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Abstract

An open question in systems neuroscience is which objective function (or computational “goal”)
best describes the computations performed by the ventral stream (VS) of primate visual cortex.
Substantial past research has suggested that object categorization could be such a goal. Recent
experiments, however, showed that information about object positions, sizes, etc. is encoded with
increasing explicitness along this pathway. Because that information is not necessarily needed for
object categorization, this motivated us to ask whether primate VS may do more than “just”
object recognition. To address that question, we trained deep neural networks, all with the same
architecture, with three different objectives: a supervised object categorization objective; an
unsupervised autoencoder objective; and a semi-supervised objective that combined autoencoding
with categorization. We then compared the image representations learned by these models to
those observed in areas V4 and IT of macaque monkeys using canonical correlation analysis
(CCA). We found that the semi-supervised model provided the best match the monkey data,
followed closely by the unsupervised model, and more distantly by the supervised one. These
results suggest that multiple objectives — including, critically, unsupervised ones — might be

essential for explaining the computations performed by primate VS.
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Introduction

The ventral stream (VS) of visual cortex begins in primary visual cortex (V1), ends in inferior temporal
cortex (IT), and is essential for object recognition. Accordingly, a long-standing hypothesis in the field
is that the ventral stream could be understood as mapping visual scenes onto neuronal firing patterns that
represent object identity->. Supporting that assertion, deep convolutional neural networks (DCNN’s)
trained to categorize objects in natural images develop intermediate representations that resemble those
in primate VVS26-8, At the same time, VS and other visual areas are also engaged during visualization of
both previously encountered and novel scenes®1?, suggesting that the VS can generate visual scenes in
addition to identifying objects within those scenes. Furthermore, non-categorical information, about
object positions'!, sizes, etc. is also represented with increasing explicitness in late VS areas V4 and
IT'2. This non-categorical information is not necessarily needed for object recognition tasks, although
interestingly, deep convolutional neural networks (CNNSs) recapitulated this trend of increasingly
explicit category-orthogonal representations with increasing depth®. Nevertheless these recent findings
motivated us to reconsider the long-standing question: What computational objective best explains VS

physiology3-15?

To address this question, we pursued a recently-popularized approach? 78121415 and trained deep neural
networks to perform one of three different tasks, each of which corresponds to a different computational
objective. We trained the networks to either: a) recognize objects; b) form compressed image
representations that suffice for reconstructing the input image; or c) recognizing objects while also
retaining enough information about the input image to allow its reconstruction. We then compared these
trained neural networks’ responses to image stimuli to responses observed in neurophysiology
experiments wherein monkeys saw the same images that were input to the models, to see which tasks
yielded models that best matched the neural data. We used the same architecture for all of these

networks, ensuring that any differences in how well the models recapitulate the neural data can be
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attributed to their objective function, and not to architecture differences. Our main finding is that
networks trained with objective (c) provided the closest match for both areas V4 and IT of the monkey,
closely followed by ones trained with objective (b), and more distantly followed by the networks trained
on the pure object recognition objective (a). This suggests that a full understanding of visual ventral
stream computations might require considerations beyond object recognition, and that scene
reconstruction is a promising candidate for the “other” computations occurring within the VS. Notably,
other work!+18 including two concurrent studies!**°, has asked whether unsupervised image processing

models can describe primate VS function. We discuss our findings in the context of these concurrent

studies in the Discussion.

Results

Computational Models

To identify the degree to which different computational objectives describe ventral stream physiology,
we optimized deep convolutional neural network (CNN) models for different objectives, and compared
them to neural recordings from the primate ventral stream. Each computational model was constructed
out of a series of layers of artificial neurons, connected sequentially. The first layer takes as input an
image x and at the final layer outputs a set of neuronal activities that represent the visual scene input
(Fig 1B), including object identity. We refer to this output as the latent representation. The input
images, x, consisted of images of clothing articles superimposed over natural image backgrounds (see
Methods). Each image used a single clothing article rendered in a randomly chosen position and

orientation, and placed over a natural image background (Fig. 1A).

The models each had a total of four layers of processing between their inputs and these latent
representations. The visual inputs to the model had normalized luminance values, mimicking the

normalization observed at LGN?®. The connectivity between neurons in each layer (and the artificial
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neurons’ biases) were optimized within each model, to achieve the specified objective (see Methods).
We repeated this process for three different objectives, yielding three different types of models. The first
type of model was optimized strictly for object recognition: the optimization maximized the ability of a
linear decoder to determine the identity of the clothing object in the visual scene from the latent
representation. (This mirrors the observation that neural activities in area IT can be linearly decoded to
recover object identity'?). We refer to this network as the “classify” network. The second type of model
was optimized for the ability of a decoder network to reconstruct the object from the latent
representation. We refer to this autoencoder as the “reconstruct” model. Finally, we considered a model
whose objective during training is the sum of the “classify” objective and the “reconstruct” one: the
optimization simultaneously maximized this network’s ability to perform both tasks, and we refer to it as

the “combined” model. This combined model is a semi-supervised autoencoder, the construction of

which was motivated by previous work in machine learning?.

In all cases, the models were optimized via backpropagation using sets of images containing randomly
sampled objects, until their object classification performance saturated on a set of held-out validation
images. Reasonable performance on the categorization task was obtained the “classify” and “combined”
models (Fig 1D); as expected, the “reconstruct” model had very poor classification performance.
Similarly, we assessed the ability of an optimized generator network to decode the latent state
activations to reconstruct the input images. After training, both the “combined” model, and the
“reconstruct” model, had relatively low reconstruction errors, whereas the “classify” model, had much
higher reconstruction error. Thus, we created neural networks that could either classify image contents
but not reconstruct the images themselves (“classify’), reconstruct but not classify (“reconstruct’), or do

both tasks with reasonable efficacy (“combined”).
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Having developed models optimized for these different objectives, we could evaluate how well each

model matched observations from primate VS, and use that comparison to determine which

computational objective provides the best description of primate VS.

Electrophysiology Comparisons

To compare our neural network models to ventral stream physiology, we used the experimental data
from a previously-published study*??! (see Methods and Refs. 12,21 for details). These data consisted of
electrode array recordings from areas V4 and IT of monkeys that were viewing images of objects
superimposed over natural image backgrounds, at different locations and orientations. Many neurons in

each area were simultaneously observed in these experiments.

First, we asked how well each layer within each neural network model matched the primate VS data. To
achieve this goal, we input into our models the same images that were shown to the monkeys in the
physiology experiments. We then extracted the activations of the artificial neurons at each layer of our
computational models, and we used Canonical Correlation Analysis (CCA)?>22 to compare those
artificial neurons’ activations to those recorded in monkey V4 and IT (See Methods). In brief, CCA
assesses the degree to which weighted sums of our neural network unit activations correlate with
weighted sum of the neuron firing rates observed in the monkey experiments. It can thus test for
similarity in how the images are represented by the neural networks, and the monkey, without requiring
us to assign each neural network unit to a specific neuron in the monkey experiments. Similar to regular
correlation analysis, CCA correlations of 0 indicate no relation between the neural network and monkey
visual representations, while a value of 1 indicate perfect similarity. We extracted the canonical

correlations for the first 10 CCA components, and averaged their values (Fig. 2).

For the “classify” model, IT was best described by the latent representation (z), whereas V4 was better

described by the conv3 layer, which is earlier in the hierarchy. This in line with previous work (e.g.,
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Refs. 4,17) showing that deeper layers of task-trained neural networks are better matches to brain

regions deeper in the ventral stream’s visual hierarchy. For contrast, with our “reconstruct” and

“combined” objectives — which involve an unsupervised component — the best match to both the V4 and

the IT data, was from the latent representation (z) of the neural network. This suggests that the specific

alignment of which brain area is best matched by which layer of an artificial neural network model

could depend on the task for which the artificial neural network is optimized.

To determine which objective function led to neural networks that best match each brain area, we
identified the layer of each network that gave the highest mean canonical correlation with each brain
region. For area IT, this was the latent representation (z) in all models; whereas for area V4, this was the
latent representation (z) for the “reconstruct” and “combined” models, and layer conv3 for the “classify”
model. We then compared these best-layer mean canonical correlation values between neural network

models, for each brain area, to determine which model(s) best described the brain data.

For area IT, the “combined” model had the highest mean canonical correlation value (0.265 +/- 0.002:
mean +/- standard error, over 15 random samplings of neural network unit activations; see Methods),
followed closely by the “reconstruct” model (0.262 +/- 0.003: mean +/- standard error, over 15 random
samplings of neural network unit activations), and more distantly by the “classify” model (0.240 +/-
0.005: mean +/- standard error, over 15 random samplings of neural network unit activations). The
differences between models was statistically significant in all cases (p = 1x10-2for comparing the
“combined” and “reconstruct” models; p = 2x10 for comparing the “combined” and “classify” models;
and p = 2x10°® for comparing the “reconstruct” and “classify” models. All comparisons were done with

one-tailed Wilcoxon rank sum tests.)

Our findings in area V4 mirrored those from IT: the “combined” model had the highest mean canonical
correlation value (0.245 +/- 0.004: mean +/- standard error, over 15 random samplings of neural network

unit activations), followed closely by the “reconstruct” model (0.239 +/- 0.005: mean +/- standard error,
6
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over 15 random samplings of neural network unit activations), and more distantly by the “classify”

model (0.21 +/- 0.01: mean +/- standard error, over 15 random samplings of neural network unit

activations). The differences between models was statistically significant in all cases (p = 2x10-3 for

comparing the “combined” and “reconstruct” models; p = 2x10°® for comparing the “combined” and

“classify” models; and p = 2x107® for comparing the “reconstruct” and “classify” models. All

comparisons done with one-tailed Wilcoxon rank sum test.)

Having identified the best models, and motivated by the analyses by in Ref. 12, we asked how the
different attributes in the input images — both categorical and non-categorical -- were represented by the
different models. We first tested the position sensitivity of the units in each layer of the neural network
model, using test images of clothing items on the natural scene backgrounds (Fig. 3AB; see Methods).
For both the “reconstruct” and “combined” models, the position sensitivity increased monotonically
with increasing depth. Whereas, for the “classify’” model, the position sensitivity decreased between
conv4 and the subsequent latent representation (z). (Notably, all layers before the latent representation in
our model are convolutional, whereas the latent representation is a fully connected layer. For
comparison, the authors of Ref. 12 showed position sensitivity in their model — trained purely for
categorization — that increased monotonically with depth, for the 6 convolutional layers of their model.
This could seem at odds with the fact that our latent representation is less position sensitive than are the
previous layers. However, the fully connected nature of this layer will tend to remove position
information, and hence we believe that our results are quite consistent with those of Ref. 12. in terms of

position information evolving with depth in fully convolutional neural network layers.).

For comparison, we show the position selectivity from the neurons observed in the monkey experiments,

which show increasing position selectivity between V4 and IT.

Next, we tested the rotation selectivity of each of the units in our models. Those were quite low for the

units in all of the models, as they were in V4 and IT of the monkey (Fig. 3C). The one exception to this
7
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is the latent representation of the “classify” model, which stood out for its high rotation selectivity.

Finally, we assessed the category selectivity of the units in each of our models, and show them alongside

the corresponding data from monkey V4 and IT (Fig. 3D). Notably, the latent space of the “classify”

network stands out for its high category selectivity, compared with the other network models, and the

monkey data.

Importantly, the monkey data in Fig. 3 were derived from the images shown to the monkeys, whereas
we computed the selectivities of our neural network model units on the images of clothing items
superimposed on nature image backgrounds. We did this because the image categories in those images
(clothing images) match those on which the network models were trained; these are different from the
objects in the images shown to the monkeys. This is a potential limitation in the comparisons between

network models and monkey data in Fig. 3.

Discussion

Here, we studied a supervised learning model (trained to classify objects in images), an unsupervised
learning model (trained as an autoencoder to generate compressed representations of input images that
suffice for their reconstruction), and a semi-supervised model (trained to both classify objects and
enable image reconstruction from its latent representation). We asked which objective function led to
neural network models whose image representations most closely match those observed in the ventral
stream of the primate visual cortex, and found that the best match was the semi-supervised model. The
unsupervised model was close behind, while the supervised model lagged more substantially behind the
other two. This suggests that accurate descriptions of ventral stream computations should involve
unsupervised learning objectives (e.g., image reconstruction). We also characterized the depth-
depending evolution of categorical and non-categorical information in these models, with an aim
towards understanding how the different objectives affect the representation of different image attributes

at different depths in the neural networks.
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We are not the first to explore unsupervised learning algorithms as models of ventral stream (VS)
computation. For example, the classic “sparse coding” models showed that unsupervised autoencoders
formed image representations similar in many ways to those observed in primary visual cortex
(V1)182425 More recent work showed that better descriptions of primate V1 responses could be obtained
with supervised learning algorithms trained for object recognition 1617 than with the unsupervised
algorithms?®, or with wavelet bases that mimic those learned by the unsupervised learning algorithms?’.
Those works did not look at deeper areas of the VS (e.g., V4 or IT), nor did they study the different

objectives in the same neural network architectures.

Two concurrent studies***> overcome these challenges — as does this paper. Those studies also
investigated unsupervised deep learning algorithms, and found that they better matched VS image
representations than do supervised algorithms. This is at odds with earlier studies (e.g. Refs. 2,4), which
suggested that supervised algorithms (like our “classify” model) would be the best, although it is in-line
with other work that questioned whether “pure” object recognition systems really were the best models
of ventral stream physiology?®?’. To this body of work, we add the observation that semi-supervised
algorithms (inspired by the machine learning work of Ref. 20) could be even better than the “pure”

unsupervised learning algorithms.

Compellingly, and in line with our findings, recent studies of human perceptual judgments of object
categories showed that neural networks that combined an image-generative component with a
classification component, gave closer matches to the human behavioral data than did networks without
the generative component?8. In other words, both in terms of human perceptual judgments?, and primate
neurophysiology (this work), our best understanding of VS computation might be in terms of a
combination of different task objectives, that include object recognition and image reconstruction. l.e.,

semi-supervised models might form our best models of the VS.
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Somewhat surprisingly, we found that categorization performance in our “combined” model was nearly
as good as in our “classify” model (Fig. 1D), even though the units in the “combined” model were
overall less category-selective than were the units in the “classify” model (Fig. 3D). This apparent
contradiction is explained by a recent machine learning study?®, which trained neural networks for object
categorization, using regularization that penalized category selectivity in all but the readout layer. This
led to networks with much lower single-unit category selectivity, but no commensurate loss in

categorization performance at the read-out stage. Thus, the link between single-unit category selectivity,

and overall network categorization performance, is surprisingly weak.

Importantly, our goal here was not necessarily to obtain state-of-the-art models of the primate VS.
Rather, it was to compare different objective functions within the same architecture, to see which was a
better match to the VS. Some recent work of ours® does push more towards obtaining state-of-the-art
models, and finds that networks trained end-to-end to predict V1 firing rates achieve higher performance
than is obtained using regression against the unit activations from VGG-16 (a pre-trained object
classification network). That suggests that there is something more going on in primate VS than “just”
object recognition, although another study concurrent to that one!’ found that regression on VGG-16
activations was slightly better than end-to-end trained models. For many reasons (different datasets, and
different inclusion criteria for neurons, for example), direct comparison of performance measures
between those studies is difficult. As such, an important future area of work is to systematically sample
the space of architectures and objective functions, to find the best one. Our work suggests that semi-
supervised objectives are strong candidates for that work, and we are encouraged by efforts like the

Brain-Score platform®, to facilitate quantitative comparison between models.

One natural question that arises is about our decision to train our models on images of fashion items
superimposed on natural image backgrounds, as opposed to other datasets (e.g., ImageNet). We chose

this approach because it yielded images of naturalistic objects (clothing items) with rich natural image

10
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backgrounds, yet was parametric in the location and orientation of the objects, and highly tractable

computationally. The same is not true of ImageNet or other “typical” computer vision benchmark tasks.

Moreover, being able to procedurally generate new examples (of clothing items on nature image

backgrounds) during training gave effectively endless variation in the training data that improved the

training of our models.

Moreover, while we chose canonical correlation analysis (CCA) for comparing neural data to neural
network models, many recent studies?*41’ (including some of our own'¢3!) used instead analyses based
on representational dissimilarity matrices (RDM), or regression between neural network unit activations
and recording neuronal activities. While we like the RDM and regression approaches, all of them
(including CCA) have important limitations, leaving it unclear which is the best method to compare
neural networks to brains. First, RDM compares matrices of image-by-image (or category-by-category)
dissimilarity in activation vectors in the neural network, to those obtained from the brain®. In this
approach, even if the neurons in the brain were exactly recapitulated by units in the neural network, the
RDM analysis could still show a poor match if there are other units in the neural network that do not
match those in the brain from which the experimenters recorded. Given that neural data is invariably
subsampled (not all neurons are recorded), this can be serious limitation. Regression-based approaches
get around this challenge by attempted to reconstruct the neuronal activities from the neural network
unit activations. A downside to this approach is the need for heavy regularization to prevent overfitting,
and the difficulty in deciding how to average the prediction quality (usually a correlation, or fraction of
explained variance) over neurons to get ensemble statistics. Those values are typically just averaged
over cells, but neurons’ activations are usually correlated with each other, so that averaging can be
problematic. CCA attempts to circumvent these issues, by finding linear combinations of neural network
unit activations, that most correlate with linear combinations of neuronal activities. When multiple
components are obtained, they are each independent of one another, enabling us to average over their

correlation values (we used 10 CCA components in this study). For these reasons and others, an
11
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increasing number of neuroscientists are using CCA for analyses like the one presented here??23, We do
not intend here to argue that any one of these methods is better than any other. All of them have
limitations, and an important avenue for research is to determine, on principled grounds, which approach

is best for different types of comparisons between brains and artificial neural networks.

It is important to mention that this study had several important limitations. First, we studied only a
single neural network architecture. In principle, different results could be obtained with other
architectures. At the same time, the concurrent results from other groups'+*® (using other architectures
and image datasets), showing that unsupervised learning provides better VS models than does
supervised learning, increases our confidence in our findings. Second, our results from images of
fashion items on nature scene backgrounds could, in principle, fail to generalize to other settings. On the
other hand, natural images have strong statistical regularities3*2*, suggesting that, so long as one samples
broadly from the realm of realistic images, the specific images chosen may not be overly important. Our

images — of real-world objects on nature image backgrounds — should thus not pose any serious issues.

We conclude by noting that a key open question in neuroscience is to find the computational objectives
that describe the visual ventral stream. Our work suggests that semi-supervised objectives, combining

object recognition with scene reconstruction, may be promising candidates.

Materials and Methods

Primate Electrophysiology

Neural recordings were originally collected by the DiCarlo lab (Ref. 12) and shared with us for this
analysis. In brief, neural recordings were collected from the visual cortex of two awake and behaving
rhesus macaques using multi-electrode array electrophysiology recording systems (BlackRock

Microsystems). Animals were presented with a series of images showing 64 distinct objects from 8
12
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classes rendered at varying position in the animal’s visual field, and with variation rotations. After

spike-sorting and quality control this resulted in well-isolated single units from both IT (n=168) and V4

(n=128); higher-order areas in primate visual cortex. A full description of the data and experimental

methods is given by Ref. 12.

Dataset and Augmentation

Our goal was to study the object representations, scene reconstruction, and representation of non-
categorical information, within artificial neural networks. To achieve that goal, we trained the neural
networks to take in images, and either categorize the objects within them, reconstruct the images, or
categorize the objects and reconstruct the input (i.e., a semi-supervised autoencoder?°). To train these
networks, we required images that varied in categorical, and in non-categorical, properties. For that
reason, we constructed images of clothing items superimposed at random locations over natural image

backgrounds.

To achieve this goal, we used all 70,000 images from the Fashion MNIST dataset, a computer vision
object recognition dataset comprised of images of clothing articles from 10 different categories. We
augmented this dataset by superimposing those 28x28 pixel images onto 112x112 pixel frames, with the
center locations drawn randomly from a uniform distribution spanning 75% of the image field. Images
were shifted according those randomly drawn dx and dy values, and rotated according to randomly
drawn angles between -54 and +54 degrees. After applying positional and rotational shifts, the objects
were superimposed over random patches extracted from natural images from the BSDS500 natural
image dataset to produce simplified natural scenes which contain categorical (1 of 10 clothing
categories) and non-categorical (position and rotation shifts) variation. Random 112x112 pixel patches
from the BSDS500 dataset were gray scaled before the shifted object images were added to the
background patch (Fig 1A). All augmentation was performed on-line during training. That is, every

position shift, rotation shift, and natural image patch was drawn randomly every training batch instead
13
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of pre-computing shifts and backgrounds. This allows every training batch to be composed of unique

combinations of objects, backgrounds, rotations, and shifts, helping to prevent overfitting. This approach

yielded 112x112 pixel images that contained the clothing item, at a random location and orientation,

with a nature image background.

Computational models

The convolutional models were constructed by sequentially combining convolutional layers, followed
by an all-to-all connected layer (z). Each convolutional layer receives as input a spatially arranged map
from the prior layer. A filter kernel is multiplied against the input at each spatial location in the input,

and the resultant value is added to the bias and passed through the nonlinear activation function.

The models described in our paper were constructed according to the table below. The first 4 layers were

convolutional, whereas the latent layer (z) was densely connected.

Output Size Kernel Activation Dropout Batch Normalization
Size Function rate Momentum
Input | 112 x 112 N/A N/A N/A N/A
Layer 1 | 56x56x16 3x3 LeakyReLU  25% 0.8
Layer 2 | 28x28x32 3x3 LeakyReLU  25% 0.8
Layer 3 | 14x14x64 3x3 LeakyReLU  25% 0.8
Layer 4 | 7x7x128 3x3 LeakyReLU  25% 0.8
Latent, z | 500 Linear 0% 0.8
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Models using the “reconstruct” objective, and the “composite” classify-and-reconstruct objective (see
below) need an additional generator network to reconstruct the original stimulus input from the latent
representation. The generator network (G) uses a residual convolutional neural network (ResNet) which
has achieved state of the art performance in natural image generation. The generator network uses is
comprised of deconvolutional layers and its architectural hyperparameters directly mirror those in the
convolutional encoder. We chose this generator network structure because it led to better performance
(lower sums of squared errors in image reconstruction) than other generators we had tried, including
ones that mirrored the encoding side of our network models. We do not claim that this generator model
describes anything about the biology: it is there instead to enable an image to be decoded from the latent

representation, to help test whether the latent representation contains sufficient information for that

reconstruction.
Our models can be found on Github (https://github.com/elijahc/vae).

Objective functions and training parameters

Models optimized for classification use categorical cross-entropy for the objective function. Categorical
cross-entropy (XENT) is a commonly used objective function in machine learning to train neural
network classifiers. Multilabel cross-entropy is calculated according to the equation below where M is

the total number of classes

M
XENT = — z y. In(3,)

c=1

Here, y. is the true category label, represented as a one-hot vector, and y .. is the network output

obtained from the linear readout of the latent state (see Fig. 1).
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Models optimized for reconstructing the original input scene use pixel-wise sum of squared error (SSE)

between the input and the generator’s output (X).

SSE = Z(x — X)?

Models optimized for both objectives (i.e., the “combined” objective) were optimized for the sum of the

two: their objective function was SSE + XENT.

Notably, other objective functions could also have been used for the reconstruction loss, in place of our

SSE objective. One example would be the contrastive loss (as in Ref. 14). We do not claim that the SSE
is the only (or even the “best”) loss function for the unsupervised learning component. Minimizing this

loss does, however, force the network’s latent representation to retain sufficient information about the

input to enable its reconstruction.

We trained each model in our experiment until classification accuracy plateaued on a validation dataset

of 512 objects from the 10,000 test images in the fashion MNIST dataset.

Model Evaluation

Canonical Correlation Analysis (Fig. 2):

We quantified the similarity of each models’ layer-wise selectivity to corresponding layers in primate
ventral stream using Canonical Correlation Analysis (CCA)?2. CCA finds a set of weights used to
project both the primate electrophysiology results and our own model unit activations into a lower
dimensional space and measures the correlation of the projections in this space. The projection weights
are optimized to maximize correlation in the lower dimension. We use 10 projection dimension for this
analysis and report the average over the (optimized) correlations of those 10 dimensions. In analogy to

the monkey experiments, we performed these analyses on randomly-chosen sets of 250 units from our
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models; this approximates the number of pseudo-randomly sampled of neurons with the implanted

electrode arrays. While these 250 units represent 50% of our latent space (z), the fraction of neurons

sampled from monkey V4 or IT in the physiology experiments was much lower.

We repeated the analysis for 15 different random draws of unit activations and report the distribution of

correlations over those 15 draws (Fig 2).

Feature Selectivity (Fig. 3):

After training performance plateaus, 5-fold sampling of 250 randomly chosen unit activations from each
layer in the encoder model (Fig 1B) were used in comparisons with primate ventral stream
electrophysiology. Unit activations were generated using a random sample from held out test images
(not used during training). As in a (simulated) electrophysiology experiment, each image was input to
the network, and the corresponding unit activations were recorded. We then analyzed these unit
activations in the same way as we did the firing rates recorded in monkey visual cortex, described

below.

First, we measured selectivity of our artificial neurons to different image attributes, in the same way as
Ref. 12 (they call these measures “performance” instead of selectivity). For continuous-valued scene
attributes (e.g. horizontal position) we measured selectivity as the absolute value of the Pearson
correlation between the neuron’s response and that attribute in the stimulus image. For categorical

properties (e.g. object class) we measure selectivity as the one-vs-all discriminability (d”).
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Fig. 1: Overview
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A) We constructed images of clothing items superimposed over natural image backgrounds at random

el the ventral stream as an encoder whose objective is to map
representations (z). In our models this latent space contains

500 artificial neurons. The latent layer (z) is densely connected whereas the preceding layers were all
convolutional (see Methods). The generator network (G) uses these latent representations (z) as input to
reconstruct the object at the correct location within the scene. A separate linear decoder attempts to
determine the object identity from the activities of the units in z. C) We trained these neural networks on
one of three tasks: object categorization (“classify”), object reconstruction (“reconstruct™), or object

categorization with concurrent image reconstruction (“combined”). D) Object categorization and

reconstruction performance of the three networks after they were trained, assessed on held-out images
(i.e., ones not used in training the networks).
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Fig. 2: Canonical Correlation Analysis
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We used Canonical Correlation Analysis (CCA) to quantify how similar the responses in the layers of
each model were to primate electrophysiology data in both inferior temporal cortex (IT) and visual area
V4 (V4). We used random draws of 250 unit activations in each layer of the fully trained convolutional
models optimized under the “classify” objective (categorical cross-entropy, left in each panel), the
image reconstruction objective (“recon”), and the “combined” classify and reconstruct semi-supervised
autoencoder objective. For each comparison between a given neural network layer and brain area, we
computed the canonical correlations of the first 10 CCA components, and averaged their values. We
repeated this process for 15 random draws of the neural network unit activations, and display the
distribution of the resultant CCA correlation values (over those 15 draws) as a box and whisker plot.
Lines within the filled bar indicate the mean, and filled rectangle corresponds to the interquartile range.
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Fig. 3: Selectivity for visual scene attributes

A Horizontal Translation B Vertical Translation
025 ™ : : 025 2) : :
0.20 0.20 I
>
S 0.15 I l 0.15 I
8 |
> 0.10 l 0.10
w
0.05 0.05
) N Layer
0.00 0.00 mmm Convi
. mmm Conv2
C) Rotation D) Category Name v
0.25 1.0 . mm Conv3
mm Conv4
0.20 0.8 z
=
> 0.15 0.6
g - V4
3 0-10 0.4 T
7 ]
0.05 ' 0.2 k '
- . *
0.00 | wiee e ot T * slunleets * * . 0.0
classify recon combined macaque classify recon combined macaque
model model

Selectivity of units in the fully trained convolutional models optimized under “classify” objective
(categorical cross-entropy), “reconstruction” objective, and the “combined” classify+reconstruct semi-
supervised autoencoder objective?. We measured property selectivity of both categorical (D) and
continuous valued category-orthogonal properties (A, B, C) on units in the multi-electrode array data
from Hong et al. (2016), and from units in each layer of the computational model encoders. We defined
selectivity for categorical information on each unit in the dataset as the absolute value of that unit’s
discriminability (one-vs-all d-prime). We defined selectivity for continuous valued attributes (horizontal
and vertical position) on each unit as the absolute value of the Pearson correlation coefficient. Unit
activities for models were sampled using 10000 held out test images to generate activations at each layer
of the model. We randomly sampled 250 units from each layer of each model for the analysis. Error bars
show 95% confidence intervals over the observed set of units.

22


https://doi.org/10.1101/2020.02.21.958488
http://creativecommons.org/licenses/by-nd/4.0/

	Abstract
	Introduction
	Results
	Computational Models
	Electrophysiology Comparisons

	Discussion
	We conclude by noting that a key open question in neuroscience is to find the computational objectives that describe the visual ventral stream. Our work suggests that semi-supervised objectives, combining object recognition with scene reconstruction, ...
	Materials and Methods
	Primate Electrophysiology
	Dataset and Augmentation
	Computational models
	Models using the “reconstruct” objective, and the “composite” classify-and-reconstruct objective (see below) need an additional generator network to reconstruct the original stimulus input from the latent representation. The generator network (G) uses...
	Our models can be found on Github (https://github.com/elijahc/vae).
	Objective functions and training parameters
	Model Evaluation

	Acknowledgements
	Fig. 1: Overview
	Fig. 2: Canonical Correlation Analysis
	Fig. 3: Selectivity for visual scene attributes

