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Abstract 7 

An open question in systems neuroscience is which objective function (or computational “goal”) 8 

best describes the computations performed by the ventral stream (VS) of primate visual cortex. 9 

Substantial past research has suggested that object categorization could be such a goal. Recent 10 

experiments, however, showed that information about object positions, sizes, etc. is encoded with 11 

increasing explicitness along this pathway. Because that information is not necessarily needed for 12 

object categorization, this motivated us to ask whether primate VS may do more than “just” 13 

object recognition. To address that question, we trained deep neural networks, all with the same 14 

architecture, with three different objectives: a supervised object categorization objective; an 15 

unsupervised autoencoder objective; and a semi-supervised objective that combined autoencoding 16 

with categorization. We then compared the image representations learned by these models to 17 

those observed in areas V4 and IT of macaque monkeys using canonical correlation analysis 18 

(CCA). We found that the semi-supervised model provided the best match the monkey data, 19 

followed closely by the unsupervised model, and more distantly by the supervised one. These 20 

results suggest that multiple objectives – including, critically, unsupervised ones – might be 21 

essential for explaining the computations performed by primate VS. 22 
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Introduction 23 

The ventral stream (VS) of visual cortex begins in primary visual cortex (V1), ends in inferior temporal 24 

cortex (IT), and is essential for object recognition. Accordingly, a long-standing hypothesis in the field 25 

is that the ventral stream could be understood as mapping visual scenes onto neuronal firing patterns that 26 

represent object identity1-5. Supporting that assertion, deep convolutional neural networks (DCNN’s) 27 

trained to categorize objects in natural images develop intermediate representations that resemble those 28 

in primate VS2,6-8. At the same time, VS and other visual areas are also engaged during visualization of 29 

both previously encountered and novel scenes9,10, suggesting that the VS can generate visual scenes in 30 

addition to identifying objects within those scenes. Furthermore, non-categorical information, about 31 

object positions11, sizes, etc. is also represented with increasing explicitness in late VS areas V4 and 32 

IT12. This non-categorical information is not necessarily needed for object recognition tasks, although 33 

interestingly, deep convolutional neural networks (CNNs) recapitulated this trend of increasingly 34 

explicit category-orthogonal representations with increasing depth11. Nevertheless these recent findings 35 

motivated us to reconsider the long-standing question: What computational objective best explains VS 36 

physiology13-15? 37 

To address this question, we pursued a recently-popularized approach2,7,8,12,14,15 and trained deep neural 38 

networks to perform one of three different tasks, each of which corresponds to a different computational 39 

objective. We trained the networks to either: a) recognize objects; b) form compressed image 40 

representations that suffice for reconstructing the input image; or c) recognizing objects while also 41 

retaining enough information about the input image to allow its reconstruction. We then compared these 42 

trained neural networks’ responses to image stimuli to responses observed in neurophysiology 43 

experiments wherein monkeys saw the same images that were input to the models, to see which tasks 44 

yielded models that best matched the neural data. We used the same architecture for all of these 45 

networks, ensuring that any differences in how well the models recapitulate the neural data can be 46 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.02.21.958488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958488
http://creativecommons.org/licenses/by-nd/4.0/


3 

attributed to their objective function, and not to architecture differences. Our main finding is that 47 

networks trained with objective (c) provided the closest match for both areas V4 and IT of the monkey, 48 

closely followed by ones trained with objective (b), and more distantly followed by the networks trained 49 

on the pure object recognition objective (a). This suggests that a full understanding of visual ventral 50 

stream computations might require considerations beyond object recognition, and that scene 51 

reconstruction is a promising candidate for the “other” computations occurring within the VS. Notably, 52 

other work14-18, , including two concurrent studies14,15, has asked whether unsupervised image processing 53 

models can describe primate VS function. We discuss our findings in the context of these concurrent 54 

studies in the Discussion. 55 

Results 56 

Computational Models 57 

To identify the degree to which different computational objectives describe ventral stream physiology, 58 

we optimized  deep convolutional neural network (CNN) models for different objectives, and compared 59 

them to neural recordings from the primate ventral stream. Each computational model was constructed 60 

out of a series of layers of artificial neurons, connected sequentially. The first layer takes as input an 61 

image 𝒙 and at the final layer outputs a set of neuronal activities that represent the visual scene input 62 

(Fig 1B), including object identity. We refer to this output as the latent representation. The input 63 

images, 𝒙, consisted of images of clothing articles superimposed over natural image backgrounds (see 64 

Methods). Each image used a single clothing article rendered in a randomly chosen position and 65 

orientation, and placed over a natural image background (Fig. 1A).  66 

The models each had a total of four layers of processing between their inputs and these latent 67 

representations. The visual inputs to the model had normalized luminance values, mimicking the 68 

normalization observed  at LGN19. The connectivity between neurons in each layer (and the artificial 69 
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neurons’ biases) were optimized within each model, to achieve the specified objective (see Methods). 70 

We repeated this process for three different objectives, yielding three different types of models. The first 71 

type of model was optimized strictly for object recognition: the optimization maximized the ability of a 72 

linear decoder to determine the identity of the clothing object in the visual scene from the latent 73 

representation. (This mirrors the observation that neural activities in area IT can be linearly decoded to 74 

recover object identity12). We refer to this network as the “classify” network. The second type of model 75 

was optimized for the ability of a decoder network to reconstruct the object from the latent 76 

representation. We refer to this autoencoder as the “reconstruct” model. Finally, we considered a model 77 

whose objective during training is the sum of the “classify” objective and the “reconstruct” one: the 78 

optimization simultaneously maximized this network’s ability to perform both tasks, and we refer to it as 79 

the “combined” model. This combined model is a semi-supervised autoencoder, the construction of 80 

which was motivated by previous work in machine learning20. 81 

In all cases, the models were optimized via backpropagation using sets of images containing randomly 82 

sampled objects, until their object classification performance saturated on a set of held-out validation 83 

images. Reasonable performance on the categorization task was obtained the “classify” and “combined” 84 

models (Fig 1D); as expected, the “reconstruct” model had very poor classification performance. 85 

Similarly, we assessed the ability of an optimized generator network to decode the latent state 86 

activations to reconstruct the input images. After training, both the “combined” model, and the 87 

“reconstruct” model, had relatively low reconstruction errors, whereas the “classify” model, had much 88 

higher reconstruction error. Thus, we created neural networks that could either classify image contents 89 

but not reconstruct the images themselves (“classify”), reconstruct but not classify (“reconstruct”), or do 90 

both tasks with reasonable efficacy (“combined”). 91 
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Having developed models optimized for these different objectives, we could evaluate how well each 92 

model matched observations from primate VS, and use that comparison to determine which 93 

computational objective provides the best description of primate VS. 94 

Electrophysiology Comparisons 95 

To compare our neural network models to ventral stream physiology, we used the experimental data 96 

from a previously-published study12,21 (see Methods and Refs. 12,21 for details). These data consisted of 97 

electrode array recordings from areas V4 and IT of monkeys that were viewing images of objects 98 

superimposed over natural image backgrounds, at different locations and orientations. Many neurons in 99 

each area were simultaneously observed in these experiments.  100 

First, we asked how well each layer within each neural network model matched the primate VS data. To 101 

achieve this goal, we input into our models the same images that were shown to the monkeys in the 102 

physiology experiments. We then extracted the activations of the artificial neurons at each layer of our 103 

computational models, and we used Canonical Correlation Analysis (CCA)22,23 to compare those 104 

artificial neurons’ activations to those recorded in monkey V4 and IT (See Methods). In brief, CCA 105 

assesses the degree to which weighted sums of our neural network unit activations correlate with 106 

weighted sum of the neuron firing rates observed in the monkey experiments. It can thus test for 107 

similarity in how the images are represented by the neural networks, and the monkey, without requiring 108 

us to assign each neural network unit to a specific neuron in the monkey experiments. Similar to regular 109 

correlation analysis, CCA correlations of 0 indicate no relation between the neural network and monkey 110 

visual representations, while a value of 1 indicate perfect similarity. We extracted the canonical 111 

correlations for the first 10 CCA components, and averaged their values (Fig. 2). 112 

For the “classify” model, IT was best described by the latent representation (z), whereas V4 was better 113 

described by the conv3 layer, which is earlier in the hierarchy. This in line with previous work (e.g., 114 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.02.21.958488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958488
http://creativecommons.org/licenses/by-nd/4.0/


6 

Refs. 4,17) showing that deeper layers of task-trained neural networks are better matches to brain 115 

regions deeper in the ventral stream’s visual hierarchy. For contrast, with our “reconstruct” and 116 

“combined” objectives – which involve an unsupervised component – the best match to both the V4 and 117 

the IT data, was from the latent representation (z) of the neural network. This suggests that the specific 118 

alignment of which brain area is best matched by which layer of an artificial neural network model 119 

could depend on the task for which the artificial neural network is optimized. 120 

To determine which objective function led to neural networks that best match each brain area, we 121 

identified the layer of each network that gave the highest mean canonical correlation with each brain 122 

region. For area IT, this was the latent representation (z) in all models; whereas for area V4, this was the 123 

latent representation (z) for the “reconstruct” and “combined” models, and layer conv3 for the “classify” 124 

model. We then compared these best-layer mean canonical correlation values between neural network 125 

models, for each brain area, to determine which model(s) best described the brain data.  126 

For area IT, the “combined” model had the highest mean canonical correlation value (0.265 +/- 0.002: 127 

mean +/- standard error, over 15 random samplings of neural network unit activations; see Methods), 128 

followed closely by the “reconstruct” model (0.262 +/- 0.003: mean +/- standard error, over 15 random 129 

samplings of neural network unit activations), and more distantly by the “classify” model (0.240 +/- 130 

0.005: mean +/- standard error, over 15 random samplings of neural network unit activations). The 131 

differences between models was statistically significant in all cases (p = 1x10-2 for comparing the 132 

“combined” and “reconstruct” models; p = 2x10-6 for comparing the “combined” and “classify” models; 133 

and p = 2x10-6 for comparing the “reconstruct” and “classify” models. All comparisons were done with 134 

one-tailed Wilcoxon rank sum tests.) 135 

Our findings in area V4 mirrored those from IT: the “combined” model had the highest mean canonical 136 

correlation value (0.245 +/- 0.004: mean +/- standard error, over 15 random samplings of neural network 137 

unit activations), followed closely by the “reconstruct” model (0.239 +/- 0.005: mean +/- standard error, 138 
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over 15 random samplings of neural network unit activations), and more distantly by the “classify” 139 

model (0.21 +/- 0.01: mean +/- standard error, over 15 random samplings of neural network unit 140 

activations). The differences between models was statistically significant in all cases (p = 2x10-3 for 141 

comparing the “combined” and “reconstruct” models; p = 2x10-6 for comparing the “combined” and 142 

“classify” models; and p = 2x10-6 for comparing the “reconstruct” and “classify” models. All 143 

comparisons done with one-tailed Wilcoxon rank sum test.) 144 

Having identified the best models, and motivated by the analyses by in Ref. 12, we asked how the 145 

different attributes in the input images – both categorical and non-categorical -- were represented by the 146 

different models. We first tested the position sensitivity of the units in each layer of the neural network 147 

model, using test images of clothing items on the natural scene backgrounds (Fig. 3AB; see Methods). 148 

For  both the “reconstruct” and “combined” models, the position sensitivity increased monotonically 149 

with increasing depth. Whereas, for the “classify” model, the position sensitivity decreased between 150 

conv4 and the subsequent latent representation (z). (Notably, all layers before the latent representation in 151 

our model are convolutional, whereas the latent representation is a fully connected layer. For 152 

comparison, the authors of Ref. 12 showed position sensitivity in their model – trained purely for 153 

categorization – that increased monotonically with depth, for the 6 convolutional layers of their model. 154 

This could seem at odds with the fact that our latent representation is less position sensitive than are the 155 

previous layers. However, the fully connected nature of this layer will tend to remove position 156 

information, and hence we believe that our results are quite consistent with those of Ref. 12. in terms of 157 

position information evolving with depth in fully convolutional neural network layers.). 158 

For comparison, we show the position selectivity from the neurons observed in the monkey experiments, 159 

which show increasing position selectivity between V4 and IT.  160 

Next, we tested the rotation selectivity of each of the units in our models. Those were quite low for the 161 

units in all of the models, as they were in V4 and IT of the monkey (Fig. 3C). The one exception to this 162 
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is the latent representation of the “classify” model, which stood out for its high rotation selectivity. 163 

Finally, we assessed the category selectivity of the units in each of our models, and show them alongside 164 

the corresponding data from monkey V4 and IT (Fig. 3D). Notably, the latent space of the “classify” 165 

network stands out for its high category selectivity, compared with the other network models, and the 166 

monkey data. 167 

Importantly, the monkey data in Fig. 3 were derived from the images shown to the monkeys, whereas 168 

we computed the selectivities of our neural network model units on the images of clothing items 169 

superimposed on nature image backgrounds. We did this because the image categories in those images 170 

(clothing images) match those on which the network models were trained; these are different from the 171 

objects in the images shown to the monkeys. This is a potential limitation in the comparisons between 172 

network models and monkey data in Fig. 3.  173 

Discussion 174 

Here, we studied a supervised learning model (trained to classify objects in images), an unsupervised 175 

learning model (trained as an autoencoder to generate compressed representations of input images that 176 

suffice for their reconstruction), and a semi-supervised model (trained to both classify objects and 177 

enable image reconstruction from its latent representation). We asked which objective function led to 178 

neural network models whose image representations most closely match those observed in the ventral 179 

stream of the primate visual cortex, and found that the best match was the semi-supervised model. The 180 

unsupervised model was close behind, while the supervised model lagged more substantially behind the 181 

other two. This suggests that accurate descriptions of ventral stream computations should involve 182 

unsupervised learning objectives (e.g., image reconstruction). We also characterized the depth-183 

depending evolution of categorical and non-categorical information in these models, with an aim 184 

towards understanding how the different objectives affect the representation of different image attributes 185 

at different depths in the neural networks. 186 
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 187 

We are not the first to explore unsupervised learning algorithms as models of ventral stream (VS) 188 

computation. For example, the classic “sparse coding” models showed that unsupervised autoencoders 189 

formed image representations similar in many ways to those observed in primary visual cortex 190 

(V1)18,24,25. More recent work showed that better descriptions of primate V1 responses could be obtained 191 

with supervised learning algorithms trained for object recognition 16,17 than with the unsupervised 192 

algorithms16,  or with wavelet bases that mimic those learned by the unsupervised learning algorithms17. 193 

Those works did not look at deeper areas of the VS (e.g., V4 or IT), nor did they study the different 194 

objectives in the same neural network architectures. 195 

Two concurrent studies14,15 overcome these challenges – as does this paper. Those studies also 196 

investigated unsupervised deep learning algorithms, and found that they better matched VS image 197 

representations than do supervised algorithms. This is at odds with earlier studies (e.g. Refs. 2,4), which 198 

suggested that supervised algorithms (like our “classify” model) would be the best, although it is in-line 199 

with other work that questioned whether “pure” object recognition systems really were the best models 200 

of ventral stream physiology26,27. To this body of work, we add the observation that semi-supervised 201 

algorithms (inspired by the machine learning work of Ref. 20) could be even better than the “pure” 202 

unsupervised learning algorithms.  203 

Compellingly, and in line with our findings, recent studies of human perceptual judgments of object 204 

categories showed that neural networks that combined an image-generative component with a 205 

classification component, gave closer matches to the human behavioral data than did networks without 206 

the generative component28. In other words, both in terms of human perceptual judgments28, and primate 207 

neurophysiology (this work), our best understanding of VS computation might be in terms of a 208 

combination of different task objectives, that include object recognition and image reconstruction. I.e., 209 

semi-supervised models might form our best models of the VS. 210 
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Somewhat surprisingly, we found that categorization performance in our “combined” model was nearly 211 

as good as in our “classify” model (Fig. 1D), even though the units in the “combined” model were 212 

overall less category-selective than were the units in the “classify” model (Fig. 3D). This apparent 213 

contradiction is explained by a recent machine learning study29, which trained neural networks for object 214 

categorization, using regularization that penalized category selectivity in all but the readout layer.  This 215 

led to networks with much lower single-unit category selectivity, but no commensurate loss in 216 

categorization performance at the read-out stage. Thus, the link between single-unit category selectivity, 217 

and overall network categorization performance, is surprisingly weak. 218 

Importantly, our goal here was not necessarily to obtain state-of-the-art models of the primate VS. 219 

Rather, it was to compare different objective functions within the same architecture, to see which was a 220 

better match to the VS. Some recent work of ours16 does push more towards obtaining state-of-the-art 221 

models, and finds that networks trained end-to-end to predict V1 firing rates achieve higher performance 222 

than is obtained using regression against the unit activations from VGG-16 (a pre-trained object 223 

classification network). That suggests that there is something more going on in primate VS than “just” 224 

object recognition, although another study concurrent to that one17 found that regression on VGG-16 225 

activations was slightly better than end-to-end trained models. For many reasons (different datasets, and 226 

different inclusion criteria for neurons, for example), direct comparison of performance measures 227 

between those studies is difficult. As such, an important future area of work is to systematically sample 228 

the space of architectures and objective functions, to find the best one. Our work suggests that semi-229 

supervised objectives are strong candidates for that work, and we are encouraged by efforts like the 230 

Brain-Score platform30, to facilitate quantitative comparison between models. 231 

One natural question that arises is about our decision to train our models on images of fashion items 232 

superimposed on natural image backgrounds, as opposed to other datasets (e.g., ImageNet). We chose 233 

this approach because it yielded images of naturalistic objects (clothing items) with rich natural image 234 
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backgrounds, yet was parametric in the location and orientation of the objects, and highly tractable 235 

computationally. The same is not true of ImageNet or other “typical” computer vision benchmark tasks. 236 

Moreover, being able to procedurally generate new examples (of clothing items on nature image 237 

backgrounds) during training gave effectively endless variation in the training data that improved the 238 

training of our models.  239 

Moreover, while we chose canonical correlation analysis (CCA) for comparing neural data to neural 240 

network models, many recent studies2,4,14-17 (including some of our own16,31) used instead analyses based 241 

on representational dissimilarity matrices (RDM), or regression between neural network unit activations 242 

and recording neuronal activities. While we like the RDM and regression approaches, all of them 243 

(including CCA) have important limitations, leaving it unclear which is the best method to compare 244 

neural networks to brains. First, RDM compares matrices of image-by-image (or category-by-category) 245 

dissimilarity in activation vectors in the neural network, to those obtained from the brain32. In this 246 

approach, even if the neurons in the brain were exactly recapitulated by units in the neural network, the 247 

RDM analysis could still show a poor match if there are other units in the neural network that do not 248 

match those in the brain from which the experimenters recorded. Given that neural data is invariably 249 

subsampled (not all neurons are recorded), this can be serious limitation. Regression-based approaches 250 

get around this challenge by attempted to reconstruct the neuronal activities from the neural network 251 

unit activations. A downside to this approach is the need for heavy regularization to prevent overfitting, 252 

and the difficulty in deciding how to average the prediction quality (usually a correlation, or fraction of 253 

explained variance) over neurons to get ensemble statistics. Those values are typically just averaged 254 

over cells, but neurons’ activations are usually correlated with each other, so that averaging can be 255 

problematic. CCA attempts to circumvent these issues, by finding linear combinations of neural network 256 

unit activations, that most correlate with linear combinations of neuronal activities. When multiple 257 

components are obtained, they are each independent of one another, enabling us to average over their 258 

correlation values (we used 10 CCA components in this study). For these reasons and others, an 259 
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increasing number of neuroscientists are using CCA for analyses like the one presented here22,23. We do 260 

not intend here to argue that any one of these methods is better than any other. All of them have 261 

limitations, and an important avenue for research is to determine, on principled grounds, which approach 262 

is best for different types of comparisons between brains and artificial neural networks. 263 

It is important to mention that this study had several important limitations. First, we studied only a 264 

single neural network architecture. In principle, different results could be obtained with other 265 

architectures. At the same time, the concurrent results from other groups14,15 (using other architectures 266 

and image datasets), showing that unsupervised learning provides better VS models than does 267 

supervised learning, increases our confidence in our findings. Second, our results from images of 268 

fashion items on nature scene backgrounds could, in principle, fail to generalize to other settings. On the 269 

other hand, natural images have strong statistical regularities33,34, suggesting that, so long as one samples 270 

broadly from the realm of realistic images, the specific images chosen may not be overly important. Our 271 

images – of real-world objects on nature image backgrounds – should thus not pose any serious issues. 272 

We conclude by noting that a key open question in neuroscience is to find the computational objectives 273 

that describe the visual ventral stream. Our work suggests that semi-supervised objectives, combining 274 

object recognition with scene reconstruction, may be promising candidates. 275 

 276 

Materials and Methods 277 

Primate Electrophysiology 278 

Neural recordings were originally collected by the DiCarlo lab (Ref. 12) and shared with us for this 279 

analysis. In brief, neural recordings were collected from the visual cortex of two awake and behaving 280 

rhesus macaques using multi-electrode array electrophysiology recording systems (BlackRock 281 

Microsystems). Animals were presented with a series of images showing 64 distinct objects from 8 282 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.02.21.958488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958488
http://creativecommons.org/licenses/by-nd/4.0/


13 

classes rendered at varying position in the animal’s visual field, and with variation rotations. After 283 

spike-sorting and quality control this resulted in well-isolated single units from both IT (n=168) and V4 284 

(n=128); higher-order areas in primate visual cortex. A full description of the data and experimental 285 

methods is given by Ref. 12. 286 

Dataset and Augmentation 287 

Our goal was to study the object representations, scene reconstruction, and representation of non-288 

categorical information, within artificial neural networks. To achieve that goal, we trained the neural 289 

networks to take in images, and either categorize the objects within them, reconstruct the images, or 290 

categorize the objects and reconstruct the input (i.e., a semi-supervised autoencoder20). To train these 291 

networks, we required images that varied in categorical, and in non-categorical, properties. For that 292 

reason, we constructed images of clothing items superimposed at random locations over natural image 293 

backgrounds.  294 

To achieve this goal, we used all 70,000 images from the Fashion MNIST dataset, a computer vision 295 

object recognition dataset comprised of images of clothing articles from 10 different categories. We 296 

augmented this dataset by superimposing those 28x28 pixel images onto 112x112 pixel frames, with the 297 

center locations drawn randomly from a uniform distribution spanning 75% of the image field. Images 298 

were shifted according those randomly drawn dx and dy values, and rotated according to randomly 299 

drawn angles between -54 and +54 degrees. After applying positional and rotational shifts, the objects 300 

were superimposed over random patches extracted from natural images from the BSDS500 natural 301 

image dataset to produce simplified natural scenes which contain categorical (1 of 10 clothing 302 

categories) and non-categorical (position and rotation shifts) variation. Random 112x112 pixel patches 303 

from the BSDS500 dataset were gray scaled before the shifted object images were added to the 304 

background patch (Fig 1A). All augmentation was performed on-line during training. That is, every 305 

position shift, rotation shift, and natural image patch was drawn randomly every training batch instead 306 
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of pre-computing shifts and backgrounds. This allows every training batch to be composed of unique 307 

combinations of objects, backgrounds, rotations, and shifts, helping to prevent overfitting. This approach 308 

yielded 112x112 pixel images that contained the clothing item, at a random location and orientation, 309 

with a nature image background. 310 

Computational models 311 

The convolutional models were constructed by sequentially combining convolutional layers, followed 312 

by an all-to-all connected layer (z). Each convolutional layer receives as input a spatially arranged map 313 

from the prior layer. A filter kernel is multiplied against the input at each spatial location in the input, 314 

and the resultant value is added to the bias and passed through the nonlinear activation function.  315 

The models described in our paper were constructed according to the table below. The first 4 layers were 316 

convolutional, whereas the latent layer (z) was densely connected. 317 

 Output Size Kernel 

Size 

Activation 

Function 

Dropout 

rate 

Batch Normalization 

Momentum 

Input 112 x 112 N/A N/A N/A N/A 

Layer 1 56x56x16 3x3 LeakyReLU 25% 0.8 

Layer 2 28x28x32 3x3 LeakyReLU 25% 0.8 

Layer 3 14x14x64 3x3 LeakyReLU 25% 0.8 

Layer 4 7x7x128 3x3 LeakyReLU 25% 0.8 

Latent, z    500  Linear 0% 0.8 
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Models using the “reconstruct” objective, and the “composite” classify-and-reconstruct objective (see 318 

below) need an additional generator network to reconstruct the original stimulus input from the latent 319 

representation. The generator network (G) uses a residual convolutional neural network (ResNet) which 320 

has achieved state of the art performance in natural image generation. The generator network uses is 321 

comprised of deconvolutional layers and its architectural hyperparameters directly mirror those in the 322 

convolutional encoder. We chose this generator network structure because it led to better performance 323 

(lower sums of squared errors in image reconstruction) than other generators we had tried, including 324 

ones that mirrored the encoding side of our network models. We do not claim that this generator model 325 

describes anything about the biology: it is there instead to enable an image to be decoded from the latent 326 

representation, to help test whether the latent representation contains sufficient information for that 327 

reconstruction. 328 

Our models can be found on Github (https://github.com/elijahc/vae). 329 

Objective functions and training parameters 330 

Models optimized for classification use categorical cross-entropy for the objective function. Categorical 331 

cross-entropy (XENT) is a commonly used objective function in machine learning to train neural 332 

network classifiers. Multilabel cross-entropy is calculated according to the equation below where M is 333 

the total number of classes  334 

𝑿𝑬𝑵𝑻 =  − ∑ 𝒚𝒄 ∙ 𝒍𝒏(𝒚̂𝒄)

𝑴

𝒄=𝟏

 335 

Here, 𝒚𝒄 is the true category label, represented as a one-hot vector, and 𝒚̂𝒄 is the network output 336 

obtained from the linear readout of the latent state (see Fig. 1).  337 
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Models optimized for reconstructing the original input scene use pixel-wise sum of squared error (SSE) 338 

between the input and the generator’s output (𝒙).  339 

𝑺𝑺𝑬 =  ∑(𝒙 − 𝒙)𝟐 340 

 341 

Models optimized for both objectives (i.e., the “combined” objective) were optimized for the sum of the 342 

two: their objective function was SSE + XENT. 343 

Notably, other objective functions could also have been used for the reconstruction loss, in place of our 344 

SSE objective. One example would be the contrastive loss (as in Ref. 14). We do not claim that the SSE 345 

is the only (or even the “best”) loss function for the unsupervised learning component. Minimizing this 346 

loss does, however, force the network’s latent representation to retain sufficient information about the 347 

input to enable its reconstruction. 348 

We trained each model in our experiment until classification accuracy plateaued on a validation dataset 349 

of 512 objects from the 10,000 test images in the fashion MNIST dataset.  350 

Model Evaluation 351 

Canonical Correlation Analysis (Fig. 2): 352 

We quantified the similarity of each models’ layer-wise selectivity to corresponding layers in primate 353 

ventral stream using Canonical Correlation Analysis (CCA)22. CCA finds a set of weights used to 354 

project both the primate electrophysiology results and our own model unit activations into a lower 355 

dimensional space and measures the correlation of the projections in this space. The projection weights 356 

are optimized to maximize correlation in the lower dimension. We use 10  projection dimension for this 357 

analysis and report the average over the (optimized) correlations of those 10 dimensions. In analogy to 358 

the monkey experiments, we performed these analyses on randomly-chosen sets of 250 units from our 359 
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models; this approximates the number of pseudo-randomly sampled of neurons with the implanted 360 

electrode arrays. While these 250 units represent 50% of our latent space (z), the fraction of neurons 361 

sampled from monkey V4 or IT in the physiology experiments was much lower. 362 

We repeated the analysis for 15 different random draws of unit activations and report the distribution of 363 

correlations over those 15 draws (Fig 2). 364 

Feature Selectivity (Fig. 3): 365 

After training performance plateaus, 5-fold sampling of 250 randomly chosen unit activations from each 366 

layer in the encoder model (Fig 1B) were used in comparisons with primate ventral stream 367 

electrophysiology. Unit activations were generated using a random sample from held out test images 368 

(not used during training). As in a (simulated) electrophysiology experiment, each image was input to 369 

the network, and the corresponding unit activations were recorded. We then analyzed these unit 370 

activations in the same way as we did the firing rates recorded in monkey visual cortex, described 371 

below. 372 

First, we measured selectivity of our artificial neurons to different image attributes, in the same way as 373 

Ref. 12 (they call these measures “performance” instead of selectivity). For continuous-valued scene 374 

attributes (e.g. horizontal position) we measured selectivity as the absolute value of the Pearson 375 

correlation between the neuron’s response and that attribute in the stimulus image. For categorical 376 

properties (e.g. object class) we measure selectivity as the one-vs-all discriminability (d’). 377 
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Fig. 1: Overview 422 

 423 

A) We constructed images of clothing items superimposed over natural image backgrounds at random 424 
eccentricities and orientations. B) We model the ventral stream as an encoder whose objective is to map 425 
input image (x) onto more abstract “latent” representations (z). In our models this latent space contains 426 
500 artificial neurons. The latent layer (z) is densely connected whereas the preceding layers were all 427 
convolutional (see Methods). The generator network (G) uses these latent representations (z) as input to 428 

reconstruct the object at the correct location within the scene. A separate linear decoder attempts to 429 

determine the object identity from the activities of the units in z. C) We trained these neural networks on 430 
one of three tasks: object categorization (“classify”), object reconstruction (“reconstruct”), or object 431 
categorization with concurrent image reconstruction (“combined”). D) Object categorization and 432 
reconstruction performance of the three networks after they were trained, assessed on held-out images 433 

(i.e., ones not used in training the networks). 434 

 435 
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Fig. 2: Canonical Correlation Analysis   436 

 437 
We used Canonical Correlation Analysis (CCA) to quantify how similar the responses in the layers of 438 
each model were to primate electrophysiology data in both inferior temporal cortex (IT) and visual area 439 

V4 (V4). We used random draws of 250 unit activations in each layer of the fully trained convolutional 440 
models optimized under the “classify” objective (categorical cross-entropy, left in each panel), the 441 
image reconstruction objective (“recon”), and the “combined” classify and reconstruct semi-supervised 442 
autoencoder objective. For each comparison between a given neural network layer and brain area, we 443 

computed the canonical correlations of the first 10 CCA components, and averaged their values. We 444 

repeated this process for 15 random draws of the neural network unit activations, and display the 445 
distribution of the resultant CCA correlation values (over those 15 draws) as a box and whisker plot. 446 
Lines within the filled bar indicate the mean, and filled rectangle corresponds to the interquartile range. 447 

 448 

 449 

 450 

 451 
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Fig. 3: Selectivity for visual scene attributes 452 
 453 

 454 

Selectivity of units in the fully trained convolutional models optimized under “classify” objective 455 
(categorical cross-entropy), “reconstruction” objective, and the “combined” classify+reconstruct semi-456 
supervised autoencoder objective20. We measured property selectivity of both categorical (D) and 457 

continuous valued category-orthogonal properties (A, B, C) on units in the multi-electrode array data 458 
from Hong et al. (2016), and from units in each layer of the computational model encoders. We defined 459 

selectivity for categorical information on each unit in the dataset as the absolute value of that unit’s 460 
discriminability (one-vs-all d-prime). We defined selectivity for continuous valued attributes (horizontal 461 
and vertical position) on each unit as the absolute value of the Pearson correlation coefficient. Unit 462 

activities for models were sampled using 10000 held out test images to generate activations at each layer 463 
of the model. We randomly sampled 250 units from each layer of each model for the analysis. Error bars 464 

show 95% confidence intervals over the observed set of units. 465 
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