 x Bt63 $\mathbf{a}$  cross, both parents contributed to the nuclear composition of their progeny, and there  
24 was clear evidence of meiotic recombination as determined by variant analysis (Figure 3B).  
25 When the VYD135 $\alpha$  x Bt63 $\mathbf{a}$  progeny were similarly analyzed, the nuclear genome in each  
26 progeny was found to be inherited exclusively from only the VYD135 $\alpha$  parent (Figure 3C and  
27 S5), and the progeny exhibited sequence differences across the entire Bt63 $\mathbf{a}$  genome. In contrast,  
28 the mitochondrial genome was inherited exclusively from the Bt63 $\mathbf{a}$  parent (Figure 3D and S6),  
29 in accord with the PCR assay results discussed above. Additionally, the whole-genome  
30 sequencing data also revealed that while most of the H99 $\alpha$  x Bt63 $\mathbf{a}$  progeny exhibited

1 aneuploidy, the genome-shuffle strain VYD135 $\alpha$  x Bt63 $\mathbf{a}$  progeny were euploid (Figure S7A-B),  
2 and based on flow cytometry analysis these uniparental progeny were haploid (Figure S7C).

3 The progeny from crosses involving IUM96 $\mathbf{a}$  as the *MAT $\mathbf{a}$*  partner were also sequenced.  
4 Similar to the Bt63 $\mathbf{a}$  analysis, the H99 $\alpha$  x IUM96 $\mathbf{a}$  progeny exhibited signs of meiotic  
5 recombination, whereas the VYD135 $\alpha$  x IUM96 $\mathbf{a}$  progeny did not (Figure S8). Congruent with  
6 the mating-type analysis, the progeny in each of the basidia exclusively inherited nuclear genetic  
7 material from only one of the two parents. Furthermore, the H99 $\alpha$  x IUM96 $\mathbf{a}$  progeny were  
8 found to be aneuploid for some chromosomes while the progeny of VYD135 $\alpha$  x IUM96 $\mathbf{a}$  were  
9 completely euploid (Figure S9). We also sequenced four progeny from basidium 7 from the  
10 H99 $\alpha$  x IUM96 $\mathbf{a}$  cross, which were suspected to be uniparental progeny based on mating-type  
11 PCRs. This analysis showed that all four progeny harbored only H99 $\alpha$  nuclear DNA and had no  
12 contribution from the IUM96 $\mathbf{a}$  nuclear genome, further supporting the conclusion that  
13 pseudosexual reproduction occurs in wild-type crosses (Figure S8A). Similar to other progeny,  
14 the mitochondria in these progeny were inherited from the *MAT $\mathbf{a}$*  parent (Figure S3E and Table  
15 S2). Combined, these results affirm the occurrence of a novel mode of sexual reproduction in *C.*  
16 *neoformans*, which is initiated by two strains of opposite mating types, but only one of the two  
17 parental nuclei is retained during sexual development to eventually form basidia and produce  
18 basidiospores through pseudosexual reproduction.

19

## 20 **Pseudosexual reproduction stems from nuclear loss via hyphal branches**

21 Fluorescence microscopy revealed that only one of the two parental nuclei is present in a  
22 small proportion of the basidia, which results in meiosis and sporulation. Based on this finding,  
23 we hypothesized that the basidia with only one parental nucleus might arise due to nuclear  
24 segregation events during hyphal branching. To gain further insight into this process, the nuclear  
25 distribution pattern along the sporulating hyphae was studied. As expected, imaging of long  
26 hyphae in the wild-type cross revealed the presence of pairs of nuclei with both fluorescent  
27 markers along the length of the majority of hyphae (Figure 4A). In contrast, tracking of hyphae  
28 from basidia with spore chains in the genome-shuffle strain VYD135 $\alpha$  x KN99 $\mathbf{a}$  cross revealed  
29 hyphal branches with only one parental nucleus, which were preceded by a hypha with both  
30 parental nuclei (Figure 4B, S10A and B). Unfortunately, a majority of the hyphae we tracked  
31 were embedded into the agar and most of these could not be tracked to the point of branching.

1 For some others, we were able to image the hyphal branching point where two nuclei separate  
2 from each other but were then either broken or did not have mature basidia on them (Figure  
3 S10B). We also observed long hyphae with only one parental nucleus in VYD135 $\alpha$  x Bt63a  
4 cross as well, suggesting the mechanism might be similar between strains.

5 These results suggest that hyphal branching may facilitate the separation of one parental  
6 nucleus from the main hyphae harboring both parental nuclei. While this is the most plausible  
7 explanation based on our results, we cannot rule out other possible mechanisms, such as a role  
8 for clamp cells, leading to nuclear separation during hyphal growth. As a result, one of the  
9 parental genomes is excluded at a step before diploidization and meiosis, similar to the process  
10 of genome exclusion observed in hybridogenesis. We hypothesize that nuclear segregation can  
11 be followed by endoreplication occurring in these hyphal branches or in the basidia to produce a  
12 diploid nucleus that then ultimately undergoes meiosis and produces uniparental progeny.

13

#### 14 **Meiotic recombinase Dmc1 is important for pseudosexual reproduction**

15 Because the genomes of the uniparental progeny did not show evidence of meiotic  
16 recombination between the two parents, we sought to test whether pseudosexual reproduction  
17 involves meiosis. Additionally, we sought to obtain evidence for our hypothesis that  
18 pseudosexual reproduction involves endoreplication that is followed by meiosis. We, therefore,  
19 tested whether Dmc1, a key component of the meiotic machinery, is required for pseudosexual  
20 reproduction. The meiotic recombinase gene *DMC1* was deleted in congenic strains H99 $\alpha$ ,  
21 VYD135 $\alpha$ , and KN99a, and the resulting mutants were subjected to mating. A previous report  
22 documented that *dmc1* $\Delta$  bilateral crosses (both the parents are mutant for *DMC1*) display  
23 significantly reduced, but not completely abolished, sporulation in *Cryptococcus* (Lin et al.,  
24 2005). We observed a similar phenotype with the H99 $\alpha$  *dmc1* $\Delta$  x KN99a *dmc1* $\Delta$  cross. While  
25 most of the basidia were devoid of spore chains, a small percent (21/760=2.7%) of the  
26 population bypassed the requirement for Dmc1 and produced spores (Figure 5A and S11A).  
27 When dissected, the germination frequency for these spores was found to be very low (~22% on  
28 average) with spores from many basidia not germinating at all (Table S3). Furthermore, *MAT*-  
29 specific PCRs revealed that some of the progeny were aneuploid or diploid. For  
30 VYD135 $\alpha$  *dmc1* $\Delta$  x KN99a *dmc1* $\Delta$ , many fewer basidia (~0.1%) produced spore chains as  
31 compared to ~1% sporulation in VYD135 $\alpha$  x KN99a (Figure 5A, B and S11B). *dmc1* mutant

1 unilateral crosses (one of the two parents is mutant and the other one is wild-type) sporulated at a  
2 frequency of 0.4% suggesting that only one of the parental strains was producing spores (Figure  
3 5B). When a few sporulating basidia from multiple mating spots of the VYD135 $\alpha$  *dmc1* $\Delta$  x  
4 KN99a *dmc1* $\Delta$  bilateral cross were dissected, two different populations of basidia emerged, one  
5 with no spore germination, and the other with a high spore germination frequency and  
6 uniparental *MAT* inheritance (Table S3). We think that the basidia with a high spore germination  
7 frequency may represent examples that in some fashion have escaped the normal requirement for  
8 *Dmc1*. Combined together, the *DMC1* deletion led to a 20-fold reduction in viable sporulation in  
9 VYD135 $\alpha$  x KN99a cross, observed as a 10-fold decrease from sporulation events in the  
10 bilateral cross and a further 2-fold reduction in the number of basidia producing viable spores.

11 To further support these conclusions, *DMC1* was deleted in mCherry-H4 tagged KN99a  
12 and crossed with GFP-H4 tagged VYD135 $\alpha$ . We hypothesized that GFP-H4 tagged VYD135 $\alpha$   
13 would produce spore chains in this cross because it harbors *DMC1* whereas mCherry-H4 tagged  
14 KN99a *dmc1* $\Delta$  would fail to do so. Indeed, all 11 observed basidia with only the GFP-H4  
15 fluorescence signal were found to produce spores but only 2 out of 19 mCherry-H4 containing  
16 basidia exhibited sporulation (Figure S12). These results combined with the spore dissection  
17 findings show that *Dmc1* is critical for pseudosexual reproduction. While these results provide  
18 concrete evidence for meiosis as a part of pseudosexual reproduction, they also suggest the  
19 occurrence of a preceding endoreplication event. However, further studies will need to be  
20 conducted to validate and confirm endoreplication or alternate mechanisms.

21

## 22 **Discussion**

23 Hybridogenesis and parthenogenesis are mechanisms that allow some organisms to  
24 overcome some hurdles of sexual reproduction and produce hemiclonal or clonal progeny  
25 (Avise, 2015; Hörandl, 2009; Lavanchy & Schwander, 2019). However, harmful mutations are  
26 not filtered in these processes, making them disadvantageous during evolution and thus  
27 restricting the occurrence of these processes to a limited number of animal species (Lavanchy &  
28 Schwander, 2019). In this study, we discovered and characterized the occurrence of a  
29 phenomenon in fungi that resembles hybridogenesis and termed it pseudosexual reproduction  
30 (Figure 6A). Fungi are known to exhibit asexual, (bi)sexual, unisexual, and parasexual  
31 reproduction and can switch between these reproductive modes depending on environmental

1 conditions (Heitman, 2015; Heitman et al., 2013). The discovery of pseudosexual reproduction  
2 further diversifies known reproductive modes in fungi, suggesting the presence of sexual  
3 parasitism in this kingdom.

4 Hybridogenesis in animals occurs between two different species. The result of  
5 hybridogenesis is the production of gametes that are clones of one of the parents, which then fuse  
6 with an opposite-sex gamete of the second species, generating hemclonal offspring. In our  
7 study, we observed a similar phenomenon where only one parent contributes to spores, the  
8 counterpart of mammalian gametes. However, we observed this phenomenon occurring between  
9 different strains of the same species, *C. neoformans*. It is important to note that these strains vary  
10 significantly from each other in terms of genetic divergence and in one case by chromosome  
11 rearrangements to the extent that they could be considered different species. This suggests that  
12 hybridogenesis in animals and pseudosexual reproduction in fungi are similar to each other.

13 Hybridogenesis requires the exclusion of one of the parents, which is followed by  
14 endoreplication of the other parent's genome and meiosis. The whole-genome sequence of the  
15 progeny in our study revealed the complete absence of one parent's genome, suggesting  
16 manifestations of genome exclusion during hyphal growth. The mechanism by which the  
17 retained parental genome increases its ploidy before meiosis remains to be further investigated in  
18 *C. neoformans*. Endoreplication is known to occur in the sister species *C. deneoformans* during  
19 unisexual reproduction and we think that this is the most likely route via which ploidy is  
20 increased during pseudosexual reproduction.

21 The mechanism and time of genome exclusion during hybridogenesis in animals are not  
22 entirely understood, except for a few insights from triploid fishes of the genus *Poeciliopsis* and  
23 water frogs, *Pelophylax esculentus*. Studies using *Poeciliopsis* fishes showed that haploid  
24 paternal genome exclusion takes place during the onset of meiosis via the formation of a unipolar  
25 spindle, and thus only the diploid set of maternal chromosomes is retained (Cimino, 1972a,  
26 1972b). On the other hand, studies involving *P. esculentus* revealed that genome exclusion  
27 occurs during mitotic division, before meiosis, which is followed by endoreplication of the other  
28 parental genome (Heppich, Tunner, & Greilhuber, 1982; Tunner & Heppich-Tunner, 1991;  
29 Tunner & Heppich, 1981). A recent study, however, proposed that genome exclusion in *P.*  
30 *esculentus* could also take place during early meiotic phases (Dolezalkova et al., 2016). Using  
31 fluorescence microscopy, we examined the steps of nuclear exclusion in *C. neoformans* and

1 found that it occurs during mitotic hyphal growth and not during meiosis. We also observed that  
2 genome exclusion could happen with either of the two parents in *C. neoformans*, similar to what  
3 has also been reported for water frogs. However, for most other species, genome exclusion was  
4 found to occur with the male genome only, leaving behind the female genome for meiosis  
5 (Cimino, 1972a; Holsbeek & Jooris, 2009; Lavanchy & Schwander, 2019; Umphrey, 2006;  
6 Uzzell, Günther, & Berger, 1976; Vinogradov, Borkin, Gunther, & Rosanov, 1991). Multiple  
7 studies have showed the formation of meiotic synaptonemal complex during hybridogenesis  
8 clearly establishing the presence of meiosis during this process (Dedukh et al., 2019; Dedukh et  
9 al., 2020; Nabais, Pereira, Cunado, & Collares-Pereira, 2012). Our results showed that the  
10 meiotic recombinase Dmc1 is required for pseudosexual reproduction suggesting the presence of  
11 meiosis, whereas there is no direct evidence for the role of a meiotic recombinase in  
12 hybridogenetic animals. Taken together, these results indicate that the mechanism might be at  
13 least partially conserved across distantly related species. Future studies will shed more light on  
14 this and if established, the amenability of *C. neoformans* to genetic manipulation will aid in  
15 deciphering some of the unanswered questions related to hybridogenesis in animals.

16 The occurrence of pseudosexual reproduction might also have significant implications for  
17 *C. neoformans* biology. Most (>95%) of *Cryptococcus* natural isolates belong to only one mating  
18 type,  $\alpha$  (Zhao et al., 2019). While the reason behind this distribution is unknown, one  
19 explanation could be the presence of unisexual reproduction in the sister species *C.*  
20 *deneoformans* and *C. gattii* (Fraser et al., 2005; Lin et al., 2005; Phadke, Feretzaki, Clancey,  
21 Mueller, & Heitman, 2014). The presence of pseudosexual reproduction in *C. neoformans* might  
22 help explain the mating-type distribution pattern for this species. In this report, one of the *MAT $\alpha$*   
23 natural isolates, Bt63 $\alpha$ , did not contribute to pseudosexual reproduction and the other isolate,  
24 IUM96 $\alpha$ , produced uniparental progeny in only one basidium, while the rest of the basidia  
25 produced *MAT $\alpha$*  progeny. We hypothesize that *MAT $\alpha$*  isolates may be defective in this process  
26 due to either a variation in their genomes or some other as yet undefined sporulation factor. As a  
27 result, pseudosexual reproduction would result in the generation of predominantly  $\alpha$  progeny in  
28 nature reducing the *MAT $\alpha$*  population and thus favoring the expansion of the  $\alpha$  mating-type  
29 population. Whether pseudosexual reproduction occurs in other pathogenic species such as *C.*  
30 *deneoformans* and non-pathogenic species such as *C. amylorentus* will be investigated in future  
31 studies. Attempts to identify the occurrence of pseudosexual reproduction between species where

1 hybrids are known to occur, *C. neoformans* and *C. deneoformans* hybrids, will also be made.  
2 These studies will help establish the scope of pseudosexual reproduction in *Cryptococcus* species  
3 and could be extended to other basidiomycetes.

4 We propose that pseudosexual reproduction can occur between any two opposite mating-  
5 type strains as long as each of them is capable of undergoing cell-cell fusion and at least one of  
6 them can sporulate. We speculate that pseudosexual reproduction might play a key role in *C.*  
7 *neoformans* survival during unfavorable conditions. In conditions where two mating partners are  
8 fully compatible, pseudosexual reproduction will be mostly hidden and might not be important  
9 (Figure 6B, top panel). However, when the two mating partners are partially incompatible or  
10 completely incompatible due to high genetic divergence or karyotypic variation, pseudosexual  
11 reproduction will be important (Figure 6B, left, right, and bottom panels). For example, most of  
12 the basidia in H99 $\alpha$  and Bt63a cross largely produce aneuploid and/or inviable progeny leading  
13 to unsuccessful sexual reproduction. However, a small yet significant proportion of the basidia  
14 generate clonal yet viable and fit progeny via pseudosexual reproduction. We hypothesize that  
15 these progeny will have a better chance of survival and find a suitable mating partner in the  
16 environment whereas the unfit recombinant progeny might fail to do so. In nature, this might  
17 allow a new genotype/karyotype to not only survive but also expand and will prove  
18 advantageous. If a new genotype/karyotype had only the option of undergoing sexual  
19 reproduction, it might not survive, restricting the evolution of a new strain. Overall, this mode of  
20 pseudosexual reproduction might act as an escape path from genomic incompatibilities between  
21 two related isolates and allow them to produce spores for dispersal and infection.

22 The fungal kingdom is one of the more diverse kingdoms with approximately 3 million  
23 species (Sun, Hoy, & Heitman, 2020). The finding of hybridogenesis-like pseudosexual  
24 reproduction hints towards unexplored biology in this kingdom that might provide crucial clues  
25 for understanding the evolution of sex. Fungi have also been the basis of studies focused on  
26 understanding the evolution of meiosis, and the presence of genome reduction, as well as the  
27 parasexual cycle in fungi, have led to the proposal that meiosis evolved from mitosis (Hurst &  
28 Nurse, 1991; Wilkins & Holliday, 2009). Pseudosexual reproduction may be a part of an  
29 evolutionary process wherein genome exclusion followed by endoreplication and meiosis was an  
30 ancestral form of reproduction that preceded the evolution of sexual reproduction. Evidence  
31 supporting such a hypothesis can be observed in organisms undergoing facultative sex or

1 facultative parthenogenesis (Booth et al., 2012; Fields, Feldheim, Poulakis, & Chapman, 2015;  
2 Hodač, Klatt, Hojsgaard, Sharbel, & Hörndl, 2019; Hojsgaard & Harndl, 2015). The presence  
3 of these organisms also suggests that a combination of both sexual and clonal modes of  
4 reproduction might prove to be evolutionarily advantageous.

5

## 6 **Materials and Methods**

### 7 *Strains and media*

8 *C. neoformans* wild-type strains H99 $\alpha$  and KN99 $\mathbf{a}$  served as the wild-type isogenic  
9 parental lineages for the experiments, in addition to *MAT $\mathbf{a}$*  strains Bt63 $\mathbf{a}$  and IUM96-2828 $\mathbf{a}$ .  
10 Strains were grown in YPD media for all experiments at 30°C unless stated otherwise. G418  
11 and/or NAT were added at a final concentration of 200 and 100  $\mu$ g/ml, respectively, for the  
12 selection of transformants. MS media was used for all the mating assays, which were performed  
13 as described previously (Sun, Priest, et al., 2019). Basidia-specific spore dissections were  
14 performed after two-five weeks of mating, and the spore germination frequency was scored after  
15 five days of dissection. All strains and primers used in this study are listed in Table S4 and S5,  
16 respectively.

### 17 *Genotyping for mating-type locus and mitochondria*

18 Mating-type (*MAT*) and mitochondrial genotyping for all the progeny were conducted  
19 using PCR assays. Genomic DNA was prepared using the MasterPure<sup>TM</sup> Yeast DNA purification  
20 kit from Lucigen. To determine the *MAT*, the *STE20* allele present within the *MAT* locus was  
21 detected since it differs in length between the two different mating type strains. Primers specific  
22 to both *MAT $\mathbf{a}$*  and *MAT $\alpha$*  (JOHE50979-50982 in Table S5) were mixed in the same PCR mix  
23 and the identification was made based on the length of the amplicon (Figure 1E-G). For the  
24 mitochondrial genotyping, the *COX1* allele present in the mitochondrial DNA was probed to  
25 distinguish between H99 $\alpha$ /VYD135 $\alpha$  and KN99 $\mathbf{a}$ /IUM96 $\mathbf{a}$ . For the differentiation between  
26 Bt63 $\mathbf{a}$  and H99 $\alpha$ /VYD135 $\alpha$ , the *COB1* allele was used because *COX1* in Bt63 $\mathbf{a}$  is identical to  
27 H99 $\alpha$ /VYD135 $\alpha$ . The difference for both *COX1* and *COB1* is the presence or absence of an  
28 intron and results in significantly different size products between *MAT $\alpha$*  and *MAT $\mathbf{a}$*  parents  
29 (Figure 1 and S3). The primers used for these assays (JOHE51004-51007) are mentioned in  
30 Table S5.

31

1     *Genomic DNA isolation for sequencing*

2           Genomic DNA for whole-genome sequencing was prepared using the CTAB-based lysis  
3     method, as described previously (Yadav et al., 2020). Briefly, 50 ml of an overnight culture was  
4     pelleted, frozen at -80°C, and subjected to lyophilization. The lyophilized cell pellet was broken  
5     into a fine powder, mixed with lysis buffer, and the mix was incubated at 65°C for an hour with  
6     intermittent shaking. The mix was then cooled on ice, and the supernatant was transferred into a  
7     fresh tube, and an equal volume of chloroform (~15 ml) was added and mixed. The mix was  
8     centrifuged at 3200 rpm for 10 min, and the supernatant was transferred to a fresh tube. An equal  
9     volume of isopropanol (~18 to 20 ml) was added into the supernatant and mixed gently. This mix  
10    was incubated at -20°C for an hour and centrifuged at 3200 rpm for 10 min. The supernatant was  
11    discarded, and the DNA pellet was washed with 70% ethanol. The pellet was air-dried and  
12    dissolved in 1ml of RNase containing 1X TE buffer and incubated at 37°C for 45 min. The DNA  
13    was again chloroform purified and precipitated using isopropanol, followed by ethanol washing,  
14    air drying, and finally dissolved in 200 µl 1X TE buffer. The DNA quality was estimated with  
15    NanoDrop, whereas DNA quantity was estimated with Qubit.

16    *Whole-genome Illumina sequencing, ploidy, and SNP analysis*

17           Illumina sequencing of the strains was performed at the Duke sequencing facility core  
18    (<https://genome.duke.edu/>), using Novaseq 6000 as 150 paired-end sequencing. The Illumina  
19    reads, thus obtained, were mapped to the respective genome assembly (H99, VYD135, Bt63, or  
20    IUM96) using Geneious default mapper to estimate ploidy. The resulting BAM file was  
21    converted to a .tdf file, which was then visualized through IGV to estimate the ploidy based on  
22    read coverage for each chromosome.

23           For SNP calling and score for recombination in the progeny, Illumina sequencing data for  
24    each progeny was mapped to parental strain genome assemblies individually using the Geneious  
25    default mapper with three iterations. The mapped BAM files were used to perform variant  
26    calling using Geneious with 0.8 variant frequency parameter and at least 90x coverage for each  
27    variant. The variants thus called were exported as VCF files and imported into IGV for  
28    visualization purposes. H99, Bt63, IUM96-2828, and VYD135 Illumina reads were used as  
29    controls for SNP calling analysis.

30

31

1 ***PacBio/Nanopore genome assembly and synteny comparison***

2 To obtain high-molecular-weight DNA for Bt63 genome PacBio and IUM96-2828  
3 genome Nanopore sequencing, DNA was prepared as described above. The size estimation of  
4 DNA was carried out by electrophoresis of DNA samples using PFGE. For this purpose, the  
5 PFGE was carried out at 6V/cm at a switching frequency of 1 to 6 sec for 16 h at 14°C. Samples  
6 with most of the DNA  $\geq$ 100 kb or larger were selected for sequencing. For PacBio sequencing,  
7 the DNA sample was submitted to the Duke sequencing facility core. Nanopore sequencing was  
8 performed in our lab using a MinION device on an R9.4.1 flow cell. After sequencing, reads  
9 were assembled to obtain a Bt63 genome assembly via Canu using PacBio reads  $>$  2 kb followed  
10 by five rounds of pilon polishing. For IUM96-2828, one round of nanopolish was also performed  
11 before pilon polishing. Once completed, the chromosomes were numbered based on their  
12 synteny with the H99 genome. For chromosomes involved in translocation (Chr 3 and Chr 11),  
13 the chromosome numbering was defined by the presence of the respective syntenic centromere  
14 from H99. Centromere locations were mapped based on BLASTn analysis with H99 centromere  
15 flanking genes.

16 Synteny comparisons between the genomes were performed with SyMAP v4.2 using  
17 default parameters (Soderlund, Bomhoff, & Nelson, 2011)  
18 (<http://www.agcol.arizona.edu/software/syimap/>). The comparison block maps were exported as  
19 .svg files and were then processed using Adobe® Illustrator® and Adobe® Photoshop® for  
20 representation purposes. The H99 genome was used as the reference for comparison purposes for  
21 plotting VYD135, Bt63, and IUM96-2828 genomes. The centromere and telomere locations  
22 were manually added during the figure processing.

23 ***Fluorescent tagging and microscopy***

24 GFP and mCherry tagging of histone H4 were performed by integrating respective  
25 constructs at the safe haven locus (Arras, Chitty, Blake, Schulz, & Fraser, 2015). GFP-H4  
26 tagging was done using the previously described construct, pVY3 (Yadav & Sanyal, 2018). For  
27 mCherry-H4 tagging, the GFP-containing fragment in pVY3 was excised using SacI and BamHI  
28 and was replaced with mCherry sequence PCR amplified from the plasmid pLKB25  
29 (Kozubowski & Heitman, 2010). The constructs were then linearized using XmnI and  
30 transformed into desired strains using CRISPR transformation, as described previously (Fan &

1 Lin, 2018). The transformants were screened by PCR, and correct integrants were obtained and  
2 verified using fluorescent microscopy.

3 To observe the fluorescence signals in the hyphae and basidia, a 2-3 week old mating  
4 patch was cut out of the plate and directly inverted onto a coverslip in a glass-bottom dish. The  
5 dish was then used to observe filaments under a DeltaVision microscope available at the Duke  
6 University Light Microscopy Core Facility (<https://microscopy.duke.edu/dv>). The images were  
7 captured at 60X magnification with 2x2 bin size and z-sections of either 1 or 0.4  $\mu$ m each. GFP  
8 and mCherry signals were captured using the GFP and mCherry filters in the Live-Cell filter set.  
9 The images were processed using Fiji-ImageJ (<https://imagej.net/Fiji>) and exported as tiff files as  
10 individual maximum projected images. The final figure was then assembled using Adobe<sup>®</sup>  
11 Photoshop<sup>®</sup> software for quality purposes.

12 ***Sporulation frequency counting***

13 To visualize hyphal growth and sporulation defects during mating assays, the mating  
14 plates were directly observed under a Nikon Eclipse E400 microscope. Hyphal growth and  
15 basidia images were captured using the top-mounted Nikon DXM1200F camera on the  
16 microscope. The images were processed using Fiji-ImageJ and assembled in Adobe<sup>®</sup> Photoshop<sup>®</sup>  
17 software.

18 For crosses involving wild-type H99 $\alpha$ , VYD135 $\alpha$ , KN99a, Bt63a, IUM96a,  
19 approximately 1000 total basidia were counted after 4 weeks of mating, and the sporulation  
20 frequency was calculated. For crosses involving VYD135 *dmc1* $\Delta$  strain, three mating spots were  
21 setup independently. From each mating spot periphery, 6 images were captured after 3-4 weeks  
22 of mating. Basidia (both sporulating and non-sporulating) in each of these spots were counted  
23 manually after some processing of images using ImageJ. The sporulation frequency was  
24 determined by dividing the sporulating basidia by the total number of basidia for each spot. Each  
25 mating spot was considered as an independent experiment and at least 3000 basidia were counted  
26 from each mating spot.

27 ***Flow cytometry***

28 Flow cytometry analysis was performed as described previously (Fu & Heitman, 2017).  
29 Cells were grown on YPD medium for two days at 30°C, harvested, and washed with 1X PBS  
30 buffer followed by fixation in 70% ethanol at 4°C overnight. Next, cells were washed once with  
31 1 ml of NS buffer (10 mM Tris-HCl, pH = 7.2, 250 mM sucrose, 1 mM EDTA, pH = 8.0, 1 mM

1 MgCl<sub>2</sub>, 0.1 mM CaCl<sub>2</sub>, 0.1 mM ZnCl<sub>2</sub>, 0.4 mM phenylmethylsulfonyl fluoride, and 7 mM β-  
2 mercaptoethanol), and finally resuspended in 180 μl NS buffer containing 20 μl 10 mg/ml RNase  
3 and 5 μl 0.5 mg/ml propidium iodide (PI) at 37°C for 3-4 hours. Then, 50 μl stained cells were  
4 diluted in 2 ml of 50 mM Tris-HCl, pH = 8.0, transferred to FACS compatible tube, and  
5 submitted for analysis at the Duke Cancer Institute Flow Cytometry Shared Resource. For each  
6 sample, 10,000 cells were analyzed on the FL1 channel on the Becton-Dickinson FACScan.  
7 Wild-type H99 and previously generated AI187 were used as haploid and diploid controls,  
8 respectively, in these experiments. Data analysis was performed using the FlowJo software.

9 **Data Availability**

10 The sequence data generated in this study were submitted to NCBI with the BioProject  
11 accession number PRJNA682203.

12

13 **Acknowledgments**

14 We thank Shelby Priest and Arti Dumbrepatil for critical reading of this manuscript. This  
15 work was supported by NIH/NIAID R37 MERIT award AI39115-24, R01 grant AI50113-16  
16 awarded to JH; and R01 grant AI33654-04 awarded to JH, David Tobin, and Paul Magwene. JH  
17 is also Co-Director and Fellow of the CIFAR program *Fungal Kingdom: Threats &*  
18 *Opportunities*.

19

20 **Competing interests**

21 The authors declare no competing interests.

22

23 **References**

24 Arras, S. D. M., Chitty, J. L., Blake, K. L., Schulz, B. L., & Fraser, J. A. (2015). A genomic safe  
25 haven for mutant complementation in *Cryptococcus neoformans*. *PLoS One*, 10(4).  
26 doi:10.1371/journal.pone.0122916

27 Avise, J. C. (2015). Evolutionary perspectives on clonal reproduction in vertebrate animals. *Proc  
28 Natl Acad Sci U S A*, 112(29), 8867-8873. doi:10.1073/pnas.1501820112

29 Booth, W., Smith, C. F., Eskridge, P. H., Hoss, S. K., Mendelson, J. R., 3rd, & Schuett, G. W.  
30 (2012). Facultative parthenogenesis discovered in wild vertebrates. *Biol Lett*, 8(6), 983-  
31 985. doi:10.1098/rsbl.2012.0666

1 Cimino, M. C. (1972a). Egg-production, polyploidization and evolution in a diploid all-female  
2 fish of the genus *Poeciliopsis*. *Evolution*, 26(2), 294-306. doi:10.1111/j.1558-  
3 5646.1972.tb00195.x

4 Cimino, M. C. (1972b). Meiosis in triploid all-female fish (*Poeciliopsis*, Poeciliidae). *Science*,  
5 175(4029), 1484-1486. doi:10.1126/science.175.4029.1484

6 Dedukh, D., Litvinchuk, J., Svinin, A., Litvinchuk, S., Rosanov, J., & Krasikova, A. (2019).  
7 Variation in hybridogenetic hybrid emergence between populations of water frogs from  
8 the *Pelophylax esculentus* complex. *PLoS One*, 14(11), e0224759.  
9 doi:10.1371/journal.pone.0224759

10 Dedukh, D., Majtanova, Z., Marta, A., Psenicka, M., Kotusz, J., Klima, J., . . . Janko, K. (2020).  
11 Parthenogenesis as a solution to hybrid sterility: The mechanistic basis of meiotic  
12 distortions in clonal and sterile hybrids. *Genetics*, 215(4), 975-987.  
13 doi:10.1534/genetics.119.302988

14 Desjardins, C. A., Giamberardino, C., Sykes, S. M., Yu, C. H., Tenor, J. L., Chen, Y., . . .  
15 Cuomo, C. A. (2017). Population genomics and the evolution of virulence in the fungal  
16 pathogen *Cryptococcus neoformans*. *Genome Res*, 27(7), 1207-1219.  
17 doi:10.1101/gr.218727.116

18 Dimijian, G. G. (2005). Evolution of sexuality: Biology and behavior. *Proc (Bayl Univ Med  
19 Cent)*, 18(3), 244-258. doi:10.1080/08998280.2005.11928075

20 Dolezalkova, M., Sember, A., Marec, F., Rab, P., Plotner, J., & Choleva, L. (2016). Is premeiotic  
21 genome elimination an exclusive mechanism for hemicleonal reproduction in hybrid males  
22 of the genus *Pelophylax*? *BMC Genet*, 17(1), 100. doi:10.1186/s12863-016-0408-z

23 Fan, Y., & Lin, X. (2018). Multiple applications of a transient CRISPR-Cas9 coupled with  
24 electroporation (TRACE) system in the *Cryptococcus neoformans* species complex.  
25 *Genetics*, 208(4), 1357-1372. doi:10.1534/genetics.117.300656

26 Fields, A. T., Feldheim, K. A., Poulakis, G. R., & Chapman, D. D. (2015). Facultative  
27 parthenogenesis in a critically endangered wild vertebrate. *Curr Biol*, 25(11), R446-447.  
28 doi:10.1016/j.cub.2015.04.018

29 Fraser, J. A., Giles, S. S., Wenink, E. C., Geunes-Boyer, S. G., Wright, J. R., Diezmann, S., . . .  
30 Heitman, J. (2005). Same-sex mating and the origin of the Vancouver Island  
31 *Cryptococcus gattii* outbreak. *Nature*, 437(7063), 1360-1364. doi:10.1038/nature04220

1 Fu, C., & Heitman, J. (2017). PRM1 and KAR5 function in cell-cell fusion and karyogamy to  
2 drive distinct bisexual and unisexual cycles in the *Cryptococcus* pathogenic species  
3 complex. *PLOS Genetics*, 13(11). doi:10.1371/journal.pgen.1007113

4 Heitman, J. (2015). Evolution of sexual reproduction: A view from the Fungal Kingdom supports  
5 an evolutionary epoch with sex before sexes. *Fungal Biol Rev*, 29(3-4), 108-117.  
6 doi:10.1016/j.fbr.2015.08.002

7 Heitman, J., Sun, S., & James, T. Y. (2013). Evolution of fungal sexual reproduction. *Mycologia*,  
8 105(1), 1-27. doi:10.3852/12-253

9 Heppich, S., Tunner, H. G., & Greilhuber, J. (1982). Premeiotic chromosome doubling after  
10 genome elimination during spermatogenesis of the species hybrid *Rana esculenta*. *Theor  
11 Appl Genet*, 61(2), 101-104. doi:10.1007/BF00273874

12 Hodač, L., Klatt, S., Hojsgaard, D., Sharbel, T. F., & Hörandl, E. (2019). A little bit of sex  
13 prevents mutation accumulation even in apomictic polyploid plants. *BMC Evolutionary  
14 Biology*, 19(1). doi:10.1186/s12862-019-1495-z

15 Hojsgaard, D., & Harandl, E. (2015). A little bit of sex matters for genome evolution in asexual  
16 plants. *Frontiers in Plant Science*, 6. doi:10.3389/fpls.2015.00082

17 Holsbeek, G., & Jooris, R. (2009). Potential impact of genome exclusion by alien species in the  
18 hybridogenetic water frogs (*Pelophylax esculentus* complex). *Biological Invasions*, 12(1),  
19 1. doi:10.1007/s10530-009-9427-2

20 Hörandl, E. (2009). Geographical parthenogenesis: Opportunities for asexuality. In I. Schön, K.  
21 Martens, & P. Dijk (Eds.), *Lost Sex: The Evolutionary Biology of Parthenogenesis* (pp.  
22 161-186). Dordrecht: Springer Netherlands.

23 Hurst, L. D., & Nurse, P. (1991). A note on the evolution of meiosis. *Journal of Theoretical  
24 Biology*, 150(4), 561-563. doi:10.1016/s0022-5193(05)80447-3

25 Idnurm, A. (2010). A tetrad analysis of the basidiomycete fungus *Cryptococcus neoformans*.  
26 *Genetics*, 185(1), 153-163. doi:10.1534/genetics.109.113027

27 Keller, S. M., Viviani, M. A., Esposto, M. C., Cogliati, M., & Wickes, B. L. (2003). Molecular  
28 and genetic characterization of a serotype A MATa *Cryptococcus neoformans* isolate.  
29 *Microbiology*, 149(Pt 1), 131-142. doi:10.1099/mic.0.25921-0

1 Kozubowski, L., & Heitman, J. (2010). Septins enforce morphogenetic events during sexual  
2 reproduction and contribute to virulence of *Cryptococcus neoformans*. *Molecular*  
3 *Microbiology*, 75(3), 658-675. doi:10.1111/j.1365-2958.2009.06983.x

4 Kwon-Chung, K. J. (1975). A new genus, *filobasidiella*, the perfect state of *Cryptococcus*  
5 *neoformans*. *Mycologia*, 67(6), 1197-1200. Retrieved from  
6 <https://www.ncbi.nlm.nih.gov/pubmed/765816>

7 Kwon-Chung, K. J. (1976). Morphogenesis of *Filobasidiella neoformans*, the sexual state of  
8 *Cryptococcus neoformans*. *Mycologia*, 68(4), 821-833. Retrieved from  
9 <https://www.ncbi.nlm.nih.gov/pubmed/790172>

10 Lavanchy, G., & Schwander, T. (2019). Hybridogenesis. *Curr Biol*, 29(1), R9-R11.  
11 doi:10.1016/j.cub.2018.11.046

12 Lee, S. C., Ni, M., Li, W., Shertz, C., & Heitman, J. (2010). The evolution of sex: A perspective  
13 from the fungal kingdom. *Microbiol Mol Biol Rev*, 74(2), 298-340.  
14 doi:10.1128/MMBR.00005-10

15 Lehtonen, J., Schmidt, D. J., Heubel, K., & Kokko, H. (2013). Evolutionary and ecological  
16 implications of sexual parasitism. *Trends Ecol Evol*, 28(5), 297-306.  
17 doi:10.1016/j.tree.2012.12.006

18 Lin, X., Hull, C. M., & Heitman, J. (2005). Sexual reproduction between partners of the same  
19 mating type in *Cryptococcus neoformans*. *Nature*, 434(7036), 1017-1021.  
20 doi:10.1038/nature03448

21 Litvintseva, A. P., Marra, R. E., Nielsen, K., Heitman, J., Vilgalys, R., & Mitchell, T. G. (2003).  
22 Evidence of sexual recombination among *Cryptococcus neoformans* serotype A isolates  
23 in sub-Saharan Africa. *Eukaryot Cell*, 2(6), 1162-1168. doi:10.1128/ec.2.6.1162-  
24 1168.2003

25 Meirmans, S. (2009). The evolution of the problem of sex. In I. Schön, K. Martens, & P. Dijk  
26 (Eds.), *Lost Sex: The Evolutionary Biology of Parthenogenesis* (pp. 21-46). Dordrecht:  
27 Springer Netherlands.

28 Mirzaghaderi, G., & Horndl, E. (2016). The evolution of meiotic sex and its alternatives. *Proc*  
29 *Biol Sci*, 283(1838). doi:10.1098/rspb.2016.1221

30 Morrow, C. A., Lee, I. R., Chow, E. W., Ormerod, K. L., Goldinger, A., Byrnes, E. J., 3rd, . . .  
31 Fraser, J. A. (2012). A unique chromosomal rearrangement in the *Cryptococcus*

1        *neoformans* var. *grubii* type strain enhances key phenotypes associated with virulence.  
2        *mBio*, 3(2). doi:10.1128/mBio.00310-11

3        Nabais, C., Pereira, C., Cunado, N., & Collares-Pereira, M. J. (2012). Synaptonemal complexes  
4        in the hybridogenetic *Squalius alburnoides* fish complex: New insights on the  
5        gametogenesis of allopolyploids. *Cytogenet Genome Res*, 138(1), 31-35.  
6        doi:10.1159/000339522

7        Neaves, W. B., & Baumann, P. (2011). Unisexual reproduction among vertebrates. *Trends*  
8        *Genet*, 27(3), 81-88. doi:10.1016/j.tig.2010.12.002

9        Phadke, S. S., Feretzaki, M., Clancey, S. A., Mueller, O., & Heitman, J. (2014). Unisexual  
10       reproduction of *Cryptococcus gattii*. *PLoS One*, 9(10), e111089.  
11       doi:10.1371/journal.pone.0111089

12       Roth, C., Sun, S., Billmyre, R. B., Heitman, J., & Magwene, P. M. (2018). A high-resolution  
13       map of meiotic recombination in *Cryptococcus deneoformans* demonstrates decreased  
14       recombination in unisexual reproduction. *Genetics*, 209(2), 567-578.  
15       doi:10.1534/genetics.118.300996

16       Schwander, T., & Oldroyd, B. P. (2016). Androgenesis: Where males hijack eggs to clone  
17       themselves. *Philos Trans R Soc Lond B Biol Sci*, 371(1706). doi:10.1098/rstb.2015.0534

18       Soderlund, C., Bomhoff, M., & Nelson, W. M. (2011). SyMAP v3.4: a turnkey synteny system  
19       with application to plant genomes. *Nucleic Acids Res*, 39(10), e68.  
20       doi:10.1093/nar/gkr123

21       Sun, S., Billmyre, R. B., Mieczkowski, P. A., & Heitman, J. (2014). Unisexual reproduction  
22       drives meiotic recombination and phenotypic and karyotypic plasticity in *Cryptococcus*  
23       *neoformans*. *PLoS Genet*, 10(12), e1004849. doi:10.1371/journal.pgen.1004849

24       Sun, S., Coelho, M. A., David-Palma, M., Priest, S. J., & Heitman, J. (2019). The evolution of  
25       sexual reproduction and the mating-type locus: Links to pathogenesis of *Cryptococcus*  
26       human pathogenic fungi. *Annu Rev Genet*, 53, 417-444. doi:10.1146/annurev-genet-  
27       120116-024755

28       Sun, S., Fu, C., Ianiri, G., & Heitman, J. (2020). The pheromone and pheromone receptor  
29       mating-type locus Is involved in controlling uniparental mitochondrial inheritance in  
30       *Cryptococcus*. *Genetics*, 214(3), 703-717. doi:10.1534/genetics.119.302824

1 Sun, S., Hoy, M. J., & Heitman, J. (2020). Fungal pathogens. *Curr Biol*, 30(19), R1163-R1169.  
2 doi:10.1016/j.cub.2020.07.032

3 Sun, S., Priest, S. J., & Heitman, J. (2019). *Cryptococcus neoformans* mating and genetic  
4 crosses. *Curr Protoc Microbiol*, 53(1), e75. doi:10.1002/cpmc.75

5 Tunner, H. G., & Heppich-Tunner, S. (1991). Genome exclusion and two strategies of  
6 chromosome duplication in oogenesis of a hybrid frog. *Naturwissenschaften*, 78(1), 32-  
7 34. doi:10.1007/BF01134041

8 Tunner, H. G., & Heppich, S. (1981). Premeiotic genome exclusion during oogenesis in the  
9 common edible frog, *Rana esculenta*. *Naturwissenschaften*, 68(4), 207-208.  
10 doi:10.1007/BF01047207

11 Umphrey, G. J. (2006). Sperm parasitism in ants: selection for interspecific mating and  
12 hybridization. *Ecology*, 87(9), 2148-2159. doi:10.1890/0012-  
13 9658(2006)87[2148:spiasf]2.0.co;2

14 Uzzell, T., Günther, R., & Berger, L. (1976). *Rana ridibunda* and *Rana esculenta*: A Leaky  
15 Hybridogenetic System (Amphibia Salientia). *Proceedings of the Academy of Natural  
16 Sciences of Philadelphia*, 128, 147-171. doi:<https://www.jstor.org/stable/4064723>

17 Vinogradov, A. E., Borkin, L. J., Gunther, R., & Rosanov, J. M. (1991). Two germ cell lineages  
18 with genomes of different species in one and the same animal. *Hereditas*, 114(3), 245-  
19 251. doi:10.1111/j.1601-5223.1991.tb00331.x

20 Wilkins, A. S., & Holliday, R. (2009). The evolution of meiosis from mitosis. *Genetics*, 181(1),  
21 3-12. doi:10.1534/genetics.108.099762

22 Yadav, V., & Sanyal, K. (2018). Sad1 spatiotemporally regulates kinetochore clustering to  
23 ensure high-fidelity chromosome segregation in the human fungal pathogen  
24 *Cryptococcus neoformans*. *mSphere*, 3(4). doi:10.1128/mSphere.00190-18

25 Yadav, V., Sun, S., Coelho, M. A., & Heitman, J. (2020). Centromere scission drives  
26 chromosome shuffling and reproductive isolation. *Proc Natl Acad Sci U S A*, 117(14),  
27 7917-7928. doi:10.1073/pnas.1918659117

28 Zhao, Y., Lin, J., Fan, Y., & Lin, X. (2019). Life cycle of *Cryptococcus neoformans*. *Annu Rev  
29 Microbiol*, 73, 17-42. doi:10.1146/annurev-micro-020518-120210

30

1 **Figures and Figure Legends**

2 **Figure 1. Chromosome shuffled strain exhibits unusual sexual reproduction. (A-B)** Images  
3 of cultures for the individual strains showing no self-filamentation on mating medium.  
4 Magnification=10X. **(C-D)** Light microscopy images showing robust sporulation in the H99 $\alpha$  x  
5 KN99 $\mathbf{a}$  cross, whereas the VYD135 $\alpha$  x KN99 $\mathbf{a}$  cross exhibited infrequent sporulation events.  
6 The inset images show examples of basidia observed in each of the crosses. Bars, 100  $\mu\text{m}$ . **(E-F)**  
7 A scheme showing the *MAT $\alpha$*  (H99 $\alpha$  and VYD135 $\alpha$ ) and *MAT $\mathbf{a}$*  (KN99 $\mathbf{a}$ ) alleles at the *STE20*  
8 (**E**) and *COX1* (**F**) loci. Primers used for PCR analysis are marked by blue triangles. **(G)** Gel  
9 images showing PCR amplification of *STE20* and *COX1* alleles in the progeny obtained from  
10 four different basidia for both H99 $\alpha$  x KN99 $\mathbf{a}$  and VYD135 $\alpha$  x KN99 $\mathbf{a}$  crosses. PCR analysis  
11 for the parental strains is also shown and key bands for DNA marker are labeled.

12  
13 **Figure 2. Fluorescence microscopy reveals uniparental nuclear inheritance in the wild-type**  
14 **crosses. (A)** Mating of GFP-H4 tagged H99 $\alpha$  and mCherry-H4 tagged KN99 $\mathbf{a}$  revealed the  
15 presence of both fluorescent markers in most spore chains along with uniparental nuclear  
16 inheritance in rare cases (~1%). In these few sporulating basidia, only one of the fluorescent  
17 signals was observed in the spore chains, reflecting the presence of only one parental nucleus in  
18 these basidia. **(B)** Crosses involving GFP-H4 tagged VYD135 $\alpha$ , and mCherry-H4 tagged KN99 $\mathbf{a}$   
19 revealed the presence of spore chains with only one fluorescent color. In the majority of basidia  
20 that have both parental nuclei, marked by both GFP and mCherry signals, spore chains are not  
21 produced suggesting a failure of meiosis in these basidia. Bars, 10  $\mu\text{m}$ .

22  
23 **Figure 3. VYD135 $\alpha$  progeny exhibit strict uniparental nuclear inheritance and lack the**  
24 **signature of meiotic recombination. (A)** Chromosome maps for H99 $\alpha$ /KN99 $\mathbf{a}$ , VYD135 $\alpha$ ,  
25 Bt63 $\mathbf{a}$ , and IUM96 $\mathbf{a}$  showing the karyotype variation. The genome of the wild-type strain H99 $\alpha$   
26 served as the reference. Black arrowheads represent chromosome translocations between  
27 VYD135 $\alpha$  and H99 $\alpha$  whereas red arrowheads mark chromosomes with a translocation between  
28 H99 $\alpha$  and Bt63 $\mathbf{a}$  or IUM96 $\mathbf{a}$ . **(B)** Whole-genome sequencing, followed by SNP identification, of  
29 H99 $\alpha$  x Bt63 $\mathbf{a}$  progeny revealed evidence of meiotic recombination in all of the progeny. The  
30 left panel shows SNPs with respect to the Bt63 $\mathbf{a}$  genome whereas the right panel depicts SNPs

1 against the H99 $\alpha$  genome. H99 $\alpha$  and Bt63a Illumina sequencing data served as controls for SNP  
2 calling. (C) SNP analysis of VYD135 $\alpha$  x Bt63a progeny revealed no contribution of the Bt63a  
3 parental genome in the progeny as evidenced by the presence of SNPs only against Bt63a (left  
4 panel) but not against the VYD135 $\alpha$  genome (right panel). The presence of a few SNPs observed  
5 in VYD135 $\alpha$ , as well as all VYD135 $\alpha$  x Bt63a progeny, are within nucleotide repeat regions.  
6 GF stands for germination frequency and P stands for progeny. (D) SNP analysis of H99 $\alpha$  x  
7 Bt63a and VYD135 $\alpha$  x Bt63a progeny using mitochondrial DNA as the reference revealed that  
8 mitochondrial DNA is inherited from Bt63a in all of the progeny. Progeny obtained from  
9 VYD135 $\alpha$  x Bt63a basidium 18 also revealed recombination between the two parental  
10 mitochondrial genomes as marked by the absence or presence of two SNPs when mapped against  
11 VYD135 $\alpha$  and Bt63 mitochondrial genomes, respectively. The green bar in each panel depicts  
12 the locus used for PCR analysis of the mitochondrial genotype in the progeny.

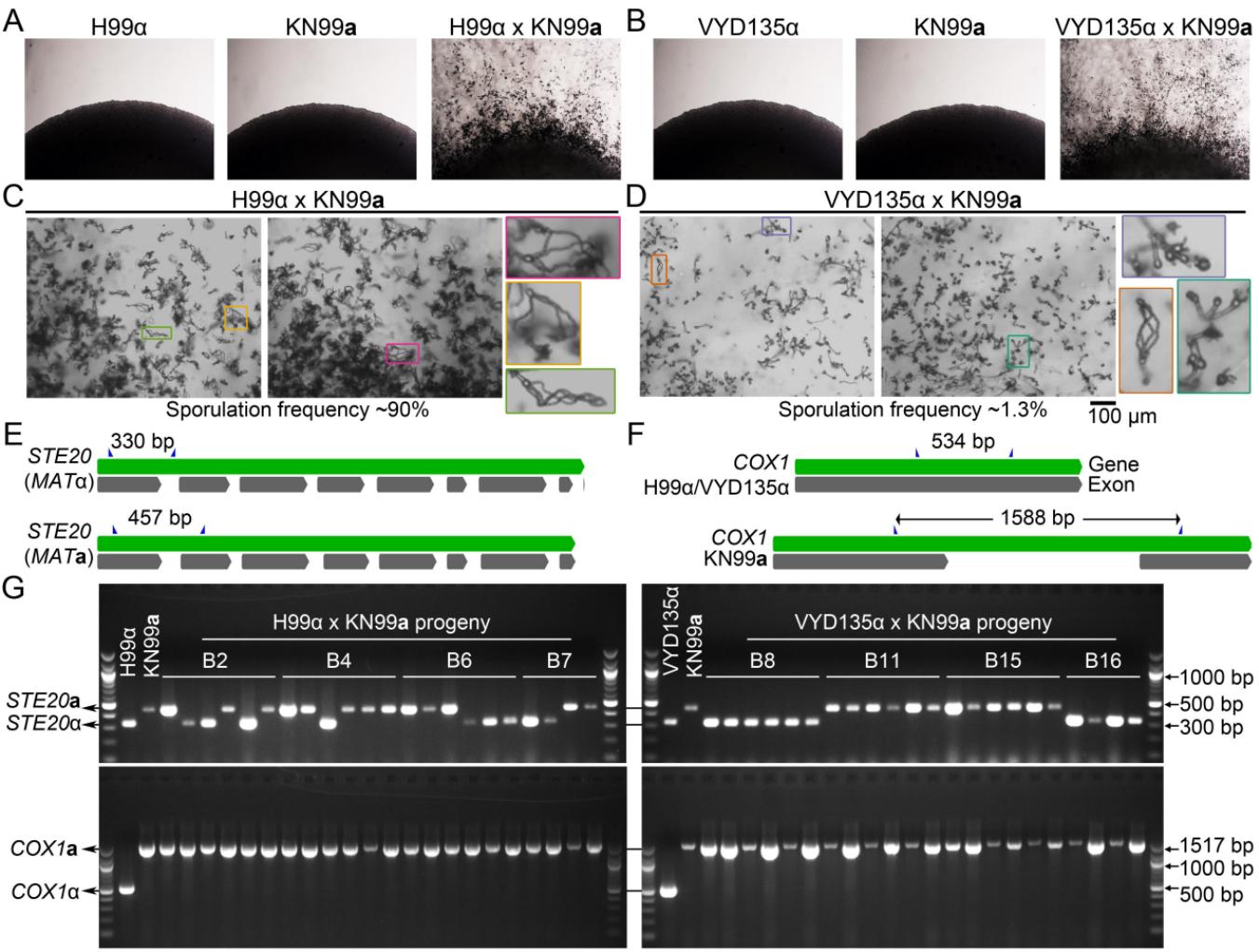
13

14 **Figure 4. Pan-hyphal microscopy reveals the loss of one parental nucleus during**  
15 **pseudosexual reproduction.** Spore-producing long hyphae were visualized in both (A) wild-  
16 type H99 $\alpha$  x KN99a and (B) VYD135 $\alpha$  x KN99a crosses to study the dynamics of nuclei in  
17 hyphae. Both nuclei were present across the hyphal length in the wild-type and resulted in the  
18 production of recombinant spores. On the other hand, one of the nuclei was lost during hyphal  
19 branching in the VYD135 $\alpha$  x KN99a cross and resulted in uniparental nuclear inheritance in the  
20 spores that were produced. The arrow in B marks the hyphal branching point after which only  
21 one of the parental nuclei is present (also see figure S10A). The images were captured as  
22 independent sections and assembled to obtain the final presented image. Bars, 10  $\mu$ m.

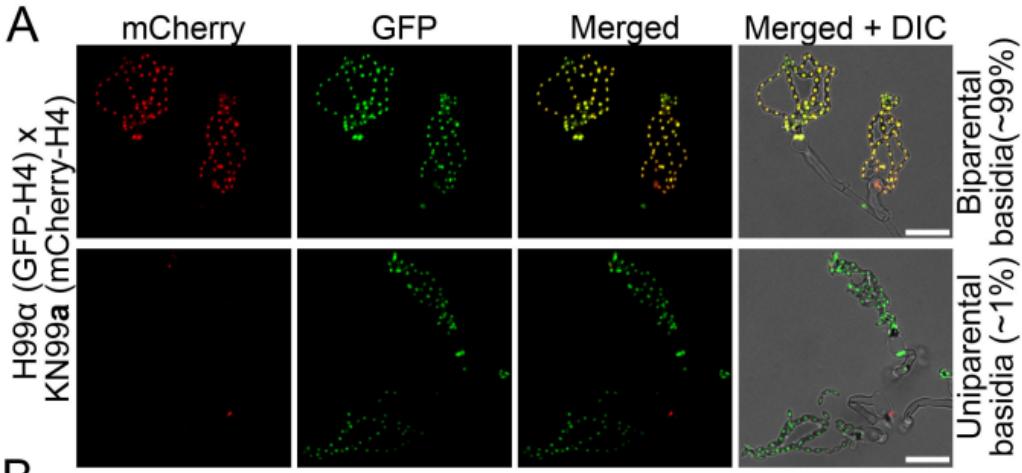
23

24 **Figure 5. Meiotic recombinase Dmc1 is required for pseudosexual reproduction.** (A) Light  
25 microscopy images showing the impact of *dmc1* mutation on sexual and pseudosexual  
26 reproduction in *C. neoformans*. Bar, 100  $\mu$ m. (B) A graph showing quantification (n=3) of  
27 sporulation events in multiple crosses with *dmc1* $\Delta$  mutants. At least 3000 basidia were counted  
28 in each experiment.

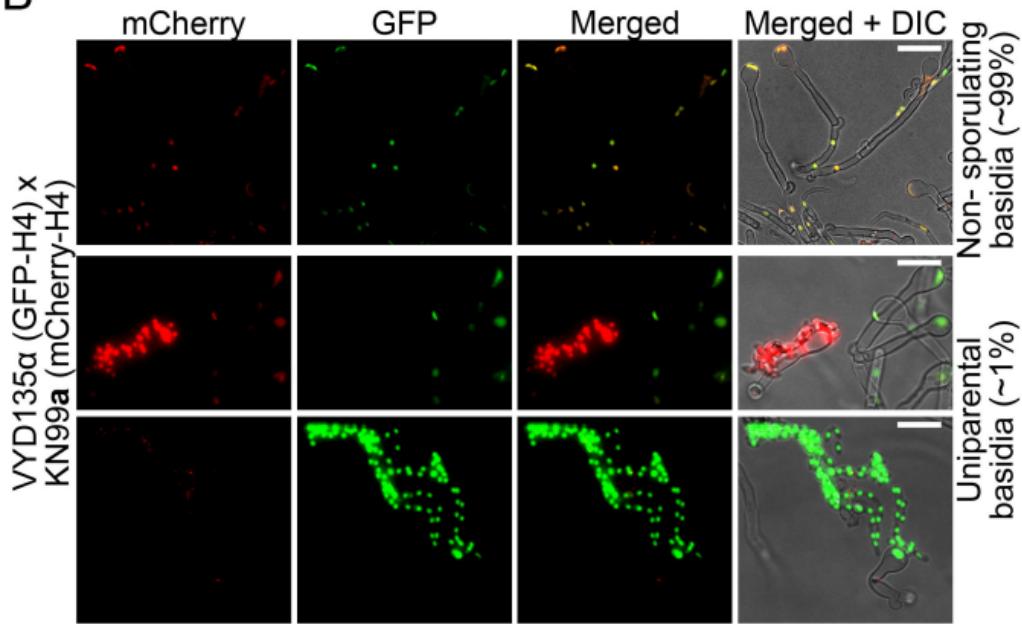
29

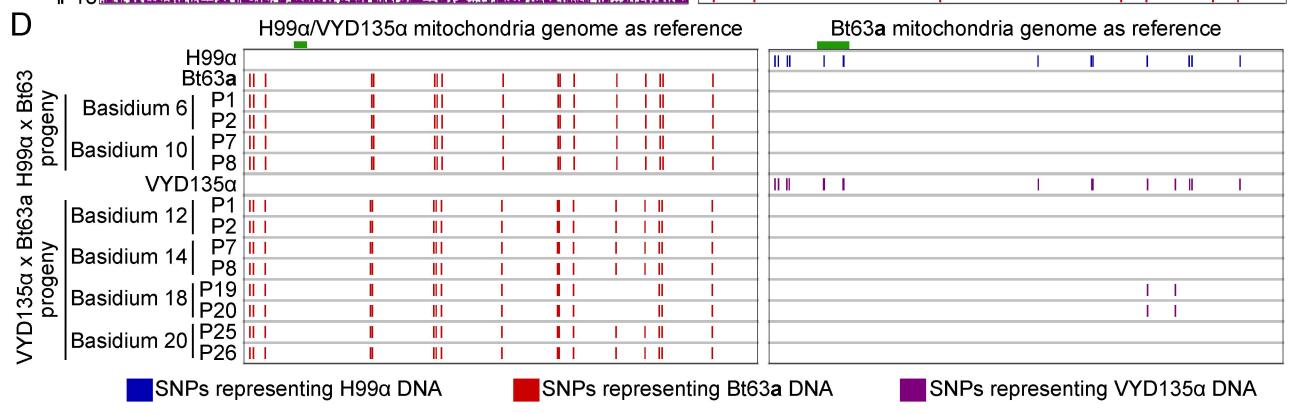
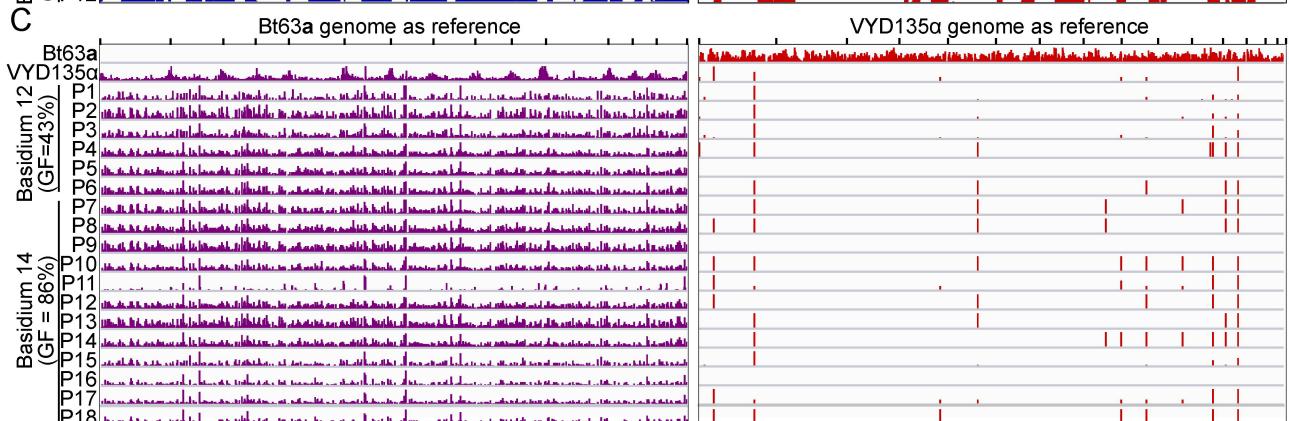
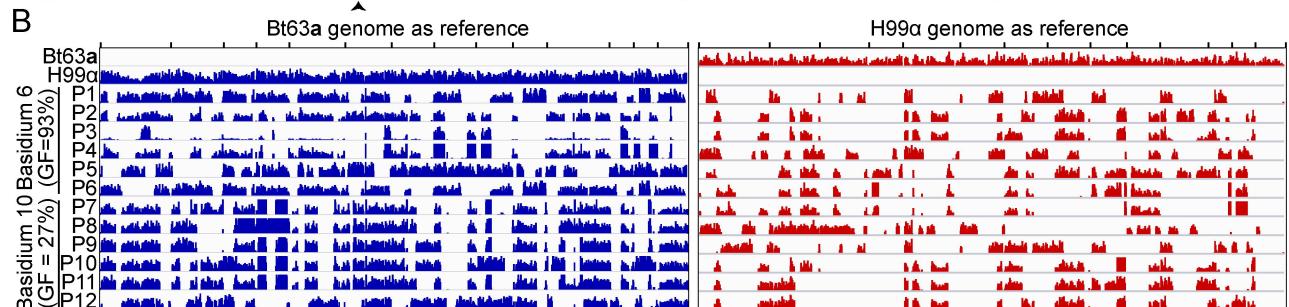
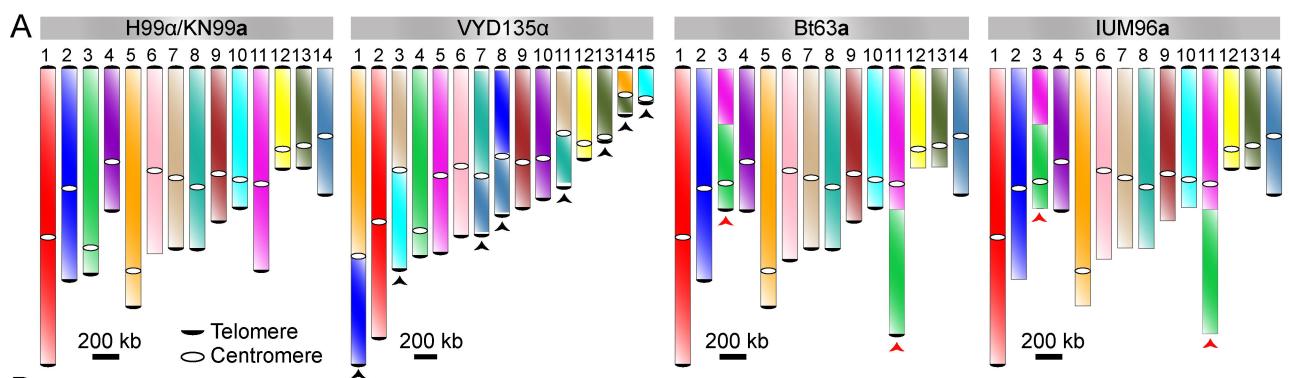

1 **Figure 6. Occurrence of pseudosexual reproduction in *C. neoformans*. (A)** A cartoon  
2 depicting various types of sexual reproduction in *Cryptococcus* species. *C. deneofmans*  
3 exhibits unisexual reproduction where two cells of the same mating-type fuse or a single cell  
4 undergo endoreplication followed by the production of clonal progeny. Both *C. neoformans* and  
5 *C. deneofmans* show bisexual reproduction where two cells of opposite mating-types fuse with  
6 each other and produce recombinant progeny. Pseudosexual reproduction, as observed in this  
7 study, arises from bisexual mating but generates clonal progeny for one of the parents after the  
8 other parental nucleus is lost during development. While both unisexual and pseudosexual  
9 reproduction produces clonal progeny, they differ with respect to the inheritance of  
10 mitochondrial DNA (marked by grey color cell background in the figure). **(B)** Scenarios showing  
11 the occurrence of pseudosexual reproduction under various hypothetical mating conditions.  
12 Except for one condition where the two parents are completely compatible with each other,  
13 pseudosexual reproduction could play a significant role in survival and dissemination despite its  
14 occurrence at a low frequency.

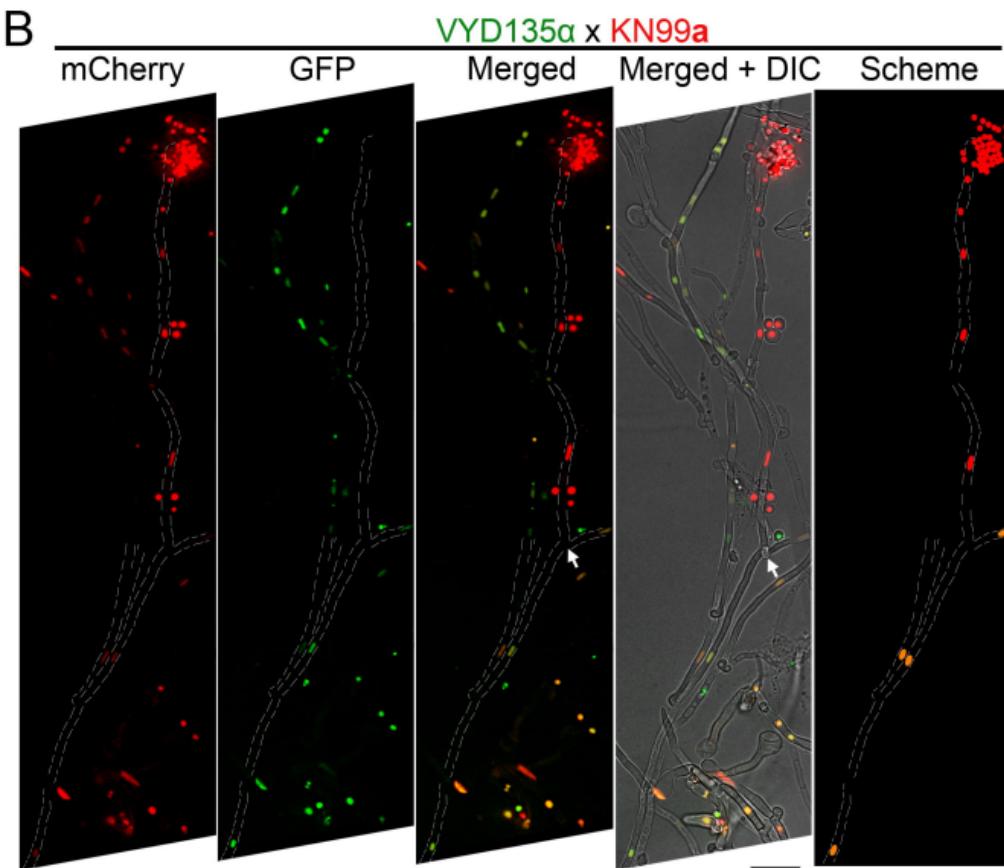
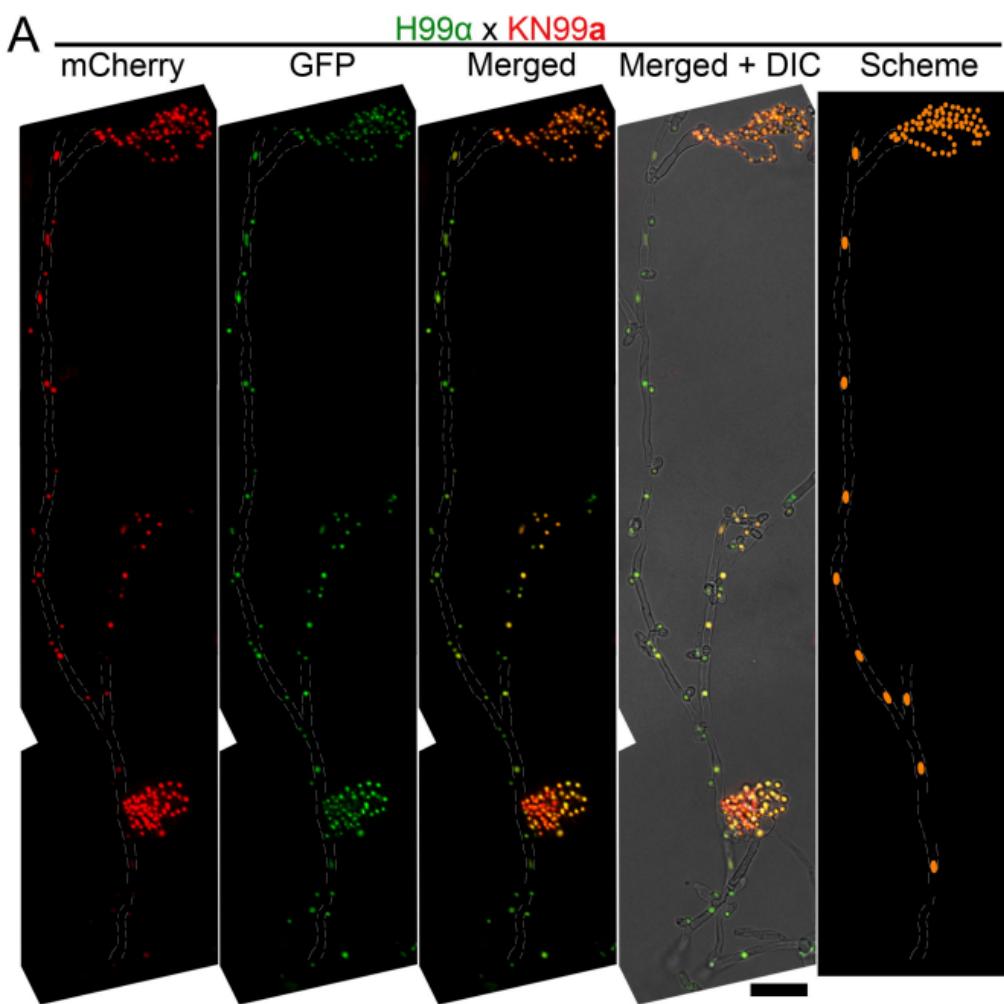
15

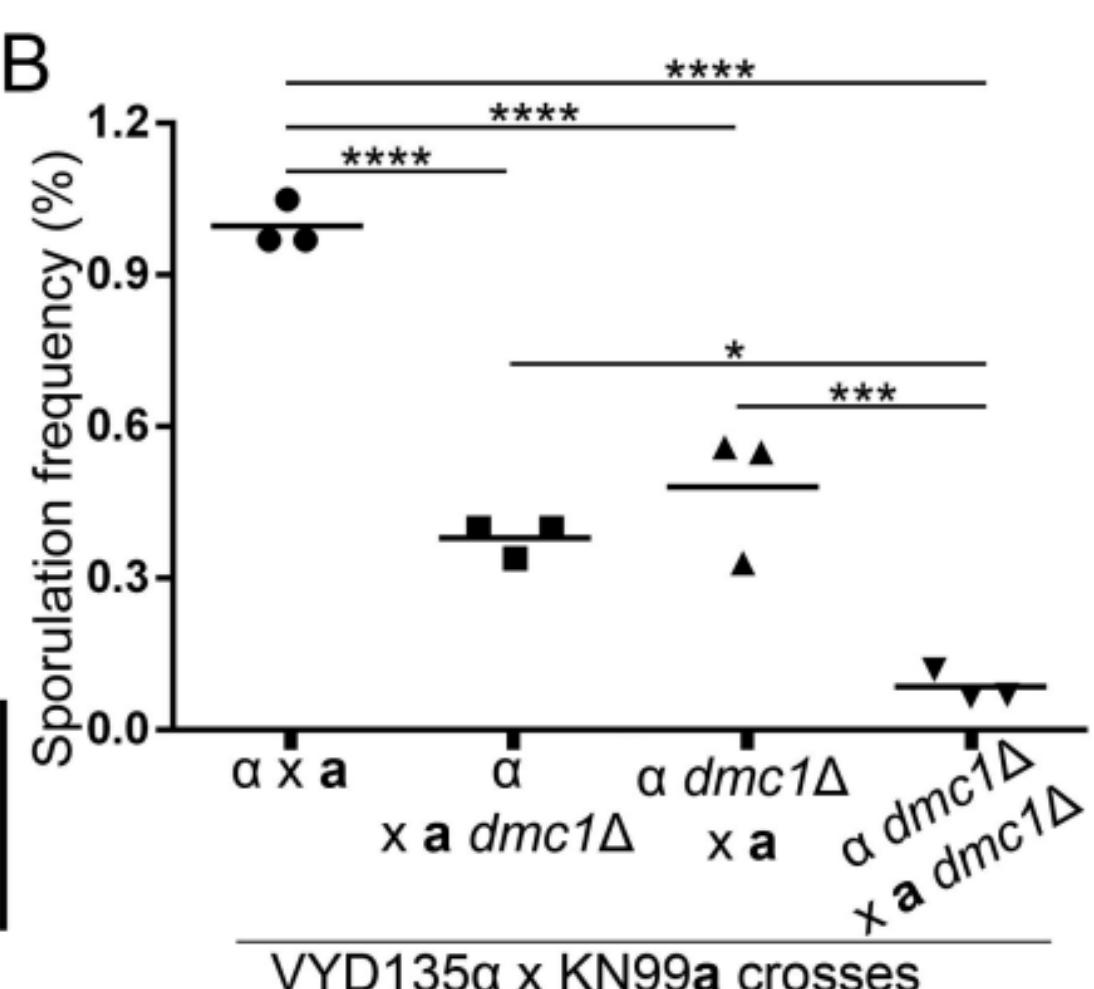
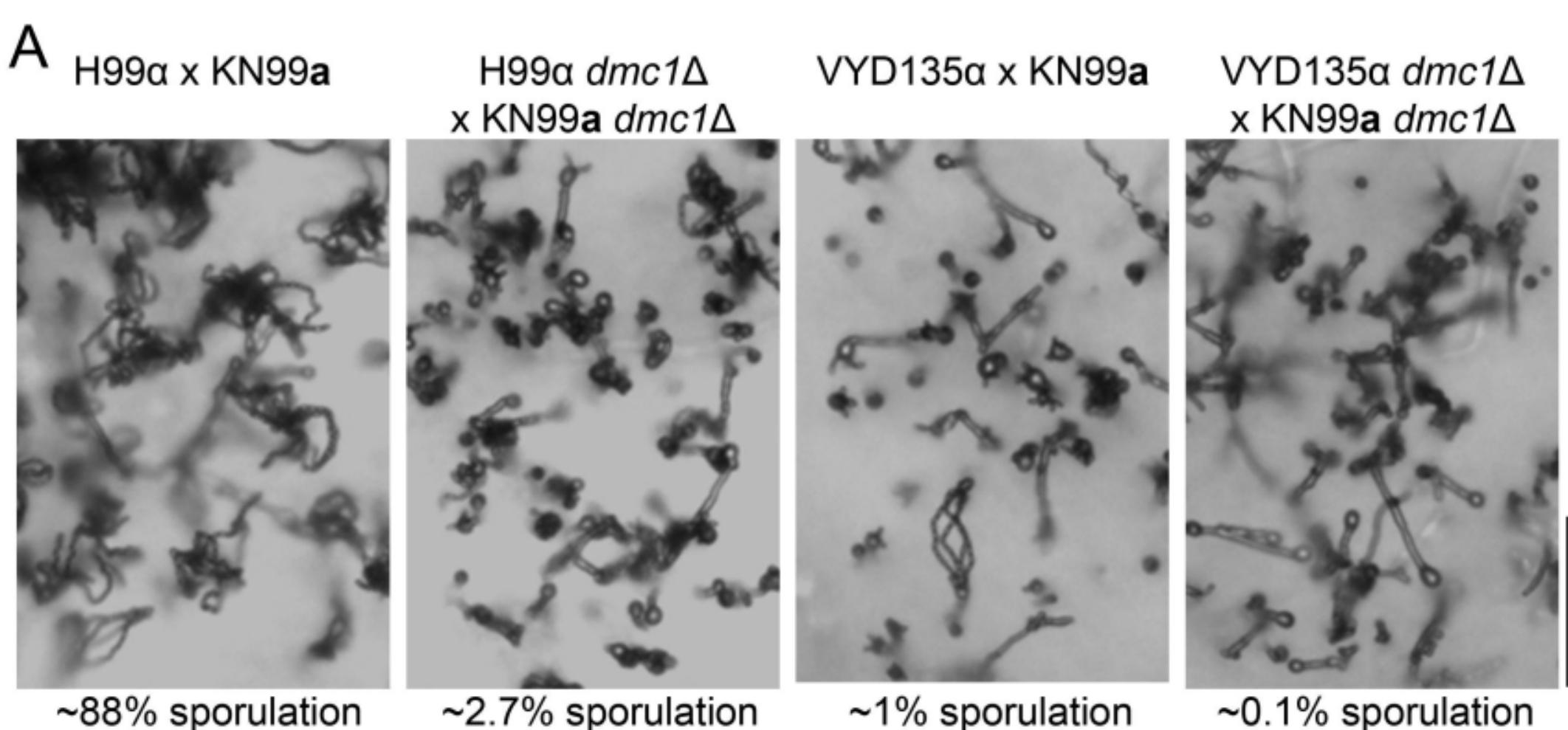

1 **Table 1. Genotype analysis of basidia-specific spores germinated from H99 $\alpha$  x KN99a and**  
 2 **VYD135 $\alpha$  x KN99a crosses.**

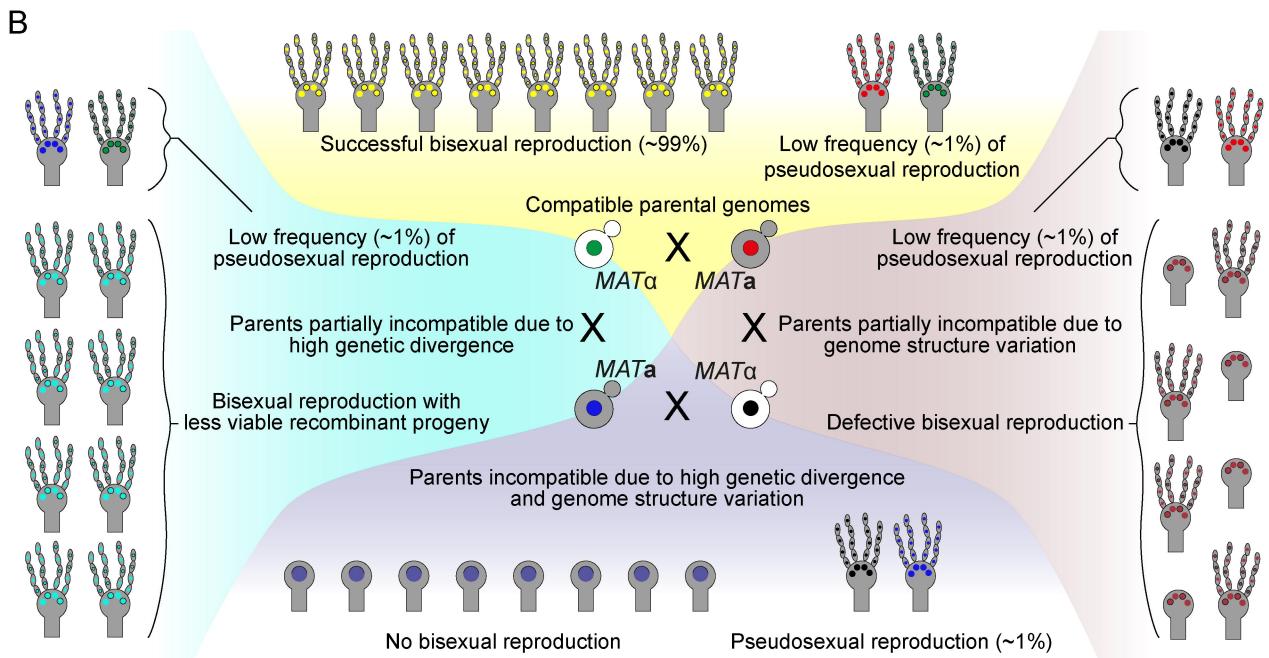
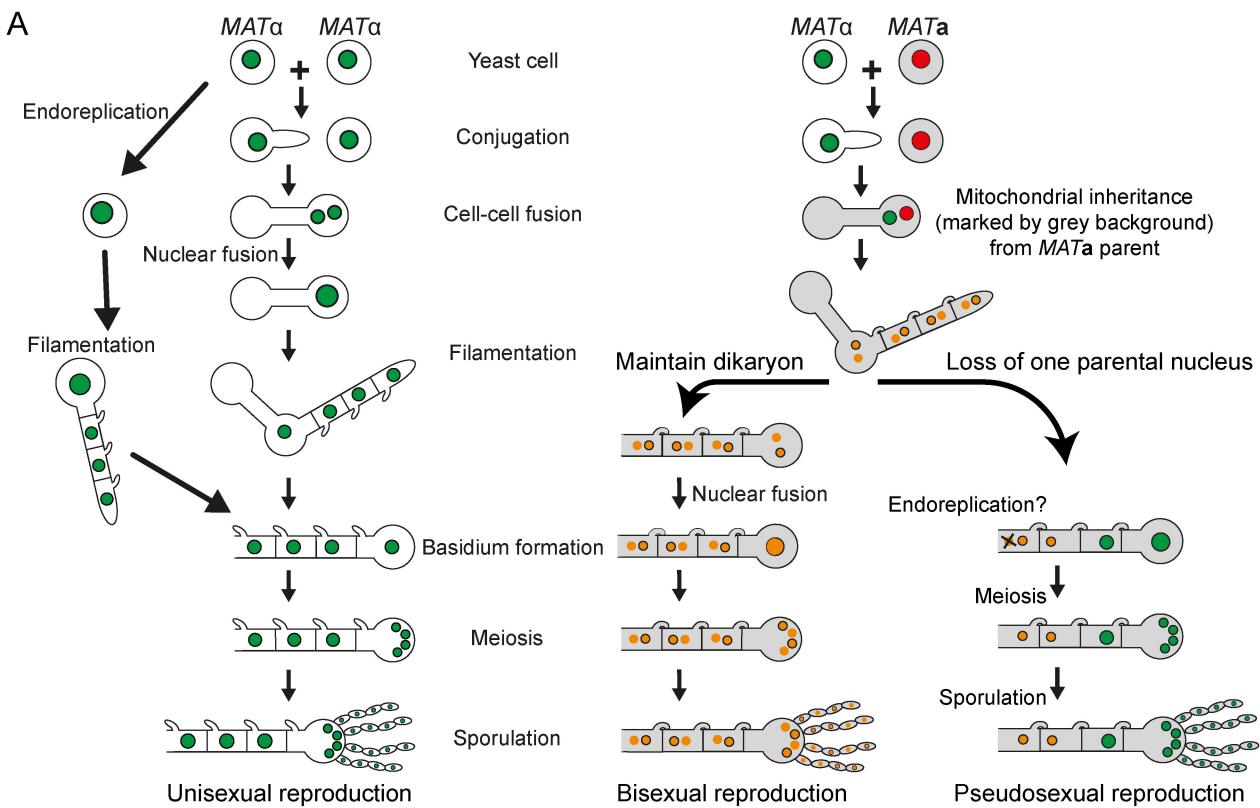
| Basidia<br># | H99 $\alpha$ x KN99a cross         |                 |                                          |      | VYD135 $\alpha$ x KN99a cross      |                 |              |      |
|--------------|------------------------------------|-----------------|------------------------------------------|------|------------------------------------|-----------------|--------------|------|
|              | Spores<br>germinated/<br>dissected | %<br>germinated | MAT                                      | Mito | Spores<br>germinated/<br>dissected | %<br>germinated | MAT          | Mito |
| 1            | 5/14                               | 36              | 4 $\alpha$ + 1 $\alpha$                  | a    | 12/24                              | 50              | All $\alpha$ | a    |
| 2            | 14/14                              | 100             | 7 $\alpha$ + 7 $\alpha$                  | a    | 6/10                               | 60              | All $\alpha$ | a    |
| 3            | 12/14                              | 86              | 2 $\alpha$ + 7 $\alpha$<br>+3a/ $\alpha$ | a    | 15/15                              | 100             | All a        | a    |
| 4            | 10/14                              | 71              | 4 $\alpha$ + 6a                          | a    | 22/27                              | 81              | All a        | a    |
| 5            | 7/13                               | 54              | 6a + 1a/ $\alpha$                        | a    | 3/12                               | 25              | All $\alpha$ | a    |
| 6            | 13/14                              | 93              | 6 $\alpha$ + 7 $\alpha$                  | a    | 25/27                              | 93              | All $\alpha$ | a    |
| 7            | 11/14                              | 79              | 6 $\alpha$ + 5a                          | a    | 4/4                                | 100             | All $\alpha$ | a    |
| 8            | 14/14                              | 100             | 12 $\alpha$ + 2a                         | a    | 10/13                              | 77              | All $\alpha$ | a    |
| 9            | 10/14                              | 71              | 4 $\alpha$ + 6a                          | a    | 13/15                              | 87              | All $\alpha$ | a    |
| 10           | 14/14                              | 100             | 7 $\alpha$ + 7 $\alpha$                  | a    | 31/61                              | 51              | All $\alpha$ | a    |
| 11           | 14/14                              | 100             | 10 $\alpha$ + 4a                         | a    | 10/10                              | 100             | All a        | a    |
| 12           | 12/14                              | 86              | 8 $\alpha$ + 4a                          | a    | 4/5                                | 80              | All a        | a    |
| 13           | 4/11                               | 36              | All a                                    | a    | 24/28                              | 86              | All a        | a    |
| 14           | 13/13                              | 100             | 8 $\alpha$ + 5a                          | a    | 16/28                              | 57              | All a        | a    |
| 15           | 14/14                              | 100             | 7 $\alpha$ + 7 $\alpha$                  | a    | 11/11                              | 100             | All a        | a    |
| 16           | 14/14                              | 100             | 6 $\alpha$ + 8a                          | a    | 10/22                              | 45              | All $\alpha$ | a    |


3 Mito refers to Mitochondria.




A




B









