

# 1 How spiders make their eyes: Systemic paralogy and function of retinal determination 2 network homologs in arachnids

\*Guilherme Gainett<sup>1</sup>, \*Jesús A. Ballesteros<sup>1</sup>, Charlotte R. Kanzler<sup>1</sup>, Jakob T. Zehms<sup>1</sup>, John M. Zern<sup>1</sup>, Shlomi Aharon<sup>2</sup>, Efrat Gavish-Regev<sup>2</sup>, Prashant P. Sharma<sup>1</sup>

6 <sup>1</sup>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA  
7 53706

8 2 National

9 Israel

10

11 \*Equal author contribution

12

13 Correspondence: [guilherme.gainett@wisc.edu](mailto:guilherme.gainett@wisc.edu), [ballesterosc@wisc.edu](mailto:ballesterosc@wisc.edu)

14

15

16

17 **Abstract**

18

19 Arachnids are important components of cave ecosystems and display many examples of  
20 troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is  
21 known about how the eyes of arachnids are specified genetically, let alone the mechanisms  
22 for eye reduction and loss in troglomorphic arachnids. Additionally, paralogy of Retinal  
23 Determination Gene Network (RDGN) homologs in spiders has convoluted functional  
24 inferences extrapolated from single-copy homologs in pancrustacean models. Here, we  
25 investigated a sister species pair of Israeli cave whip spiders (Arachnopulmonata,  
26 *Amblypygi*, *Charinus*) of which one species has reduced eyes. We generated the first  
27 embryonic transcriptomes for *Amblypygi*, and discovered that several RDGN homologs  
28 exhibit duplications. We show that paralogy of RDGN homologs is systemic across  
29 arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific  
30 phenomenon. A differential gene expression (DGE) analysis comparing the expression of  
31 RDGN genes in field-collected embryos of both species identified candidate RDGN genes  
32 involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic  
33 inference of expression patterns with functional experiments, we interrogated the function of  
34 three candidate RDGN genes identified from DGE in a spider, using RNAi in the spider  
35 *Parasteatoda tepidariorum*. We provide functional evidence that one of these paralogs, *sine*  
36 *oculis/Six1 A (soA)*, is necessary for the development of all arachnid eye types. Our results  
37 support the conservation of at least one RDGN component across Arthropoda and establish a  
38 framework for investigating the role of gene duplications in arachnid eye diversity.

39

40 Keywords: cave blindness | *sine oculis* | *Six1* | *Parasteatoda tepidariorum* | *Amblypygi* |  
41 RNAi

42

43 **Introduction**

44

45 Cave habitats offer apt systems for investigating the genetic basis of morphological  
46 convergence because communities of these habitats are similarly shaped by environmental  
47 pressures, such as absence of light and diminished primary productivity (Howarth, 1993;  
48 Juan, Guzik, Jaume, & Cooper, 2010). Troglobites, species exclusive to cave environments  
49 and adapted to life in the dark, exhibit a suite of characteristics common to cave systems  
50 around the world, such as reduction or complete loss of eyes, depigmentation, elongation of  
51 appendages and sensory structures, and decreased metabolic activity (Jemec, Škufca,  
52 Prevorčnik, Fišer, & Zidar, 2017; Protas & Jeffery, 2012; Riddle et al., 2018). Previous work  
53 has shown that troglomorphism can evolve over short time spans (<50 kyr) despite gene flow  
54 (Bradic, Teotónio, & Borowsky, 2013; Coghill, Darrin Hulsey, Chaves-Campos, García de  
55 Leon, & Johnson, 2014; Herman et al., 2018) and that parallel evolution of troglomorphic  
56 traits (e.g., depigmentation; eye loss) in independent populations can involve the same  
57 genetic locus (Protas et al., 2005; Protas, Trontelj, & Patel, 2011; Re et al., 2018).

58 Troglomorphism and troglobitic fauna have been analyzed across numerous taxonomic  
59 groups with respect to systematics and population genetics. However, one component of the  
60 troglobitic fauna that remains poorly understood is cave arachnids. Most orders of Arachnida  
61 are prone to nocturnal life history and some orders broadly exhibit troglophilic; in fact,  
62 troglobitic species are known from all the extant terrestrial arachnid orders except Solifugae  
63 and Uropygi (Cruz-López, Proud, & Pérez-González, 2016; Esposito et al., 2015; Harvey,  
64 2002; 2007; Hedin & Thomas, 2010; Mammola, Mazzuca, Pantini, Isaia, & Arnedo, 2017;  
65 Miranda, Aharon, Gavish-Regev, Giupponi, & Wizen, 2016; Santibáñez López, Francke, &  
66 Prendini, 2014; Smrž, Kováč, Mikeš, & Lukešová, 2013). In addition to eye and pigment  
67 loss, troglomorphism in arachnids manifests in the form of compensatory elongation of  
68 walking legs and palps, appendages which harbor sensory structures in this group  
69 (Derkarabetian, Steinmann, & Hedin, 2010; Mammola & Isaia, 2017; Mammola et al.,  
70 2018a; Mammola, Cardoso, Ribera, Pavlek, & Isaia, 2018b).

71 Thorough understanding of the developmental genetic basis for the evolution of  
72 troglomorphic traits has been largely spearheaded in two model systems: the Mexican cave  
73 fish *Astyanax mexicanus* (Bradic et al., 2013; Coghill et al., 2014; Herman et al., 2018;  
74 Porter, Dittmar, & Pérez-Losada, 2007; Protas et al., 2005; Protas & Jeffery, 2012) and the  
75 cave isopod *Asellus aquaticus* (Jemec et al., 2017; Re et al., 2018; Stahl et al., 2015). Both  
76 model systems have more than one hypogean population, can be maintained in laboratories,

77 and are amenable to approaches such as genetic crosses and quantitative trait locus mapping.  
78 The advent of short read sequencing technology in tandem with experimental approaches has  
79 transformed the potential to triangulate regulatory differences between hypogean  
80 (subterranean) and epigean (surface-dwelling) lineages (Protas et al., 2005; Re et al., 2018;  
81 Riddle et al., 2018; Stahl et al., 2015), and to study a broader range of cave taxa.

82 Among arthropods, work on the isopod *A. aquaticus* in particular has made significant  
83 advances in the identification of loci regulating pigmentation and size of arthropod eyes  
84 (Protas et al., 2011; Re et al., 2018), complementing forward and reverse genetic screening  
85 approaches in other pancrustacean models (e.g., *Drosophila melanogaster*, *Tribolium*  
86 *castaneum*, and *Gryllus bimaculatus*) (Cagan, 2009; Kumar, 2009; Takagi et al., 2012;  
87 ZarinKamar et al., 2011). However, developmental and genetic insights into the evolution of  
88 blindness illuminated by *A. aquaticus* and other pancrustacean models are not directly  
89 transferable to Arachnida for two reasons. First, the eyes of arachnids are structurally and  
90 functionally different from those of pancrustaceans. Typically, the main eyes of adult  
91 Pancrustacea (e.g., *A. aquaticus*) are a pair of faceted (or apposition) eyes, which are  
92 composed of many subunits of ommatidia. In addition, adult Pancrustacea have small median  
93 ocelli (typically three in holometabolous insects), often located medially and at the top of the  
94 head.

95 By contrast, extant arachnids lack ommatidia and typically have multiple pairs of eyes  
96 arranged along the frontal carapace. All arachnid eyes are simple-lens eyes or ocelli; each eye  
97 has a single cuticular lens, below which are a vitreous body and visual cells. The retina is  
98 composed of the visual cells and pigment cells. These eyes are divided in two types, namely  
99 the principal eyes and the secondary eyes (Foelix, 2011; Land, 1985). Principal and  
100 secondary eyes differ in the orientation of their retina (Homann, 1971): the principal eyes are  
101 of the everted type, with the visual cells lying distally, and lack a reflective layer; the  
102 secondary eyes are inverted, with the light-sensitive rhabdomeres pointing away from  
103 incoming light (analogous to vertebrate eyes). All secondary eyes possess a reflective layer of  
104 crystalline deposits called a tapetum, which is responsible for the “eye shine” of spiders. The  
105 principal eyes are the median eyes (ME, also known as anterior medium eyes). The  
106 secondary eyes comprise the anterior lateral eyes (ALE), posterior lateral eyes (PLE), and  
107 medium lateral eyes (MLE; also known as posterior medium eyes) (Fig. 1A) (Foelix, 2011;  
108 Land, 1985) (nomenclature used here follows Schomburg et al 2015). Certain orders and  
109 suborders of arachnids have lost one type of eye altogether, with the homology of eyes

110 clarified by the fossil record and embryology (Foelix, 2011; Garwood, Sharma, Dunlop, &  
111 Giribet, 2014; Morehouse, Buschbeck, Zurek, Steck, & Porter, 2017).

112 The second concern in extending the model derived from pancrustaceans is that a subset  
113 of Arachnida exhibits an ancient shared genome duplication, resulting in numerous paralogs  
114 of developmental patterning genes. Recent phylogenetic and comparative genomic works on  
115 Arachnida have shown that Arachnopulmonata (Ballesteros & Sharma, 2019; Ballesteros,  
116 Santibáñez López, Kováč, Gavish-Regev, & Sharma, 2019; Sharma, Kaluziak, Pérez-Porro,  
117 González, Hormiga, et al., 2014a), the clade of arachnids that bear book lungs (e.g., spiders,  
118 scorpions, whip spiders), retain duplicates of many key transcription factors, such as  
119 homeobox genes, often in conserved syntenic blocks (Leite et al., 2018; Schwager et al.,  
120 2017; Sharma, Santiago, González-Santillán, Monod, & Wheeler, 2015a; Sharma, Schwager,  
121 Extavour, & Wheeler, 2014b). Many of the ensuing paralogs exhibit non-overlapping  
122 expression patterns and a small number have been shown to have subdivided the ancestral  
123 gene function (subfunctionalization) or acquired new functions (neofunctionalization) (Leite  
124 et al., 2018; Paese, Leite, Schönauer, McGregor, & Russell, 2018; Turetzek, Pechmann,  
125 Schomburg, Schneider, & Prpic, 2015).

126 While comparatively little is known about the genetics of arachnid eye development, gene  
127 expression surveys of insect retinal determination gene network (RDGN) homologs of two  
128 spiders (*Cupiennius salei* and *Parasteatoda tepidariorum*) have shown that this phenomenon  
129 extends to the formation of spider eyes as well (Samadi, Schmid, & Eriksson, 2015;  
130 Schomburg et al., 2015). Different paralog pairs (orthologs of *Pax6*, *Six1*, *Six3*, *eyes absent*,  
131 *ataonal*, *dachshund* and *orthodenticle*) exhibit non-overlapping expression boundaries in the  
132 developing eye fields, resulting in different combinations of transcription factor expression in  
133 the eye pairs (Samadi et al., 2015; Schomburg et al., 2015). While these expression patterns  
134 offer a potentially elegant solution to the differentiation of spider eye pairs, only a few  
135 studies with the spider *P. tepidariorum* have attempted to experimentally test the role of these  
136 genes in the formation of arachnid eyes. *Ptep-orthodenticle-1* maternal RNA interference  
137 (RNAi) knockdown results in a range of anterior defects, including complete loss of the head,  
138 which precluded assessment of a role in the formation of the eyes (Pechmann, McGregor,  
139 Schwager, Feitosa, & Damen, 2009). *Ptep-dac2* RNAi knockdown results in appendage  
140 segment defects, but no eye patterning defects were reported by the authors (Turetzek et al.,  
141 2015). More recently, a functional interrogation of *Ptep-Six3* paralogs, focused on labrum  
142 development, reported no discernible morphological phenotype, despite a lower hatching rate  
143 than controls and disruption of a downstream target with a labral expression domain

144 (Schacht, Schomburg, & Bucher, 2020). Thus, gene expression patterns of duplicated RDGN  
145 paralogs have never been linked to eye-related phenotypic outcomes in any  
146 arachnopulmonate model. Similarly, the functions of the single-copy orthologs of RDGN  
147 genes in groups like mites (Grbić et al., 2007; Telford & Thomas, 1998), ticks (Santos et al.,  
148 2013), and harvestmen (Garwood et al., 2014; Sharma, Schwager, Giribet, Jockusch, &  
149 Extavour, 2013; Sharma, Tarazona, Lopez, Schwager, Cohn, Wheeler, et al., 2015b) are  
150 entirely unexplored, in one case because an otherwise tractable arachnid species lacks eyes  
151 altogether (the mite *Archegozetes longisetosus* (Barnett & Thomas, 2012; 2013a; 2013b;  
152 Telford & Thomas, 1998).

153 Investigating the evolution of eye loss in arachnids thus has the potential to elucidate  
154 simultaneously (1) the morphogenesis of a poorly understood subset of metazoan eyes  
155 (Foelix, 2011; Morehouse et al., 2017), (2) developmental mechanisms underlying a  
156 convergent trait (i.e., eye loss in caves) in phylogenetically distant arthropod groups (Protas  
157 & Jeffery, 2012; Re et al., 2018), (3) shared programs in eye development common to  
158 Arthropoda (through comparisons with pancrustacean datasets) (Cagan, 2009; Stahl et al.,  
159 2015; Takagi et al., 2012; Zarinkamar et al., 2011), and (4) the role of ancient gene  
160 duplicates in establishing the diversity of eyes in arachnopulmonates (Leite et al., 2018;  
161 Samadi et al., 2015; Schomburg et al., 2015).

162 As first steps toward these goals, we first developed transcriptomic resources for a sister  
163 species pair of cave-dwelling *Charinus* whip spiders, wherein one species exhibits typical eye  
164 morphology and the other highly reduced eyes (a troglobitic condition). We applied a  
165 differential gene expression (DGE) analysis to these datasets to investigate whether candidate  
166 RDGN genes with known expression patterns in model spider species (*C. salei*, *P.*  
167 *tepidariorum*) exhibit differential expression in non-spider arachnopulmonates, as a function  
168 of both eye condition and developmental stage. To link bioinformatic inference of expression  
169 patterns with functional outcomes, we interrogated the function of three candidate RDGN  
170 genes identified from DGE in a model arachnopulmonate, using RNAi in the spider *P.*  
171 *tepidariorum*, which exhibits the same number and types of eyes as whip spiders. We provide  
172 functional evidence that one of these candidates, *sine oculis/Six1*, is necessary for the  
173 development of all spider eye types.

174

## 175 **Results**

176

177 *Charinus ioanniticus* and *Charinus israelensis* embryonic transcriptomes

178

179 As an empirical case of closely related, non-spider arachnopulmonate sister species pair  
180 that constitutes one epigean and one troglobitic species, we selected the whip spider species  
181 *Charinus ioanniticus* and *C. israelensis* (Fig. 1 B–C). Whip spiders, arachnopulmonates of  
182 the order Amblypygi, are commonly found in cave habitats ranging from rain forests,  
183 savannahs and deserts (Weygoldt, 2000). The recently described troglobitic species *Charinus*  
184 *israelensis* (reduced-eyes) occurs in close proximity to its congener *Charinus ioanniticus*  
185 (normal-eyes) in caves in the Galilee, northern Israel (Miranda et al. 2016). Given that the  
186 formation of Levantine cave refuges is considerably recent, *C. israelensis* and *C. ioanniticus*  
187 are likely sister species with a small time of divergence, an inference supported by their  
188 similar morphology (Miranda et al 2016). We collected ovigerous females from both species  
189 in caves in Israel and extracted RNA from embryos (SI Appendix, Table S1). Embryos of  
190 whip-spiders (*Phrynus marginemaculatus*) achieve a deutembryo stage around 20–25 days  
191 after egg laying (dAEL), a stage where most external features of the embryo, such as  
192 tagmosis and appendages are fully formed, but not the eyes (Weygoldt, 1975). The  
193 deutembryo hatches from the egg membrane inside the broodsac carried by the mother, but  
194 remains in this stage relatively unchanged for around 70 days. The eyes begin to form around  
195 50 dAEL, but the eye spots become externally visible and pigmented only close to hatching  
196 (90 dAEL) (Weygoldt, 1975).

197 For *de novo* assembly of the embryonic transcriptomes of *C. ioanniticus* and *C.*  
198 *israelensis*, we extracted RNA from all embryonic deutembryo stages collected in the field  
199 (see Supplementary Information; table 1 for localities and sample explanations). Assemblies  
200 include two deutembryo stages before eyespot formation and one deutembryo stage bearing  
201 eyespots for *C. ioanniticus*; and two early deutembryo stages for *C. israelensis* (SI Appendix,  
202 Fig. S1).

203 The assembly of *C. ioanniticus* reads resulted in 219,797 transcripts composed of  
204 143,282,365 bp with and N50 of 1122 bp (more than 50% of transcripts are 1122 bp or  
205 longer) (SI Appendix, Table S2). Universal single copy ortholog benchmarking with BUSCO  
206 v3.0 (Waterhouse et al., 2017) indicated 93.8% completeness, with 5.7% of BUSCO genes  
207 exhibiting duplication.

208 The assembly *C. israelensis* resulted in a higher number of transcripts: 663,281  
209 transcripts composed of 230,044,656 bp and with N50 of 1045 bp. The BUSCO analysis  
210 shows 95.2% completeness, which is similar to the value for *C. ioanniticus* assembly.

211

212 RDGN gene duplication in *Charinus* whip spiders

213

214 Amblypygi is inferred to be nested stably in Arachnopulmonata, the clade of arachnids  
215 that bear book lungs (Ballesteros & Sharma, 2019; Giribet, 2018; Lozano-Fernandez et al.,  
216 2019; Rota-Stabelli et al., 2010; Sharma, Kaluziak, Pérez-Porro, González, Hormiga, et al.,  
217 2014a). Recent evidence suggests that the common ancestor of arachnopulmonates has  
218 undergone a whole- or partial-genome duplication affecting large gene families, such as  
219 homeobox genes (Leite et al., 2018; Schwager et al., 2017; Sharma, Santiago, González-  
220 Santillán, Monod, & Wheeler, 2015a). The stable phylogenetic position of Amblypygi in  
221 Arachnopulmonata predicts that genes in RDGN that are duplicated in spiders, should also be  
222 duplicated in *Charinus* whip spiders. To test this hypothesis, we performed phylogenetically-  
223 informed orthology searches on the newly assembled embryonic transcriptomes of both  
224 *Charinus* species, and conducted phylogenetic analysis with orthologs across selected  
225 arthropod species. We discovered that homologs of *atonal*, *Pax6*, *dachshund*, *sine oculis*  
226 (*Six1*), *Optix* (*Six3*), and *orthodenticle* are duplicated in *Charinus*, whereas *eyegone* and *eyes*  
227 *absent* occur as single-copy orthologs (these latter two also occurring single-copy in spiders)  
228 (Fig. 2).

229 *atonal*: The *atonal* gene tree showed poor resolution (SI Appendix, Fig. S2), hampering  
230 unambiguous assignment of the whip spider genes to *atonal* copies previously annotated in  
231 spiders (Samadi et al., 2015; Schwager et al., 2017). *D. melanogaster* copies of *atonal* and  
232 *amos* clustered together forming a clade with other pancrustacean and myriapod sequences,  
233 suggesting these paralogs are restricted to Mandibulata. The fruit fly *cousin of atonal* (*cato*)  
234 formed a clade including the *Cupiennius salei* sequence of *atonalB* whereas the second copy  
235 of *C. salei*, *atonalA*, is found in an independent clade with only arachnid sequences. It is in  
236 this later clade that the only sequences of *Charinus* related to *atonal* are found, in turn  
237 forming two separate clades with clear amino acid differences between these copies (SI  
238 Appendix, Dataset S1; *atonal* alignment). Herein, these copies are labeled *atonalA* (*atoA*) and  
239 *atonalB* (*atoB*). Note that the reference genomic sequences, annotated as “*atonal like*  
240 *homolog 8 like*” (Ptep XP 0159181091), is found orthologous to the gene *net* in *D.*  
241 *melanogaster*.

242 *Pax6*: In *D. melanogaster*, there are two paralogous copies of the vertebrate *Pax6*, *eyeless*  
243 and *twin of eyeless*. This duplication seems to be shared across all arthropods and both *Pax6*  
244 copies have been characterized in spiders (Samadi et al., 2015; Schomburg et al., 2015). The  
245 gene tree of *Pax6* homologues clearly identified a clade for *toy* including chelicerate and

246 mandibulate copies, but no *Charinus* sequences are found in this clade (SI Appendix, Fig.  
247 S3). The sister clade (*eyeless*) consists only of pancrustacean sequences whereas the  
248 chelicerate copies, previously annotated as *eyeless* orthologs, are found in a separate clade.  
249 Among these, two distinct genes, herein dubbed *Pax6A* and *Pax6B*, are present in both  
250 *Charinus* species. Sequence similarity searches (blastp) of both *Pax6A* and *Pax6B* against the  
251 genome of *Drosophila melanogaster* points to *Dmel-toy* as the best hit, followed by *Dmel-ey*.  
252 Therefore, although the homology of these copies with *Dmel-ey/toy* is evident, it is not trivial  
253 to assign these to either of these genes or if these represent taxon-restricted duplicates of  
254 *eyeless*.

255 *eyegone/twin of eyegone*: These members of the Pax gene family are paralogous in *D.*  
256 *melanogaster* but occur as single copy in arachnids. Single copy orthologs of eyg/toe are  
257 present in the two target Amblypygi species (SI Appendix, Fig. S3).

258 *dachshund*: Spiders and scorpions have two paralogous copies of *dachshund* (Nolan,  
259 Santibáñez López, & Sharma, 2020; Turetzek et al., 2015). Two copies are present in the  
260 transcriptomes of both *Charinus* species and are here termed *dacA* and *dacB* (SI Appendix,  
261 Fig. S4). The *C. israelensis* *dacB* is assembled in two different gene fragments that overlap  
262 by three amino acids (SI Appendix, Fig. S4; see *dachshund* alignment in SI Appendix  
263 Dataset S1). The *C. ioanniticus* *dacA* copy is also assembled as two different gene fragments  
264 with little sequence overlap but being part of the *dacA* clade (SI Appendix, Fig. S4).

265 *eyes absent*: This single-copy orthologs are found in arthropods and arachnids alike  
266 and is represented in both *Charinus* species. The association of transcript to this gene is  
267 unambiguous for both amblypygid species (SI Appendix, Fig. S5).

268 *orthodenticle*: As with spiders, there are two copies homologous to *Dmel-otd* in  
269 *Charinus*. The resolution of the gene tree is poor and does not allow uncontroversial  
270 association to spider orthologs (SI Appendix, Fig. S6). *Charinus* copies are termed *otdA* and  
271 *otdB*.

272 *Optix*: There are two very similar copies of *Optix* in *C. israelensis* and one in *C.*  
273 *ioanniticus* (SI Appendix, Fig. S7). The *C. ioanniticus* copy is termed *OptixA*. The two copies  
274 of *C. israelensis* show very conserved amino acid sequences but clear nucleotide differences.  
275 Although the gene tree with the reference genome shows them more closely allied to one of  
276 the spider paralogous copies of *Optix* (Ptep NP 00130752.1), a reduced analysis including  
277 *Cupiennius salei* and *P. tepidariorum* copies, suggests that the *Charinus* copies are  
278 independent duplications. Here the two whip spider copies are dubbed *OptixA* and *OptixB* but  
279 they should not be considered orthologous to the spider *OptixA/B*.

280        *sine oculis*: Two copies of *sine oculis* are found in *C. israelensis* and one in *C. ioanniticus*. Both copies are nested in a clade with *Ptep-soA* (SI Appendix, Fig. S8). These  
281        are herein dubbed as *soA* and *soB* given that orthology with either spider copy is unclear.  
282  
283

284        RDGN genes in whip spider eye formation: comparing early and late stages of *C. ioanniticus*  
285

286        The expression of paralog pairs of *Pax6*, *sine oculis*, *Optix*, *eyes absent*, *atonal*,  
287        *dachshund* and *orthodenticle* in the developing eyes of the spiders (Samadi et al., 2015;  
288        Schomburg et al., 2015), and the occurrence of the same paralogs in *Charinus* whip spiders,  
289        suggest that these genes may also be involved in the formation of eyes in whip spiders. We  
290        investigated this idea by comparing the expression levels of these RDGN genes in the stages  
291        before eye-spot formation versus a stage after eye-spot formation in the eye-bearing whip  
292        spider *Charinus ioanniticus* (henceforth “Comparison 1”; Fig. 3A).

293        We mapped reads of both treatments to the reference transcriptome of *C. ioanniticus*  
294        using the quasi-alignment software Salmon v. 1.1.0 (Patro, Duggal, Love, Irizarry, &  
295        Kingsford, 2017) and conducted a differential gene expression analysis of Comparison 1  
296        using DESeq2 v 1.24.0 (Love, Huber, & Anders, 2014) (SI Appendix, Fig. S9). These  
297        comparisons showed that *Cioa-dacA*, *Cioa-otdA*, *Cioa-eya* and *Cioa-soA* are significantly  
298        over-expressed ( $p_{adj} < 0.05$ ) in the eyespot stage in comparison with the stage before eyespot  
299        formation (Fig. 3A). While we cannot rule out that the differences in gene expression are due  
300        to other developmental differences between the two stages sequenced, these results  
301        highlighted these four RDGN genes as promising candidates involved in the formation of  
302        eyes in whip spiders.

303  
304        RDGN genes in whip spider eye reduction: comparing *C. ioanniticus* and *C. israelensis*  
305

306        Blindness in adults of the model cave fish *Astyanax mexicanus* is a result of an embryonic  
307        process in which the rudimentary eye of the embryo is induced to degenerate by signals  
308        emitted from the lens tissue (Jeffery, 2009). Both early and late expression of RDGN genes,  
309        such as *Pax6*, are responsible for the reduction of eyes in fish from cave populations

310        (Jeffery, 2009; Strickler, Yamamoto, & Jeffery, 2001). Likewise, in the isopod crustacean  
311        *Asellus aquaticus* cave blindness has a strong genetic component and mechanisms of eye  
312        reduction also act at embryonic stages (Mojaddidi, Fernandez, Erickson, & Protas, 2018;  
313        Protas et al., 2011). The embryonic development of the reduced-eyes whip spider *C.*

314 *israelensis* has not been explored to date, but we expect that reduction of eyes results from  
315 changes in embryonic gene expression during the deutembryo stage (Weygoldt, 1975). We  
316 investigated this possibility by quantifying the relative gene expression of RDGN genes in  
317 comparable embryonic stages of *C. israelensis* (reduced eyes) and *C. ioanniticus* (normal  
318 eyes) embryos before eye-spot formation (SI Appendix Table S1; Figure S1). Using the DGE  
319 approach from Comparison 1, we conducted a heterospecific analysis using as the reference  
320 either the *C. israelensis* transcriptome (henceforth “Comparison 2.1”) or the *C. ioanniticus*  
321 transcriptome (henceforth “Comparison 2.2”).

322 Both analyses are anchored on the premise that a hybrid mapping between the sister  
323 species is possible given the recent divergence between them. The mapping rate of the *C.*  
324 *ioanniticus* reads was similar regardless of the reference species, (96.74% and 96.59%  
325 respectively for *C. ioanniticus* and *C. israelensis*). In the case of the reads from *C. israelensis*  
326 embryos, mapping rate to the conspecific (96.8%) transcriptome was higher than when  
327 mapping against *C. ioanniticus* (82.45%). The similar mapping rate of *C. ioanniticus* reads  
328 suggests that the two whip spiders are sufficiently closely related to generate interspecific  
329 comparisons of gene expression. Comparisons 2.1 and 2.2 yielded similar results with respect  
330 to the direction of differentially expressed RDGN genes (Fig. 3B–C). In comparison 2.1,  
331 *Pax6A*, *OptixA* and *OptixB* are significantly over-expressed in the normal-eyes species, with  
332 expression levels at least 4 times higher than in the reduced-eyes species ( $\log_2\text{FC} > 2$ ;  $p_{\text{adj}} <$   
333 0.05) (Fig. 3B; SI Appendix, Fig. S10). In comparison 2.2, *Pax6A* and *OptixA* are also over-  
334 expressed in *C. ioanniticus* ( $p_{\text{adj}} < 0.05$ ), and so is *eyes absent* ( $p_{\text{adj}} < 0.05$ ; Fig. 3C). In  
335 comparison 2.2, *orthodenticle-B* appears under-expressed in the normal-eyes species ( $p_{\text{adj}} <$   
336 0.05) (Fig. 3C; SI Appendix, Fig. S11). We note that the magnitude of  $\log_2\text{FC}$  and  
337 significance values differed considerably between analysis. Nonetheless, *Pax6A* and *OptixA*  
338 were consistently over expressed in the normal-eyes species, highlighting these two genes as  
339 promising candidates involved in the reduction of eyes in *Charinus israelensis*.  
340

341 *sine oculis* is necessary for principal and secondary eye development in a model  
342 arachnopulmonate  
343

344 Our bioinformatic analysis in the whip spider system suggested that *eyes absent* and  
345 paralogs of *sine oculis*, *orthodenticle*, and *dachshund* may be involved in the normal  
346 formation of eyes in *C. ioanniticus* (Comparison 1). We also found evidence that *Pax6* and a  
347 paralog of *Optix* may be involved in the reduction of eyes in the cave whip spider *C.*

348 *israelensis*. To link bioinformatic reconstructions of gene expression with functional  
349 outcomes, we interrogated the function of RDGN genes using parental RNA interference  
350 (RNAi) in the spider *Parasteatoda tepidariorum*. We selected *Ptep-soA* (*Ptep-so1 sensu*  
351 Schomburg et al. 2015), *Ptep-otdB* (*Ptep-otd2 sensu* Schomburg et al. 2015) and *Ptep-OptixB*  
352 (*Ptep Six3.2 sensu* Schomburg et al. 2015). In *P. tepidariorum*, these genes are known to be  
353 expressed in all eye types, in the median eyes only, and in the lateral eyes, respectively (Fig.  
354 1D) (Schomburg et al., 2015).

355 Early expression of *Ptep-soA* is detected in lateral domains of the head lobes (stage 10)  
356 corresponding to the principal and secondary eyes, and continues until the pre-hatching stage  
357 14 (Schomburg et al., 2015). Expression of *Ptep-soA* on wild type stage 14.1 embryos is  
358 bilaterally symmetrical on all eyes and uniformly strong (Fig. 4A–B). By stage 14.2, it  
359 remains strong on the principal eyes but it is stronger at the periphery of the secondary eye  
360 spots (Fig. 4A, C).

361 *P. tepidariorum* hatchlings, or postembryos, initially have no externally visible lenses and  
362 pigment. The red pigment and lenses of all eyes, and the reflective tapetum of the lateral  
363 eyes, become progressively recognizable in the 48 hours (at 26°C) until the animal molts into  
364 the first instar with fully formed eyes (SI Appendix, Video S1) (see also Mittmann & Wolff,  
365 2012). We fixed embryos from *Ptep-soA* dsRNA-injected and dH2O-injected treatments  
366 between 24h-48h, which encompasses stages where the eyes of postembryos are already  
367 recognizable until the first instar.

368 Negative control experiments (dH<sub>2</sub>O-injected females) yielded postembryos with eye  
369 morphology indistinguishable from wild type animals: the median eyes (ME; principal eyes)  
370 have an inferior semi-lunar ring of red pigment and lack the tapetum; and all pairs of lateral  
371 eyes (secondary eyes) have the canoe-shaped tapetum type (Foelix, 2011; Land, 1985), which  
372 is split in the middle and surrounded by red pigment (Fig. 5A; panel 1). We observed  
373 misshaped tapeta on the lateral eyes of some postembryos on the earlier side of the  
374 developmental spectrum of fixed animals, but that was never observed on postembryos close  
375 to molting or first instars (SI Appendix, Fig. S12). It is unclear if this reflects a natural  
376 variation of early developing tapetum or an artifact of sample preparation.

377 Embryos from *Ptep-soA* dsRNA-injected females are also able to hatch into postembryos  
378 and continue molting to adulthood (SI Appendix, Video S2). However, a subset of the  
379 embryos of dsRNA-injected treatment (9.5%; n=195/2049) exhibits a spectrum of eye defects  
380 that was not observed on the controls (Fig. 5A–B; SI Appendix, Fig. S13). The defects  
381 occurred on all eyes, namely medium eyes (ME), anterior lateral eyes (ALE), posterior lateral

382 eyes (PLE), and medium lateral eyes (MLE) (Fig. 5A). Affected medium eyes have reduced  
383 pigmentation or complete absence (Fig. 5A, panels 2–6), while lateral eyes also exhibited  
384 defects of the tapetum or complete absence of the eye (Fig. 5A, panels 4–6).

385 We selected a subset of the knockdown postembryos initially scored as having any eye  
386 defect (n=48) for quantifying the degree of effect per eye type, and the proportion of  
387 symmetrical and mosaic eye phenotypes in our sample. Medium eyes are affected in almost  
388 all cases (97%), whereas the three lateral eye types were similarly lowly affected (MLE:  
389 14%; PLE: 8%; ALE: 10%) (Fig. 5C; SI Appendix, Fig. S12; detailed scoring criteria in  
390 Material and Methods). The majority of defective eyes are mosaics, meaning that a given eye  
391 pair is affected only on one side of the animal (Fig. 5C; SI Appendix, Fig. S12).

392 Parental RNAi against *Ptep-soA* did not completely abolish its expression, as detected by  
393 in situ hybridization (Fig. 4D; see Material and Methods). Nevertheless, we detected  
394 asymmetrical reduction of *Ptep-soA* expression on single eyes of a subset of stage 14  
395 embryos (n=6/16; Fig. 4D), which closely correlates with the predominance of mosaic  
396 phenotypes observed in late postembryos (Fig. 5C).

397 Parental RNAi experiments using the same protocol targeting *Ptep-otdB* and *Ptep-OptixB*  
398 did not result in any detectable phenotypic effects on the eyes of embryos from dsRNA-  
399 injected treatment (two and six females injected, respectively; counts not shown). These  
400 results accord with a recent study that knocked down both *Optix* paralogs *P. tepidariorum*  
401 and did not recover eye defects (Schacht et al., 2020)

402

## 403 Discussion

404

405 Paralogy of RDGN members in arachnopulmonates

406

407 Amblypygi have a critical placement within arachnid phylogeny, as they are part of a trio  
408 of arachnid orders (collectively, the Pedipalpi, comprised of Amblypygi, Thelyphonida, and  
409 Schizomida), which in turn is the sister group to spiders. Whereas the eyes of spiders have  
410 greatly diversified in structure, function, and degree of visual acuity (particularly the eyes of  
411 hunting and jumping spiders), the arrangement and number of eyes in Amblypygi likely  
412 reflects the ancestral condition across Tetrapulmonata (= spiders + Pedipalpi), consisting of  
413 three pairs of simple lateral ocelli and a pair of median ocelli; a similar condition is observed  
414 in basally branching spider groups like Mesothelae and Mygalomorphae, as well as  
415 Thelyphonida (vinegaroons). However, while developmental genetic datasets and diverse

416 genomic resources are available for spiders and scorpions (Oda & Akiyama-Oda, 2020;  
417 Posnien et al., 2014; Schwager et al., 2017; Sharma, Schwager, Extavour, & Wheeler,  
418 2014b), the developmental biology of the other three arachnopulmonate orders has been  
419 virtually unexplored in the past four decades beyond a single work describing the  
420 embryology of one North American amblypygid species (Weygoldt, 1975). To address this  
421 gap, we focused our investigation on a sister species pair of cave whip spiders and generated  
422 the first embryonic transcriptomes for this order. These datasets are immediately amenable to  
423 testing the incidence of RDGN duplicates previously known only from two spiders (Samadi  
424 et al., 2015; Schomburg et al., 2015) and their putative effects in patterning eyes across  
425 Arachnopulmonata broadly.

426 The inference of a partial or whole genome duplication (WGD) in the most recent  
427 common ancestor of Arachnopulmonata is supported by the systemic duplications of  
428 transcription factors and synteny detected in the genomes of the scorpion *Centruroides*  
429 *sculpturatus*, and the spider *Parasteatoda tepidariorum*, as well as homeobox gene  
430 duplications detected in the genome of the scorpion *Mesobuthus martensii* and transcriptome  
431 of the spider *Pholcus phalangioides* (Leite et al., 2018; Schwager et al., 2017). Additional  
432 evidence comes from shared expression patterns of leg gap gene paralogs in a spider and a  
433 scorpion (Nolan et al., 2020). Embryonic transcriptomes are particularly helpful in the  
434 absence of genomes, as several duplicated genes, such as some homeobox genes, are only  
435 expressed during early stages of development (Leite et al., 2018; Sharma, Santiago,  
436 González-Santillán, Monod, & Wheeler, 2015a; Sharma, Schwager, Extavour, & Wheeler,  
437 2014b). Our analysis of *Charinus* embryonic transcriptomes shows that RDGN gene  
438 duplicates observed in spiders also occur in whip spiders, supporting the hypothesis that these  
439 paralogous copies originated from a shared WGD event in the common ancestor of  
440 Arachnopulmonata.

441 The conservation of some transcription factors patterning eyes is widespread in the  
442 Metazoan tree of life (Vopalensky & Kozmik, 2009). In the model fruit fly *D. melanogaster*,  
443 the homeobox Pax6 homolog, *eyeless*, was the first transcription factor identified as a “master  
444 gene”, necessary for compound eye formation and capable of inducing ectopic eye formation  
445 (Gehring & Ikeo, 1999; Kumar, 2009). The Pax6 protein is essential for eye formation across  
446 several metazoan taxa, which has fomented ample debate about the deep homology of gene  
447 regulatory networks in patterning structurally disparate eyes (Carroll, 2008; Shubin, Tabin, &  
448 Carroll, 2009; Vopalensky & Kozmik, 2009). In the case of *sine oculis* (Six1/2), orthologs  
449 are found across metazoans (Bebenek, Gates, Morris, Hartenstein, & Jacobs, 2004; Byrne et

450 al., 2017; Rivera et al., 2013). Evidence that *sine oculis* is required for the eye patterning in  
451 other bilaterians comes from expression pattern in the developing eyes of the annelid  
452 *Platynereis dumerilii* (Arendt, Tessmar, Medeiros de Campos-Baptista, Dorresteijn, &  
453 Wittbrodt, 2002), and functional experiments in the planarian *Girardia tigrina* (Pineda et al.,  
454 2000). Therefore, studies interrogating the genetic bases of eye formation in chelicerate  
455 models have the potential to clarify which components of the eye gene regulatory network of  
456 Arthropoda evolved in the MRCA of the phylum, and which reflect deep homologies with  
457 other metazoan genes.

458

459 A conserved role for a *sine oculis* homolog in patterning arachnopulmonate eyes

460

461 The eyes of arthropods are diverse in number, arrangement, structure and function  
462 (Paulus, 1979). Both types of eyes observed in Arthropoda, the faceted eyes (compound) and  
463 single-lens eyes (ocelli), achieve complexity and visual acuity in various ways. To mention  
464 two extremes, in Mandibulata the compound eyes of mantis shrimps (Stomatopoda) achieve a  
465 unique type of color vision and movements by using 12 different photoreceptive types and  
466 flexible eye-stalks (Daly, How, Partridge, & Roberts, 2018; Marshall, Cronin, & Kleinlogel,  
467 2007; Thoen, How, Chiou, & Marshall, 2014). In Arachnida, the simple-lens median eyes of  
468 some jumping spiders (Salticidae) have exceptional visual acuity in relation to their eye size,  
469 achieve trichromatic vision through spectral filtering, and can move their retina using  
470 specialized muscles (Harland, Li, & Jackson, 2012; Land, 1985; Zurek et al., 2015).  
471 Comparative anatomy suggests that the common ancestor of Arthropoda had both lateral  
472 compound eyes and median ocelli that then became independently modified in the arthropod  
473 subphyla (Morehouse et al., 2017; Paulus, 1979). While in situ hybridization data for selected  
474 RDGN genes across arthropods generally support the hypotheses of eye homology,  
475 comparative developmental datasets remain phylogenetically sparse outside of Pancrustacea  
476 (Samadi et al., 2015; Schomburg et al., 2015)

477 We therefore applied a bioinformatic approach in a study system that lacked any genomic  
478 resources (Amblypygi) to assess whether RDGN homologs are transcriptionally active during  
479 the formation of eyes in the eye-bearing *C. ioanniticus* (Comparison 1), as well as those that  
480 may be putatively involved in eye loss in its troglobitic sister species (Comparison 2). As first  
481 steps toward understanding how arachnid eyes are patterned, our experiments demonstrated  
482 that *soA*, a *sine oculis* paralog identified as differentially expressed during the formation of  
483 eyes in *C. ioanniticus*, is necessary for patterning all eyes of a model arachnid system with

484 the same eye configuration (*Parasteatoda tepidariorum*). Thus, we provide the first  
485 functional evidence that part of the RDGN is evolutionarily conserved in the most recent  
486 common ancestor (MRCA) of insects and arachnids, and by extension, across Arthropoda.

487 The advantage of such a bioinformatic approach is that it can potentially narrow the range  
488 of candidate genes for functional screens, due to the inherent challenges imposed by paralogy  
489 when assessing gene function. Eye reduction in the cave fish *Astyanax mexicanus* has been  
490 shown to involve differential expression of genes known to be involved in eye patterning in  
491 model organisms, such as *hedgehog* and *Pax6* (*eyeless/toy*) (Jeffery, 2009; Protas & Jeffery,  
492 2012). In addition, other “non-traditional” candidates have been identified, such as *hsp90*  
493 (Jeffery, 2009). Likewise, evidence from quantitative trait loci mapping in cave populations  
494 of the troglobitic crustacean *Asellus aquaticus* shows that eye loss phenotype is correlated  
495 with loci that are not part of the RDGN (Protas et al., 2011; Protas & Jeffery, 2012). The  
496 results of the DGE analysis in whip spiders underscore the potential of a DGE approach to  
497 triangulate targets among candidate genes in non-model species more broadly. Future efforts  
498 in the *Charinus* system should focus on dissecting individual eye and limb primordia of  
499 embryos of both species, in order to identify candidate genes putatively involved in the  
500 reduction of each eye type, as well as compensatory elongation of the sensory legs of the  
501 troglobitic species, toward downstream functional investigation.

502

503 Do gene duplications play a role in the functional diversification of arachnopulmonate eyes?  
504

505 A challenge in studying arachnopulmonate models to understand ancestral modes of eye  
506 patterning in Arthropoda is the occurrence of RDGN duplicates in this lineage. Our orthology  
507 searches and phylogenetic analysis showed that the evolutionary history of genes is not  
508 always resolved using standard phylogenetic methods, as short alignable regions and/or  
509 uncertainty of multiple sequence alignments can result in ambiguous gene trees. One way to  
510 circumvent this limitation is by analyzing expression patterns via *in situ* hybridization  
511 between paralogs in different arachnids in order to determine which patterns are  
512 plesiomorphic (Leite et al., 2018; Nolan et al., 2020; Turetzek et al., 2015). Nonetheless, the  
513 possibility of subfunctionalization and neofunctionalization may also complicate such  
514 inferences because discerning one process from the other is analytically challenging (Sandve,  
515 Rohlf, & Hvidsten, 2018).

516 Genetic compensation of gene paralogs is another confounding variable, which can be  
517 accounted for by experimental advances in model organisms (e.g., Shull et al., 2020). We

518 note that the overall penetrance in this experiment is low (9.5%) when compared to some  
519 studies in *P. tepidariorum* (e.g., Khadjeh et al 2012; >59% in *Ptep-Antp* RNAi). Wide  
520 variance in penetrance has been reported by several research groups in this system, with  
521 phenotypic effects varying broadly even within individual experiments (e.g., Fig. 5 of  
522 Akiyama-Oda & Oda, 2006; Fig. S5 of Schwager, Pechmann, Feitosa, McGregor, & Damen,  
523 2009). Furthermore, some genes have empirically proven intractable to misexpression by  
524 RNAi in *P. tepidariorum*, with one case suggesting functional redundancy of posterior Hox  
525 genes to be the cause (Khadjeh et al., 2012). Double knockdown experiments have been  
526 shown to exhibit poor penetrance (0-1.5%) in *P. tepidariorum* as well (Fig. S3 of Khadjeh et  
527 al. 2012; Fig. S1 of Setton et al., 2017), and to our knowledge, no triple knockdown has ever  
528 been achieved. While we cannot rule out functional redundancy with other RDGN paralogs  
529 in the present study, the low penetrance we observed may also be partly attributable to our  
530 conservative phenotyping strategy (see Material and Methods), which did not assess a  
531 possible delay in eye formation and emphasized dramatic defects in eye morphology for  
532 scoring.

533 The occurrence of RDGN gene duplications in Arachnopulmonata, in tandem with  
534 improving functional genetic toolkits in *P. tepidariorum* (e.g., Pechmann, 2016), offers a  
535 unique opportunity of studying the role of sub- and neofunctionalization in the development  
536 of their eyes, and a possible role of this process in the diversification of number, position and  
537 structure of the eyes in an ancient group of arthropods (Harland et al., 2012; Land, 1985;  
538 Morehouse et al., 2017; Paulus, 1979; Zurek et al., 2015). The genomes of mites, ticks, and  
539 harvestmen (Grbić et al., 2011; Hoy et al., 2016) (Gulia-Nuss et al., 2016) reveal that  
540 apulmonate arachnid orders have not undergone genome duplication events as seen in  
541 Arachnopulmonata (Schwager et al., 2017), or horseshoe crabs (Kenny et al., 2015; Nossa et  
542 al., 2014; Zhou et al., 2020). Future comparative studies focused on understanding the  
543 ancestral role of chelicerate RDGN genes should additionally prioritize single-copy orthologs  
544 in emerging model systems independent of the arachnopulmonate gene expansion, such as  
545 the harvestman *Phalangium opilio* (Sharma et al., 2013; Sharma, Schwager, Extavour, &  
546 Giribet, 2012).

547

## 548 **Materials and Methods**

549

550 Animal collection

551

552 Three ovigerous females of the normal-eyes species, *Charinus ioanniticus* (ISR021-2;  
553 ISR021-3; ISR021-4), and two egg-carrying females of the reduced-eyes species, *Charinus*  
554 *israelensis* (ISR051-4; ISR051-6), were hand collected in caves in Israel in August 2018  
555 (Supplementary Information; Table 1). Females were sacrificed and the brood sacs  
556 containing the embryos were dissected under phosphate saline buffer (PBS). For each female,  
557 a subset of the embryos (5 to 13 individuals) was fixed in RNAlater solution after poking a  
558 whole into the egg membrane with fine forceps, while the remaining embryos of the clutch  
559 were fixed in a 4% formaldehyde/PBS solution to serve as vouchers (SI Appendix, Table S1).  
560 Adult animals and embryos of *Parasteatoda tepidariorum* were obtained from the colony at  
561 UW-Madison, US.

562

563 Transcriptome assembly for *Charinus* whip spiders

564

565 RNAlater-fixed embryos were transferred to 1.5mL tubes filled with TRIZOL  
566 (Invitrogen) after two months, and subject to RNA extraction. Total RNA extracted from  
567 each sample of the embryos of *C. ioanniticus* (three samples) and *C. israelensis* (two  
568 samples) (SI Appendix, Table S1) was submitted for library preparation at the Biotechnology  
569 Center of the University of Wisconsin-Madison. Each sample was sequenced in triplicate in  
570 an Illumina High-Seq platform using paired-end 100 bp-long read strategy at the same  
571 facility. Read quality was assessed with FastQC (Babraham Bioinformatics). Paired-end  
572 reads for *C. ioanniticus* (ISR021) and *C. israelensis* (ISR051) were compiled and *de novo*  
573 assembled using Trinity v.3.3 (Grabherr et al., 2011) enabling Trimmomatic v.0.36 to remove  
574 adapters and low-quality reads (Bolger, Lohse, & Usadel, 2014). Transcriptome quality was  
575 assessed with the Trinity package script ‘*TrinityStats.pl*’ and BUSCO v.3 (Waterhouse et al.,  
576 2017). For BUSCO, we used the ‘Arthropoda’ database and analyzed the transcriptomes  
577 filtered for the longest isoform per Trinity gene.

578

579 RNA sequencing for differential gene expression

580

581 The total RNA extraction of each sample of *C. ioanniticus* and *C. israelensis* embryos  
582 was sequenced in triplicate in an Illumina High-Seq platform using a single-end 100 bp-long  
583 read strategy in the same facility as described above. For *C. ioanniticus* (normal-eyes), we  
584 sequenced two biological replicates of embryos at an early embryonic stage, before eye-spot  
585 formation (ISR021-2, ISR021-3), and one sample of late embryos, after eye-spot formation

586 (ISR021-4); For *C. israelensis* (reduced-eyes), we sequenced embryos at an early embryonic  
587 stage (ISR051-6; ISR051-4) comparable to the early stage in *C. ioanniticus* (ISR021-2,  
588 ISR021-3), as inferred by the elongated lateral profile of the body and marked furrows on the  
589 opisthosomal segments (SI Appendix, Fig. S1).

590

591 Differential gene expression analysis in *Charinus* and identification of eye gene orthologs

592

593 Orthologs of *Drosophila melanogaster* *eyeless* and *twin of eyeless* (*Pax6A*, *Pax6B*), *sine*  
594 *oculis* (*soA*, *soB*), *orthodenticle* (*otdA*, *otdB*), *Optix* (*Six3.1*, *Six3.2*), *dachshund* (*dacA*, *dacB*),  
595 and *eyes absent* (*eya*) had been previously isolated in *Parasteatoda tepidariorum*  
596 (Schomburg et al., 2015, and references therein). We used as reference sequences the  
597 complete predicted transcripts for these genes from *P. tepidariorum* genome (Schwager et al.,  
598 2017), *Cupiennius salei* (Samadi et al., 2015) (for *atonal* and *Pax6*), and *D. melanogaster*,  
599 including also *atonal* and *eyegone* from the latter species. The sequences were aligned with  
600 MAFFT (v7.407) (Katoh & Standley, 2013) and the resulting alignment used to build hidden  
601 Markov model profiles for each gene (hmmbuild, from the hmmer suite v.3.3) (Finn et al.,  
602 2015). Matches to these profiles were found using hmmsearch in the reference transcriptomes  
603 of *C. ioanniticus* and *C. israelensis* as well as in the genomes of representative arthropods  
604 including *D. melanogaster* (GCA 000001215.4), *Tribolium castaneum* (GCA 000002335.3),  
605 *Daphnia magna* (GCA 003990815.1), *Strigamia maritima* (GCA 000239455.1),  
606 *Dinothrombium tinctorium* (GCA 003675995.1), *Ixodes scapularis* (GCA 002892825.2),  
607 *Tetranychus urticae* (GCA 000239435.1), *Limulus polyphemus* (GCA 000517525.1),  
608 *Tachypleus tridentatus* (GCA 004210375.1), *Centruroides sculpturatus* (GCA 000671375.2),  
609 *Parasteatoda tepidariorum* (GCA 000365465.2) and *Trichonephila clavipes* (GCA  
610 002102615.1). These species were selected from a pool relatively recent genome assembly  
611 resources and well curated reference genomes.

612 Homologous sequences (those with hmmer expectation value,  $e < 10^{-10}$ ) to the genes of  
613 interest were then compiled into individual gene FASTA files, combined with the reference  
614 sequences used for the homology search, aligned (MAFFT), trimmed of gap rich regions  
615 (trimAL v.1.2, –gappyout) (Capella-Gutiérrez, Silla-Martínez, & Gabaldón, 2009) and used  
616 for maximum likelihood gene tree estimation (IQTREE v.1.6.8, –mset  
617 LG,WAG,JTT,DCMUT –bb 1000) (Nguyen, Schmidt, Haeseler, & Minh, 2015). The  
618 association of transcripts in the *Charinus* species with the genes of interest is based on the  
619 gene phylogeny and was followed by inspection of the coding sequences to distinguish

620 splicing variants from other gene copies. Alignments and the list of *Charinus* sequences is  
621 available in SI Appendix Dataset S1. These gene transcript association was then used for the  
622 transcript to gene map required for the DGE analysis.

623

624 Read mapping, transcript abundance quantification

625

626 For the *in-silico* analysis of gene expression, single-end raw reads were first trimmed  
627 using the software Trimmomatic v. 0.35 (Bolger et al., 2014). For the intra-specific analysis  
628 of early (before eyespot) and late (eyespot) embryos of *C. ioanniticus* (Comparison 1), the  
629 trimmed reads were quantified in the embryonic transcriptome of *C. ioanniticus*. For the  
630 intra-specific comparison of early embryos of *C. ioanniticus* and *C. israelensis*, two  
631 reciprocal analysis were conducted: reads from both species mapped onto *C. israelensis*  
632 transcriptome as the reference (Comparison 2.1); and reads from both species mapped onto  
633 *C. ioanniticus* transcriptome (Comparison 2.2).

634 Transcript abundance was quantified using the software Salmon v. 1.1.0 (Patro et al.,  
635 2017), enabling ‘*–validateMapping*’ flag. Analysis of differential gene expression was  
636 conducted with the software DESeq2 v 1.24.0 (Love et al., 2014) following a pipeline with  
637 the R package *tximport* v.1.12.3 (Soneson, Love, & Robinson, 2015). The exact procedures  
638 are documented in the custom R script (SI Appendix, Dataset S2)

639

640 Parental RNA interference, *in situ* hybridization, and imaging in *Parasteatoda tepidariorum*  
641

642 Total RNA from a range of embryonic stages of *P. tepidariorum* was extracted with  
643 TRIZOL (Invitrogen), and cDNA was synthetized using SuperScriptIII (Invitrogen). Gene  
644 fragments for *Ptep-sine oculis A* (*soA*), *orthodenticle B* (*otdB*) and *OptixB* were amplified  
645 from cDNA using gene specific primers designed with Primers3Web version 4.1.0  
646 (Koressaar & Remm, 2007) and appended with T7 ends. Cloning amplicons were generated  
647 using the TOPO TA Cloning Kit with One Shot Top10 chemically competent *Escherichia*  
648 *coli* (Invitrogen). Amplicon identities and directionality were assessed with Sanger  
649 sequencing. Primer, amplicon sequences and fragment lengths are available in SI Appendix  
650 Dataset S3. Double-stranded RNA for *Ptep-soA*, *Ptep-otdB* and *Ptep-OptixB* was synthetized  
651 from amplicon on plasmids using MEGAScript T7 transcription kit (Thermo Fischer) with  
652 T7/T7T3 primers. Sense and antisense RNA probes for colorimetric *in situ* hybridization

653 were synthetized from plasmid templates with DIG RNA labeling mix (Roche) and T7/T3  
654 RNA polymerase (New England Biolabs) using the manufacturer's instructions.

655 Parental RNA interference (RNAi) followed established protocols for double-stranded  
656 RNA (dsRNA) injection in virgin females of *P. tepidariorum* (Oda & Akiyama-Oda, 2020).  
657 Each female was injected four times with 2.5  $\mu$ L of dsRNA at a concentration of 2  $\mu$ g/uL, to  
658 a total of 20 $\mu$ g. For *Ptep-soA*, seven virgin females were injected with dsRNA of a 1048bp  
659 cloned fragment (SI Appendix, Fig. S13C) and 3 females were injected with the same volume  
660 of dH<sub>2</sub>O as a procedural control. Two virgin females were injected with dsRNA for *Ptep-*  
661 *otdB*, and six females for *Ptep-OptixB*. All females were mated after the second injection, and  
662 were fed approximately every-other day after the last injection. Cocoons were collected until  
663 the sixth clutch, approximately one per week.

664 Hatchlings for all cocoons were fixed between 24–48 hours after hatching. Freshly  
665 hatched postembryos have almost no external signs of eye lenses and pigments. The selected  
666 fixation window encompasses a period in which postembryos have deposited eye pigments  
667 until the beginning of the first instar, where eyes are completely formed (SI Appendix, Video  
668 S1, S2). Hatchlings were immersed in 25% ethanol/PBST and stored at 4°C. For the *Ptep-soA*  
669 RNAi experiment, hatchlings were scored in four classes: (1) wild type, where all eyes were  
670 present and bilaterally symmetrical; (2) Eyes defective, where one or more eyes were reduced  
671 in size or completely absent; (3) dead/arrested; (4) Undetermined, where embryos were  
672 damaged or clearly freshly hatched. A subset of *Ptep-soA* dsRNA-injected embryos from four  
673 clutches (n=48) and of three control clutches (n=48) were further inspected in detail to assess  
674 the effects on individual eye types. Given that there is a spectrum on the intensity of pigment  
675 deposition in the medium eyes (ME), and small asymmetries on the shape of the early  
676 developing tapetum of the lateral eyes (LE) in control embryos, the following conservative  
677 criteria was adopted: ME were considered affected when asymmetry in pigmentation or lens  
678 size was detected. Both ME were only scored as affected when they were both completely  
679 missing, in order to rule out embryos were simply delayed in pigment deposition; LE were  
680 considered defective only when the tapetum was completely absent (SI Appendix, Fig. S12).  
681 Therefore, our coding does not allow detection of a phenotype consisting of delayed  
682 pigmentation.

683 For in situ hybridization, a subset of *Ptep-soA* dsRNA-injected embryos at stage 13/14  
684 (Mittmann & Wolff, 2012) was fixed in a phase of heptane and 4% formaldehyde for 12–24  
685 hours, washed in PBST, gradually dehydrated in methanol and stored at -20°C for at least 3

686 days before downstream procedures, after a modified protocol of Akiyama-Oda and Oda  
687 (2003). In situ hybridization followed the protocol of Akiyama-Oda and Oda (2003).

688 Embryos from in situ hybridization were stained with Hoechst nuclear staining and  
689 imaged in a Nikon SMZ25 fluorescence stereomicroscope mounted with a DS- Fi2 digital  
690 color camera (Nikon Elements software). For postembryos, the prosoma was dissected with  
691 fine forceps, gradually immersed in 70% Glycerol/PBS-T and mounted on glass slides.  
692 Postembryos were imaged using an Olympus DP70 color camera mounted on an Olympus  
693 BX60 epifluorescence compound microscope.

694

## 695 **Acknowledgements**

696

697 Microscopy was performed at the Newcomb Imaging Center, Department of Botany,  
698 University of Wisconsin-Madison. Sequencing was performed at the UW-Madison  
699 Biotechnology Center. Access to computing nodes for intensive tasks was provided by the  
700 Center for High Throughput Computing (CHTC) and the Bioinformatics Resource Center  
701 (BRC) of the University of Wisconsin–Madison. Specimens were collected under permit  
702 2018/42037, issued by the Israel National Parks Authority to E.G.R. Fieldwork in Israel was  
703 supported by a National Geographic Society Expeditions Council grant no. NGS-271R-18 to  
704 J.A.B. This work was supported by National Science Foundation (grant no. IOS-1552610) to  
705 P.P.S.

706

## 707 **References**

708

709 Akiyama-Oda, Y., & Oda, H. (2006). Axis specification in the spider embryo: *dpp* is required  
710 for radial-to-axial symmetry transformation and *sog* for ventral patterning. *Development*,  
711 133(12), 2347–2357. <http://doi.org/10.1242/dev.02400>

712 Arendt, D., Tessmar, K., Medeiros de Campos-Baptista, M. I., Dorresteijn, A., & Wittbrodt,  
713 J. (2002). Development of pigment-cup eyes in the polychaete *Platynereis dumerilii* and  
714 evolutionary conservation of larval eyes in bilateria. *Development*, 129(5), 1143–1154.

715 Ballesteros, J. A., & Sharma, P. P. (2019). A Critical Appraisal of the Placement of  
716 Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error.  
717 *Systematic Biology*. <http://doi.org/10.1093/sysbio/syz011>

718 Ballesteros, J. A., Santibáñez López, C. E., Kováč, L., Gavish-Regev, E., & Sharma, P. P.  
719 (2019). Ordered phylogenomic subsampling enables diagnosis of systematic errors in the  
720 placement of the enigmatic arachnid order Palpigradi. *Proceedings. Biological Sciences*,  
721 286(1917), 20192426. <http://doi.org/10.1098/rspb.2019.2426>

722 Barnett, A. A., & Thomas, R. H. (2012). The delineation of the fourth walking leg segment is  
723 temporally linked to posterior segmentation in the mite *Archeozetes longisetosus* (Acari:  
724 Oribatida, Trhypochthoniidae). *Evolution & Development*, 14(4), 383–392.

725 http://doi.org/10.1111/j.1525-142X.2012.00556.x  
726 Barnett, A. A., & Thomas, R. H. (2013a). Posterior Hox gene reduction in an arthropod:  
727 *Ultrabithorax* and *Abdominal-B* are expressed in a single segment in the mite  
728 *Archegozetes longisetosus*. *EvoDevo*, 4(1), 23. http://doi.org/10.1186/2041-9139-4-23  
729 Barnett, A. A., & Thomas, R. H. (2013b). The expression of limb gap genes in the mite  
730 *Archegozetes longisetosus* reveals differential patterning mechanisms in chelicerates.  
731 *Evolution & Development*, 15(4), 280–292. http://doi.org/10.1111/ede.12038  
732 Bebenek, I. G., Gates, R. D., Morris, J., Hartenstein, V., & Jacobs, D. K. (2004). *sine oculis*  
733 in basal Metazoa. *Development Genes and Evolution*, 214(7), 342–351.  
734 http://doi.org/10.1007/s00427-004-0407-3  
735 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for  
736 Illumina sequence data. *Bioinformatics*, 30(15), 2114–2120.  
737 http://doi.org/10.1093/bioinformatics/btu170  
738 Bradic, M., Teotónio, H., & Borowsky, R. L. (2013). The Population Genomics of Repeated  
739 Evolution in the Blind Cavefish *Astyanax mexicanus*. *Molecular Biology and Evolution*,  
740 30(11), 2383–2400. http://doi.org/10.1093/molbev/mst136  
741 Byrne, M., Koop, D., Morris, V. B., Chui, J., Wray, G. A., & Cisternas, P. (2017). Expression  
742 of genes and proteins of the Pax-Six-Eya-Dach network in the metamorphic sea urchin:  
743 Insights into development of the enigmatic echinoderm body plan and sensory structures.  
744 *Developmental Dynamics*, 247(1), 239–249. http://doi.org/10.1002/dvdy.24584  
745 Cagan, R. (2009). Chapter 5 - Principles of *Drosophila* Eye Differentiation. In *Current*  
746 *Topics in Developmental Biology* (Vol. 89, pp. 115–135). Elsevier.  
747 http://doi.org/10.1016/S0070-2153(09)89005-4  
748 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for  
749 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*,  
750 25(15), 1972–1973. http://doi.org/10.1093/bioinformatics/btp348  
751 Carroll, S. B. (2008). Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic  
752 Theory of Morphological Evolution. *Cell*, 134(1), 25–36.  
753 http://doi.org/10.1016/j.cell.2008.06.030  
754 Coghill, L. M., Darrin Hulsey, C., Chaves-Campos, J., García de Leon, F. J., & Johnson, S.  
755 G. (2014). Next generation phylogeography of cave and surface *Astyanax mexicanus*.  
756 *Molecular Phylogenetics and Evolution*, 79, 368–374.  
757 http://doi.org/10.1016/j.ympev.2014.06.029  
758 Cruz-López, J. A., Proud, D. N., & Pérez-González, A. (2016). When troglomorphism dupes  
759 taxonomists: morphology and molecules reveal the first pyramidopid harvestman  
760 (Arachnida, Opiliones, Pyramidopidae) from the New World. *Zoological Journal of the*  
761 *Linnean Society*, 177(3), 602–620. http://doi.org/10.1111/zoj.12382  
762 Daly, I. M., How, M. J., Partridge, J. C., & Roberts, N. W. (2018). Complex gaze  
763 stabilization in mantis shrimp. *Proceedings of the Royal Society B: Biological Sciences*,  
764 285(1878). http://doi.org/10.1098/rspb.2018.0594  
765 Derkarabetian, S., Steinmann, D. B., & Hedin, M. (2010). Repeated and time-correlated  
766 morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from  
767 montane Western North America. *PLoS ONE*, 5(5), e10388.  
768 http://doi.org/10.1371/journal.pone.0010388  
769 Esposito, L. A., Bloom, T., Caicedo-Quiroga, L., Alicea-Serrano, A. M., Sánchez-Ruiz, J. A.,  
770 May-Collado, L. J., et al. (2015). Islands within islands: Diversification of tailless whip  
771 spiders (Amblypygi, *Phrynus*) in Caribbean caves. *Molecular Phylogenetics and*  
772 *Evolution*, 93(C), 107–117. http://doi.org/10.1016/j.ympev.2015.07.005  
773 Finn, R. D., Clements, J., Arndt, W., Miller, B. L., Wheeler, T. J., Schreiber, F., et al. (2015).  
774 HHMMER web server: 2015 update. *Nucleic Acids Research*, 43(W1), W30–8.

775 http://doi.org/10.1093/nar/gkv397  
776 Foelix, R. (2011). *Biology of Spiders* (Third Edition). Oxford: Oxford University Press.  
777 Garwood, R. J., Sharma, P. P., Dunlop, J. A., & Giribet, G. (2014). A Paleozoic Stem Group  
778 to Mite Harvestmen Revealed through Integration of Phylogenetics and Development.  
779 *Current Biology*, 24(9), 1–7. http://doi.org/10.1016/j.cub.2014.03.039  
780 Gehring, W. J., & Ikeo, K. (1999). *Pax 6*: mastering eye morphogenesis and eye evolution.  
781 *Trends in Genetics : TIG*, 15(9), 371–377. http://doi.org/10.1016/s0168-9525(99)01776-  
782 x  
783 Giribet, G. (2018). Current views on chelicerate phylogeny—A tribute to Peter Weygoldt.  
784 *Zoologischer Anzeiger - a Journal of Comparative Zoology*, 273, 7–13.  
785 http://doi.org/10.1016/j.jcz.2018.01.004  
786 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al.  
787 (2011). Full-length transcriptome assembly from RNA-Seq data without a reference  
788 genome. *Nature Biotechnology*, 29(7), 644–652. http://doi.org/10.1038/nbt.1883  
789 Grbić, M., Khila, A., Lee, K.-Z., Bjelica, A., Grbić, V., Whistlecraft, J., et al. (2007). Mity  
790 model: *Tetranychus urticae*, a candidate for chelicerate model organism. *BioEssays*,  
791 29(5), 489–496. http://doi.org/10.1002/bies.20564  
792 Grbić, M., Van Leeuwen, T., Clark, R. M., Rombauts, S., Rouzé, P., Grbić, V., et al. (2011).  
793 The genome of *Tetranychus urticae* reveals herbivorous pest adaptations. *Nature*,  
794 479(7374), 487–492. http://doi.org/10.1038/nature10640  
795 Giulia-Nuss, M., Nuss, A. B., Meyer, J. M., Sonenshine, D. E., Roe, R. M., Waterhouse, R.  
796 M., et al. (2016). Genomic insights into the *Ixodes scapularis* tick vector of Lyme  
797 disease. *Nature Communications*, 7(1), 10507–13. http://doi.org/10.1038/ncomms10507  
798 Harland, D. P., Li, D., & Jackson, R. R. (2012). How jumping spiders see the world.  
799 http://doi.org/10.1093/acprof:oso/9780195334654.003.0010  
800 Harvey, M. S. (2002). The neglected cousins: What do we know about the smaller arachnid  
801 orders? *Journal of Arachnology*, 30(2), 357–372. http://doi.org/10.1636/0161-  
802 8202(2002)030[0357:TNCWDW]2.0.CO;2  
803 Harvey, M. S. (2007). The smaller arachnid orders: Diversity, descriptions and distributions  
804 from Linnaeus to the present (1758 to 2007). *Zootaxa*, 1668(1668), 363–380.  
805 http://doi.org/10.11646/zootaxa.1668.1.19  
806 Hedin, M., & Thomas, S. M. (2010). Molecular systematics of eastern North American  
807 Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent  
808 morphological evolution in caves. *Molecular Phylogenetics and Evolution*, 54(1), 107–  
809 121. http://doi.org/10.1016/j.ympev.2009.08.020  
810 Herman, A., Brandvain, Y., Weagley, J., Jeffery, W. R., Keene, A. C., Kono, T. J. Y., et al.  
811 (2018). The role of gene flow in rapid and repeated evolution of cave-related traits in  
812 Mexican tetra, *Astyanax mexicanus*. *Molecular Ecology*, 27(22), 4397–4416.  
813 http://doi.org/10.1111/mec.14877  
814 Homann, H. (1971). Die Augen der Araneae. *Zeitschrift Für Morphologie Der Tiere*, 69(3),  
815 201–272. http://doi.org/10.1007/BF00277623  
816 Howarth, F. G. (1993). High-stress subterranean habitats and evolutionary change in cave-  
817 inhabiting arthropods. *The American Naturalist*, 142 Suppl 1(Suppl.), S65–77.  
818 http://doi.org/10.1086/285523  
819 Hoy, M. A., Waterhouse, R. M., Wu, K., Estep, A. S., Ioannidis, P., Palmer, W. J., et al.  
820 (2016). Genome Sequencing of the Phytoseiid Predatory Mite *Metaseiulus occidentalis*  
821 Reveals Completely Atomized Hox Genes and Superdynamic Intron Evolution. *Genome  
822 Biology and Evolution*, 8(6), 1762–1775. http://doi.org/10.1093/gbe/evw048  
823 Jeffery, W. R. (2009). Chapter 8. Evolution and development in the cavefish *Astyanax*.  
824 *Current Topics in Developmental Biology*, 86, 191–221. http://doi.org/10.1016/S0070-

825 2153(09)01008-4  
826 Jemec, A., Škufca, D., Prevorčnik, S., Fišer, Ž., & Zidar, P. (2017). Comparative study of  
827 acetylcholinesterase and glutathione S-transferase activities of closely related cave and  
828 surface *Asellus aquaticus* (Isopoda: Crustacea). *PLoS ONE*, 12(5), e0176746–14.  
829 <http://doi.org/10.1371/journal.pone.0176746>  
830 Juan, C., Guzik, M. T., Jaume, D., & Cooper, S. J. B. (2010). Evolution in caves: Darwin's  
831 'wrecks of ancient life' in the molecular era. *Molecular Ecology*, 19(18), 3865–3880.  
832 <http://doi.org/10.1111/j.1365-294X.2010.04759.x>  
833 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version  
834 7: improvements in performance and usability. *Molecular Biology and Evolution*, 30(4),  
835 772–780. <http://doi.org/10.1093/molbev/mst010>  
836 Kenny, N. J., Chan, K. W., Nong, W., Qu, Z., Maeso, I., Yip, H. Y., et al. (2015). Ancestral  
837 whole-genome duplication in the marine chelicerate horseshoe crabs. *Heredity*, 116(2),  
838 190–199. <http://doi.org/10.1038/hdy.2015.89>  
839 Khadje, S., Turetzek, N., Pechmann, M., Schwager, E. E., Wimmer, E. A., Damen, W. G.  
840 M., & Prpic, N. M. (2012). Divergent role of the Hox gene *Antennapedia* in spiders is  
841 responsible for the convergent evolution of abdominal limb repression. *Proceedings of  
842 the National Academy of Sciences*, 109(13), 4921–4926.  
843 <http://doi.org/10.1073/pnas.1116421109>  
844 Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design  
845 program Primer3. *Bioinformatics*, 23(10), 1289–1291.  
846 <http://doi.org/10.1093/bioinformatics/btm091>  
847 Kumar, J. P. (2009). The molecular circuitry governing retinal determination. *Biochimica Et  
848 Biophysica Acta (BBA) - Gene Regulatory Mechanisms*, 1789(4), 306–314.  
849 <http://doi.org/10.1016/j.bbagr.2008.10.001>  
850 Land, M. F. (1985). The Morphology and Optics of Spider Eyes. In *Neurobiology of  
851 Arachnids* (Vol. 189, pp. 53–78). Berlin, Heidelberg: Springer, Berlin, Heidelberg.  
852 [http://doi.org/10.1007/978-3-642-70348-5\\_4](http://doi.org/10.1007/978-3-642-70348-5_4)  
853 Leite, D. J., Baudouin-Gonzalez, L., Iwasaki-Yokozawa, S., Lozano-Fernandez, J., Turetzek,  
854 N., Akiyama-Oda, Y., et al. (2018). Homeobox Gene Duplication and Divergence in  
855 Arachnids. *Molecular Biology and Evolution*, 35(9), 2240–2253.  
856 <http://doi.org/10.1093/molbev/msy125>  
857 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and  
858 dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 31–21.  
859 <http://doi.org/10.1186/s13059-014-0550-8>  
860 Lozano-Fernandez, J., Tanner, A. R., Giacomelli, M., Carton, R., Vinther, J., Edgecombe, G.  
861 D., & Pisani, D. (2019). Increasing species sampling in chelicerate genomic-scale  
862 datasets provides support for monophyly of Acari and Arachnida. *Nature  
863 Communications*, 1–8. <http://doi.org/10.1038/s41467-019-10244-7>  
864 Mammola, S., & Isaia, M. (2017). Spiders in caves. *Proceedings of the Royal Society B:  
865 Biological Sciences*, 284(1853), 20170193–10. <http://doi.org/10.1098/rspb.2017.0193>  
866 Mammola, S., Arnedo, M. A., Pantini, P., Piano, E., Chiappetta, N., & Isaia, M. (2018a).  
867 Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean  
868 spiders (Araneae: Linyphiidae: Troglohyphantes). *Invertebrate Systematics*, 32(5), 1069–  
869 1082. <http://doi.org/10.1071/IS17090>  
870 Mammola, S., Cardoso, P., Ribera, C., Pavlek, M., & Isaia, M. (2018b). A synthesis on cave-  
871 dwelling spiders in Europe. *Journal of Zoological Systematics and Evolutionary  
872 Research*, 56(3), 301–316. <http://doi.org/10.1111/jzs.12201>  
873 Mammola, S., Mazzuca, P., Pantini, P., Isaia, M., & Arnedo, M. A. (2017). Advances in the  
874 systematics of the spider genus *Troglohyphantes* (Araneae, Linyphiidae). *Systematics*

875        *and Biodiversity*, 15(4), 307–326. <http://doi.org/10.1080/14772000.2016.1254304>

876    Marshall, J., Cronin, T. W., & Kleinlogel, S. (2007). Stomatopod eye structure and function:  
877        A review. *Arthropod Structure & Development*, 36(4), 420–448.  
878        <http://doi.org/10.1016/j.asd.2007.01.006>

879    Miranda, G. S., Aharon, S., Gavish-Regev, E., Giupponi, A. P. L., & Wizen, G. (2016). A  
880        new species of *Charinus* Simon, 1892 (Arachnida: Amblypygi: Charinidae) from Israel  
881        and new records of *C. ioanniticus* (Kritscher, 1959). *European Journal of Taxonomy*,  
882        (234), 1–18. <http://doi.org/10.5852/ejt.2016.234>

883    Mittmann, B., & Wolff, C. (2012). Embryonic development and staging of the cobweb spider  
884        *Parasteatoda tepidariorum* C. L. Koch, 1841 (syn.: *Achaearanea tepidariorum*;  
885        Araneomorphae; Theridiidae). *Development Genes and Evolution*, 222(4), 189–216.  
886        <http://doi.org/10.1007/s00427-012-0401-0>

887    Mojaddidi, H., Fernandez, F. E., Erickson, P. A., & Protas, M. E. (2018). Embryonic origin  
888        and genetic basis of cave associated phenotypes in the isopod crustacean *Asellus*  
889        *aquaticus*. *Scientific Reports*, 1–12. <http://doi.org/10.1038/s41598-018-34405-8>

890    Morehouse, N. I., Buschbeck, E. K., Zurek, D. B., Steck, M., & Porter, M. L. (2017).  
891        Molecular Evolution of Spider Vision: New Opportunities, Familiar Players. *Biol Bull*,  
892        233(1), 21–38. <http://doi.org/10.1086/693977>

893    Nguyen, L.-T., Schmidt, H. A., Haeseler, von, A., & Minh, B. Q. (2015). IQ-TREE: a fast  
894        and effective stochastic algorithm for estimating maximum-likelihood phylogenies.  
895        *Molecular Biology and Evolution*, 32(1), 268–274.  
896        <http://doi.org/10.1093/molbev/msu300>

897    Nolan, E. D., Santibáñez López, C. E., & Sharma, P. P. (2020). Developmental gene  
898        expression as a phylogenetic data class: support for the monophyly of  
899        Arachnopulmonata. *Development Genes and Evolution*, 230(2), 137–153.  
900        <http://doi.org/10.1007/s00427-019-00644-6>

901    Nossa, C. W., Havlak, P., Yue, J.-X., Lv, J., Vincent, K. Y., Brockmann, H. J., & Putnam, N.  
902        H. (2014). Joint assembly and genetic mapping of the Atlantic horseshoe crab genome  
903        reveals ancient whole genome duplication. *GigaScience*, 3(1), 708–21.  
904        <http://doi.org/10.1186/2047-217X-3-9>

905    Oda, H., & Akiyama-Oda, Y. (2020). The common house spider *Parasteatoda tepidariorum*.  
906        *EvoDevo*, 1–7. <http://doi.org/10.1186/s13227-020-00152-z>

907    Paese, C. L. B., Leite, D. J., Schönauer, A., McGregor, A. P., & Russell, S. (2018).  
908        Duplication and expression of Sox genes in spiders, 1–14. <http://doi.org/10.1186/s12862-018-1337-4>

909    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides  
910        fast and bias-aware quantification of transcript expression. *Nature Publishing Group*,  
911        14(4), 417–419. <http://doi.org/10.1038/nmeth.4197>

912    Paulus, H. F. (1979). Eye structure and the monophyly of the Arthropoda. In “Arthropod  
913        Phylogeny”(A. PGupta, Ed.) pp. 299–383.

914    Pechmann, M. (2016). Formation of the germ-disc in spider embryos by a condensation-like  
915        mechanism. *Frontiers in Zoology*, 13(1), 35. <http://doi.org/10.1186/s12983-016-0166-9>

916    Pechmann, M., McGregor, A. P., Schwager, E. E., Feitosa, N. M., & Damen, W. G. M.  
917        (2009). Dynamic gene expression is required for anterior regionalization in a spider.  
918        *Proceedings of the National Academy of Sciences of the United States of America*,  
919        106(5), 1468–1472. <http://doi.org/10.1073/pnas.0811150106>

920    Pineda, D., Gonzalez, J., Callaerts, P., Ikeo, K., Gehring, W. J., & Salo, E. (2000). Searching  
921        for the prototypic eye genetic network: *Sine oculis* is essential for eye regeneration in  
922        planarians. *Proceedings of the National Academy of Sciences*, 97(9), 4525–4529.  
923        <http://doi.org/10.1073/pnas.97.9.4525>

925 Porter, M. L., Dittmar, K., & Pérez-Losada, M. (2007). How long does evolution of the  
926 troglomorphic form take? Estimating divergence times in *Astyanax mexicanus*. *Acta  
927 Carsologica*, 36(1), 173–182. <http://doi.org/10.3986/ac.v36i1.219>

928 Posnien, N., Zeng, V., Schwager, E. E., Pechmann, M., Hilbrant, M., Keefe, J. D., et al.  
929 (2014). A Comprehensive Reference Transcriptome Resource for the Common House  
930 Spider *Parasteatoda tepidariorum*. *PLoS ONE*, 9(8), e104885–20.  
931 <http://doi.org/10.1371/journal.pone.0104885>

932 Protas, M. E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens, H., Jeffery, W. R., et al. (2005).  
933 Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.  
934 *Nature Genetics*, 38(1), 107–111. <http://doi.org/10.1038/ng1700>

935 Protas, M. E., Trontelj, P., & Patel, N. H. (2011). Genetic basis of eye and pigment loss in the  
936 cave crustacean, *Asellus aquaticus*. *Proceedings of the National Academy of Sciences of  
937 the United States of America*, 108(14), 5702–5707.  
938 <http://doi.org/10.1073/pnas.1013850108>

939 Protas, M., & Jeffery, W. R. (2012). Evolution and development in cave animals: from fish to  
940 crustaceans. *Wiley Interdisciplinary Reviews: Developmental Biology*, 1(6), 823–845.  
941 <http://doi.org/10.1002/wdev.61>

942 Re, C., Fišer, Ž., Perez, J., Tacdol, A., Trontelj, P., & Protas, M. E. (2018). Common Genetic  
943 Basis of Eye and Pigment Loss in Two Distinct Cave Populations of the Isopod  
944 Crustacean *Asellus aquaticus*. *Integrative and Comparative Biology*, 58(3), 421–430.  
945 <http://doi.org/10.1093/icb/icy028>

946 Riddle, M. R., Aspiras, A. C., Gaudenz, K., Peuß, R., Sung, J. Y., Martineau, B., et al.  
947 (2018). Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.  
948 *Nature*, 1–19. <http://doi.org/10.1038/nature26136>

949 Rivera, A., Winters, I., Rued, A., Ding, S., Posfai, D., Cieniewicz, B., et al. (2013). The  
950 evolution and function of the Pax/Six regulatory network in sponges. *Evolution &  
951 Development*, 15(3), 186–196. <http://doi.org/10.1111/ede.12032>

952 Rota-Stabelli, O., Campbell, L., Brinkmann, H., Edgecombe, G. D., Longhorn, S. J.,  
953 Peterson, K. J., et al. (2010). A congruent solution to arthropod phylogeny:  
954 phylogenomics, microRNAs and morphology support monophyletic Mandibulata.  
955 *Proceedings of the Royal Society B: Biological Sciences*, 278(1703), 298–306.  
956 <http://doi.org/10.1098/rspb.2010.0590>

957 Samadi, L., Schmid, A., & Eriksson, B. J. (2015). Differential expression of retinal  
958 determination genes in the principal and secondary eyes of *Cupiennius salei* Keyserling  
959 (1877). *EvoDevo*, 6(1), 16–17. <http://doi.org/10.1186/s13227-015-0010-x>

960 Sandve, S. R., Rohlfs, R. V., & Hvidsten, T. R. (2018). Subfunctionalization versus  
961 neofunctionalization after whole-genome duplication. *Nature Publishing Group*, 50(7),  
962 908–909. <http://doi.org/10.1038/s41588-018-0162-4>

963 Santibáñez López, C. E., Francke, O. F., & Prendini, L. (2014). Shining a light into the  
964 world's deepest caves: phylogenetic systematics of the troglobiotic scorpion genus  
965 *Alacran* Francke, 1982 (Typhlochactidae:Alacraninae). *Invertebrate Systematics*, 28(6),  
966 643–664. <http://doi.org/10.1071/IS14035>

967 Santos, V. T., Ribeiro, L., Fraga, A., de Barros, C. M., Campos, E., Moraes, J., et al. (2013).  
968 The embryogenesis of the Tick *Rhipicephalus (Boophilus) microplus*: The establishment  
969 of a new chelicerate model system. *Genesis*, 51(12), 803–818.  
970 <http://doi.org/10.1002/dvg.22717>

971 Schacht, M. I., Schomburg, C., & Bucher, G. (2020). *six3* acts upstream of *foxQ2* in labrum  
972 and neural development in the spider *Parasteatoda tepidariorum*. *Development Genes  
973 and Evolution*, 230(2), 95–104. <http://doi.org/10.1007/s00427-020-00654-9>

974 Schomburg, C., Turetzek, N., Schacht, M. I., Schneider, J., Kirfel, P., Prpic, N.-M., &

975 Posnien, N. (2015). Molecular characterization and embryonic origin of the eyes in the  
976 common house spider *Parasteatoda tepidariorum*. *EvoDevo*, 6(1), 15.  
977 <http://doi.org/10.1186/s13227-015-0011-9>

978 Schwager, E. E., Pechmann, M., Feitosa, N. M., McGregor, A. P., & Damen, W. G. M.  
979 (2009). *hunchback* functions as a segmentation gene in the spider *Achaearanea*  
980 *tepidariorum*. *Current Biology : CB*, 19(16), 1333–1340.  
981 <http://doi.org/10.1016/j.cub.2009.06.061>

982 Schwager, E. E., Sharma, P. P., Clarke, T., Leite, D. J., Wierschin, T., Pechmann, M., et al.  
983 (2017). The house spider genome reveals an ancient whole-genome duplication during  
984 arachnid evolution. *BMC Biology*, 15(1), 62. <http://doi.org/10.1186/s12915-017-0399-x>

985 Setton, E. V. W., March, L. E., Nolan, E. D., Jones, T. E., Cho, H., Wheeler, W. C., et al.  
986 (2017). Expression and function of *spineless* orthologs correlate with distal deutocerebral  
987 appendage morphology across Arthropoda. *Developmental Biology*, 430(1), 224–236.  
988 <http://doi.org/10.1016/j.ydbio.2017.07.016>

989 Sharma, P. P., Kaluziak, S. T., Pérez-Porro, A. R., González, V. L., Hormiga, G., Wheeler,  
990 W. C., & Giribet, G. (2014a). Phylogenomic interrogation of Arachnida reveals systemic  
991 conflicts in phylogenetic signal. *Molecular Biology and Evolution*, 31(11), 2963–2984.  
992 <http://doi.org/10.1093/molbev/msu235>

993 Sharma, P. P., Santiago, M. A., González-Santillán, E., Monod, L., & Wheeler, W. C.  
994 (2015a). Evidence of duplicated Hox genes in the most recent common ancestor of extant  
995 scorpions. *Evolution & Development*, 17(6), 347–355. <http://doi.org/10.1111/ede.12166>

996 Sharma, P. P., Schwager, E. E., Extavour, C. G., & Giribet, G. (2012). Hox gene expression  
997 in the harvestman *Phalangium opilio* reveals divergent patterning of the chelicerate  
998 opisthosoma. *Evolution & Development*, 14(5), 450–463. <http://doi.org/10.1111/j.1525-142X.2012.00565.x>

1000 Sharma, P. P., Schwager, E. E., Extavour, C. G., & Wheeler, W. C. (2014b). Hox gene  
1001 duplications correlate with posterior heteronomy in scorpions. *Proceedings. Biological  
1002 Sciences*, 281(1792), 20140661–20140661. <http://doi.org/10.1098/rspb.2014.0661>

1003 Sharma, P. P., Schwager, E. E., Giribet, G., Jockusch, E. L., & Extavour, C. G. (2013).  
1004 *Distal-less* and *dachshund* pattern both plesiomorphic and apomorphic structures in  
1005 chelicerates: RNA interference in the harvestman *Phalangium opilio* (Opiliones).  
1006 *Evolution & Development*, 15(4), 228–242. <http://doi.org/10.1111/ede.12029>

1007 Sharma, P. P., Tarazona, O. A., Lopez, D. H., Schwager, E. E., Cohn, M. J., Wheeler, W. C.,  
1008 & Extavour, C. G. (2015b). A conserved genetic mechanism specifies deutocerebral  
1009 appendage identity in insects and arachnids. *Proceedings of the Royal Society B:  
1010 Biological Sciences*, 282(1808), 20150698–20150698.  
1011 <http://doi.org/10.1098/rspb.2015.0698>

1012 Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary  
1013 novelty. *Nature*, 457(7231), 818–823. <http://doi.org/10.1038/nature07891>

1014 Shull, L. C., Sen, R., Menzel, J., Goyama, S., Kurokawa, M., & Artinger, K. B. (2020). The  
1015 conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial  
1016 development. *Developmental Biology*. <http://doi.org/10.1016/j.ydbio.2020.02.006>

1017 Smrž, J., Kováč, L., Mikeš, J., & Lukešová, A. (2013). Microwhip Scorpions (Palpigradi)  
1018 Feed on Heterotrophic Cyanobacteria in Slovak Caves - A Curiosity among Arachnida.  
1019 *PLoS ONE*, 8(10), e75989. <http://doi.org/10.1371/journal.pone.0075989>

1020 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq:  
1021 transcript-level estimates improve gene-level inferences. *F1000Research*, 4, 1521.  
1022 <http://doi.org/10.12688/f1000research.7563.1>

1023 Stahl, B. A., Gross, J. B., Speiser, D. I., Oakley, T. H., Patel, N. H., Gould, D. B., & Protas,  
1024 M. E. (2015). A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod

1025 Crustaceans of the Species *Asellus aquaticus*. *PLoS ONE*, 10(10), e0140484–14.  
1026 <http://doi.org/10.1371/journal.pone.0140484>

1027 Strickler, A. G., Yamamoto, Y., & Jeffery, W. R. (2001). Early and late changes in *Pax6*  
1028 expression accompany eye degeneration during cavefish development. *Development*  
1029 *Genes and Evolution*, 21(3), 138–144. <http://doi.org/10.1007/s004270000123>

1030 Takagi, A., Kurita, K., Terasawa, T., Nakamura, T., Bando, T., Moriyama, Y., et al. (2012).  
1031 Functional analysis of the role of *eyes absent* and *sine oculis* in the developing eye of the  
1032 cricket *Gryllus bimaculatus*. *Development, Growth & Differentiation*, 54(2), 227–240.  
1033 <http://doi.org/10.1111/j.1440-169X.2011.01325.x>

1034 Telford, M. J., & Thomas, R. H. (1998). Expression of homeobox genes shows chelicerate  
1035 arthropods retain their deutocerebral segment. *Proceedings of the National Academy of*  
1036 *Sciences*, 95(18), 10671–10675. <http://doi.org/10.1073/pnas.95.18.10671>

1037 Thoen, H. H., How, M. J., Chiou, T.-H., & Marshall, J. (2014). A different form of color  
1038 vision in mantis shrimp. *Science*, 343(6169), 411–413.  
1039 <http://doi.org/10.1126/science.1245824>

1040 Turetzek, N., Pechmann, M., Schomburg, C., Schneider, J., & Prpic, N.-M. (2015).  
1041 Neofunctionalization of a Duplicate *dachshund* Gene Underlies the Evolution of a Novel  
1042 Leg Segment in Arachnids. *Molecular Biology and Evolution*, 33(1), 109–121.  
1043 <http://doi.org/10.1093/molbev/msv200>

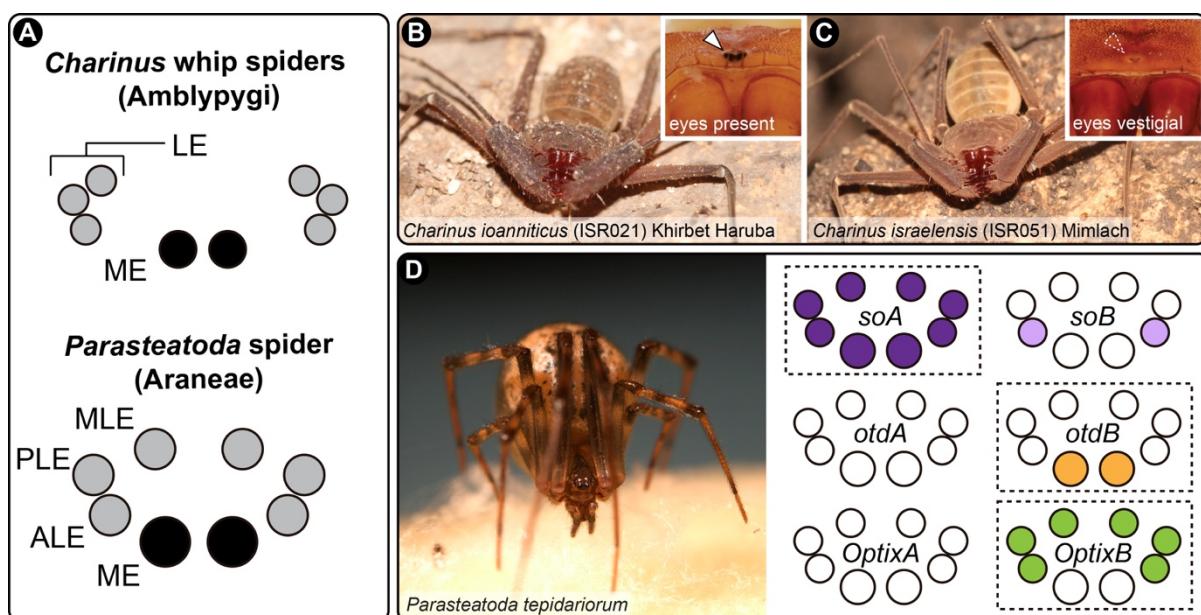
1044 Vopalensky, P., & Kozmík, Z. (2009). Eye evolution: common use and independent  
1045 recruitment of genetic components. *Philosophical Transactions of the Royal Society B:*  
1046 *Biological Sciences*, 364(1531), 2819–2832. <http://doi.org/10.1098/rstb.2009.0079>

1047 Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., et  
1048 al. (2017). BUSCO Applications from Quality Assessments to Gene Prediction and  
1049 Phylogenomics. *Molecular Biology and Evolution*, 35(3), 543–548.  
1050 <http://doi.org/10.1093/molbev/msx319>

1051 Weygoldt, P. (1975). Untersuchungen zur Embryologie und Morphologie der Geißelspinne  
1052 *Tarantula marginemaculata* C. L. Koch (Arachnida, Amblypygi, Tarantulidae).  
1053 *Zoomorphologie*, 82, 137–199.

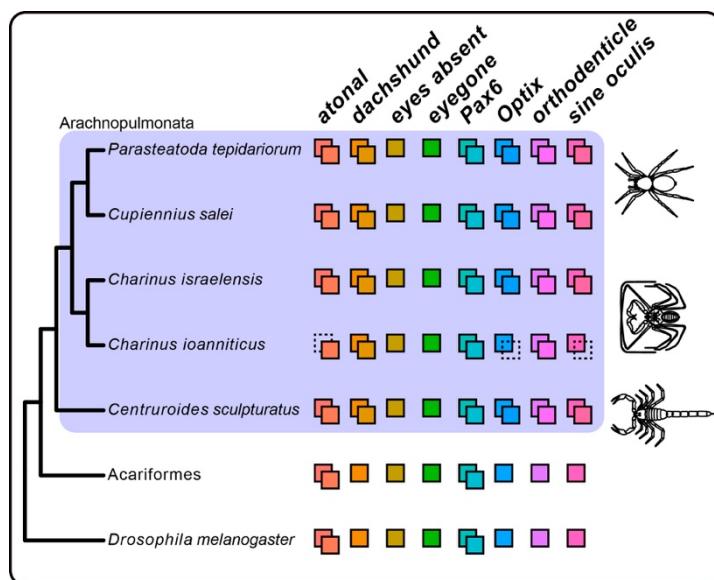
1054 Weygoldt, P. (2000). Whip Spiders (Chelicerata: Amblypygi). Their Biology, Morphology  
1055 and Systematics. Apollo Books.

1056 Zarinkamar, N., Yang, X., Bao, R., Friedrich, F., Beutel, R., & Friedrich, M. (2011). The  
1057 *Pax* gene *eyegone* facilitates repression of eye development in *Tribolium*. *EvoDevo*, 2(1),  
1058 8–15. <http://doi.org/10.1186/2041-9139-2-8>


1059 Zhou, Y., Liang, Y., Yan, Q., Zhang, L., Chen, D., Ruan, L., et al. (2020). The draft genome  
1060 of horseshoe crab *Tachypleus tridentatus* reveals its evolutionary scenario and well-  
1061 developed innate immunity. *BMC Genomics*, 21(1), 137–15.  
1062 <http://doi.org/10.1186/s12864-020-6488-1>

1063 Zurek, D. B., Cronin, T. W., Taylor, L. A., Byrne, K., Sullivan, M. L. G., & Morehouse, N. I.  
1064 (2015). Spectral filtering enables trichromatic vision in colorful jumping spiders. *Current*  
1065 *Biology*, 25(10), R403–R404. <http://doi.org/10.1016/j.cub.2015.03.033>

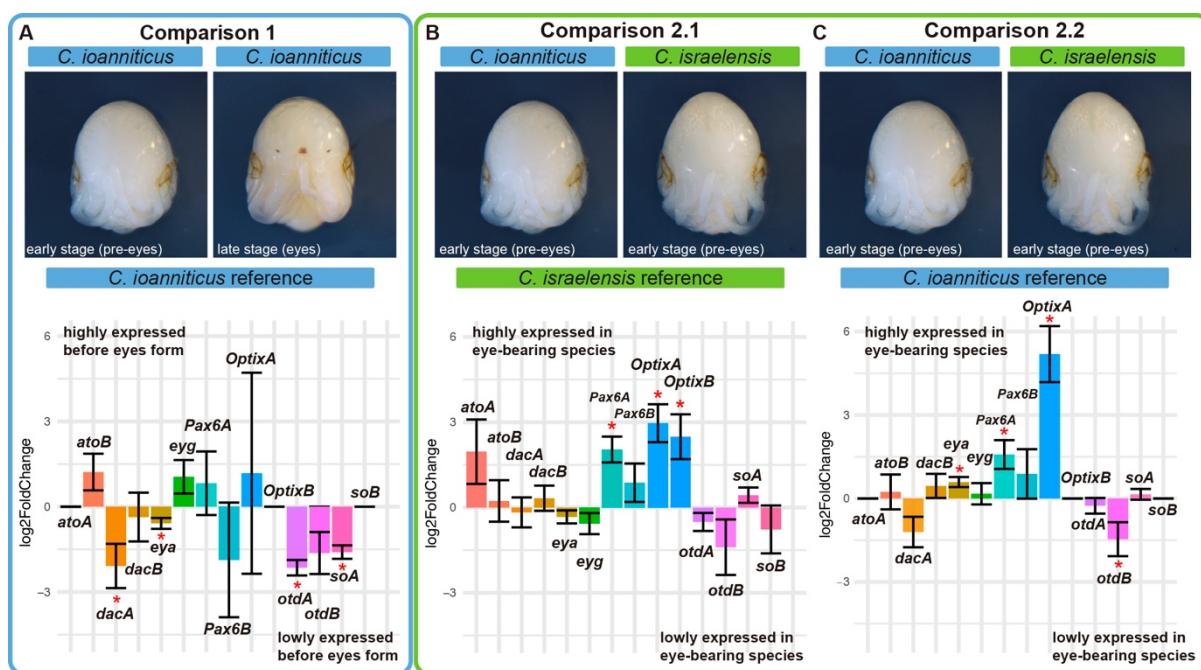
1066


1067

1068 Figure 1: Species used in this study and their eye arrangement. A: Schematic representation  
1069 of the eyes of *Charinus* whip spiders (Amblypygi) (upper), and the spider *Parasteatoda*  
1070 *tepidariorum* (Araneae; lower). B: Live specimen of *C. ioanniticus* from Khirbet Haruba  
1071 cave (Haruva cave). Inset: detail of the median eyes. C: Live specimen of *C. israelensis*  
1072 from Mimplach cave. Inset: detail of the reduced median eyes. D: Live specimen of  
1073 *Parasteatoda tepidariorum*, and schematic representation of the expression patterns of  
1074 paralog pairs of *Ptep-sine oculis* (*soA/soB*), *Ptep-orthodenticle* (*otdA/otdB*), and *Ptep-*  
1075 *Optix* (*OptixA/OptixB*) in the eyes. ME: median eyes; ALE: anterior lateral eyes; PLE:  
1076 posterior lateral eyes; MLE: median lateral eyes; LE: lateral eyes.



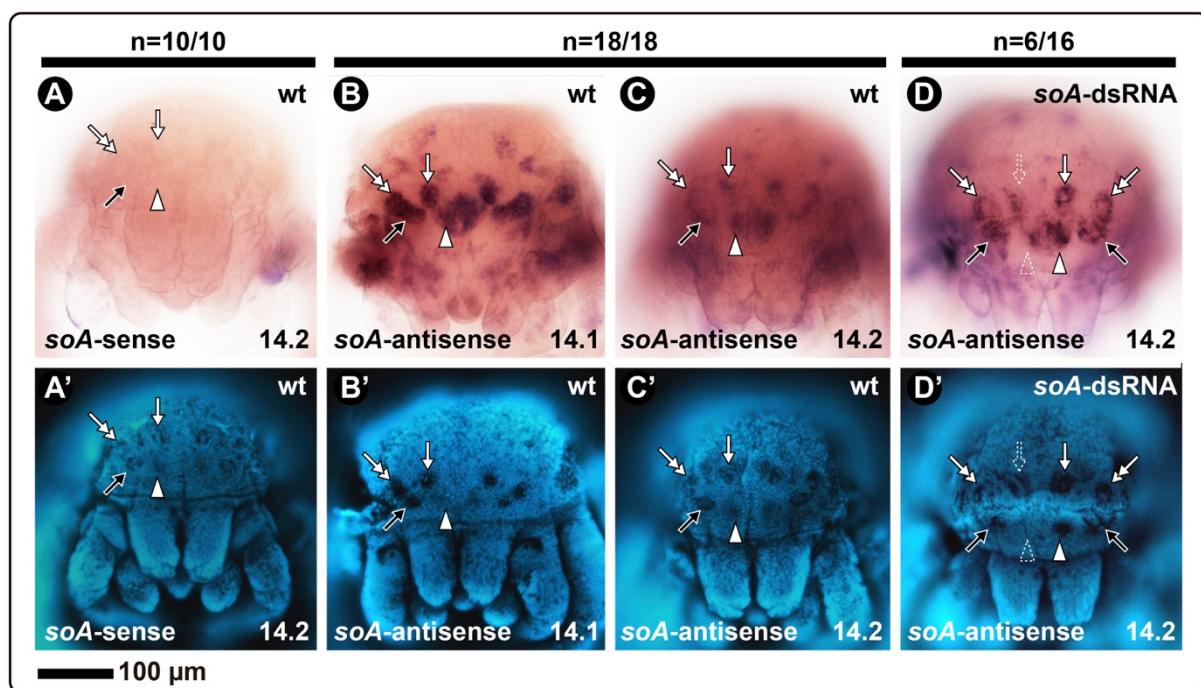
1077


Figure 2: Phylogenetic distribution of Retinal Determination Gene Network (RDGN) genes in an insect (*Drosophila melanogaster*), a non-arachnopulmonate arachnid group (Acariformes: *Dinothrombium tinctorium*; *Tetranychus urticae*) and Arachnopulmonata (spider: *Parasteatoda tepidariorum*; scorpion: *Centruroides sculpturatus*), including newly discovered orthologs in *Charinus* whip spiders (Amblypygi). Colored squares indicate number of gene copies for each RDGN gene. Dotted squares indicate missing data, not gene loss. For comprehensive list of duplicated genes in Arachnopulmonata see Schwager et al. (2017) and Leite et al. 2018. Gene trees and alignments for each gene are available in SI Appendix Dataset S1.



1087

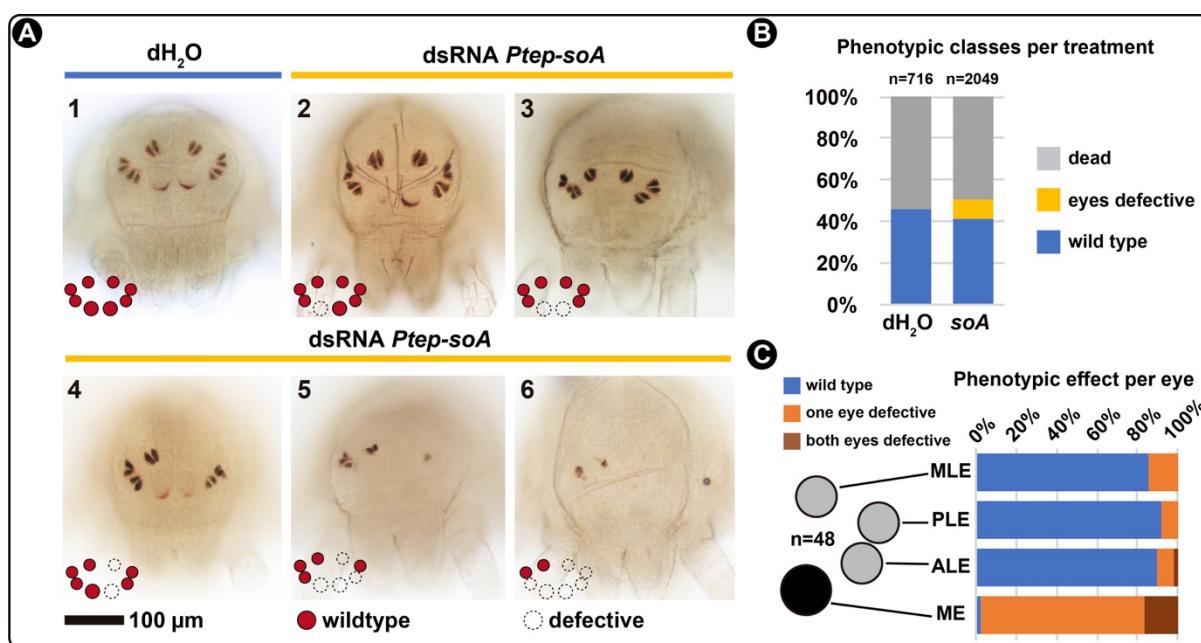
1088


Figure 3: Differential gene expression analysis of Retinal Determination Gene Network (RDGN) genes in *Charinus* whip spider deutembryos. Bar graphs display  $\log_2$  fold change of selected RDGN genes. Direction of differential gene expression always follows sample to the left. A: Comparison 1; Comparison between reads of early (pre-eyespot) and late deutembryos (eyespot) of the eye-bearing species *C. ioanniticus* mapped onto *C. ioanniticus* transcriptome. B: Comparison 2.1; Comparison between reads of early deutembryo of *C. ioanniticus* and early deutembryo of *C. israelensis* mapped onto *C. israelensis* transcriptome. C: Comparison 2.2; Comparison between reads of early deutembryo of *C. ioanniticus* and early deutembryo of *C. israelensis* mapped onto *C. ioanniticus* transcriptome. *atoA/B*: *atonalA/atonalB*; *dacA/B*: *dachshundA/B*; *eya*: *eyes absent*; *eyg*: *eyegone*; *otdA/B*: *orthodenticleA/B*; *soA/B*: *sine oculisA/B*. Asterisks denote genes that were differentially expressed with a  $p_{adj} > 0.05$ .  $\log_2FC = 0$  for *atoA*, *OptixB*, and *soB* for Comparison 1 and Comparison 2.2 are due to the absence of those paralogs in *C. ioanniticus* reference transcriptome.



1103

1104


1105 Figure 4: In situ hybridization using DIG-labeled riboprobes for *Ptep-soA* in late embryos of  
1106 the spider *Parasteatoda tepidariorum*. All embryos in frontal view. A–D: bright field  
1107 images. A’–D’: Same embryos, in Hoechst staining. A: Sense probe of a stage 14.2  
1108 embryo (no signal). B: Antisense probe on a wild type stage 14.1 embryo. C: Antisense  
1109 probe on a wild type stage 14.2 embryo. D: Antisense probe on a stage 14.2 embryo from  
1110 the *Ptep-soA* dsRNA-injected treatment. *soA*: *sine oculis A*. White arrowhead: median  
1111 eye; Black arrow: anterior lateral eye; White arrow: median lateral eye; Double white  
1112 arrow: Posterior lateral eye. Dotted arrowhead/arrow indicate asymmetrical expression  
1113 and eye defect. Sample sizes are indicated above each treatment.



1114

1115

1116 Figure 5: RNA interference against *Ptep-sine oculis A*. A: Bright field images of the spider  
1117 *Parasteatoda tepidariorum* postembryos resulting from control treatment (dH<sub>2</sub>O-  
1118 injected, panel 1) and double stranded RNA (dsRNA) injected treatment (panels 2–6), in  
1119 frontal view. B: Frequencies of each phenotypic class per treatment from the combined  
1120 clutches of all females. See SI Appendix Fig. S13 for counts per clutch. C: Frequencies  
1121 of symmetrical, asymmetrical, and wild type eyes quantified from a subset of 48  
1122 individuals with eye reduction phenotype. See SI Appendix Fig. S12 for figures of all  
1123 specimens and coding, and Material and Methods for the scoring criteria. ME: median  
1124 eyes; ALE: anterior lateral eyes; PLE: posterior lateral eyes; MLE: median lateral eyes.  
1125 Schematics for the different eye types follows the nomenclature in Figure 1.

