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SUMMARY:

Building a genotype-phenotype-fitness map of adaptation is a central goal in evolutionary
biology. It is notoriously difficult even when the adaptive mutations are known because it is hard
to enumerate which phenotypes make these mutations adaptive. We address this problem by
first quantifying how the fitness of hundreds of adaptive yeast mutants responds to subtle
environmental shifts and then modeling the number of phenotypes they must collectively
influence by decomposing these patterns of fithess variation. We find that a small number of
phenotypes predicts fitness of the adaptive mutations near their original glucose-limited
evolution condition. Importantly, phenotypes that matter little to fithess at or near the evolution
condition can matter strongly in distant environments. This suggests that adaptive mutations are
locally modular—affecting a small number of phenotypes that matter to fitness in the
environment where they evolved—yet globally pleiotropic—affecting additional phenotypes that
may reduce or improve fitness in new environments.
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INTRODUCTION

High-replicate laboratory evolution experiments are opening an unprecedented window into the
dynamics and genetic basis of adaptive change by de novo mutation (Crozat et al., 2010; Good
et al.,, 2017; Huang et al., 2018; Lang et al., 2013; Levy et al., 2015; Tenaillon et al., 2012;
Venkataram et al., 2016). One of the key insights revealed by these studies is that in many
systems, evolution can initially proceed rapidly via many large-effect single mutations. While the
identities of these adaptive mutations are often unique to a specific replicate of the evolutionary
experiment, across many replicates they tend to occur in similar functional units (e.g. genes and
pathways) (Crozat et al., 2010; Fumasoni and Murray, 2020; Good et al., 2017; Huang et al.,
2018; Lang et al., 2013; Levy et al., 2015; Tenaillon et al., 2012; Venkataram et al., 2019, 2016).
Thus, while the diversity of mutations suggests that there might be many ways to adapt, the
much smaller number of apparent functional units implies, in contrast, that most adaptive
mutations affect a small set of key phenotypes (Fig 1A).

Consider the seminal study by Tenaillon et al. (Tenaillon et al., 2012) in which 115 populations
were evolved at high temperature for ~2000 generations. While the authors identified over a
thousand mutations that were largely unique to each population, the number of affected genes
was much smaller with 12 genes being hit over 25 times each. Even greater convergence was
seen at higher levels of organization such as operons. Similarly, Venkataram et al (Venkataram
et al., 2016) found that, of the hundreds of unique genetic mutations that occur during
adaptation to glucose-limitation, the vast majority fall into a relatively small number of genes
(mostly IRA1, IRA2, GPB2, PDE?2) and primarily two pathways - Ras/PKA and TOR/Sch9. Thus
despite the diversity of mutations, it is possible that all of their effects can be mapped in one or
few dimensions required to describe their effects on the Ras/PKA or TOR/Sch9 pathways.
These are just two examples, but the pattern has been seen repeatedly (Barghi et al., 2019;
Crozat et al., 2010; Good et al., 2017; Lang et al., 2013; Lind et al., 2015). Note that this pattern
is seen not only in experimental evolution but also in cancer evolution. Individual tumors are
largely unique in terms of specific mutations, but these mutations affect a much smaller set of
driver genes and an even smaller number of higher functional units such as signalling pathways
(Bailey et al., 2018; Hanahan and Weinberg, 2011, 2000; Sanchez-Vega et al., 2018; Sondka et
al., 2018).

The mapping of adaptive mutations to a smaller number of functional units and thus a low-
dimensional space representing the small number of phenotypes that they collectively affect
(Fig 1A) is consistent with theoretical models of adaptation. These theoretical models argue that
adaptive mutations, especially those of substantial fitness benefit, cannot affect too many
phenotypes at once as most such effects should be deleterious and thus inconsistent with the
overall positive effect on fitness (Fisher, 1930; Orr, 2000). More recent studies likewise suggest
that selection against mutations with high pleiotropy, i.e. mutations that affect many phenotypes,
has resulted in a modular architecture of the genotype-phenotype map, in which genetic
changes can influence some phenotypes without affecting others (Altenberg, 2005; Collet et al.,
2018; Hartwell et al., 1999; Melo et al., 2016; Wagner et al., 2007; Wagner and Altenberg, 1996;
Wagner and Zhang, 2011; Welch and Waxman, 2003). This architecture would allow single
mutations to have a large effect on a small number of important phenotypes. It would also
explain the observations that very large collections of adaptive mutations are not diverse in
terms of affected genes, pathways, and phenotypes. The reason for this is that only mutations
that affect the genes, pathways, and phenotypes that represent the correct module most
relevant to adaptation in the specific environment will be adaptive.

While theoretically appealing, the possibility that observed adaptive mutations indeed affect only
a very small number of phenotypes is difficult to reconcile with the notion that organisms are
tightly integrated (Kacser and Burns, 1981; Paaby and Rockman, 2013; Rockman, 2012).
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Further, there is experimental evidence of widespread pleiotropy, for example, from genome
wide association studies that suggest every gene can influence every trait, at least to some
extent (Boyle et al., 2017; Chesmore et al., 2018; Sella and Barton, 2019; Sivakumaran et al.,
2011; Visscher and Yang, 2016). It is possible that pleiotropy is common, but strongly adaptive
mutations observed in experimental evolution are unusual in that they have few pleiotropic
phenotypic effects. Another possibility is that these mutations do have pleiotropic side effects
but these matter little to fitness in the evolution condition (Fig 1B, left side). Note that here we do
not need to claim that these phenotypic effects never matter to fitness but rather that they do not
matter substantially to fitness in the condition where they evolved. In fact the key prediction of
this model is that one should be able to detect such latent pleiotropy by showing that additional
phenotypic changes matter to fitness in other environments (Fig 1B, right side).

If the model depicted in Fig 1B is true, then it is possible that adaptive mutations are locally
modular — that they affect very few phenotypes that matter to fitness in the evolution condition
— and globally pleiotropic. Under this model, the large number of distinct mutations available to
adaptation becomes important. Indeed while these mutations tend to influence similar genes
and pathways, their phenotypic effects do not simply collapse to a low dimensional space.
Instead this genetic diversity becomes a source of consequential phenotypic diversity, but only
once these genetic variants leave the local environment in which they originated.

In order to test this model and better understand the genotype-phenotype-fitness map, we face
the difficult task of identifying which phenotypes are affected by the adaptive mutations and then
determining how these phenotypes contribute to fitness. This is a challenging problem as the
possible number of phenotypes one can measure is effectively infinite, e.g. the expression level
of every gene or the quantity of every metabolite (Coombes et al., 2019; Mehlhoff et al., 2020).
Further, many measurable phenotypes are related in complex ways (Geiler-Samerotte et al.,
2019). Mapping their contribution to fitness requires a complete understanding of how genetic
changes lead to molecular changes and how these percolate to higher functional levels and
ultimately influence fitness (Kemble et al., 2020). This might be possible to do in some cases
where the phenotype to fitness mapping is simple (e.g. antibiotic resistance driven by a specific
enzyme or tRNA or protein folding mediating specific RNA or protein function) (Baeza-Centurion
et al., 2019; Cowperthwaite et al., 2005; Diss and Lehner, 2018; Domingo et al., 2019; Harmand
et al., 2017; Karageorgi et al., 2019; Li and Zhang, 2018; Otwinowski et al., 2018; Pressman et
al., 2019; Sarkisyan et al., 2016; Starr et al., 2018; Weinreich, 2006) but is exceptionally difficult
for complex phenotypes.

Moreover, to distinguish between the model in which mutations affect a small number of
phenotypes (Fig. 1A) and the model in which mutations affect many phenotypes, albeit with few
contributing substantially to fitness in the evolution condition (Fig 1B), we need to understand
these genotype-phenotype-fitness maps not only in the environment in which adaptive mutants
evolved, but also in other environments. And we need to do this for many adaptive mutants so
that we can assess the extent to which different mutants affect different phenotypes.
Considering the scope of this challenge, it is not surprising that despite much theoretical
discussion of modularity and pleiotropy as it relates to adaptation, experimental approaches to
address these questions have lagged behind.

Here we suggest a way to model the genotype-phenotype-fitness relationship that avoids the
problem of measuring each phenotype and its effect on fitness explicitly. We argue that it is
possible to investigate the genotype-phenotype-fitness map by comparing how the fitness
effects of many mutations change across a large number of environments. The way each
mutant’s fithess varies across environments must be related to its phenotype, and thus the way
mutants co-vary in fitness across environments tells us whether they affect similar fithess-
relevant phenotypes. We can use the profiles of fithess across a set of environments to identify
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125 the total number of fitness-relevant phenotypes affected across a collection of adaptive mutants,
126  the extent to which different mutants affect different phenotypes, and whether the contribution of
127  each phenotype to fithess changes across environments.

128

129  Here we build a genotype-phenotype-fitness model for hundreds of adaptive yeast mutants that
130 originally evolved in a glucose-limited environment. We use this model to accurately predict the
131  fitness of these mutants across a set of 45 environments that vary in their similarity to the

132 evolution condition. We find that the behavior of adaptive mutations can be described by a low-
133  dimensional phenotypic model. In other words, these mutants affect a small number of

134  phenotypes that matter to fitness in the glucose-limited condition in which they evolved. We find
135 that this low-dimensional phenotypic model makes accurate predictions of mutant fitness in

136 novel environments even when they are distant from the evolution condition. Moreover, we find
137  that some phenotypes that contribute very little to fitness in the evolution condition become

138  surprisingly important in some novel environments. This suggests that adaptive mutations are
139  globally pleiotropic in that they affect many phenotypes overall, but that they are locally modular
140 in that only a small number of these phenotypes have substantial effects on fitness in the

141 environment they evolved in. Overall, we suggest that this set of adaptive mutations contains
142  substantial and consequential latent phenotypic diversity, meaning that despite targeting similar
143  genes and pathways, different adaptive mutants may respond differently to future evolutionary
144  challenges. This finding has important consequences for understanding how directional

145  selection can generate consequential phenotypic heterogeneity both in natural populations and
146  also in the context of diseases such as cancer and viral or bacterial infections. In addition, our
147  results show that our abstract, top-down approach is a promising route of analysis for

148 investigating the phenotypic and fitness consequences of mutation.
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Figure 1. Adaptive mutations can be locally modular and globally pleiotropic. (A) A collection of
adaptive mutations may affect a small number of phenotypes (four black squares). If these adaptive
mutations only affect these phenotypes, then fitness in both the environment they evolved in (local
environment) and other environments (distant environment) is determined solely by these phenotypes.
(B) Alternatively, these mutations may collectively (and individually) affect many phenotypes, but only a
small number of phenotypes may matter to fitness (those indicated by black squares with thick arrows
pointing to fitness), whereas the other phenotypes may make very small contributions to fitness (those
indicated by the gray squares and thin, dashed lines leading to fitness). Under this model, the contribution
of each phenotype to fitness can change depending on the environment. Thus fithess differences
between seemingly similar mutants can be revealed by measuring fitness in more environments. Such
fitness differences suggest the presence of phenotypic differences between mutants.

RESULTS

Mutants that improve fitness under glucose limitation vary in their genotype-by-

environment interactions


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

165 A previous evolution experiment generated a collection of hundreds of adaptive yeast mutants,
166  each of which typically harbors a single independent mutation that provides a benefit to growth
167 in a glucose-limited environment (Levy et al., 2015). Many of these mutants, which began the
168 evolution experiment as haploids, underwent whole-genome duplication to become diploid,

169  which improved their relative fithess (Venkataram et al 2016). Some of these diploids acquired
170 additional mutations, including increased copy number of either chromosome 11 or 12 as well
171  as point mutations, which generated additional fitness benefits. The adaptive mutants that

172 remained haploid acquired both gain- and loss-of-function mutations in nutrient-response

173  pathways (Ras/PKA and TOR/Sch9). Some other mutations were also observed, including a
174  mutation in the HOG pathway gene SSK2 (Venkataram et al., 2016). Although these mutants
175  have been well-characterized at the level of genotype and fitness, it is unclear what phenotypes
176  they affect. The first question we address is whether these diverse mutations collectively affect
177  alarge number of phenotypes that matter to fitness, or whether these mutants are functionally
178  similar in that they collectively alter a small set of fithess-relevant phenotypes.

179

180 Understanding the map from genotype to phenotype to fithess is extremely challenging because
181 each genetic change can influence multiple traits, not all of which are independent or contribute
182  to fitness in a meaningful way. We contend with this challenge by measuring how the relative
183 fitness of each adaptive mutant changes across a large collection of similar and dissimilar

184  environments, which we term the “fitness profile”. When a group of mutants demonstrate similar
185 responses to environmental change, we conclude that these mutants affect similar phenotypes.
186 By clustering mutants with similar fitness profiles across a collection of environments, we can
187 learn about which mutants influence similar phenotypes, as well as estimate the total number of
188 fitness-relevant phenotypes represented across all mutants and all investigated environments.
189

190 Because our mutant strains are barcoded, we can use previously-established methods to

191 measure their relative fithess in bulk and with high-precision (Venkataram et al., 2016).

192  Specifically, we compete a pool of the barcoded mutants against an ancestral reference strain
193  over the course of several serial dilution cycles. During each 48 hour cycle, the yeast are given
194  fresh glucose-limited media which supports 8 generations of exponential growth after which

195 glucose is depleted and cells transition to non-fermentable carbon sources. After every 48 hour
196 cycle, we transfer ~5x1077 cells to fresh media to continue the growth competition. We also
197  extract DNA from the remaining cells to PCR amplify and sequence their barcodes. We repeat
198 this process four times, giving us an estimate of the frequency of each barcode at five time-

199  points. By quantifying the log-linear changes in each barcode’s frequency over time and

200 correcting for the mean-fitness change of population, we can calculate the fitness of each

201  barcoded mutant relative to the reference strain (Fig 2A; Methods).

202

203  Using this method, we quantify the fitness of a large number of adaptive mutants in 45

204  environments. We focus on a set of 292 adaptive mutants that have been sequenced, show
205 clear adaptive effects in the glucose-limited condition in which these mutants evolved (hereafter
206  “evolution condition”; EC) (Fig 2B; Table S1), and for which we obtained high-precision fithess
207 measurements in all 45 environments. These environments include some experiments from
208  previously published work (Li et al., 2018; Venkataram et al., 2016), as well as 32 new

209 environments including replicates of the evolution condition, subtle shifts to the amount of

210 glucose, changes to the shape of the culturing flask, changes to the carbon source, and addition
211  of stressors such as drugs or high salt (Table S2).

212

213  In order to determine the total number of phenotypes that are relevant to fitness in the EC, we
214  focus on environments that are very similar to the EC but still induce small yet detectable

215  perturbations in fitness. We do so because the phenotypes that are the most relevant to fitness
216  may change with the environment (Fig 1B). Thus, we partition the 45 environments into a set of
217  “subtle” perturbations, from which we will detect the phenotypes relevant to fithess near the EC,

6
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and “strong” perturbations which we will use to study whether these mutants influence additional
phenotypes that matter in other environments (Fig 1B).

To partition environments into subtle and strong perturbations of the EC, we rely on the nested
structure of replicate experiments performed in the EC. We performed nine such replicates,
each at different times, which each included multiple replicates performed at the same time. We
observe much less variation across replicates performed simultaneously than across replicates
performed at different times (p < 1e-5 from permutation test). Variation across experiments
performed at different times is often referred to as “batch effects” and likely reflects
environmental variability that we were unable to control (e.g. slight fluctuations in incubation
temperature due to limits on the precision of the instrument). These environmental differences
between batches are very subtle, as they represent the limit of our ability to minimize
environmental variation. Thus, variation in fithess across the EC batches serves as a natural
benchmark for the strength of environmental perturbations. If the deviations in fithess caused by
an environmental perturbation are substantially stronger than those observed across the EC
batches, we call that perturbation “strong”.

More explicitly, to determine whether a given environmental perturbation is subtle or strong, we
subtract the fitness of adaptive mutants in this environment from their average across the EC
batches. We then compare this difference to the variation in fitness observed across the EC
batches. Sixteen environmental perturbations provoked fitness differences that were similar to
those observed across EC batches (Z-score < 2). These environments, together with the nine
EC batches, make up a set of subtle environmental perturbations. The remaining 20
environments, where the average deviation in fitness is substantially larger than that observed
across batches (Z-score > 2), were classified as strong environmental perturbations (Fig 2C,
top; Methods).

The rank order of the fitnesses of many mutations is largely preserved across the 25
environments that represent subtle perturbations (Fig 2C, bottom). For example, /IRA7 nonsense
mutants, which are the most adaptive in the EC, generally remain the most adaptive across the
subtle perturbations. Additionally, the GPB2 and PDE2 mutants have similar fitness effects
across EC batches and only occasionally switch order across the subtle environmental
perturbations. In contrast, the 20 environments that represent strong perturbations reveal clear
genotype-by-environment interactions (Fig 2C, bottom). For example, altering the transfer time
from 48 to 24 hours (the “1 Day” environment in Fig 2C) affects GPB2 mutants more strongly
compared to the other mutants in the Ras/PKA pathway, including IRA1 and PDE2. The
strongest environmental perturbations reveal clear tradeoffs for some of these adaptive
mutants. For example, PDEZ2 and IRA7-nonsense but not GPB2 mutants are particularly
sensitive to osmotic stress as indicated by the NaCl and KCI environments. Additionally, IRA1-
nonsense mutants become strongly deleterious in the long transfer conditions that experience
stationary phase (5-, 6-, 7-Day environments) (Li et al., 2018). In contrast to complex behavior
exhibited by the adaptive haploids, the diploids appear to be relatively robust to strong tradeoffs,
appearing similarly adaptive across all perturbations, subtle and strong.

The observation that different mutants have different and fairly complex fitness profiles suggests
that they have different phenotypic effects. Even PDE2 and GPB2, which have similar fitnesses
in the EC and are negative regulators of the same signalling pathway, have different fithness
profiles. Do these diverse phenotypic effects contribute to fitness in the EC? To examine how
many phenotypes matter to fithess in the EC, we test whether it is possible to create low
dimensional models that capture the complexity of the fithess profiles of all adaptive mutants
across all subtle perturbations.
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Figure 2. Measuring fitness for a collection of adaptive mutants across many environments
reveals gene-by-environment interactions. (A) Schematic of fitness measurement procedure. Adaptive
mutants tagged with DNA barcodes are pooled at a 1:9 ratio with an ancestral reference strain. The pool
is then propagated for several growth cycles, where the population is diluted into fresh media at fixed time
intervals. DNA is extracted from each time-point, and the barcode region is PCR amplified and then
sequenced. A mutant’s relative fitness is calculated based on the rate of change of its barcode’s
frequency, corrected for the mean fitness of the population (see Methods). Relative fitness is calculated in
units of “per cycle”, representing the improvement of each barcode relative to the reference over the
course of the time between transfers. (B) Relative fithess of each mutant in the evolution condition,
calculated as the average across all 9 Evolution Condition (EC) batches. (C) (top) Environments are
ordered from left to right depending on the degree to which they perturb mutant fitness from the average
fitness observed across all EC batches. Environments in which average mutant fitness is within two
standard deviations of average mutant fitness across EC batches are denoted in black and make up the
subtle perturbation set. Environments in which aggregate mutant behavior exceeds two standard
deviations are shown in red and make up the strong perturbations set. (bottom) This plot displays, for the
four most common types of adaptive mutation observed in response to glucose limitation (Venkataram et
al., 2016), the average fitness in each of the 45 environments we study. Brackets on the right represent
the amount of variation in fitness observed for each type of mutation across the EC batches, with the
notch representing the mean and the arms representing two standard deviations on either side of the
mean.

A model including 8 fitness-relevant phenotypes captures fitness variation across subtle
environmental perturbations

We utilize these complex fitness profiles to estimate the number of phenotypes that contribute to
fitness in the EC. Given that many of these mutants affect genes in the same nutrient response
pathway, the number of unique phenotypes they affect may be small. Alternatively, given the
observation that these mutants have different interactions with environments that represent
strong perturbations (Fig 2C), this number may be large. We use singular value decomposition
(SVD) to ask how much of the complexity in these fitness profiles can be captured by a low-
dimensional phenotypic model (Fig 3A). SVD is a dimensionality reduction approach which here
decomposes fitness profiles into two abstract multi-dimensional spaces described below.

The first space, P, represents the phenotypic effects of mutants, where each phenotype is
represented as a dimension (there are k phenotypic dimensions depicted in Fig 3A). Each
mutant is represented by coordinates specifying a location in the phenotype space P (e.qg.
mutant 1 having coordinates (p11, 12,913, ..., P11)). The ancestral reference lineage, which, by
definition, has relative fitness zero in every environment, is placed at the origin (e.g. (0, 0, O, ...
0)) in this phenotypic space. In this sense, we can think of a mutation's effect on any phenotype
as a measure of the distance from the location of the mutant in that phenotypic dimension to the
origin.

The second space, E, represents the contribution of each of the phenotypes in P to fitness, and
thus has the same number of dimensions as P. If a phenotype does not contribute substantially
to fitness in any environment, it is not represented as a dimension in either space. Therefore,
our model captures only fithess-relevant phenotypes. In space E, each environment is
represented by coordinates specifying a location (e.g. environment 1 having coordinates
(e11,€20,€33,...,€,1)). These coordinates in E reflect the contribution (weight) of each of the k
phenotypic dimensions on fitness in that environment. For example, an environment where only
a single phenotype matters to fitness would be placed at the origin for all the axes, except for
the axis corresponding to the single phenotypic dimension that matters. Environments for which
the same phenotypes contribute to fitness will be placed closer together in the space E.

In this model, each phenotype contributes to fitness independently, by definition, such that the
fitness of mutant i in environment j is determined by each phenotypic effect of mutant j, scaled
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by the contribution of that phenotype to fithess in environment j. A linear combination of these
weighted phenotypic effects determines the fitness of mutant j in environment j:

fij = pire1j + piceoj + pizesjt... toikex;

In this model, mutants with similar fitness profiles, for example mutants 1 and 2 in Fig 3A, will be
inferred as having similar phenotypic effects, and thus be located near each other in the
phenotypic space P. Mutants with dissimilar fithess profiles, for example mutants 3 and 4 in Fig
3A, can be inferred to have at least some differing phenotypic effects, which might be mediated
by a different effect on a single phenotypic component or different effects on many. Mutants with
dissimilar fitness profiles are informative about the number of dimensions needed in this
abstract model of phenotypic space.

This genotype-phenotype-fitness model that we generate using SVD harkens to Fisher’s
geometric model (FGM), which defines an abstract space of orthogonal phenotypes relevant to
fitness (Fisher, 1930). Others have utilized FGM to answer questions about the number of
phenotypes affected by mutations, though most previous work focuses on deleterious mutations
and how their impacts vary across genetic backgrounds rather than environments (Blanquart et
al., 2014; Blanquart and Bataillon, 2016; Lourenco et al., 2011; Martin and Lenormand, 2006;
Poon and Otto, 2000; Tenaillon et al., 2007; Weinreich and Knies, 2013). A key difference
between FGM and our model is that our model does not make assumptions about the
distribution of phenotypic effects or whether the relationship between mutations in phenotype
space is additive.

Here, we utilize SVD to count the number of phenotypes that contribute to fitness in the original
glucose-limited environment in which these adaptive mutants evolved. We used SVD to build an
abstract model that captures fitness profiles of all 292 adaptive mutants across the 25 subtle
perturbations. This model suggests that the majority of the variation in fithess for the 292
adaptive mutants across the 25 subtle perturbations can be explained by eight phenotypic
dimensions. The first phenotypic component is very large and explains 95% of variation in
fithess across all mutants and all subtle perturbations (Fig 3B). This component captures the
variation in fitness explainable in the absence of genotype-by-environment interactions, where
each mutation has a single effect that is scaled by the environment. As such, this first
component effectively represents each mutant’s average fitness in the EC (Fig S2) and the
average impact of each subtle perturbation on mutant fitness (Fig S2). It is not surprising that
this component explains much of this variation, as the fitness of mutants in the EC should be
predictive of fithess in similar environments. The next seven components capture additional
variation not detectable from the simple 1-component model and thus represent genotype-by-
environment interactions. Of these, the first four capture 87% of the variation not captured by
component one (67.8%, 8.3%, 5.6%, and 5.3%, respectively). The remaining three interaction
components each capture less than 2% of the variation not captured by component one (Fig
3B). We cannot distinguish any additional components, beyond these eight, from noise. This is
because we see components that explain a similar amount of variation when we apply SVD to
datasets composed exclusively of values generated by our noise model (Fig3B; see Methods
and FigS1 for additional details).

We confirm that these eight phenotypic components capture meaningful biological variation in
fithess by using bi-cross-validation. Specifically, we designate a balanced set of 60 of the 292
mutants as a training set, chosen such that the recurrent mutation types — diploids, high-fithess
diploids, Ras/PKA mutants — are roughly equally represented (see Methods). The remaining
232 mutants comprise the test set. This set contains all mutation types represented by only a
single mutant, including all TOR/Sch9 (TOR1, SCH9, KOG1) and HOG (SSK2) pathway
representatives, as well as the rest of the recurrent mutants that were not picked for the training
set. We iteratively construct phenotype spaces using the 60 training mutants while holding out
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one subtle perturbation at a time and creating the space with the data from the remaining 24
subtle perturbations. We then predict the fitness of the 232 held-out testing mutants in the held-
out condition. We do so using all 8 components, and again with only 7, 6, and so on. Then, we
ask whether the 8 component model does a better job at predicting mutant fitness than the
other, lower dimensional models. If a component reflects measurement noise rather than
biological signal, then the inclusion of this component would lead to overfitting and should harm
the model’s ability to predict fitness in the held-out data. Instead we find that, on average across
the 25 iterations, prediction power improves from the inclusion of each of the eight components.
This confirms that even the smallest of these components captures biologically meaningful
variation in fithess across the 25 subtle perturbations of the EC. However, the gain in predictive
power decreases for each component. The model with only the first component explains on
average 85% of weighted variance for the test mutants in the left-out conditions. A model with
only the top five components explains 95.1%, and all eight components explain 96.2% of
variation. This suggests that the last few components have very small contributions to fitness in
the environments near the EC.

A model including 8 fitness-relevant phenotypes recapitulates known features of
adaptive mutations

We next ask whether the 8-dimensional phenotypic model clusters adaptive mutants found in
similar genes or pathways (e.g. Ras/PKA or TOR/Sch9), or that represent similar mutation types
(haploid v. diploid). Alternatively, our model may classify mutations into functional units (i.e.
mutations that have similar phenotypic effects) in a way that does not conform to gene or
pathway identity. We use Uniform Manifold Approximation and Projection (UMAP) to visualize
the distance between all the mutants in this phenotypic space. Since the first phenotypic
dimension captures the average fitness of each mutant in the EC, and since we already know
that mutations to the same gene have similar fitness in the EC (Fig. 2B), we exclude the first
phenotypic dimension from this analysis, though the inclusion of the first component does not
change the identity of the clusters (Fig S3). By focusing on the other 7 components, we are
asking whether genotype-by-environment interactions also cluster the mutants by gene,
mutation type, and pathway.

These 7 genotype-by-environment interactions indeed tend to cluster the adaptive mutants by
type and by gene (Fig 3C). Specifically, the diploids, IRA1-nonsense, GPB2, and PDE2 mutants
each form distinct clusters (p = 0.0001, p = 0.006, p = 0.0001, and p = 0.0001, respectively). To
generate p-values, we calculated the median pairwise distance, finding that multiple mutations
in the same cluster are indeed more closely clustered than randomly chosen groups of mutants.
Interestingly, the three smallest components, which capture very little variation in fithess across
the environments that reflect subtle perturbations of the EC, also cluster some mutants by gene
(Fig S3). Specifically, PDE2, GPB2, and IRA1-nonsense mutants are each closer to mutants of
their own type than to other adaptive haploids (p = 0.0001, p = 0.0001, and p = 0.03,
respectively). Note that the space defined by the three smallest components does not cluster
IRA1-nonsense mutants away from diploids (p = 0.718). This suggests that some mutants, e.g.
IRA1-nonsense and diploids, have smaller effects on these three phenotypic components.
Overall, our abstract phenotypic model, which reflects the way that each mutant’s fitness
changes across environments, reveals that mutations to the same gene tend to interact similarly
with the environment. This suggests that our approach, like others that compare genotype-by-
environment interactions (Li et al., 2018), is a useful and unbiased way to identify mutations that
share functional effects.

Our approach also detects cases where mutations to the same gene or pathway do not cluster
together. This suggests that our model captures phenotypic effects that would be obscured by
assuming mutations to the same gene affect the same traits. For example, genotype-by-
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431  environment interactions do not cluster /IRA7-missense mutations (p = 0.317) (Fig 3C; light blue
432  points), despite clustering the IRA7-nonsense mutations. Perhaps IRA71-missense mutations
433  have more diverse impacts on phenotype than do /IRA7-nonsense mutations, which all likely
434  result in destruction of the IRA1 protein. Our model also does not cluster the eight mutations in
435 IRA2 (p = 0.086) (Fig 3C; dark grey points). At the pathway level, our model does not cluster the
436  three mutations to the TOR/Sch9 pathway away from the rest of the mutants, which are mainly
437  in the Ras/PKA pathway (p = 0.155) (Fig 3C; purple points). Our model also does not cluster all
438 diploids that possess additional mutations, including those with increased copy number of

439  chromosome 11 or chromosome 12 and those with mutations in /RA7 or IRA2 (p = 0.863) (Fig
440  3C; dark red points). Interestingly, our model does find a distinct cluster of six diploids that have
441  higher than average diploid fitness in the EC (p = 0.0001) despite whole genome sequencing
442  having revealed no mutations in their coding sequences (Fig 3C). This likely indicates that these
443  diploids harbor difficult-to-sequence additional adaptive mutations that all have similar

444  phenotypic consequences. In sum, these observations suggest that our genotype-phenotype-
445  fitness model reveals new insights about which mutations affect the same functional units,

446  specifically that these units do not always correspond to genes and pathways.
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Figure 3. Subtle environmental perturbations reveal an 8-component phenotypic model that
reflects known biological features. (A) To infer fitness-relevant phenotypes, we measure the fitness of
mutants in a collection of environments and compare their fithess profiles. Mutants with similar fitness
profiles (mutants 1 and 2) are inferred to have similar effects on phenotypes. Mutants with dissimilar
fitness profiles (mutants 3 and 4) are inferred to have dissimilar phenotypic effects. We use SVD to
decompose these fitness profiles into a model consisting of two abstract spaces: one that represents the
fitness-relevant phenotypes affected by mutants (P) and another which represents the degree to which
each phenotype impacts fithess in each environment (E). Here, we represent the model with k fitness-
relevant phenotypes. The model’s estimate for fitness for a particular mutant in a particular environment is
a linear combination of each mutant phenotype (mutant 1 is represented by the vector

(P11, P12, P13 ---» P1x)) SCaled by the degree to which that phenotype affects fitness in the relevant
environment (environment 1 is represented by the vector(es4, €15, €43, ..., €1;)). We show two examples of
the equation used to estimate fitness for the mutants and environments highlighted in the left panel. Note
that, for presentation purposes, we show SVD as inferring two matrices. It in fact infers three, but is
consistent with our presentation if you fold the third matrix, which represents the singular values, into E
(see Methods). (B) Decomposing the fitness profiles of 292 adaptive mutants across 25 subtle
environmental perturbations reveals 8 fitness-relevant phenotypic components. The variance explained
by each component is indicated as a percentage of the total variance. The percentages in parentheses
indicate the relative amount of variation explained by each component when excluding the first
component. Each of these components explain more variation in fitness than do components that capture
variation across a simulated dataset in which fithess varies due to measurement noise. These simulations
were repeated 1000 times (grey lines) and used to define the limit of detection (dotted line). (C) An
abstract space containing 8 fitness-relevant phenotypic components reflects known biological features.
This plot shows the relationships of the mutants in a 7-dimensional phenotypic space that excludes the
first component, visualized using Uniform Manifold Approximation and Projection (UMAP). Mutants that
are close together have similar fitness profiles and are inferred to have similar effects on fitness-relevant
phenotypes. Mutants with mutations in the same gene tend to be closer together than random, in
particular IRA1 nonsense mutants in dark blue, GPB2 mutants in dark green, PDE2 mutants in dark
orange, and diploid mutants in red. Six diploid mutants that had higher than average diploid EC fitness
(and thus are likely to harbor additional mutation(s) so are categorized as “diploid with additional
mutation”) also form a cluster.

Fitness variation across subtly different environments predicts fitness in substantially
different environments

Now that we have identified the phenotypic components that contribute to fitness in
environments that represent subtle perturbations of the EC, we can test the ability of these
phenotypic components to predict fitness in more distant environments. Specifically, we can
measure how the contribution of each of these components to fithess changes in new
environments. We can also determine whether the phenotypic components that contribute very
little to explaining fitness variation near the EC might at times have large explanatory power in
distant environments (as depicted in Fig 1B).

To test this we performed bi-cross-validation, using the eight component model constructed
from fitness variation of 60 training mutants across 25 subtly different environments to predict
the fitness of 232 test mutants in the environments that represent strong perturbations of the
EC. To evaluate the predictive power of the model, we compare our model’s fithess predictions
in each environment to predictions made using the average fitness in that environment. Thus,
negative prediction power indicates cases where the model predicts fithess worse than
predictions using this average (Fig 4A).

The 8-dimensional phenotypic model, which was generated exclusively with the data from
subtle environmental perturbations, has substantial predictive power in distant environments
(Figure 4). Predictions explain 29% to 95% of the variation in fithess of the 232 test mutants
across strong environmental perturbations. For instance, in an environment where glucose
concentration was increased from 1.5% to 1.8% and the flask was changed to one that
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503 increases the oxygenation of the media (the “Baffle, 1.8% Glucose” environment), we predict
504  95% of weighted variance with the full 8-component phenotypic model, in contrast to 51% with a
505 1-component model (Fig 4B). This ability to predict fitness is retained even when the first

506 component (effectively the fitness in EC) is a poor predictor of mutant fitness. For example, in
507 the environment where salt (0.5 M NaCl) was added to the media, the 1-component model

508 predicts fitness worse than predictions based on the average fithess for this environment,

509 resulting in negative variance explained (Fig 4A and 4B). This is due to the fact that mutant

510 fitness in this environment reflects extensive genotype-by-environment interactions, such that
511 the fitness of mutants in this environment is uncorrelated with EC fitness. However, our

512  predictions of mutant fitness in the 0.5 M NaCl environment improve when made using the 8-
513 component phenotypic model, which predicts 72% of weighted variance. Astoundingly, the 8-
514 component model captures strong tradeoffs between mutants with high fitness in the EC and
515 very low fitness in this high salt environment, specifically for IRA1-nonsense and, to a lesser
516 extent, PDE2 mutants (Fig 4B). This was surprising because there appears to be very little

517 variation in fithess of these mutants across the subtle compared to the strong perturbations (Fig
518 2C).

519

520 This ability to predict fitness is also observed for mutations in genes and pathways that are not
521 represented in the 60 that comprise the training set (e.g. those with mutations in TOR/Sch9 and
522  HOG pathway genes). For example, the 8-component model explains 93% of variation in the
523  “Baffle, 1.8% Glucose” environment and 71% of variation in the 0.5M NaCl environment for
524  these mutations, compared to 76% and 31% variance explained for the 1-component model,
525 respectively. This indicates that our model is able to capture shared phenotypic effects that

526  extend beyond gene identity. Altogether, our ability to accurately predict the fitness of new

527  mutants in new environments suggests that the phenotypes our model identifies reflect causal
528 effects on fitness.

529

530 Most strikingly, phenotypic models that include the three smallest phenotypic components,

531  which together contribute only 1.1% to variance explained across the subtle environmental

532  perturbations (Fig 4A), often explain a substantial amount of variance in the distant

533  environments (Fig 4A, lower panel). For example, the three minor components contribute 17%
534  of the overall weighted variance explained in the 1-Day condition (R? = 0.6 - 5-component

535 model, R? = 0.73 - 8-component model; (0.73-0.6)/0.73 = 0.17) and 45% in the 6-Day

536  environment, (R? = 0.25 - 5-component model, R? = 0.46 - 8-component model) (Fig 4A and 4B).
537 In contrast, for other strong environments (e.g. Baffle - 1.8% Glucose, 8.5uM GdA (B9) and

538 Baffle - 2.5% Glucose), the three smallest components do not add much explanatory power (Fig
539 4A). These observations demonstrate that phenotypic components that make very small

540  contributions to fithess in the EC can contribute substantially to fitness in other environments.
541  Overall, these observations suggest an answer to questions about how adaptation is possible
542  when mutations have collateral effects on multiple phenotypes: not all of those phenotypes

543  contribute substantially to fitness in the EC (Fig 1B).
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544 Figure 4. Mutant fitness variation across subtly different environments predicts mutant fitness in
545 novel and substantially different environments. (A) Top panel vertical axis shows the accuracy of
546 fitness predictions in each of 45 environments on the horizontal axis. The accuracy is calculated as the
547  coefficient of determination, weighted such that each mutation type contributes equally. The left side of
548 this plot represents predictions of mutant fitness in subtle environmental perturbations. These predictions
549  are generated by holding out data from that environment when building the phenotypic model. The right
550 side of the plot displays predictions of mutant fitness in strong environmental perturbations. These

551 predictions are generated using a phenotypic model inferred from fitness variation across all 25 subtle
552 different environments (denoted by each of the points or open circles) and for each of the 25 leave-one-
553 out models (range of predictions is depicted with the error bars surrounding each point or open circle).
554 Predictions from the 8-component model (red point) are typically better than the 1-component mode
555 (open circle) and sometimes better than the 5-component model (black point). Bottom panel vertical axis
556  shows the percent of the 8-component model’s improvement due to the three minor components

557 (calculated by the percent difference between the 5- and 8- component models). The left side shows the
558 improvement of the prediction in subtle environmental perturbations when that subtle perturbation was
559 held out. The right side shows the improvement of the prediction in strong environmental perturbations
560  when using the full model (dots) or the 25 leave-one-out models (the error bars represent the range of
561 improvement). (B) For each subplot, the horizontal axis shows the measured fitness value. The vertical
562 axis shows the predicted fithess value when predictions are made using the 1-component (top row), 5-
563 component (middle row), or 8-component (bottom row) models. Columns represent different

564  environments. Points are colored by the mutation type. Note that 72 less than zero indicates that the
565 prediction is worse than predictions using the mean fitness in that condition (see Methods).
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Not all mutants affect all phenotypes and not all environments make all phenotypes
important

Next we explore the extent to which the contribution of a phenotypic component to fitness is
isolated to a specific environment and/or a specific type of mutation (Fig 5). We find that many
phenotypic components matter more to fitness in some environments than others. For instance,
component 2 adds on average 36% of the weighted variance in fitness across strong
perturbations, despite adding only 7% on average across the subtle environmental
perturbations. This contribution is, however, variable, with the second component adding over
90% of variance explained for the two environments with Benomyl and Baffled flasks (the
“Baffle, 0.4 ug/ml Benomyl” and “Baffle, 2 ug/ml Benomyl” environments) and only 0.3% for the
environment in which the transfer time was lengthened from two to three days (Fig 5A).

This environment-dependence is also true for the smallest two components. Specifically,
predictions of mutant fitness in the 0.5 M NaCl environment are improved from the inclusion of
component 7, adding 7.5% to weighted variance explained (Fig 5A). Predictions of mutant
fitness in the 6 Day transfer environment show improvement from the inclusion of the 8th
component, which adds over 15% to weighted variance explained (Fig 5A). However, the
predictions of fitness in the 6 Day environment are not improved from the inclusion of the 7th
component and the predictions in 0.5 M NaCl are not improved markedly by the inclusion of the
8th component (Fig 5A). This suggests that the phenotypic effects represented by these small
components contribute substantially in some environments and not others.

We further asked whether these effects are not only environment-specific but also mutant-
specific. To do so, we focused on environments for which the two smallest components
contribute substantially to fitness (e.g. 0.5 M NaCl). We looked at the extent to which each of
these components improves power to predict the fitness of each of the 232 held-out mutants.
We found these components improve the fitness predictions for some classes of mutants far
more than for others. For example, fitness predictions for mutations in GPB2, diploids with
chromosome 11 amplifications, and high-fitness diploids with no known mutations each
improved by over 4 standard deviations of measurement error in the 0.5 M NaCl environment
due to the inclusion of the 7th component (Fig 5B). This phenotypic component also has
importance in the 1-Day transfer environment, albeit to a lesser degree, resulting in
improvements of roughly 1 standard deviation for each of these mutation types. This suggests
that these mutants have some phenotypic effect that contributes only slightly to fithess in many
environments, including those that represent subtle perturbations of the EC, but that are
particularly important in the 0.5 M NaCl and 1 Day transfer environments. Similarly, we find that
the 8th component also improves predictive power for specific types of mutants in specific
environments. In this case, diploids with chromosome 11 amplifications and PDE2 mutants have
particularly strong improvements in the 6-Day transfer environment (11 and 5 standard
deviations, respectively) and thus likely have a shared phenotypic effect that is captured by
component 8 (Fig 5B).

In sum, not all mutants affect all eight phenotypic components to the same degree and not
all phenotypic components contribute substantially to fithess in all environments. This
idiosyncrasy suggests that directional selection has the potential to generate rather than reduce
phenotypic diversity in cases where multiple adaptive mutants persist within a population or
across populations. Although directional selection “chooses” mutations that affect similar
phenotypes relevant to fitness in the EC, these mutations may have latent effects on a larger
number of phenotypes. When the environment changes, these latent phenotypic effects are
revealed, exposing the phenotypic diversity generated by the adaptive process.
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Figure 5. The contribution of a phenotypic component to fitness changes across environments
and differs for different types of mutants. (A) Some phenotypic components improve fitness
predictions in some environments substantially more than they do in others. The vertical axis shows the
improvement in the predictive power of our 8-component phenotypic model due to the inclusion of each
component. For example, the improvement due to component 7 is calculated by the difference between
the 7-component model and the 6-component model. The improvement of predictive power for each of
the subtle environmental perturbations is shown as a gray point and for each of the strong perturbations
in black. Magnification shows improvement upon including each of the two smallest components, with
three strong perturbations highlighted. (B) Some phenotypic components improve fitness predictions for
some mutants substantially more than they do for others. For example, the 7th component explains little
variation in the 6-Day environment, but the 8th component explains a lot of variation in fitness in the 6-
Day environment and is particularly helpful in predicting the fitness of Diploid + Chromosome 11
Amplification mutations in this environment. Vertical axis shows the improvement in predictive power (in
units of standard deviation of measurement error) for each type of mutant (denoted on the horizontal axis)
in one of three environments (1 Day, 6 Day, and 0.5 M NaCl) when adding either the 7th (top panel) or

the 8th (bottom panel) component. Mutants are ordered by the improvement due to the 7th component in

the 1 Day environment. Since some types of mutants are more common, e.g. diploids, there are more

data points in that category.

17


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

DISCUSSION

Here we succeeded in building a low-dimensional statistical model that captures the relationship
from genotype to phenotype to fitness for hundreds of adaptive mutants. Mapping the complete
phenotypic and fitness impacts of genetic change is a key goal of biology. Such a map is
important in order to make meaningful predictions from genetic data (e.g. personalized
medicine) and to investigate the structure of biological systems (e.g. their degree of modularity
and pleiotropy) (Collet et al., 2018; Eguchi et al., 2019; Exposito-Alonso et al., 2019; Zan and
Carlborg, 2020). Our model allows us to do both of these things. We made accurate predictions
about the fitness of unstudied mutants across multiple environments, and we gained novel
insights about the degree to which adaptive mutations are modular versus pleiotropic.
Specifically, we learned that adaptation is modular in the sense that hundreds of diverse
adaptive mutants collectively influence a small number of phenotypes that matter to fitness in
the evolution condition. We also learned that different mutants have distinct pleiotropic side
effects that matter to fithess in other conditions.

Building genotype-phenotype-fitness maps of adaptation has long been an elusive goal due to
both conceptual and technical difficulties. Indeed, the very first part of this task, namely the
identification of causal adaptive mutations, presents a substantial technical challenge (Barrett et
al., 2019, 2008; Exposito-Alonso et al., 2019). Fortunately, in some systems, such as in
microbial experimental evolution and studies of cancer and resistance in microbes and viruses,
genomic methodologies combined with availability of repeated evolutionary trials allow us to
detect specific genetic changes responsible for adaptation. In the context of microbial evolution
experiments, lineage tracing and genomics have opened up the possibility of not only detecting
hundreds of specific adaptive events but also measuring their fithess precisely and in bulk
(Good et al., 2017; Levy et al., 2015; Li et al., 2019, 2018; Nguyen Ba et al., 2019; Venkataram
et al., 2016). Thus in these cases we are coming close to solving the technical challenge of
building the genotype to fitness map of adaptation.

However, adding phenotype into this map remains a huge challenge even despite substantial
progress in mapping genotype to phenotype (Burga et al., 2019; Camp et al., 2019; Exposito-
Alonso et al., 2018; Geiler-Samerotte et al., 2016; Jakobson and Jarosz, 2019; Lee et al., 2019;
Paaby et al., 2015; Yengo et al., 2018; Ziv et al., 2017). In principle, we now have advanced
tools to measure a large number of phenotypic impacts of a genetic change, for instance
through high-throughput microscopy, proteomics, or RNAseq (Manzoni et al., 2018; Ritchie et
al., 2015; Zhang and Kuster, 2019). The conceptual problem is how to define phenotypes given
the interconnectedness of biological systems (Geiler-Samerotte et al., 2019; Paaby and
Rockman, 2013). If a mutation leads to complex changes in cell size and shape, should each
change be considered a distinct phenotype? Or if a single mutation changes the expression of
hundreds or thousands of genes, should we consider each change as a separate phenotype?
Intuitively, it seems that we should seek higher order, more meaningful descriptions. For
example, perhaps these expression changes are coordinated and reflect the up-regulation of a
stress-response pathway. Unfortunately, defining the functional units in which a gene product
participates remains difficult, especially because these units re-wire across genetic
backgrounds, environments, and species (Geiler-Samerotte et al., 2019; PavliCev et al., 2017;
Sun et al., 2020; Zan and Carlborg, 2020).

If mutations influence more than one phenotype, then the mapping from phenotype to fithess
also becomes challenging. To investigate this map, we would need to find an artificial way to
perturb one phenotype without perturbing others such that we could isolate and measure effects
on fitness. Mapping phenotype to fitness is further complicated by the environmental
dependence of these relationships (Fragata et al., 2019; Price et al., 2018). For example, a
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mutation that affects a cell’s ability to store carbohydrates for future use might matter far more in
an environment where glucose is re-supplied every 6 days instead of every 48 hours.

In our study, we turned the challenge of environment-dependence into the solution to the
seemingly intractable problem of interrogating the phenotype layer of the genotype-phenotype-
fithess map. We rely on the observation that the relative fitness of different mutations changes
across environments. We assume that differences in how mutant fithess varies across
environments must stem from differences in the phenotypes each mutation affects. Rather than
a priori defining the phenotypes that we think may matter, we use the similarities and
dissimilarities in the way fitness of multiple mutants vary across environments to define
phenotypes abstractly via their causal effects on fitness. This allows us to dispense with
measuring the phenotypes themselves and instead focus on measuring fitness with high
precision and throughput, since tools for doing so already exist (Venkataram et al., 2016). This
approach has the disadvantage of not identifying phenotypes in a traditional, more transparent
way. Still, it represents a major step forward in building genotype-phenotype-fithess maps
because it makes accurate predictions and provides novel insights about the phenotypic
structure of the adaptive response.

We successfully implemented this approach using a large collection of adaptive mutants
evolved in a glucose-limited condition. The first key result is that the map from adaptive mutant
to phenotype to fitness is modular, such that it is possible to create a genotype to phenotype to
fithess model that is low dimensional. Indeed, our model detects a small number (8) of fitness-
relevant phenotypes, the first two of which explain almost all of the variation in fithess (98.3%)
across 60 adaptive mutants in 25 environments representing subtle perturbations of the
glucose-limited evolution condition. This suggests that the hundreds of adaptive mutations we
study — including mutations in multiple genes in the Ras/PKA and TOR/Sch9 pathways,
genome duplication (diploidy), and various structural mutations — influence a small number of
phenotypes that matter to fitness in the evolution condition. This observation is consistent with
theoretical considerations suggesting that mutations that affect a large number of fithess-
relevant phenotypes are not likely to be adaptive (Orr, 2000; Wagner and Altenberg, 1996). It
also explains findings from other high-replicate laboratory evolution experiments and studies of
cancer that show hundreds of unique adaptive mutations tend to hit the same genes and
pathways repeatedly (Hanahan and Weinberg, 2011, 2000; Sanchez-Vega et al., 2018;
Tenaillon et al., 2012; Venkataram et al., 2016). Our work confirms the intuition that these
mutations all affect similar higher-order phenotypes (e.g. the level of activity of a signalling
pathway). This suggests that, despite the genetic diversity among adaptive mutants, adaptation
may be predictable and repeatable at the phenotypic level.

Note that although we detect only 8 fitness-relevant phenotypes, we expect the true number to
be much larger as the detectable number is limited by the precision of measurement (see
Methods and Fig S1). We expect this partly because we know that if we had worse precision in
this experiment we would have detected fewer than 8 phenotypic components (Fig 3). Still,
these additional undetected components cannot be very consequential in terms of their
contribution to fitness in the evolution condition, given how well the first 8 components capture
variation in environments that are similar to the evolution condition.

Surprisingly, the model built only using subtle environmental perturbations was also predictive of
fithess in environments that perturbed fitness strongly. Indeed in some of these environments,
such as the environment where 0.5 M NaCl was added to the media or the time of transfer was
extended from two to six days, many of the mutants are no longer adaptive and some of them
become strongly deleterious. Here the fitness of the mutants in the evolving condition is a very
poor predictor of fithess but the full 8-dimensional phenotypic model explains from 29% to 95%
of the variance. What was particularly interesting is that the explanatory power of different
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dimensions was very different for the strong compared to subtle perturbations. For instance, the
second dimension which explained 7% of weighted variation on average in the subtle
perturbations, explained 36% on average in the environments that represent strong
perturbations. The pattern was particularly striking for the smallest dimensions which at times
explained 15% in the strong environmental perturbations while again explaining at most 1% in
the subtle environments.

This discovery emphasizes that, although the smaller phenotypic dimensions contribute very
little to fitness in the evolution condition, they can at times have a much larger contribution in
other environments (Fig 1B). This makes intuitive sense. For instance, we know that some of
the strongest adaptive mutations in our experiment, the nonsense mutations in IRA1, appear to
stop cells from shifting their metabolism towards carbohydrate storage when glucose levels
become low (Li et al., 2018). This gives these cells a head start once glucose again becomes
abundant and does not appear to come at a substantial cost, at least not until these cells are
exposed to stressful environments (e.g. high salt or long stationary phase) (Li et al., 2018). This
example, and more generally the observation that phenotypic effects that are unimportant in the
evolving condition can become much more important in other environments, supports the idea
that adaptation can happen through large effect mutations because many of the pleiotropic
phenotypic effects will be inconsequential in the local environment (Fig 1B). We can thus argue
that our low-dimensional model representing the genotype-phenotype-fitness map near the
evolution condition hides /atent and consequential phenotypic complexity across the collection
of adaptive mutants. This complexity is hidden from natural selection in the evolution condition
but becomes important once the mutants leave the local environment and are assessed globally
for fitness effects. Thus, with respect to their effects on fitness-relevant phenotypes, adaptive
mutants may be locally modular, but globally pleiotropic.

The notion of latent phenotypic complexity is exciting as it generates a mechanism by which
directional selection generates rather than removes phenotypic diversity. Though directional
selection may promote multiple mutants that affect similar fithess-relevant phenotypes in the
evolution condition, each mutant could have disparate latent phenotypic effects that do not
contribute immediately to fithess. When the environment changes, these disparate phenotypic
effects may be revealed, imposing fitness costs of different magnitudes or allowing for diverse
solutions to a variety of possible new environments (Bono et al., 2017; Chavhan et al., 2020;
Jerison et al., 2020; Li et al., 2019). This latent phenotypic complexity also has the potential to
alter the future adaptive paths that a population takes even in a constant environment. Indeed,
these phenotypically diverse mutants are likely to affect the subsequent direction of adaptation
given that subsequent mutations can shift the context in which phenotypes are important in the
same way as do environmental perturbations (Blount et al., 2018, 2008; Dillon et al., 2016).
Latent phenotypic complexity among adaptive mutations is thus similar to cryptic genetic
variation in that it can influence a population’s ability to adapt to new conditions (Paaby and
Rockman, 2013), but dissimilar in that it evolves under directional rather than stabilizing
selection. The end result is that directional selection can enhance diversity both within a
population in which multiple adaptive mutants are segregating and across populations that are
adapting to the same stressors.

The phenomenon of latent phenotypic complexity being driven by adaptation is dependent on
there being multiple mutational solutions to an environmental challenge, such that different
adaptive mutations might have different latent phenotypic effects. Latent phenotypic diversity
might be less apparent in cases where adaptation proceeds through mutations in a single gene
and certainly would not exist if adaptation relies on one unique mutation. Thus, in some ways
latent phenotypic diversity reflects redundancies in the mechanisms that allow cells to adapt to a
challenge. One such putative redundancy in the case investigated in this paper is that the
Ras/PKA pathway can be constitutively activated by loss of function mutations to a number of
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795  negative regulators including IRA1, PDE2, and GPB2. Mutations in these genes might be

796  redundant in the sense that they influence the same fitness-relevant phenotype in the evolution
797  condition, which in this case is likely flux through the Ras/PKA pathway. This type of

798  redundancy is commonly observed in laboratory evolutions (Barghi et al., 2020), and is

799  particularly apparent in studies that analyze individuals with several adaptive mutations. Such
800 studies find that multiple mutations in the same functional unit occur less than expected by

801 chance presumably because those mutations would have redundant effects on fithess

802 (Tenaillon et al., 2012). Similarly, studies also find that second-step adaptive mutations tend to
803 be in different pathways or functional modules than the first adaptive step (Aggeli et al., 2020;
804  Fumasoni and Murray, 2020). The novel observation from our paper is that mutations with

805 redundant effects on fitness in the evolution condition are not necessarily identical because they
806 may influence different latent phenotypes. This observation adds to a long list of examples

807 demonstrating that redundancies, such as gene duplications and dominance, allow evolution the
808 flexibility to generate diversity.

809

810 One disadvantage of our approach is that the phenotypic components that we infer from our
811 fitness measurements are abstract. They represent causal effects on fitness, rather than

812 measurable features of cells. For this reason, perhaps we should not refer to them as

813  phenotypes but rather “fitnotypes” (a mash of the terms “fitness” and “phenotype”) that act much
814  like the causal traits in Fisher's geometric model (Blanquart et al., 2014; Blanquart and

815 Bataillon, 2016; Fisher, 1930; Harmand et al., 2017; Lourenco et al., 2011; Martin and

816 Lenormand, 2006; Poon and Otto, 2000; Tenaillon, 2014; Tenaillon et al., 2007; Weinreich and
817 Khnies, 2013) or a selectional pleiotropy model (Paaby and Rockman, 2013). Despite this

818 limitation, these fitnotypes have proven useful in allowing us to understand the consequences of
819  adaptive mutation. In addition to insights discussed above, we also learned that adaptive

820 mutants in the same gene do not always affect the same fitnotypes. For example, we found that
821 IRA1-missense mutations have varied and distinct effects from IRA1-nonsense mutations.

822  Further, we believe that identifying fithotypes will ultimately prove useful in identifying the

823  phenotypic effects of mutation. The fitnotypes can serve as a scaffold onto which a large

824  number of phenotypic measurements can be mapped. Even though fitnotypes are independent
825  with respect to their contribution of fithess and contribute to fitness linearly, the mapping of

826 commonly measured features of cells (e.g. growth rate, the expression levels of growth

827  supporting proteins like ribosomes) onto fitnotypes may not be entirely straightforward.

828 Nonetheless, methods such as Sparse Canonical Correlation Analysis (Suo et al., 2017) hold
829 promise in such a mapping and might help us relate traditional phenotypes to fitnotypes.

830

831 Animportant question for future research is whether our observation of local modularity and

832 global pleiotropy are also apparent in other cases of adaptation. The method we described is
833  generic and can be applied to any system as long as the fitness of a substantial set of mutants
834  can be profiled across multiple environments or genetic backgrounds. This is becoming possible
835 to doin many systems (Jerison et al., 2020; Li et al., 2019; Martin et al., 2015; Pan et al., 2018;
836 Rogers et al., 2018). The notion that diverse genetic changes can have redundant effects in one
837  environment but distinct and consequential effects in other environments is important to our

838 understanding of adaptation in other settings, including in the context of antibiotic resistance
839 and cancer. For example, tumors representing the same type of cancer (e.g. lung

840 adenocarcinoma) tend to be genetically diverse even if considering only driver mutations (The
841  Cancer Genome Atlas Research Network, 2014). However, the driver mutations often fall into a
842  smaller number of key driver genes and even fewer pathways (Bailey et al., 2018; Hanahan and
843  Weinberg, 2011, 2000; Sanchez-Vega et al., 2018; Sondka et al., 2018). While this apparent
844  redundancy might suggest that the tumors are functionally similar, the notion of latent diversity
845  we propose here suggests that the specific mutational paths taken by different tumors might
846  matter once the environment changes, for example when the tumors are treated by a cancer
847  therapy. Substantial heterogeneity of tumor response to therapy is consistent with this notion.
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Despite the accumulation of large amounts of genomic and phenomic data, integrating this
information to identify the phenotypic consequences of mutation that are ultimately responsible
for fitness remains incredibly challenging. Our approach allows us to create an abstract
representation of the causal effects of genetic mutation and their changing contribution to fitness
across environments. This top-down view of the genotype-phenotype-fithess map simplifies the
complex and multifaceted phenotypic consequences of mutation by focusing on those that
contribute to fitness. Integrating this new perspective with the influx of precise and high-
throughput data might allow us to answer age-old questions about the structure of biological
systems and adaptation.

ACKNOWLEDGMENTS

The authors thank Sandeep Venkataram for the BarcodeCounter2 script; Yuping Li, Monica
Sanchez, Tuya Yokoyama, Chris McFarland, and Dimitra Aggeli for technical assistance; Atish
Agarwala, Marc Salit, Sasha Levy, Gavin Sherlock, Ben Good, Ivana Cvijovic, David Gokhman,
Emily Ebel, Simon Levin, Molly Schumer, Jan Skotheim, Moises Exposito-Alonso, Mikhail
Tikhonov, Hunter Fraser, Michael Desai and all members of the Petrov Lab for helpful
comments and discussions. We are grateful to the twitter community that followed #1BigBatch
and provided us with very helpful feedback. We are grateful to Enrico Coen for very helpful
discussions and specifically for the suggestion of the term “fitnotype”. Some of the computing for
this project was performed on the Sherlock cluster. We would like to thank Stanford University
and the Stanford Research Computing Center for providing computational resources and
support that contributed to these research results. This work was supported by National
Institutes of Health grant R35GM118165 (to DAP) and National Institutes of Health grant
R35GM133674 (to KGS).

22


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

REFERENCES

Aggeli, D., Li, Y., Sherlock, G., 2020. Changes in the distribution of fitness effects and adaptive
mutational spectra following a single first step towards adaptation (preprint). Evolutionary
Biology. https://doi.org/10.1101/2020.06.12.148833

Altenberg, L., 2005. Modularity in Evolution: Some Low-Level Questions, in: Modularity:
Understanding the Development and Evolution of Complex Natural Systems. MIT Press,
p. 32.

Baeza-Centurion, P., Mifana, B., Schmiedel, J.M., Valcarcel, J., Lehner, B., 2019.
Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing.
Cell 176, 549-563.e23. https://doi.org/10.1016/j.cell.2018.12.010

Bailey, M.H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A.,
Colaprico, A., Wendl, M.C., Kim, J., Reardon, B., et al., 2018. Comprehensive
Characterization of Cancer Driver Genes and Mutations. Cell 173, 371-385.e18.
https://doi.org/10.1016/j.cell.2018.02.060

Barghi, N., Hermisson, J., Schlétterer, C., 2020. Polygenic adaptation: a unifying framework to
understand positive selection. Nat. Rev. Genet. https://doi.org/10.1038/s41576-020-
0250-z

Barghi, N., Tobler, R., Nolte, V., Jaksi¢, A.M., Mallard, F., Otte, K.A., Dolezal, M., Taus, T.,
Kofler, R., Schlétterer, C., 2019. Genetic redundancy fuels polygenic adaptation in
Drosophila. PLOS Biol. 17, e3000128. https://doi.org/10.1371/journal.pbio.3000128

Barrett, R.D.H., Laurent, S., Mallarino, R., Pfeifer, S.P., Xu, C.C.Y., Foll, M., Wakamatsu, K.,
Duke-Cohan, J.S., Jensen, J.D., Hoekstra, H.E., 2019. Linking a mutation to survival in
wild mice. Science 363, 499-504. https://doi.org/10.1126/science.aav3824

Barrett, R.D.H., Rogers, S.M., Schluter, D., 2008. Natural Selection on a Major Armor Gene in
Threespine Stickleback. Science 322, 255-257. https://doi.org/10.1126/science.1159978

Blanquart, F., Achaz, G., Bataillon, T., Tenaillon, O., 2014. Properties of selected mutations and
genotypic landscapes under Fisher's geometric model: GENOTYPIC LANDSCAPES
UNDER FISHER’S MODEL. Evolution 68, 3537-3554.
https://doi.org/10.1111/evo.12545

Blanquart, F., Bataillon, T., 2016. Epistasis and the Structure of Fitness Landscapes: Are
Experimental Fitness Landscapes Compatible with Fisher's Geometric Model? Genetics
203, 847-862. https://doi.org/10.1534/genetics.115.182691

Blount, Z.D., Borland, C.Z., Lenski, R.E., 2008. Historical contingency and the evolution of a key
innovation in an experimental population of Escherichia coli. Proc. Natl. Acad. Sci. 105,
7899-7906. https://doi.org/10.1073/pnas.0803151105

Blount, Z.D., Lenski, R.E., Losos, J.B., 2018. Contingency and determinism in evolution:
Replaying life’s tape. Science 362, eaam5979. https://doi.org/10.1126/science.aam5979

Bono, L.M., Smith, L.B., Pfennig, D.W., Burch, C.L., 2017. The emergence of performance
trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26,
1720-1733. https://doi.org/10.1111/mec.13979

Boyle, E.A., Li, Y.l., Pritchard, J.K., 2017. An Expanded View of Complex Traits: From
Polygenic to Omnigenic. Cell 169, 1177—-1186. https://doi.org/10.1016/j.cell.2017.05.038

Burga, A., Ben-David, E., Lemus Vergara, T., Boocock, J., Kruglyak, L., 2019. Fast genetic
mapping of complex traits in C. elegans using millions of individuals in bulk. Nat.
Commun. 10, 2680. https://doi.org/10.1038/s41467-019-10636-9

Camp, J.G., Platt, R., Treutlein, B., 2019. Mapping human cell phenotypes to genotypes with
single-cell genomics. Science 365, 1401-1405. https://doi.org/10.1126/science.aax6648

Chavhan, Y., Malusare, S., Dey, S., 2020. Larger bacterial populations evolve heavier fitness
trade-offs and undergo greater ecological specialization. Heredity 124, 726—736.
https://doi.org/10.1038/s41437-020-0308-x

Chesmore, K., Bartlett, J., Williams, S.M., 2018. The ubiquity of pleiotropy in human disease.
Hum. Genet. 137, 39—-44. https://doi.org/10.1007/s00439-017-1854-z

23


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Collet, J.M., McGuigan, K., Allen, S.L., Chenoweth, S.F., Blows, M.W., 2018. Mutational
Pleiotropy and the Strength of Stabilizing Selection Within and Between Functional
Modules of Gene Expression. Genetics 208, 1601-1616.
https://doi.org/10.1534/genetics.118.300776

Coombes, D., Moir, J.W.B., Poole, A.M., Cooper, T.F., Dobson, R.C.J., 2019. The fitness
challenge of studying molecular adaptation. Biochem. Soc. Trans. 47, 1533—-1542.
https://doi.org/10.1042/BST20180626

Cowperthwaite, M.C., Bull, J.J., Meyers, L.A., 2005. Distributions of Beneficial Fitness Effects in
RNA. Genetics 170, 1449-1457. https://doi.org/10.1534/genetics.104.039248

Crozat, E., Winkworth, C., Gaffe, J., Hallin, P.F., Riley, M.A., Lenski, R.E., Schneider, D., 2010.
Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental
Populations of Escherichia coli. Mol. Biol. Evol. 27, 2113-2128.
https://doi.org/10.1093/molbev/msq099

Dillon, M.M., Rouillard, N.P., Van Dam, B., Gallet, R., Cooper, V.S., 2016. Diverse phenotypic
and genetic responses to short-term selection in evolving Escherichia coli populations:
DIVERSE RESPONSES TO SELECTION OF E. coli POPULATIONS. Evolution 70,
586-599. https://doi.org/10.1111/ev0.12868

Diss, G., Lehner, B., 2018. The genetic landscape of a physical interaction. eLife 7, e32472.
https://doi.org/10.7554/eLife.32472

Domingo, J., Baeza-Centurion, P., Lehner, B., 2019. The Causes and Consequences of Genetic
Interactions (Epistasis). Annu. Rev. Genomics Hum. Genet. 20, 433—460.
https://doi.org/10.1146/annurev-genom-083118-014857

Eckart, C., Young, G., 1936. The approximation of one matrix by another of lower rank.
Psychometrika 1, 211-218. https://doi.org/10.1007/BF02288367

Eguchi, Y., Bilolikar, G., Geiler-Samerotte, K., 2019. Why and how to study genetic changes
with context-dependent effects. Curr. Opin. Genet. Dev. 58-59, 95-102.
https://doi.org/10.1016/j.gde.2019.08.003

Exposito-Alonso, M., 500 Genomes Field Experiment Team, Burbano, H.A., Bossdorf, O.,
Nielsen, R., Weigel, D., 2019. Natural selection on the Arabidopsis thaliana genome in
present and future climates. Nature 573, 126—129. https://doi.org/10.1038/s41586-019-
1520-9

Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H.A., Weigel, D., 2018.
Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis
thaliana. Nat. Ecol. Evol. 2, 352—-358. https://doi.org/10.1038/s41559-017-0423-0

Fisher, R.A., 1930. The genetical theory of natural selection. Clarendon Press, Oxford.
https://doi.org/10.5962/bhl.title.27468

Fragata, I, Blanckaert, A., Dias Louro, M.A., Liberles, D.A., Bank, C., 2019. Evolution in the
light of fitness landscape theory. Trends Ecol. Evol. 34, 69-82.
https://doi.org/10.1016/j.tree.2018.10.009

Fumasoni, M., Murray, A.W., 2020. The evolutionary plasticity of chromosome metabolism
allows adaptation to constitutive DNA replication stress. eLife 9, €51963.
https://doi.org/10.7554/eLife.51963

Geiler-Samerotte, K.A., Li, S., Lazaris, C., Taylor, A., Ziv, N., Ramjeawan, C., Paaby, A.B.,
Siegal, M.L., 2019. Extent and context dependence of pleiotropy revealed by high-
throughput single-cell phenotyping (preprint). Evolutionary Biology.
https://doi.org/10.1101/700716

Geiler-Samerotte, K.A., Zhu, Y.O., Goulet, B.E., Hall, D.W., Siegal, M.L., 2016. Selection
Transforms the Landscape of Genetic Variation Interacting with Hsp90. PLOS Biol. 14,
€2000465. https://doi.org/10.1371/journal.pbio.2000465

Good, B.H., McDonald, M.J., Barrick, J.E., Lenski, R.E., Desai, M.M., 2017. The dynamics of
molecular evolution over 60,000 generations. Nature 551, 45-50.
https://doi.org/10.1038/nature24287

Hanahan, D., Weinberg, R.A., 2011. Hallmarks of Cancer: The Next Generation. Cell 144, 646—

24


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

674. https://doi.org/10.1016/j.cell.2011.02.013

Hanahan, D., Weinberg, R.A., 2000. The Hallmarks of Cancer. Cell 100, 57-70.
https://doi.org/10.1016/S0092-8674(00)81683-9

Harmand, N., Gallet, R., Jabbour-Zahab, R., Martin, G., Lenormand, T., 2017. Fisher’s
geometrical model and the mutational patterns of antibiotic resistance across dose
gradients: FISHER'S GEOMETRICAL MODEL AND ANTIBIOTIC RESISTANCE.
Evolution 71, 23-37. https://doi.org/10.1111/evo.13111

Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, AW., 1999. From molecular to modular cell
biology. Nature 402, C47-C52. https://doi.org/10.1038/35011540

Huang, C.-J., Lu, M.-Y., Chang, Y.-W., Li, W.-H., 2018. Experimental Evolution of Yeast for
High-Temperature Tolerance. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msyQ077

lllumina, 2017. Effects of Index Misassignment on Multiplexing and Downstream Analysis
[WWW Document]. URL https://www.illumina.com/content/dam/illumina-
marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-
004.pdf?linkld=36607862. (accessed 6.25.20).

Jakobson, C.M., Jarosz, D.F., 2019. Molecular Origins of Complex Heritability in Natural
Genotype-to-Phenotype Relationships. Cell Syst. 8, 363-379.e3.
https://doi.org/10.1016/j.cels.2019.04.002

Jerison, E.R., Nguyen Ba, A.N., Desai, M.M., Kryazhimskiy, S., 2020. Chance and necessity in
the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601—
611. https://doi.org/10.1038/s41559-020-1128-3

Josse, J., Sardy, S., 2014. Adaptive Shrinkage of singular values. ArXiv13106602 Stat.

Kacser, H., Burns, J.A., 1981. The Molecular Basis of Dominance. Genetics 97, 639-666.

Karageorgi, M., Groen, S.C., Sumbul, F., Pelaez, J.N., Verster, K.I., Aguilar, J.M., Hastings,
A.P., Bernstein, S.L., Matsunaga, T., Astourian, M., et al., 2019. Genome editing
retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409-412.
https://doi.org/10.1038/s41586-019-1610-8

Kemble, H., Eisenhauer, C., Couce, A., Chapron, A., Magnan, M., Gautier, G., Le Nagard, H.,
Nghe, P., Tenaillon, O., 2020. Flux, toxicity, and expression costs generate complex
genetic interactions in a metabolic pathway. Sci. Adv. 6, eabb2236.
https://doi.org/10.1126/sciadv.abb2236

Lang, G.l., Rice, D.P., Hickman, M.J., Sodergren, E., Weinstock, G.M., Botstein, D., Desai,
M.M., 2013. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast
populations. Nature 500, 571-574. https://doi.org/10.1038/nature12344

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods
9, 357-359. https://doi.org/10.1038/nmeth.1923

Lee, J.T., Coradini, A.L.V., Shen, A., Ehrenreich, |.M., 2019. Layers of Cryptic Genetic Variation
Underlie a Yeast Complex Trait. Genetics 211, 1469-1482.
https://doi.org/10.1534/genetics.119.301907

Levy, S.F., Blundell, J.R., Venkataram, S., Petrov, D.A., Fisher, D.S., Sherlock, G., 2015.
Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519,
181-186. https://doi.org/10.1038/nature 14279

Li, C., Zhang, J., 2018. Multi-environment fithess landscapes of a tRNA gene. Nat. Ecol. Evol. 2,
1025-1032. https://doi.org/10.1038/s41559-018-0549-8

Li, Y., Petrov, D.A., Sherlock, G., 2019. Single nucleotide mapping of trait space reveals Pareto
fronts that constrain adaptation. Nat. Ecol. Evol. 3, 1539-1551.
https://doi.org/10.1038/s41559-019-0993-0

Li, Y., Venkataram, S., Agarwala, A., Dunn, B., Petrov, D.A., Sherlock, G., Fisher, D.S., 2018.
Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions. Curr.
Biol. 28, 515-525.€6. https://doi.org/10.1016/j.cub.2018.01.009

Lind, P.A., Farr, A.D., Rainey, P.B., 2015. Experimental evolution reveals hidden diversity in
evolutionary pathways. eLife 4, e07074. https://doi.org/10.7554/eLife.07074

Lourengo, J., Galtier, N., Glémin, S., 2011. COMPLEXITY, PLEIOTROPY, AND THE FITNESS

25


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

EFFECT OF MUTATIONS. Evolution 65, 1559—1571.

Manzoni, C., Kia, D.A., Vandrovcova, J., Hardy, J., Wood, N.W., Lewis, P.A., Ferrari, R., 2018.
Genome, transcriptome and proteome: the rise of omics data and their integration in
biomedical sciences. Brief. Bioinform. 19, 286-302. https://doi.org/10.1093/bib/bbw114

Marsaglia, G., 1972. Choosing a Point from the Surface of a Sphere. Ann. Math. Stat. 43, 645—
646. https://doi.org/10.1214/aoms/1177692644

Martin, G., Lenormand, T., 2006. A GENERAL MULTIVARIATE EXTENSION OF FISHER'S
GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS
EFFECTS ACROSS SPECIES. Evolution 60, 893-907.

Martin, H., Shales, M., Fernandez-Pifiar, P., Wei, P., Molina, M., Fiedler, D., Shokat, K.M.,
Beltrao, P., Lim, W., Krogan, N.J., 2015. Differential genetic interactions of yeast stress
response MAPK pathways. Mol. Syst. Biol. 11, 800.
https://doi.org/10.15252/msb.20145606

Mclnnes, L., Healy, J., Melville, J., 2018. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv180203426 Cs Stat.

Mehlhoff, J.D., Stearns, F.W., Rohm, D., Wang, B., Tsou, E.-Y., Dutta, N., Hsiao, M.-H.,
Gonzalez, C.E., Rubin, A.F., Ostermeier, M., 2020. Collateral fithess effects of
mutations. Proc. Natl. Acad. Sci. 117, 11597-11607.
https://doi.org/10.1073/pnas.1918680117

Melo, D., Porto, A., Cheverud, J.M., Marroig, G., 2016. Modularity: Genes, Development, and
Evolution. Annu. Rev. Ecol. Evol. Syst. 47, 463—-486. https://doi.org/10.1146/annurev-
ecolsys-121415-032409

Nguyen Ba, A.N., Cvijovi¢, |., Rojas Echenique, J.l., Lawrence, K.R., Rego-Costa, A., Liu, X,
Levy, S.F., Desai, M.M., 2019. High-resolution lineage tracking reveals travelling wave of
adaptation in laboratory yeast. Nature 575, 494—499. https://doi.org/10.1038/s41586-
019-1749-3

Orr, H.A., 2000. Adaptation and The Cost of Complexity. Evolution 54, 13-20.
https://doi.org/10.1111/j.0014-3820.2000.tb00002.x

Otwinowski, J., McCandlish, D.M., Plotkin, J.B., 2018. Inferring the shape of global epistasis.
Proc. Natl. Acad. Sci. 115, E7550-E7558. https://doi.org/10.1073/pnas.1804015115

Owen, A.B., Perry, P.O., 2009. Bi-cross-validation of the SVD and the nonnegative matrix
factorization. Ann. Appl. Stat. 3, 564-594. https://doi.org/10.1214/08-A0AS227

Paaby, A.B., Rockman, M.V., 2013. The many faces of pleiotropy. Trends Genet. 29, 66—73.
https://doi.org/10.1016/j.tig.2012.10.010

Paaby, A.B., White, A.G., Riccardi, D.D., Gunsalus, K.C., Piano, F., Rockman, M.V., 2015. Wild
worm embryogenesis harbors ubiquitous polygenic modifier variation. eLife 4, e09178.
https://doi.org/10.7554/eLife.09178

Pan, J., Meyers, R.M., Michel, B.C., Mashtalir, N., Sizemore, A.E., Wells, J.N., Cassel, S.H.,
Vazquez, F., Weir, B.A., Hahn, W.C., et al., 2018. Interrogation of Mammalian Protein
Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.
Cell Syst. 6, 555-568.e7. https://doi.org/10.1016/j.cels.2018.04.011

PavliCev, M., Wagner, G.P., Chavan, A.R., Owens, K., Maziarz, J., Dunn-Fletcher, C., Kallapur,
S.G., Muglia, L., Jones, H., 2017. Single-cell transcriptomics of the human placenta:
inferring the cell communication network of the maternal-fetal interface. Genome Res.
27, 349-361. https://doi.org/10.1101/gr.207597.116

Poon, A., Otto, S.P., 2000. COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING
THE MELTDOWN OF SMALL POPULATIONS. Evolution 54, 1467-1479.
https://doi.org/10.1111/j.0014-3820.2000.tb00693.x

Pressman, A.D., Liu, Z., Janzen, E., Blanco, C., Mdller, U.F., Joyce, G.F., Pascal, R., Chen,
[.LA., 2019. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated
Evolutionary Network for Self-Aminoacylating RNA. J. Am. Chem. Soc. 141, 6213-6223.
https://doi.org/10.1021/jacs.8b13298

Price, N., Moyers, B.T., Lopez, L., Lasky, J.R., Monroe, J.G., Mullen, J.L., Oakley, C.G., Lin, J.,

26


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Agren, J., Schrider, D.R., et al., 2018. Combining population genomics and fitness QTLs
to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl. Acad. Sci.
115, 5028-5033. https://doi.org/10.1073/pnas.1719998115

Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D., 2015. Methods of integrating
data to uncover genotype—phenotype interactions. Nat. Rev. Genet. 16, 85-97.
https://doi.org/10.1038/nrg3868

Rockman, M.V, 2012. THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR
EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER. Evolution 66, 1-17.
https://doi.org/10.1111/j.1558-5646.2011.01486.x

Rogers, Z.N., McFarland, C.D., Winters, I.P., Seoane, J.A., Brady, J.J., Yoon, S., Curtis, C.,
Petrov, D.A., Winslow, M.M., 2018. Mapping the in vivo fithess landscape of lung
adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483—486.
https://doi.org/10.1038/s41588-018-0083-2

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W.K., Luna, A., La, K.C., Dimitriadoy, S., Liu,
D.L., Kantheti, H.S., Saghafinia, S., et al., 2018. Oncogenic Signaling Pathways in The
Cancer Genome Atlas. Cell 173, 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035

Sarkisyan, K.S., Bolotin, D.A., Meer, M.V., Usmanova, D.R., Mishin, A.S., Sharonov, G.V.,
Ivankov, D.N., Bozhanova, N.G., Baranov, M.S., Soylemez, O., et al., 2016. Local fithess
landscape of the green fluorescent protein. Nature 533, 397—401.
https://doi.org/10.1038/nature17995

Sella, G., Barton, N.H., 2019. Thinking About the Evolution of Complex Traits in the Era of
Genome-Wide Association Studies. Annu. Rev. Genomics Hum. Genet. 20, 461-493.
https://doi.org/10.1146/annurev-genom-083115-022316

Sinha, R., Stanley, G., Gulati, G.S., Ezran, C., Travaglini, K.J., Wei, E., Chan, C.K.F., Nabhan,
A.N., Su, T., Morganti, R.M., et al., 2017. Index switching causes “spreading-of-signal’
among multiplexed samples in lllumina HiSeq 4000 DNA sequencing (preprint).
Molecular Biology. https://doi.org/10.1101/125724

Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J.G., Zgaga, L., Manolio, T.,
Rudan, I., McKeigue, P., Wilson, J.F., Campbell, H., 2011. Abundant Pleiotropy in
Human Complex Diseases and Traits. Am. J. Hum. Genet. 89, 607-618.
https://doi.org/10.1016/j.ajhg.2011.10.004

Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, |., Forbes, S.A., 2018. The COSMIC
Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat.
Rev. Cancer 18, 696—-705. https://doi.org/10.1038/s41568-018-0060-1

Starr, T.N., Flynn, J.M., Mishra, P., Bolon, D.N.A., Thornton, J.W., 2018. Pervasive contingency
and entrenchment in a billion years of Hsp90 evolution. Proc. Natl. Acad. Sci. 115,
4453-4458. https://doi.org/10.1073/pnas.1718133115

Sun, S., Baryshnikova, A., Brandt, N., Gresham, D., 2020. Genetic interaction profiles of
regulatory kinases differ between environmental conditions and cellular states. Mol.
Syst. Biol. 16. https://doi.org/10.15252/msb.20199167

Suo, X., Minden, V., Nelson, B., Tibshirani, R., Saunders, M., 2017. Sparse canonical
correlation analysis. ArXiv170510865 Stat.

Tenaillon, O., 2014. The Utility of Fisher's Geometric Model in Evolutionary Genetics. Annu.
Rev. Ecol. Evol. Syst. 45, 179-201. https://doi.org/10.1146/annurev-ecolsys-120213-
091846

Tenaillon, O., Rodriguez-Verdugo, A., Gaut, R.L., McDonald, P., Bennett, A.F., Long, A.D.,
Gaut, B.S., 2012. The Molecular Diversity of Adaptive Convergence. Science 335, 457—
461. https://doi.org/10.1126/science.1212986

Tenaillon, O., Silander, O.K., Uzan, J.-P., Chao, L., 2007. Quantifying Organismal Complexity
using a Population Genetic Approach. PLoS ONE 2, e217.
https://doi.org/10.1371/journal.pone.0000217

The Cancer Genome Atlas Research Network, 2014. Comprehensive molecular profiling of lung
adenocarcinoma. Nature 511, 543-550. https://doi.org/10.1038/nature13385

27


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Venkataram, S., Dunn, B., Li, Y., Agarwala, A., Chang, J., Ebel, E.R., Geiler-Samerotte, K.,
Hérissant, L., Blundell, J.R., Levy, S.F., et al., 2016. Development of a Comprehensive
Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell 166, 1585-
1596.e22. https://doi.org/10.1016/j.cell.2016.08.002

Venkataram, S., Monasky, R., Sikaroodi, S.H., Kryazhimskiy, S., Kagar, B., 2019. Evolutionary
Stalling and a Limit on the Power of Natural Selection to Improve a Cellular Module
(preprint). Evolutionary Biology. https://doi.org/10.1101/850644

Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P., 1992. Effect of benzoic acid on
metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration
and alcoholic fermentation. Yeast 8, 501-517. https://doi.org/10.1002/yea.320080703

Visscher, P.M., Yang, J., 2016. A plethora of pleiotropy across complex traits. Nat. Genet. 48,
707-708. https://doi.org/10.1038/ng.3604

Wagner, G.P., Altenberg, L., 1996. Perspective: Complex Adaptations and the Evolution of
Evolvability. Evolution 50, 967-976. https://doi.org/10.2307/2410639

Wagner, G.P., Pavlicev, M., Cheverud, J.M., 2007. The road to modularity. Nat. Rev. Genet. 8,
921-931. https://doi.org/10.1038/nrg2267

Wagner, G.P., Zhang, J., 2011. The pleiotropic structure of the genotype—phenotype map: the
evolvability of complex organisms. Nat. Rev. Genet. 12, 204-213.
https://doi.org/10.1038/nrg2949

Weinreich, D.M., 2006. Darwinian Evolution Can Follow Only Very Few Mutational Paths to
Fitter Proteins. Science 312, 111-114. https://doi.org/10.1126/science.1123539

Weinreich, D.M., Knies, J.L., 2013. FISHER'S GEOMETRIC MODEL OF ADAPTATION MEETS
THE FUNCTIONAL SYNTHESIS: DATA ON PAIRWISE EPISTASIS FOR FITNESS
YIELDS INSIGHTS INTO THE SHAPE AND SIZE OF PHENOTYPE SPACE: THE FGM
AND THE FUNCTIONAL SYNTHESIS. Evolution n/a-n/a.
https://doi.org/10.1111/evo.12156

Welch, J.J., Waxman, D., 2003. MODULARITY AND THE COST OF COMPLEXITY. Evolution
57, 1723-1734. https://doi.org/10.1111/j.0014-3820.2003.tb00581.x

Yengo, L., Sidorenko, J., Kemper, K.E., Zheng, Z., Wood, A.R., Weedon, M.N., Frayling, T.M.,
Hirschhorn, J., Yang, J., Visscher, P.M., et al., 2018. Meta-analysis of genome-wide
association studies for height and body mass index in ~700000 individuals of European
ancestry. Hum. Mol. Genet. 27, 3641-3649. https://doi.org/10.1093/hmg/ddy271

Zan, Y., Carlborg, O., 2020. Dynamic genetic architecture of yeast response to environmental
perturbation shed light on origin of cryptic genetic variation. PLOS Genet. 16, e1008801.
https://doi.org/10.1371/journal.pgen.1008801

Zhang, B., Kuster, B., 2019. Proteomics Is Not an Island: Multi-omics Integration Is the Key to
Understanding Biological Systems. Mol. Cell. Proteomics 18, S1-S4.
https://doi.org/10.1074/mcp.E119.001693

Ziv, N., Shuster, B.M., Siegal, M.L., Gresham, D., 2017. Resolving the Complex Genetic Basis
of Phenotypic Variation and Variability of Cellular Growth. Genetics 206, 1645-1657.
https://doi.org/10.1534/genetics.116.195180

28


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1185

1186

1187
1188

1189

1190
1191
1192
1193
1194
1195

1196
1197
1198
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

METHODS
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Dmitri Petrov (dpetrov@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The yeast strains used in this study can be grown and maintained using standard methods (e.g.
YPD media in test tubes, glycerol stocks for long term storage at -80°C), but should be
propagated in the appropriate selection environment (a glucose-limited minimal media - M3
medium for the evolution condition) for comparable fithess and phenotypic measurements. All of
the strains we study are of genetic background MATa, ura3A0, ybr209w::Gal-Cre-KanMX-
1/2URA3-loxP-Barcode-1/2URA3-HygMX-lox66/71.

Experiments were performed with barcoded mutants isolated from a previous evolution
experiment (Levy et al., 2015). To measure their fithess, these mutants were competed against
a constructed reference strain with a restriction site in the barcode region (Venkataram et al.,
2016).

The majority of the fithess measurement experiments were conducted with a collection of 500
adaptive barcoded mutants where each strain starts at equal frequency (Li et al., 2018;
Venkataram et al., 2016). We focus on a subset of 292 strains for which we obtained fitness
measurements in all 45 environments and for which mutations conferring fitness advantages
have been previously identified, either by whole genome sequencing or using a drug to test
ploidy (Li et al., 2018; Venkataram et al., 2016) (Table S1). Note that because we utilize some
data from previous experiments (Li et al., 2018; Venkataram et al., 2016), some of the
experiments contained additional barcoded mutants not analyzed here, namely a pool
consisting of a total of 4800 strains, including the 292 focused on in this study. These
differences in the number of strains included in the experiment are partially accounted for in our
inference of mean fitness, and any remaining effects can be thought of as another parameter
that varies across the environments (e.g. in addition to glucose or salt concentration).

In a few experiments, we spiked in re-barcoded mutants and additional neutral lineages as
internal controls. Since re-barcoded mutants are identical, except for the barcode, these teach
us about the precision with which we can measure a mutant’s fitness. Specifically, we spiked in
ten re-barcoded /IRA1-nonsense mutants (each with a frameshift insertion AT to ATT mutation at
bp 4090) and ten IRA1-missense mutants (each with a G to T mutation at bp 3776). Neutral
lineages teach us about the behavior of the unmutated reference strain, which we must infer
because its barcode is eliminated from the experiment before sequencing. The spiked in
neutrals include ten barcoded lineages from the original evolution experiment (Levy et al., 2015)
for which whole genome sequencing did not reveal any mutations (Venkataram et al., 2016) and
previous fithess measurements did not reveal any deviation from the reference (Li et al., 2018;
Venkataram et al., 2016).
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METHOD DETAILS
Conducting the barcoded fithness measurements

Fithess measurement experiments were performed as described previously (Li et al., 2018;
Venkataram et al., 2016), where growth competitions were set up between a pool of barcoded
mutants and a reference strain. The change in the frequency of each barcode over time reflects
the fitness of the adaptive mutant possessing that barcode, relative to the reference strain.

We conducted fitness measurements under a variety of conditions (Table S2) that represent
perturbations of the condition in which these adaptive mutants evolved. Briefly, we separately
grew up an overnight culture of the barcode pool and the ancestral reference strain in 100mL
M3 (minimal, glucose-limited) medium (Verduyn et al., 1992). We then mixed these saturated
cultures at a 1:9 ratio such that 90% of cells represent the reference strain. This ratio allows for
mutants to compete against the ancestor rather than competing against each other. We then

inoculated 400uL of this mixed culture (~ 5 x 107cells) into 100mL of fresh media in 500mL
DelLong flasks. The type of media used, and sometimes the shape of the flask, varied
depending on condition (Table S2). This culture was then grown at 30°C in an incubator shaking
at 223 RPM for 48 hours. After 48 hours of growth, 400uL of saturated culture was transferred
into fresh media of the same type, in a new flask of the same type. This serial dilution was
usually continued 4 times, yielding 5 time-points over which to measure the rate at which a
barcode’s frequency changed, though some experiments include one more or one less
depending on the experimenter and on whether technical problems (e.g. PCR failure) caused
loss of time-points.

After each transfer of 400 uL, the left-over 9600uL was frozen so that we could later sequence
the barcodes present at every time-point. To prepare this culture for freezing, it was transferred
to 50mL conicals, spun down at 3000 rpm for 5 minutes, resuspended in 5mL of sorbitol
freezing solution (0.9M sorbitol, 0.1M Tris-HCL pH 7.5, 0.1M EDTA pH 8.0), aliquoted into three
1.5mL tubes, and stored at -80°C.

For experiments where additional neutral lineages and re-barcoded lineages were included, the
initial inoculation mix consisted of 90% ancestral reference strain, 9.4% barcode mutant pool,
0.2% additional neutral spike-in pool, 0.2% re-barcoded IRA1 nonsense pool, and 0.2% re-
barcoded IRA1 missense pool.

Growth conditions

In this study, we present fithess measurement data from a collection of 45 conditions that each
represent perturbations of the growth condition in which these adaptive mutants evolved. We
refer to this original evolution condition as the “EC”. In the EC, cells are grown in flasks with a
flat bottom and transferred to new flasks every 48 hours (see Conducting the barcoded fitness
measurements). Cells are grown in M3 media (Verduyn et al., 1992). This media is glucose-
limited, meaning the cells run out of glucose before any other nutrient. In the EC, the starting
glucose concentration is 1.5%.

The 45 perturbations of the EC are summarized in Table S2 and include changes to the growth
media, the flask shape, and the transfer times. For example, in the “1 Day” condition, we
change the transfer time from 48 to 24 hours. In the “1.8% glucose, baffled flask condition” we
change the starting glucose concentration from 1.5% to 1.8% and change the flask type from
one with a flat bottom to one with baffles. Several of these conditions include experiments from
previous studies (Li et al., 2018; Venkataram et al., 2016).
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For each of these 45 conditions but three, we include between two and four replicates that were
performed simultaneously (Table S2) such that overall we performed a total of 109 fitness
measurements on our collection of adaptive mutants. Our replicate structure is nested in that
some of our 45 conditions represent replicate experiments that we performed at different times.
Variation across experiments performed at different times is often referred to as “batch effects”
and likely reflects environmental variability that we were unable to control (e.g. slight fluctuations
in incubation temperature due to limits on the precision of the instrument). In particular, we re-
measured the fitness of the adaptive mutants in the EC on 9 different occasions, each time
including 3 or more replicates. We refer to these 9 experiments as ‘EC batches’ in the main text.
However, every set of experiments that was performed at the same time constitutes a separate
“batch”. There were slight differences across batches in the way we prepared barcodes for
sequencing, which we detail in the relevant Methods sections. This variation across batches can
be thought of as another parameter that varies across the 45 conditions (in addition to glucose
or salt concentration). We report which experiments were performed in the same batch in Table
S2.

Some conditions, including some Fluconazole conditions and Geldanamycin conditions, have
unexpected orderings in the strength of perturbation (i.e. the smaller drug concentration shows
a larger difference in fithess or similar concentrations seem to have different effects).
Regardless of whether these observations reflect technical problems (e.g. degradation or poor
solubility of the drug), we include these conditions because we use the effect of the realized
perturbation on fitness to build low-dimensional phenotypic models. In other words, the identity
of the perturbation does not matter in this study.

DNA Extraction of each sample

After a growth competition is complete, we extracted DNA from frozen samples following either
a protocol described previously (for batches 1 — 6 and 10) (Venkataram et al., 2016) or a
modified protocol that improves the ease and yield of extraction. Our modified protocol is as
follows. For each sample, a single tube of the three that were frozen for each sample (see
Conducting the barcoded fitness measurements) was removed from the freezer and thawed at
room temperature. We extracted DNA from that sample using the following modification of the
Lucigen MasterPure yeast DNA purification kit (#MPY80200). We transferred the thawed cells
into a 15mL conical and centrifuge for 3 min at 4000 RPM. After discarding the supernatant, the
pellet was then resuspended with 1.8 mL of the MasterPure lysis buffer, and 0.5 mm glass
beads were added to help with disruption of the yeast cell wall. The mix of pellet, lysis buffer,
and beads was then vortexed for 10 seconds and incubated for 45 minutes at 65°C, with
periodic vortexing. The solution was then put on ice for 5 min and then 900 uL of MPC Protein
Reagent was mixed with the solution. We then separated protein and cell debris by
centrifugation at 4000 RPM, transferring 1900uL of supernatant to a 2 mL centrifuge tube. We
further separated remaining protein and cell debris by centrifuging at 13200 RPM for 5 min. The
supernatant was then divided into two 2mL centrifuge tubes, with 925 uL of the supernatant into
each. Next, we added 1000uL of isopropanol to each tube, mixed by inversion, centrifuged at
13200 RPM for 5 min, and discarded the supernatant. The pellet, containing the DNA was then
resuspended in 250uL of Elution Buffer and 10 uL of 5 ng/uL. RNAase A was added. This was
either left at room temperature overnight or incubated at 60°C for 15 min. Next the two tubes per
sample were combined into a single tube and 1500 uL of ethanol was added. This was then
mixed by inversion, and strands of precipitating DNA appeared. This was centrifuged at 13200
RPM for 2 min, and the supernatant was discarded. We again precipitated the DNA by
resuspending with 750 uL of ethanol, and collected the DNA by centrifuging 13200 RPM for 2
min. The supernatant was discarded, and the tubes were left to air dry. Finally, we resuspended
the pellet in Elution Buffer to a final concentration of 50 ng/ul for later use in PCR reactions
(approximately 3600 ng of DNA were used for the PCR reactions).
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1327 PCR Amplification of the Barcode Locus

1328  After extracting DNA, we PCR-amplified the barcode locus for each sample. Batches 1 — 6 and
1329 10 were conducted with the protocols described in (Li et al., 2018; Venkataram et al., 2016). We
1330 made some slight modifications to this protocol, including using a new set of primers to allow for
1331 nested-unique-dual index labeling, for batches 7, 8, and 9. Our modified protocol is as follows.
1332

1333  We used a two-step PCR protocol to amplify the barcodes from the DNA. The first PCR cycle
1334  uses primers with “inline indices” to label samples (see Mitigating the effects of index hopping
1335 section for details). These inline indices are highlighted in bold below. Attaching unique indices
1336  to samples pertaining to different conditions or timepoints allows us to multiplex these samples
1337  on the same sequencing lane. Each primer also contains a Unique Molecular Identifier (UMI) —
1338 denoted by the sequence of “N” nucleotides in the primer — which is used to determine if

1339 identical barcode sequences each represent yeast cells that were present at the time the

1340 sample was frozen, or a PCR amplification of the a barcode from a single cell (see Levy et al.,
1341  2015; Li et al., 2018; Venkataram et al., 2016). Primers were HPLC purified to ensure they are
1342  the correct length.

1343

1344  Forward primers

Primer Sequence
Name

F201 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN CGATGTT TAATATGGACTAAAGGAGGCTTTT
F202 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN ACAGTGT TAATATGGACTAAAGGAGGCTTTT
F203 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN TGACCAT TAATATGGACTAAAGGAGGCTTTT
F204 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN GCCAATT TAATATGGACTAAAGGAGGCTTTT
F205 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN ATCACGT TAATATGGACTAAAGGAGGCTTTT
F206 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN CAGATCT TAATATGGACTAAAGGAGGCTTTT
F207 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN GGCTACT TAATATGGACTAAAGGAGGCTTTT
F208 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN TAGCTTT TAATATGGACTAAAGGAGGCTTTT
F209 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN TTAGGCT TAATATGGACTAAAGGAGGCTTTT
F210 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN ACTTGAT TAATATGGACTAAAGGAGGCTTTT
F211 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN GATCAGT TAATATGGACTAAAGGAGGCTTTT

F212 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG NNNNNNNN CTTGTAT TAATATGGACTAAAGGAGGCTTTT
1345
1346  Reverse primers

Primer Sequence
Name

R301 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN TATATACGC TCGAATTCAAGCTTAGATCTGATA
R302 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN CGCTCTATC TCGAATTCAAGCTTAGATCTGATA
R303 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN GAGACGTCT TCGAATTCAAGCTTAGATCTGATA
R304 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN ATACTGCGT TCGAATTCAAGCTTAGATCTGATA
R305 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN ACTAGCAGA TCGAATTCAAGCTTAGATCTGATA
R306 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN TGAGCTAGC TCGAATTCAAGCTTAGATCTGATA
R307 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN CTGCTACTC TCGAATTCAAGCTTAGATCTGATA

R308 | GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG NNNNNNNN GCGTACGCA TCGAATTCAAGCTTAGATCTGATA
1347

1348

1349  For the first step of PCR, we performed 8 reactions per sample to offset the effects of PCR

1350 jackpotting within each reaction. For each set of 8 reactions, we used the master mix:

1351 - 200uL OneTaq Hot Start 2X Master Mix with Standard Buffer (NEB M0484L)
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- 8uL 10uM Forward primer

- 8uL 10uM Reverse primer

- 72uL sample genomic DNA (diluted to 50ng/uL or all of sample if between 25-50ng/uL)
- 16uL 50mM MgCI2

- 96uL Nuclease Free Water (Fisher Scientific #AM9937)

We then aliquoted 50uL of the master mix into each of 8 PCR tubes, and ran on the
thermocycler with the following cycle:
1. 94°C for 10 min
94°C for 3 min
55°C for 1 min
68°C for 1 min
Repeat steps 2-4 2x (for a total of 3 cycles)
68°C for 1 min
Hold at 4°C

Nogkwb

We then added 100uL of binding buffer from the ThermoScientific GeneJET Gel Extraction Kit
(#K0692) to each PCR reaction, and performed a standard PCR purification protocol in one
column per sample. In the final step, we eluted into 80uL of elution buffer.

For the second step of PCR, we use standard Nextera XT Index v2 primers (lllumina #FC-131-
2004) to further label samples representing different conditions and timepoints with unique
identifiers that allow for multiplexing on the same sequencing lane. We uniquely dual-indexed
each sample using our nested scheme (see Mitigating the effects of index hopping section for
details). We performed 3 reactions of the second step PCR per sample, using the master mix:

- 1.5uL Q5 Polymerase (NEB #M0491L)

- 30uL Q5 Buffer (NEB #M0491L)

- 3uL 10mM dNTP (Fisher Scientific #PR-U1515)

- 6.25uL i7 Nextera XT Primer (“N” primer)

- 6.25uL i5 Nextera XT Primer (“S” primer)

- 78uL purified step 1 PCR product

- 25uL Nuclease Free Water (Fisher Scientific #AM9937)

This master mix was then divided into 3 PCR tubes per reaction, and run with the following
protocol on a thermocycler:

98°C for 30 sec

98°C for 10 sec

62°C for 20 sec

72°C for 30 sec

Repeat steps 2-4 at least 21 times and at most 27 times (for a total of 22 to 28 cycles)
72°C for 3 min

Hold at 4°C

NogkwN =

We then added 100uL of binding buffer from the ThermoScientific GeneJET Gel Extraction Kit
and purified the PCR product, eluting into 43ulL. We found that increasing the number of cycles
in the second step PCR beyond 21 did not seem to improve the amount of DNA recovered after
gel extraction. For some samples, we experimented with a touch down procedure for the
second step PCR where we started with a hotter annealing temperature and slowly decreased it
over the course of 27 cycles. This also did not seem to increase the yield of DNA recovered
from the PCR.

Removal of the Reference Strain via Digestion and Gel Purification
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To avoid the vast majority of our sequencing reads mapping only to the reference strain (and
thus not being informative to relative fitness of the mutants), we use restriction digest to cut the
Apall restriction site in the middle of the reference strain’s barcode region. We mixed 43uL of
the second step PCR product with 2ulL of ApaLl (NEB #R0507L) and 5uL of 10X Cutsmart and
incubated at 37°C for at least 2 hours (up to overnight). After digestion, we conducted size
selection by running the digested sample on a gel, removing all product less than 300bp, and
isolating the DNA using a standard ThermoScientific GeneJET Gel Extraction protocol. Our
expected product is 350bp. We did not remove longer sequences via gel extraction because of
the possibility that some barcode sequences may selectively form complexes with themselves
or other barcodes.

Note that for some samples, we also digested the reference strain before PCR, in addition to
after PCR, to decrease the amount of reference strain barcode. For these samples, we mixed
80ul of genomic DNA (at concentration 50ng/uL) with 10uL of 10X Cutsmart and 2uL of ApalLl
and incubated 37°C for at least 2 hours (up to overnight). This product was then used as the
template for PCR step 1 (with appropriate water volume adjustments to ensure 50uL reactions).

Sample pooling and Amplicon Sequencing

We used the Qubit High Sensitivity (ThermoFisher #Q32854) method to quantify the
concentration of the final product for each sample, then pooled samples with different dual
indices in equal frequency for sequencing. Our samples were then sent to either Novogene
(https://en.novogene.com/) or Admera Health (https://www.admerahealth.com/) for quality
control (qQPCR and either Bioanalyzer or TapeStation) and sequencing. We used 2x150 paired-
end sequencing along with index sequencing reads on lllumina HiSeq machines using patterned
flow cells (either HiSeq 4000 or HiSeq X). We also used lllumina Nextseq machines with
unpatterned flow cells. We found that the former was more subject to index hopping errors,
please see Mitigating the effects of index hopping for a discussion of how our dual indexing
reduces effects of index hopping. All amplicon samples were sequenced with at least 20%
genomic DNA spiked in (either whole genomes from an unrelated project or phi-X) to ensure
adequate diversity on the flow cell.

Mitigating the effects of index hopping

To reduce the effects of index hopping observed on lllumina patterned flow cell technology
(including HiSeq 4000, HiSeq X, and Novaseq machines) (lllumina, 2017; Sinha et al., 2017),
we devise a nested unique-dual-indexing approach. This approach uses a combination of inline
indices attached during the first step of PCR, as well as Nextera indices attached during the
second step of PCR. The latter indices are not part of the sequencing read (they are read in a
separate Index Read). This process uniquely labels both ends of all DNA strands such that DNA
strands from multiple samples can be multiplexed on the same flow cell. Had we only labeled
one end of each DNA strand, index hopping could have caused us to incorrectly identify some
reads as coming from the wrong sample.

One approach to label samples with unique-dual-indices is to use 96 forward primers, each of
which is paired to one of 96 reverse primers, instead our nested approach allows us to uniquely
dual-index samples with only 40 total primers (12 forward inline, 8 reverse inline, 12 Nextera i7,
8 Nextera i5). Specifically, we can use combinations of the Nextera and inline primers. One way
to think of this is that there are 96 possible ways to combine the forward inline and Nextera i5
primers that are on the same side of the read, effectively creating 96 unique labels for that end
of the read.

To reduce the effect of index hopping contamination on our results, we included only samples
that were sequenced on non-patterned flow cell technology (HiSeq 2000 and 2500 for samples
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in batches 1-6, 10, NextSeq for samples in batch 9) or were sequenced on patterned flow cell
technology (patterned flow cell HiSeq) with nested unique-dual indexing.

Processing of Amplicon Sequencing Data

We processed the amplicon sequencing data by first using the index tags to de-multiplex reads
representing different conditions and timepoints. Then, using Bowtie2 (Langmead and Salzberg,
2012), we mapped reads to a known list of barcodes generated by Venkataram et al. (2016),
removed PCR duplicates using the UMIs from the first-step primers, and counted the number of
reads for each barcode in each sample. The source code for this step can be found at
https://github.com/sandeepvenkataram/BarcodeCounter2. We processed all raw data for this
study using this pipeline, including re-processing the raw sequencing files for data from previous
studies (Li et al., 2018; Venkataram et al., 2016) so that all data was processed together using
the most recent version of the code.

Several samples included technical replicates where the sample was split at various times in the
process, including before DNA extraction, before PCR, and prior to sequencing. Read counts
across these technical replicates were merged in order to calculate the best estimate of barcode
frequencies. Counts were merged after appropriately accounting for PCR duplicates as
identified from Unique Molecular Identifiers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitness Estimate Inference

The amplicon sequencing data shows the relative frequency of each barcode in each time-point
of every one of our 109 fitness measurement experiments. To estimate the fitness of each
barcoded mutant in each experiment, we calculate how barcode frequencies change over time.
We do this using previously described methods (Venkataram et al., 2016).

Briefly, we first calculated the log-frequency change of each barcoded adaptive mutant for each
subsequent pair of time-points. This log-frequency change must be corrected by the mean
fitness of the population, such that it represents the relative fitness of each mutant relative to the
reference strain, which makes up the bulk of the population. Since we destroyed barcodes
pertaining to the reference strain by digesting them, we infer how the mean fitness of the
population changes at each time-point using barcoded lineages that are known to be neutral
(see Identification of neutral lineages). Once we calculated the change in the relative fitness of
each barcoded mutant across each pair of consecutive time-points, we took a weighted average
across all pairs as our final estimate of each adaptive mutant’s relative fitness for a given
experiment. We weighted each pairwise fitness estimate using an uncertainty measure
generated from a noise model (see Noise model section below).

This results in 109 fitness measurements per each barcoded mutant, with some of the 45
conditions having more representation than others due to having more replicates. In cases
where we have replicates, we averaged the fitness values across the replicates, weighted by
the measurement uncertainty, resulting in our final 45 fitness estimates per each adaptive
mutant lineage.

We included only timepoints with at least 1,000 reads for which at least 400 mutants were
detected to have at least 1 read. Furthermore, we required that fitness measurement
experiments must include at least three timepoints to be included in our analysis.

Identification of Neutral Lineages
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1509 Previous work using this fitness measurement method focused on a larger collection of 4800
1510 barcoded yeast lineages, where the vast majority of these lineages were neutral (Li et al., 2018;
1511  Venkataram et al., 2016). In order to increase the number of reads per adaptive lineage, we
1512  used a smaller pool of 500 lineages for most experiments. However, this prevents us from

1513 identifying neutral lineages as was done in previous studies, by rejecting outlier lineages with
1514  higher than typical fithess values. Instead, we used a set of 35 high-confidence neutral lineages
1515 toinfer mean fitness (see Experimental model and subject details). These lineages showed no
1516 fitness differences from the neutral expectation in previous studies and were shown to possess
1517 no mutations detectable via whole genome sequencing. These high-confidence neutral lineages
1518 were present in all experiments, and were spiked into experiments from batch 9 to increase their
1519 frequency. We used these neutrals to perform the fitness inference in two steps. First, we

1520 inferred fitness using this collection of high-confidence neutrals to make a first pass at inferring
1521  the fitness values. Next, we included lineages with similar behavior to the high-confidence

1522  neutrals to improve our estimate of mean fitness.

1523

1524  Noise model

1525  To quantify the uncertainty for each fithess measurement, we used the noise model as outlined
1526 in Venkataram et al., 2016.

1527

1528  Briefly, this noise model accounts for the uncertainty coming from several sources of noise. The
1529 first type of noise scales with the number of reads for a given lineage. This noise stems from
1530 stochasticity in population dynamics (coming from the inherent stochasticity in growth and noise
1531  associated with dilution), from counting noise associated with a finite coverage, and technical
1532  noise from DNA extraction and PCR. We fit this noise by quantifying the variation in the

1533  frequency of neutral lineages (see Identification of neutral lineages). There is additional variation
1534 in fitness observed for high-frequency lineages between replicate experiments (here we refer to
1535  variation across replicates that were performed simultaneously, not variation across batches).
1536  We also accounted for this uncertainty following previous studies. Specifically, we fit an

1537 additional frequency-independent source of noise using between-replicate variation.

1538

1539 Checks on noise model

1540 Because our ability to count the phenotypes that matter to fithess hinges upon measurement
1541  error, we further assessed the accuracy of our noise model. We did so by using barcoded

1542 lineages that should have the same fithess because they are genetically identical. Since our
1543 fitness estimates are imperfect (i.e. they contain some noise), we estimated each of these

1544  lineages as having slightly different fithess. We then asked if the variation in fithess across
1545 these lineages is explained by our noise model, or if there is more variation than our noise

1546  model can account for. We did this explicitly by calculating, for each lineage, how far our fitness
1547  estimate is from the best guess for the true underlying fitness value (the group’s mean) in units
1548  of the estimate’s measurement precision. We then calculated the percent of lineages that are a
1549 given distance from the group’s average to understand the accuracy of the model. For instance,
1550 if the noise model perfectly captures the uncertainty of each measurement, then 10% of the
1551  diploid lineages should have a difference from the weighted diploid mean in the 10th percentile,
1552  20% in the 20th percentile, etc. Because 188 of our 292 barcode mutants are diploids without
1553  additional mutations, diploids are an ideal group to use to assess the accuracy of the noise
1554  model. This procedure shows that, for the vast majority of replicates, the noise model is

1555 conservative. That is, diploid lineages tend to have less variation in fithess than expected by the
1556  noise model (Fig S1).

1557

1558 Classifying mutants by mutation type

1559  Some types of mutants are present more than others. For example, 188 of our 292 mutants are
1560 diploids and 30 mutants are in the IRA1 gene. If not properly accounted for, this imbalance can
1561 lead to some unfairness in predictions for our model. For example, if we use mostly diploid
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lineages to train our model, we will be very good at predicting the fitness of diploids but poor at
predicting other types of mutants. This means that we must classify our mutants by mutation
type in order to properly balance them. We classified mutants following previous work
(Venkataram et al., 2016) that classified mutants as either diploids, or if haploid, by the gene
possessing the putative causal mutation. Because previous work finds differences in fithess
between missense and nonsense/frameshift/indel mutations in IRA1, here we classified these
mutants into “missense” and “nonsense” classes, where mutants with frameshift and indel
mutations were classified as “nonsense”. We also classified diploid mutants with additional
mutations in nutrient-response genes or chromosomal amplifications as separate groups.
Additionally, we created a separate class for “high-fitness diploid” mutants that possess no
additional detected mutations (other than being diploid) but have very high fitness in the EC. To
be classified as a high-fithess diploid, a diploid mutant must have an average fithess across all 9
EC batches that is greater than 2 standard deviations above the average of all diploids. In the
main text, we label these mutants as “diploid with additional mutation” since they are likely to
harbor additional mutation(s) due to their increased fitness.

Calculation of Weighted Average Z Score

To partition environments into subtle and strong perturbations of the EC, we relied on the 9
experiments performed in the EC. Since each of these experiments was performed at a different
time, variation in fitness across these experiments represents batch effects, and we therefore
refer to these 9 experiments as “EC batches”. Environmental differences between batches are
very subtle, as they represent the limit of our ability to minimize environmental variation. Thus,
variation in fitness across the EC batches serves as a natural benchmark for the strength of
environmental perturbations. If the deviations in fithess caused by an environmental
perturbation are substantially stronger than those observed across the EC batches, we call that
perturbation “strong”.

More explicitly, to determine whether a given environmental perturbation is subtle or strong, we

first quantified the typical variation in fithess for each mutant, across the EC batches:
batches

1 _
%= Npatches Z |fl] - ﬁ|

where o represents the variance in fitness across the EC batches for mutant i, and
f, represents the average fitness of mutant i across the EC batches.

To ensure that each mutation type contributes equally to our classification of how different each
environment is from the evolution condition, we weighed each mutant’s contribution to this
difference. We did so based on the number of mutants with the same mutation type, such that

the mutation-type-weighted average Z-score for a given environment j is given by:
mutants

Z Ifij — £
zj = —_—
; Niype(i)Ti
where n,.yrepresents the number of mutants that are the same mutation type as mutant /.

We then classified the environmental perturbations based on this Z-score. Sixteen environments
provoked fitness differences resulting in a Z-score of less than two, and we classified these
environmental perturbations as “subtle”. The remaining 20 environments had Z-scores greater
than 2, which we classified as “strong” environmental perturbations.

Model of phenotypes that contribute to fithess
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In order to count the phenotypes that affect fitness in our collection of mutants, we explored a
low-dimensional phenotypic model. We explicitly used a model of fithess-relevant phenotypes
such that each mutant is represented as having a fixed effect on each phenotype, represented
by a vector of k phenotypes, e.g. mutant i is represented by the vector (p;1, pi2, Di3 ---,Pir)- In
addition, each environment is represented by a vector of phenotypic weights, representing the
importance of each of the k phenotypes to fithess in that environment, e.g. environment j
represented by the column vector (e}, ey}, e3j,..., ex;) . The fitness effect of mutant / in a given
environment j is the linear combination of that mutant’s phenotypes, each weighted by its
importance in environment j

fij = pire1j + Dizeoj + pizesjt+... +Pike;
Our fitness measurements reflect mutant fitness relative to a reference strain, therefore, our
model places the reference strain (which has fitness 0 by definition) at the origin of this multi-
dimensional space. Our model only includes phenotypes that differ between the reference strain
and least one mutant. This is sensible given that our reference strain is a modified version of the
ancestor of all of these mutant lineages. Thus, if there exists a phenotype that contributes to
fithess, but none of the adaptive mutants altered that phenotype, our model will not detect it.
More explicitly, a phenotype that contributes to fithess would have a non-zero value of e, but if
no mutant alters that phenotype from the reference, all mutants would have a zero value of p for
that phenotype. Thus, the non-zero value of e would always be multiplied by a zero value for p
and this phenotypic dimension would not be represented in our model. This is not to say that if
only a single mutant of the 292 alters a particular phenotype we would include it as a phenotypic
dimension. Our power to add dimensions to our model is limited by measurement noise. We
only include dimensions that capture more variation in fitness than do dimensions that capture
measurement noise (see Estimating the detection threshold using measurement error).

Similarly, because we measure fitness, and not phenotype, our model is blind to any phenotypic
effect that does not contribute to fitness in at least one of the 45 environments we studied. If a
mutant has large phenotypic effects, but they do not cause that mutant’s fitness to differ from
the reference strain in any of these 45 environments, this phenotypic effect will not be
represented in our low-dimensional phenotypic model. More explicitly, mutants may have non-
zero phenotypic effects p, but if these do not influence their fithess in any environment we study,
e will be zero for all 45 environments. Thus, p times e will also be zero and we will not include
this phenotypic dimension in our model.

Importantly, the phenotypic dimensions that we infer from our fithess measurements are
abstract entities. They represent causal effects on fitness, rather than measurable features of
cells. For this reason, they might be called “fitnotypes” (a mash of the terms “fithess” and
“‘phenotype”). Even though the fitnotypes are independent with respect to their contribution of
fithess, and contribute to fitness linearly, the mapping of commonly measured features of cells
(e.g. growth rate, the expression levels of growth supporting proteins like ribosomes) onto
fitnotypes may be more complicated. For instance, a commonly measured cellular feature that
has a complicated nonlinear mapping to fithess could be detected as many, linearly-contributing
fithotypes. This is another reason that our phenotypic dimensions are not necessarily
comparable to what people traditionally think of as a “phenotype”.

Using Singular Value Decomposition to decompose the fitness matrix

Our goal is to use fithess measurements to learn about the phenotypic effects of mutations as
well as the contribution of these phenotypes to fitness in different environments. We conducted
fithess measurements for 292 mutants in each of 45 environments and organized these data
into a fitness matrix, F, where every row corresponds to a mutant, every column corresponds to
an environment, and every entry is a fitness measurement. Because our model (see Model of
phenotypes that contribute to fitness) represents fithess in a given environment as the sum of

38


https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

multiple phenotypes, each scaled by their contribution to fitness in that environment, we can use
Singular Value Decomposition (SVD) to decompose the fithess matrix F as:

PXET =F
The left hand side of this equation consists of three matrices:P, which represents the positions
of the mutants in our low-dimensional model of phenotypic space, ET, which represents the
contribution of a phenotype to fitness in a given environment, and X, a diagonal matrix
representing the singular values of the fithess matrix F. Though the singular values are
informative in this separation of three matrices, particularly for the amount of variation captured
by each of the inferred components, we can also think of this as a decomposition into two
matrices, where we fold the singular values into either the mutant phenotypes or the
environment weights, as described in the main text. Either way, this decomposition captures the
data represented in the fitness matrix F, including measurement error as well as the underlying
biological signals.

Importantly, the dimensions in the phenotypic model we built using SVD are detected in the
order of their explanatory power. Moreover, the first dimension is the best, linear 1-component
model that explains the data (if evaluated by mean squared error). This is true for any set of the
first Kk components. This means, for example, that the model with the first eight components is
the best possible 8-component linear model for the observed data (Eckart and Young, 1936).

One issue in this type of analysis is that adding more components always improves the
explanatory power of the model, even when those components capture variation that is primarily
due to measurement noise. This type of overfitting problem is common in statistics, and several
methods have been devised to select the appropriate number of components to include. We use
two such methods here.

Estimating the detection threshold using measurement error

One method to select the appropriate number of components to include in the model and
prevent overfitting (i.e. prevent fitting a component that primarily represents noise) is to use
measurement error as a type of control. This is only possible if the amount of measurement
error is known. We estimated the amount of noise in our fithess measurements using a
previously described noise model (see Noise Model) (Venkataram et al., 2016). Since this noise
model includes counting noise, every fithness measurement may have a different amount of
noise. For example, mutants present at low frequency will be subject to more stochasticity
resulting from counting noise. We used this noise model to simulate fitness tables (F) where
mutant fitnesses vary exclusively due to measurement noise. We simulated 1000 noise-only
matrices, where each entry is pulled from a normal distribution centered at zero and with
variance equal to the estimated measurement noise of the corresponding entry in the true
fithess matrix F. We then applied SVD to each noise-only matrix, which gave us a set of singular
values generated only by noise. From many such simulations, we took the average size of the
largest component, which reveals how much variation can be explained by a component that
captures only noise. We found that the largest noise-components are of the size that they would
capture 0.07% of variation in our true fitness matrix. Thus, we set this as our limit of detection.
In other words, in order for us to include 8 components in our low-dimensional model, all of
them must explain more than 0.07%% of the variation in fitness. This approach is analogous to
identifying a threshold when measurement noise is known but not identical for all entries in the
matrix (Josse and Sardy, 2014).

Estimating detection threshold using bi-cross-validation

Another method for identifying the appropriate number of components is to use their predictive
power. This method relies on the intuition that measurement error is uncorrelated across
different mutants and different environments. Therefore, a component that represents
measurement error should not contain information that can help predict the fithesses of these
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mutants in new environments. It should also not contain information that can help predict the
fitness of unstudied mutants. We used a bi-cross-validation scheme of the SVD devised by
Owen and Perry (2009) which divides the mutants and environments into distinct groups of
training and testing sets. This subsequently divided our matrix of fithess measurements into 4
submatrices: the fithess of the training mutants in the training environments (D), the fitness of
the training mutants in the testing environments (C), the fitness of the testing mutants in the
training environments (B), and the fitness of the testing mutants in the testing environments (A).

Test Environments Train Environments

Train Mutants D Train Mutants
Test Environments

v <A Test Mutants B Test Mutants >

Train Environments

We carried out SVD on the training data (submatrix D), which returned a set of singular values
and corresponding components that captured the fitness data in D. We then used these
components to predict the fithess of the testing mutants in the testing environments (submatrix
A). First, we tried to predict these fitness values by only using the first component. That is, we
fixed this first component and the first singular value for the training mutants. We then found the
best first component for the testing environments based on the fithess values of the training
mutants in these environments (i.e. using the information in submatrix D), given the constraint
that the training mutants can only be represented by the one component. We then conducted an
analogous procedure to find the first component of the testing mutants by fixing the first
component of the training environments by using the information in submatrix B. Then, we tried
to predict the fitness of the testing mutants in the testing environments using the first component
independently fit for each. We subsequently repeated this procedure, giving the testing mutants
access to more of the training components each time. If the components detected by the
training components represent biological signal, then this should improve the ability to predict
the fitness of the testing mutants in the testing environments. However, once the components
primarily represent measurement error, their inclusion should harm predictive power. Therefore,
we use the number of components with the best ability to predict the held-out data (submatrix A)
as the number of components that represent biological signal in our data.

For computational efficiency, we explicitly used the formulation proposed by Owen and Perry
(2009) for the prediction of the held-out submatrix A:

A=B(D®)"c
where (D) " denotes the Moore-Penrose inverse of the rank k approximation of sub-matrix D.
This prediction is equivalent to the procedure outlined above, provided that least-squares

regression is used to identify the components of the testing mutants and testing conditions,
conditional upon the training components (Owen and Perry, 2009).

We divided our mutants into fixed training and testing sets (see Division of Mutants into Training
and Testing Sets) and used these sets throughout our study. As for training versus testing
environments, these changed depending on our goal. For validating the number of components
to include in our phenotypic model, we held out each of the 25 subtle environmental
perturbations, using it as the testing environment and the other 24 for training. For making
predictions of the fitness of the testing mutants in the strong environmental perturbations, we
used all 25 subtle environmental perturbations as the training set, though we also show how
these predictions vary when each of the 25 subtle environmental perturbations is held out from
the training set.

Division of Mutants into Training and Testing Sets

In order to perform bi-cross-validation on our data, we need to divide our data into training and
testing sets. Because some mutation types, in particular diploids and Ras/PKA mutants, are
present more than others in our collection of mutants, we sampled the training set such that
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1765 each mutation type is represented roughly equally (see Classifying mutants by mutation type).
1766  Specifically, we designated half of each mutation type, with a maximum of 20 representatives of
1767  each type, as belonging to the training set. The remaining mutants comprise the test set. For
1768  example, there are 188 diploids included in the 292 adaptive mutants. We included 20 in the
1769 training set and 168 in the test set. There are 20 IRA1-nonsense mutants included in the 292,
1770 and we included 10 in the training and 10 in the test set. Additionally, genes that are

1771  represented only once in the set of mutations are placed in the test set. This results in a training
1772  set of 60 mutants and a testing set of 232 mutants (see Table S1).

1773

1774  Using simulated data to validate detection threshold estimation

1775  To further validate our approach for identifying the number of detectable phenotypic

1776  components from our data, we simulate data that consists of a known number of phenotypic
1777  components k and use our methods to estimate the number of phenotypic components

1778  detectable in the data. To simulate the phenotype space, we place 100 mutants at random in
1779 the k-dimensional phenotype space P. The coordinates of these mutants are pulled from a
1780 uniform distribution in the n-ball (e.g. the n-ball is a sphere if there are three dimensions)

1781  centered at coordinates (1, 0, ..., 0) with radius 1. We center the mutants at 1 in the first

1782  dimension and 0 in all other dimensions in order to create data similar to our empirical data
1783  where the first component captures much of the variation in fitness. We then similarly place 50
1784  environments at random in the k-dimensional environmental space E. Recall that this space
1785 represents the importance of each phenotype in each environment (see Fig 3 and see Model of
1786  phenotypes that contribute to fitness). The environments are pulled from a uniform distribution in
1787 the n-ball centered at (1, 1, ..., 1) with a small radius of 0.1 chosen such that the environmental
1788  perturbations are subtle. Note, for computational efficiency, we use the algorithm from

1789  (Marsaglia, 1972) to pull points uniformly distributed in the n-ball. Next, we calculate the fitness
1790 of each of these mutants in each environment as a linear combination of the mutant’s

1791 phenotypes weighted by the contribution of each of these phenotypes to fitness in the relevant
1792  environment (see Model of phenotypes that contribute to fitness). We then add measurement
1793  error to these fitness values to simulate the effect that measurement uncertainty has on our
1794  ability to detect phenotypic components. We simulate the data with various numbers of

1795 phenotypic components (2, 3, 4, 5, 10, 20, 30, 40, and 49) and use our methods to try to

1796  estimate the number in each set.

1797

1798  We find that our method for identifying the number of detectable phenotypic components from
1799 the measurement error (see Estimating the detection threshold using measurement error)

1800 accurately identifies the simulated number of phenotypic components when measurement noise
1801 is very low (Fig S1B). As measurement noise increases, our approach detects fewer

1802 components, as expected due to measurement noise swamping the smallest components of
1803  signal (Fig S1B). Bi-cross-validation, which holds out each environment and half of the mutants
1804 (see Estimating the detection threshold using bi-cross-validation), performs similarly, detecting
1805 the appropriate number of phenotypic components when measurements are sufficiently precise
1806  (Fig S1C).

1807

1808 Clustering mutants in phenotype space

1809  After inferring the low-dimensional model of phenotype space using SVD, we used Uniform
1810  Manifold Approximation and Projection (UMAP) to visualize how the mutants cluster in that
1811  space. For this analysis, we used the 8-component phenotypic model that we built from the 60
1812  training mutants and the 25 subtle perturbations. We did this to avoid the model being

1813  dominated by variation in very common mutations, specifically the diploids, which make up
1814  188/292 of our adaptive mutants. We added more mutants in the visualization by finding the
1815 location of each of the testing mutants (except diploids) by least sum of squares optimization.
1816  To do so we fixed the coordinates for the 25 environments and found the coordinates for each
1817  mutant that best estimated its fitness in all environments. To further avoid our visualization
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being dominated by the diploids, we included only the diploids present in the training set in our
visualization. For UMAP, we specified that 20 neighbors are used.

Though UMAP tends to preserve both local and global structure (Mclnnes et al., 2018) it is not
necessarily representative of the distance between objects in high-dimensional space. Thus, to
quantify more precisely the clustering by gene observed, we explicitly compared the median
pairwise distance between these apparent clusters to 10000 randomly chosen sets of the same
size and calculated empirical p-values. Because there are many diploids such that they will be
the most prevalent type of mutant drawn in these randomly chosen sets, we only drew from
strains that have other mutations besides or in addition to diploidy. We use the median pairwise
distance, rather than the mean, to identify the typical distance between mutants in a given
cluster to reduce the influence outlier mutations that might bias the mean pairwise distance.

Calculation of Weighted Coefficient of Determination

Because mutants are present in unequal numbers in the test set, standard measures of
variance explained are likely to be representative of our ability to predict mutants that have
many barcoded lineages present in the data, for instance diploid and IRA1-nonsense mutations.
These measures would be less representative of mutants with few lineages present, i.e.
TOR/Sch9 pathway mutants. Thus, we use a measure of predictability (R?) that weights the
contribution of each mutant to overall variance explained based on the number of lineages that
share its mutation type (diploids, IRA1 nonsense, IRA1 missense, GPB2, etc.). This effectively
measures our ability to predict the fitness of each mutation type, rather than each mutant. . For
overall predictive power across all mutants and conditions, we used the measure:

mutants conditions; - F 2
5 Zl 2] ntype(i) (ﬁ] ﬁ])

RZ=1- T .
mutants yconditions A
2 %] Ntype(® (i = 1)
where f denotes the average fitness for all evaluated mutants and evaluated conditions.
We used a similar measure to quantify the ability to predict fitness for each environment j. This
is given by:

1 —
Zgnutants (fl] _ fz])z

72 Ntype(i) —
(fii = £)

=1- T
where f, denotes the average fitness across all evaluated mutants in condition j.

tant
Zgnu ants

Ntype (i)

Note that this measure explicitly compares a model’s fithess prediction in each environment to
predictions made using the average fitness in that environment, such that if the model’s fitness
prediction is the same as the average fitness, R? is zero. It is possible that a given model’'s
fithess prediction is worse than that of the average fitness in that environment, resulting in
negative values of R2. In our work, negative R? values occur for the 1-component model when
predicting the fithess of mutants in some of the strong environmental perturbations. In particular,
this occurs when fitness in that environment is uncorrelated with EC fitness, which is captured
by the first component, such that the EC fitness is unable to make reasonable predictions of
fitness in this environment.

Note that we observe qualitatively similar results to this measure when we use a standard
variance explained measure and exclude diploids, which dominate the test set (see Fig S5).
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Calculating mutant-specific improvement

It is possible that all 292 of our adaptive mutants each affect all 8 of the phenotypic components
in our low-dimensional model, however, it is also possible that some mutants influence some
phenotypes more strongly than others. In order to quantify how much a specific component
lends to the ability to predict the fithess of each mutant in each environment, we need a metric
to calculate the difference in predictive accuracy for the model with and without this component.
Specifically, to assess the impact of the inclusion of the kth component, we compared the
prediction accuracy of the k-component model to the model that includes the first k-1
components.

Because fitness estimates vary in their reliability due to finite coverage and other sources (see
Noise model section), we should factor this uncertainty in our measure of prediction
improvement. For example, a small improvement in prediction accuracy for a very uncertain
fithess estimate is less meaningful than the same improvement in prediction accuracy for a
fithess estimate that we are quite confident in. Thus, we scale the difference in prediction
accuracy by the amount of uncertainty in the underlying fitness estimate.

This gives us the measure of improvement in the estimate of the fithess of mutant i in condition j
due to the inclusion of the nth component as:

v B =5) = (5" - 1)

ij =

eij
where Ek and Ek_l represent the estimate of the fithess of mutant / in condition j for the model

with k and k-7 components, respectively. f;; and ¢;; represent the measured fitness value and
measurement uncertainty for the fitness of mutant i in condition j, respectively.

DATA AND CODE AVAILABILITY

Data Resource

The raw lllumina sequencing data for the fitness measurement assays conducted in this study
can be found under NIH BioProject: PRINA641718. Sequencing data previously published in
Venkataram et al., 2016 can be found under NIH BioProject: PRINA310010. Sequencing data
previously published in Li et al., 2018 can be found under NIH BioProject: PRIJNA388215.

Code

The software repository for the barcode counting code can be found at
https://github.com/sandeepvenkataram/BarcodeCounter2.

The software repository for the fithess estimate inference can be found at
https://github.com/barcoding-bfa/fitness-assay-python.

The code for all downstream analysis, including figure generation can be found at
https://github.com/grantkinsler/1BigBatch.
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1905 Fig S1. Noise model is a conservative measure of uncertainty. (A) Fitness differences among strains
1906 that are genetically identical and have very similar fitness effects tell us about the amount of
1907 measurement noise. Our strain collection includes 188 diploids that have similar fithesses and possess
1908 no mutations other than diploidy. For each diploid fitness estimate, we calculated the percentile of
1909 deviation from the weighted average of all diploid fitness estimates in a particular environment. This is
1910  shown on the horizontal axis. The vertical axis shows the cumulative percent of diploids with deviations
1911 listed on the horizontal axis. If the noise model perfectly captures the uncertainty of each measurement,
1912  then it should be represented by the black dashed line, as, for instance, 20% of the diploids should have
1913 a difference from the mean in the 20th percentile. Each line represents a single experiment (we have 45
1914  environments each with several replicates for a total of 109 experiments, see Methods). For the vast
1915  majority of experiments, the diploids are closer to the mean than predicted by our noise model, as
1916 indicated by each line’s sigmoidal shape. This indicates that the noise model is conservative. (B) The
1917 horizontal axis represents the number of phenotypic components in simulated data consisting of 100
1918 mutants and 50 environments. The vertical axis indicates the number of components we detected when
1919  we only count components that explain more variation than does our noise model (see Methods). For low
1920 levels of measurement noise (light blue), our method accurately detects the number of simulated
1921 components. As measurement noise increases (darker blue dots), the noise begins to swamp signal and
1922  the number of detected components decreases. (C) Same as (B), but when we set the threshold for
1923 detecting components using bi-cross validation rather than our noise model by holding out each
1924  environment and half of the mutants. Darker color indicates more measurement noise.
1925

44



https://doi.org/10.1101/2020.06.25.172197
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172197; this version posted July 11, 2020. The copyright holder for this preprint (which

1926
1927

1928
1929
1930
1931
1932
1933
1934

1935
1936

1937
1938
1939
1940
1941

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A B
o r2=0.9999 o r2=0.9771
N 0.007 % 'L -0.16
£ 5 oe
IS £ @
8 3 c ®
2 ~0.05 @ 2 0184
5 \ s °e
Q P [ ]
< ‘} g °
& -0.10 - e =
s £ -0.20 ®
g g e00
3 %; g ‘oo
Qo _ ] 9
g 015 N © -0.22 - LI
5] N a
5 N g
< () c )
= f\ 2
o -0.20 9 a
o) 5 -0.24
2 (0]
(]
> o |2
> ®
-0.25
I I I I I I I -0.26 I I I I I I I
00 02 04 0.6 0.8 1.0 1.2 050 055 060 065 070 0.75 0.80

Average fitness across subtle environmental perturbations Average fitness in environment

Figure S2. The first component represents the mean fithess of each mutant in the 25 subtle
perturbations, as well as the mean impact of each perturbation on fitness. (A) The horizontal axis
shows the average fithess of each mutant across all 25 environments that represent subtle perturbations.
The vertical axis shows the value of the first phenotypic component for each mutant. Mutants are colored
as in Figure 2. (B) The horizontal axis shows the average fitness of all 292 mutants in each environment.
The vertical axis shows the value of the first phenotypic component in the environment weight space E.
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Fig S3. Low-dimensional phenotypic models, and subsets of such models, cluster mutants by
gene and mutation type. (A) UMAP clusters mutants visually by gene when using the full 8-component
phenotype space. (B) UMAP also shows some clustering when using only the three components that
explain the least variation in mutant fitness. Though the clustering is clear for PDE2 and GPB?2, it less
clearly delineates IRA1-nonsense and diploid mutants. This suggests these mutants do not have
substantial effects on these phenotypic components.
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1943 Fig S4. Improved fithess predictions when including the three smallest phenotypic components is
1944  not specific to choice of training mutants. This plot is similar to the lower panel of figure 4A, except
1945 here, black dots indicate the average improvement across 100 choices of the training and test sets. Error
1946  bars indicate two standard deviations from the mean.
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1953 SUPPLEMENTARY TABLES

Mutation Type Total Number Number in Training Set Number in Test Set

Diploid 188 20 168

Diploid w/ add’l mutation

Diploid + Chr11Amp 3 1 2
Diploid + Chr12Amp 1 0 1
Diploid + IRA1 1 0 1
Diploid + IRA2 3 1 2
High-fitness Diploid 11 5 6
IRA1
IRA1 nonsense 20 10 10
IRA1 missense 9 4 5
IRA1 other 1 0 1
IRA2 8 4 4
GPB1 4 2 2
GPB2 14 7 7
PDE2 11 5 6

Other Ras/PKA pathway

CYR1 3 1 2
TFS1 1 0 1
RAS2 1 0 1

TOR/Sch9 pathway

KOGH1 1 0 1
SCH9 1 0 1
TORT1 1 0 1
Other Adaptive 7 0 7
Neutral 3 0 3
TOTAL 292 60 232
1954  Table S1. List of all mutants included in this study.
1955
1956
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1957

1958

Environment Name
EC
EC
EC
EC
EC
EC
EC
EC
EC
1.4% Gluc

12hr Ferm
1% Gly
1.8% Gluc
0.5% Raf

8.5 uM GdA (B1)

8hr Ferm

Baffle (B9)

Baffle (B8)

0.5% DMSO

1% Raf

Baffle, 1.7% Gluc
Baffle, 1.6% Gluc

18hr Ferm
Baffle, 1.4% Gluc
2 ug Flu

22hr Ferm

3 Day

17uM GdA

Baffle, 1.8% Gluc
1 Day

1% EtOH

8.5uM GdA (B9)
1.5% Suc, 1% Raf

Baffle, 2.5% Gluc
4 Day

5 Day

0.2 M NaCl

0.2 MKCI

0.5 ug Flu

Baffle, 0.4 ug/ml Ben
Baffle, 2 ug/ml Ben
6 Day

7 Day

0.5 M KCI

0.5 M NaCl

Source
This study
This study
Li et al (2018)
This study
Venkataram et al (2016)
Li et al (2018)
Venkataram et al (2016)
This study
This study
This study

Li et al (2018)
This study
This study
This study

This study

Li et al (2018)
This study
This study
This study
This study
This study
This study

Li et al (2018)
This study
This study

Li et al (2018)
Li et al (2018)
This study
This study
Li et al (2018)
This study
This study
This study

This study
Li et al (2018)
Li et al (2018)
This study
This study
This study
This study
This study
Li et al (2018)
Li et al (2018)
This study
This study

Number of

barcoded clones | Batch Number

500
4800
4800

500
4800
4800
4800

500

500

500

4800
500
500
500

4800

4800

500
4800
4800

500
4800
4800

4800
4800
500

4800
4800
500
4800
4800
500
500
500

4800
4800
4800
500
500
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4800
4800
4800
4800
500
500
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Number of
replicates

3

N W AW W W W W W
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w

N W w N N N N W NN W W N

W W N NN

1*

Description of Manipulation
No preculture

No barcodeless ancestor

No preculture

1.4% glucose concentration

44 hours of growth, 2*1078 cells transferred,
resulting in ~12 hours of fermentation phase

Added 1% glycerol
1.8% glucose concentration
Added 0.5% raffinose

Added 8.5uM Geldanamycin

40 hours of growth, 81078 cells transferred,
resulting in ~8 hours of fermentation phase

Used baffled flask

Used baffled flask

Included 0.5% DMSO

Added 1% raffinose

1.7% glucose concentration, used baffled flask
1.6% glucose concentration, used baffled flask

50 hours of growth, 2.5*107 cells transferred,
resulting in ~18 hours of fermentation phase

1.4% glucose concentration, used baffled flask
Added 2ug Fluconazole

54 hours of growth, 6.25*10"6 cells transferred,
resulting in ~22 hours of fermentation phase

3 days of growth

Added 17uM Geldanamycin

1.8% glucose concentration, used baffled flask
24 hours of growth

Added 1% ethanol

Added 8.5uM Geldanamycin

No glucose, 1.5% Sucrose, 1% Raffinose

2.5% glucose concentration, used baffled flask
4 days of growth

5 days of growth

Added 0.2M NaCl

Added 0.2M KCI

Added 0.5ug Fluconazole

Added 0.4ug/mL Benomyl, used baffled flask
Added 2ug/mL Benomyl, used baffled flask
6 days of growth

7 days of growth

Added 0.5M KCI

Added 0.5M NaCl

Table S2. List of all conditions used in this study, ordered by deviation from the EC batch as in the main

text figures.
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