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One-sentence summary 19 

Two transcription factors, DEWAX and ICE1, may be important regulators of gene expression during seed 20 

germination, based on network analysis of eQTL hotspots. 21 
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Abstract 23 

Seed germination is characterized by a constant change of gene expression across different time points. These 24 

changes are related to specific processes, which eventually determine the onset of seed germination. To get a better 25 

understanding on the regulation of gene expression during seed germination, we performed a quantitative trait 26 
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locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-27 

ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant 28 

inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found 29 

several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. 30 

Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTLs 31 

in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for 32 

two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most 33 

likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression 34 

is dynamic along the course of seed germination. 35 

 36 

Keywords: Arabidopsis, eQTL, network analysis, seed germination. 37 

 38 

Introduction 39 

Seed germination involves a series of events starting with the transition of quiescent to physiologically active seeds 40 

and ends with the emergence of the embryo from its surrounding tissues. Germination is initiated when seeds 41 

become imbibed by water, leading to the activation of seed physiological activities (Nonogaki et al., 2010; Bewley 42 

et al., 2013). Major metabolic activities occur after seeds become hydrated, for example, restoration of structural 43 

integrity, mitochondrial repair, initiation of respiration, and DNA repair (Nonogaki et al., 2010; Bewley et al., 44 

2013). For some species such as Arabidopsis thaliana, germination can be blocked by seed dormancy. Dormant 45 

seeds need to sense and respond to environmental cues to break their dormancy and complete germination. In 46 

Arabidopsis thaliana, seed dormancy can be alleviated by periods of dry after-ripening or moist chilling (Bewley 47 

et al., 2013). Soon after dormancy is broken, the storage reserves are broken down, and germination-associated 48 

proteins are synthesized. Lastly, further water uptake followed by cell expansion leads to radicle protrusion through 49 

endosperm and seed coat, which marks the end of germination (Bewley et al., 2013). 50 

A major determinant for the completion of seed germination is the transcription and translation of mRNAs. The 51 

activity of mRNA transcription is low in dry, mature seeds (Comai and Harada, 1990; Leubner-Metzger, 2005), 52 

and drastically increases after seeds become rehydrated (Bewley et al., 2013). Nevertheless, stored mRNAs of 53 

more than 12,000 genes with various functions are already present in dry seeds. These mRNAs are not only 54 

remnants from the seed developmental process, but also mRNAs for genes related to metabolism as well as protein 55 

synthesis and degradation required in early seed germination (Rajjou et al., 2004; Nakabayashi et al., 2005). Later 56 
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in after-ripened seeds, only a slight change in transcript composition was detected compared to the dry seeds 57 

(Finch-Savage et al., 2007). The major shift in transcriptome takes place after water imbibition (Nakabayashi et 58 

al., 2005). Interestingly, the transcriptome at the imbibition stage depends on the status of dormancy. For non-59 

dormant seeds, most of the transcripts are associated with protein synthesis, while for dormant seeds, the transcripts 60 

are dominated by genes associated with stress-responses (Finch-Savage et al., 2007; Buijs et al., 2019). Even the 61 

transcript composition in primary dormant seeds, which occurs when the dormancy is initiated during 62 

development, is different from that of secondary dormant seeds, which occurs when the dormancy is reinduced 63 

(Cadman et al., 2006). These findings show the occurrence of phase transitions in transcript composition along the 64 

course from dormant to germinated seed.  65 

As omics technology becomes more widely available, several transcriptomics studies in seed germination 66 

processes have been conducted on a larger-scale. More developmental stages, i.e., stratification and seedling stage, 67 

and even spatial analyses have been included in these studies, resulting in the identification of gene co-expression 68 

patterns as well as the predicted functions of hub-genes (Bassel et al., 2011; Narsai et al., 2011; Dekkers et al., 69 

2013; Silva et al., 2016). Through guilt-by-association, these co-expression based studies can be used for the 70 

identification of regulatory genes that are involved in controlling the expression of downstream genes. These 71 

regulatory genes can be subjected to further studies by reverse genetics to provide more insight into the molecular 72 

mechanisms of gene expression in seed germination (i.e., Silva et al., 2016). Nevertheless, this approach still has 73 

limitations. Uygun et al. (2016) argued that co-expressed genes do not always have similar biological functions. 74 

On the other hand, genes involved in the same function are not always co-expressed since gene expression 75 

regulation could be the result of post-transcriptional or other layers of regulation (Lelli et al., 2012). Further, Uygun 76 

et al. (2016) emphasized the importance of combining the expression data with multiple relevant datasets to 77 

maximize the effort in the prioritization of candidate regulatory genes.  78 

Genetical genomics is a promising approach to study the regulation of gene expression by combining genome-79 

wide expression data with genotypic data of a segregating population (Jansen and Nap, 2001). To enable this 80 

strategy, the location of markers associated with variation in gene expression is mapped on the genome, which 81 

results in the identification of expression quantitative trait loci (eQTLs). Relative to the location of the associated 82 

gene, the eQTL can be locally or distantly mapped, known as local and distant eQTLs (Brem et al., 2002; Rockman 83 

and Kruglyak, 2006). Local eQTLs mostly arise because of variations in the corresponding gene or a cis-regulatory 84 

element. In contrast, distant eQTLs typically occur due to polymorphism on trans-regulatory elements located far 85 

away from the target genes (Rockman and Kruglyak, 2006). Therefore, given the positional information of distant 86 
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eQTLs, one can identify the possible regulators of gene expression. However, the eQTL interval typically spans a 87 

large area of the genome and harbors hundreds of candidate regulatory genes. A large number of candidate genes 88 

would cause the experimental validation (e.g. using knock-out or overexpression lines) to be costly and take a long 89 

time. Therefore, a prioritization method is needed to narrow down the list of candidate genes underlying eQTLs, 90 

particularly on distant eQTL hotspots. A distant eQTL hotspot is a genomic locus where a large number of distant 91 

eQTLs are collocated (Breitling et al., 2008). The common assumption is that the hotspot arises due to one or more 92 

polymorphic master regulatory genes affecting the expression of multiple target genes (Breitling et al., 2008). 93 

Therefore, the identification of master regulatory genes becomes the center of most genetical genomics studies as 94 

the findings might improve our understanding of the regulation of gene expression (i.e., in Keurentjes et al., 2007; 95 

Jimenez-Gomez et al., 2010; Terpstra et al., 2010; Valba et al., 2015; Sterken et al., 2017).  96 

In this study, we carried out eQTL mapping to reveal loci controlling gene expression in seed germination. To 97 

capture whole transcriptome changes during seed germination, we included four important seed germination 98 

stages, which are primary dormant seeds (PD), after-ripened seeds (AR), six-hours imbibed seeds (IM), and seeds 99 

with radicle protrusion (RP). In total, 160 recombinant inbred lines (RILs) from a cross between genetically distant 100 

ecotypes Bay-0 and Shahdara (Bay x Sha) were used in this study (Loudet et al., 2002). Our results show that each 101 

seed germination stage has a unique eQTL landscape, confirming the stage-specificity of gene regulation, 102 

particularly for distant regulation. Based on network analysis, we identify the transcription factors ICE1 and 103 

DEWAX as prioritized candidate regulatory genes for two major eQTL hotspots in PD and RP, respectively. 104 

Finally, the resulting dataset complements the previous phenotypic QTL (Joosen et al., 2012) and metabolite QTL 105 

(Joosen et al., 2013) datasets, allowing systems genetics studies in seed germination. The identified eQTLs are 106 

available through the web-based AraQTL (http://www.bioinformatics.nl/AraQTL/) workbench (Nijveen et al., 107 

2017). 108 

 109 

Results 110 

Major transcriptional shifts take place after water imbibition and radicle protrusion 111 

 To visualize the transcriptional states of the parental lines and the RILs at the four seed germination stages, we 112 

performed a principal component analysis using the log-intensities of all expressed genes (Figure 1). The first 113 

principal component explains 55.6% of the variation and separates the samples into three groups. Germination 114 

progresses from left to right with the PD and AR seeds grouping together, indicating that the after-ripening 115 
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treatment does not induce a considerable change in global transcript abundance. The large-scale transcriptome 116 

change only happens after water imbibition and radicle protrusion. This event was also observed by Finch-Savage 117 

et al. (2007) and Silva et al. (2016). The second principal component on the PCA explains 14.2% variance in the 118 

data and separates the RILs within each of the three clusters but not the parents. The source of this variation may 119 

be the genetic variation among samples and shows transgressive segregation of gene expression in RILs due to 120 

genetic reshuffling of the parental genomes during crossing and generations of selfing.  121 

To identify specific expression patterns among genes in the course of seed germination, we performed an additional 122 

analysis of the transcriptome data using hierarchical clustering (Figure 2). For this analysis, we only selected the 123 

990 genes with a minimal fold change of two between any two consecutive stages (PD to AR, AR to IM, IM to 124 

RP). We then clustered both the genes and the seed samples. As shown in the figure, the clustering of samples 125 

shows similar grouping as in the previous PCA plot; three clusters were formed with one cluster containing both 126 

PD and AR, while IM and RP form separate clusters. 127 

The clustering of genes shows at least three distinctive gene expression patterns. In the first pattern, transcript 128 

abundance is highest in the last stage, radicle protrusion. A GO enrichment test suggests that transcripts with this 129 

expression pattern are involved in the transition from the heterotrophic seed to the autotrophic seedling stage, with 130 

enriched processes such as photosynthesis, response to various light, and response to temperature. This is in 131 

agreement with Rajjou et al. (2004), who showed that genes required for seedling growth are expressed after water 132 

imbibition. The second pattern shows an opposite trend with higher transcript abundances in the first three stages 133 

and lower expression at the end of the seed germination process. Some of these transcripts may be the remnant of 134 

seed development since the GO term related to this process is overrepresented. Moreover, transcripts involved in 135 

response to hydrogen peroxide were also overrepresented, which provides more evidence for the importance of 136 

reactive oxygen species in seed germination (for review see Wojtyla et al., 2016). The last pattern represents genes 137 

that are upregulated at the IM stage. Genes with this pattern are functionally enriched in the catabolism of fatty 138 

acids, a likely source of energy for seedling growth (Bewley et al., 2013). Altogether, these results suggest that 139 

co-expression patterns of genes reflect particular functions during the seed germination process.  140 

 141 

Distant eQTLs explain less variance than local eQTLs and are more specific to a seed germination stage  142 

To map loci associated with gene expression levels, we performed eQTL mapping of 29,913 genes for each seed 143 

population representing four seed germination stages (Table 1). We found eQTLs, numbers ranging from 1,335 to 144 
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1,719 per stage (FDR = 0.05), spread across the genome. Among the genes with an eQTL, only a few (less than 145 

1%) had more than one. We then categorized the eQTLs into local and distant based on the distance between the 146 

target gene and the eQTL peak marker or the confidence interval. Based on this criterion, over 72% of the eQTLs 147 

per stage were categorized as local, while the remainder were distant. Although the total of the identified eQTLs 148 

was different between the stages, the ratio of distant to local eQTLs was relatively similar for all stages. We then 149 

calculated the fraction of the total variation that is explained by the simple linear regression model for each eQTL. 150 

By comparing the density distributions (Figure S1), we showed that local eQTLs generally explain a more 151 

substantial fraction of gene expression variation than distant eQTLs. Finally, we determined the number of specific 152 

and shared eQTLs across stages (Figure 3). Here, we show that distant eQTLs are more specific to seed germination 153 

stages. Local eQTLs, on the other hand, are commonly shared between two or more stages, which is in line with 154 

previous experiments showing overlapping local eQTLs and specific distant eQTLs across different developmental 155 

stages (Vinuela et al., 2010), environments (Snoek et al., 2012; Lowry et al., 2013; Snoek et al., 2017) and 156 

populations (Cubillos et al., 2012).  157 

 158 

An eQTL hotspot on chromosome 5 is associated with genes related to seed germination and collocates 159 

with multiple metabolic and phenotypic QTLs 160 

To get an overview of how the eQTLs were mapped over the genome, we visualized the eQTL locations and their 161 

associated genes on a local/distant eQTL plot (Figure 4A). Here, the local eQTLs are aligned across the diagonal 162 

and spread relatively equally across the genome, while it is not the case for the distant eQTLs. Furthermore, 163 

specific loci show clustering of eQTLs, which could indicate the presence of major regulatory genes that cause 164 

genome-wide gene expression changes. We identified ten so-called (distant-) eQTL hotspots, with at least two 165 

hotspots per stage (Table 2). The number of distant eQTLs located within these hotspots ranges from 16 to 96. The 166 

major eQTL hotspots are PD2, IM2, and RP4, with 69, 69, and 96 distant eQTLs co-locating, respectively. 167 

Moreover, the landscape of the eQTL hotspots (Figure 4B) differs for every stage, including PD and AR, which is 168 

surprising since these two stages have a relatively similar transcriptome profile (Figure 1).  169 

We remapped the QTLs for previously studied seed germination phenotypes (Joosen et al., 2012) and metabolites 170 

(Joosen et al., 2013) using the RNA-seq based genetic map (Serin et al., 2017). We then visualized the resulting 171 

QTL count histograms alongside the eQTL histogram (Figure 5). The histogram shows that several eQTL hotspots 172 

collocate with hotspots for phenotype and metabolite QTLs (phQTLs and mQTLs, respectively). The most striking 173 
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example is the collocation of QTLs on chromosome 5 around 24—25 Mb (IM2 and RP4) at the last two stages of 174 

seed germination. We performed gene ontology (GO) term enrichment analysis for genes with an eQTL mapping 175 

to these hotspots, and found ‘seed germination’ enriched among other terms (Table 2). These findings taken 176 

together indicate that the IM2 and RP4 hotspots harbor one or more important genes affecting gene expression 177 

during seed germination. Therefore, the identification of the regulatory gene(s) for one of these hotspots can give 178 

us more insight into the trans-regulation of gene expression during seed germination.  179 

 180 

Transcription factors were prioritized as the candidate genes for major eQTL hotspots 181 

To prioritize the candidate regulatory genes underlying eQTL hotspots in this study, we constructed a network 182 

based on the expression of genes with eQTLs on the hotspot location. We built the network for two hotspots: RP4, 183 

where QTLs for expression, metabolite, and phenotype are collocated; and PD2, another major eQTL hotspot in 184 

this study. For RP4, the total number of genes used to construct the network was 116, of which 20 had a local 185 

eQTL at the hotspot, whereas for PD2, 114 genes were identified, of which 45 with a local eQTL. The genes with 186 

local eQTLs were then labeled as candidates. The networks were constructed by integrating predictions from 187 

several gene regulatory network inference methods to ensure the robustness of the result  (Marbach et al., 2012). 188 

The direction of the edges in the network is predicted using the GENIE3 method (Huynh-Thu et al., 2010). For 189 

each candidate gene, we calculated the outdegree, indicating the number of outgoing edges of a gene to other genes 190 

in the network, and the closeness centrality of the candidate gene nodes, which shows the efficiency of the gene 191 

in spreading information to the rest of the genes in the network (Pavlopoulos et al., 2011). Finally, these two 192 

network properties were used to prioritize the most likely regulator of the distant eQTL hotspot. 193 

In the resulting network, genes encoding the transcription factors DECREASE WAX BIOSYNTHESIS/DEWAX 194 

(AT5G61590), and INDUCER OF CBP EXPRESSION 1/ICE1 (AT3G26744) were prioritized as the most likely 195 

candidate genes for RP4 (Figure 6) and PD2 (Figure 7), respectively. As many as 15 genes were predicted to be 196 

associated with DEWAX and 32 genes with ICE1. Note that these numbers depend on the chosen threshold; 197 

nonetheless, the current candidates are robust to changes when the parameter was changed (Table S3 and Table 198 

S4). Furthermore, these two genes also had the highest closeness centrality among the other candidates, showing 199 

that these genes have a strong influence within the network. We assessed the Bay x Sha SNP data (Genomes 200 

Consortium. Electronic address and Genomes, 2016) and found several SNPs between the Bay and Sha parents in 201 

both the DEWAX and ICE1 genes, including two that affect the amino acid sequence of the corresponding proteins 202 

(Table S5 and Table S6). Also, querying for DEWAX and ICE1 on AraQTL showed a local eQTL for both genes 203 
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in an experiment using the same RIL population on leaf tissue (West et al., 2007).  This evidence supports the 204 

presence of DEWAX and ICE1 polymorphisms between the Bay and Sha allele that might be responsible for the 205 

steadily occurring local eQTLs at three stages (PD, IM, RP) for DEWAX and all four stages for ICE1. 206 

 207 

Discussion 208 

The function of DEWAX may be related to seed cuticular wax biosynthesis 209 

In this study, we constructed a network of genes associated with the RP4 eQTL hotspot and showed that DEWAX 210 

was prioritized as the candidate gene for the hotspot. DEWAX encodes an AP2/ERF-type transcription factor that 211 

is well-known as a negative regulator of cuticular wax biosynthesis (Go et al., 2014; Suh and Go, 2014; Cui et al., 212 

2016; Li et al., 2019) and a positive regulator of defense response against biotic stress (Ju et al., 2017; Froschel et 213 

al., 2019). This gene also seems to be involved in drought stress response (Huang et al., 2008) by inducing the 214 

expression of genes that confer drought tolerance (Sun et al., 2016), some of which (LEA4-5, LTI-78) have a distant 215 

eQTL at the RP4 hotspot. Moreover, the overexpression of DEWAX in Arabidopsis increases the seed germination 216 

rate (Sun et al., 2016). The role of DEWAX in seed germination is still unknown but may be related to cuticular 217 

wax biosynthesis. 218 

Wax is a mixture of hydrophobic lipids, which is part of the plant cuticle together with cutin and suberin (Yeats 219 

and Rose, 2013). Previous studies have demonstrated that the biosynthesis of wax in the cuticular layer of stems 220 

and leaves is negatively regulated by DEWAX (Go et al., 2014; Suh and Go, 2014; Cui et al., 2016; Li et al., 2019). 221 

Although the function of this gene has never been reported in seeds, the presence of a cuticular layer indeed plays 222 

a significant role in maintaining seed dormancy (De Giorgi et al., 2015; Nonogaki, 2019). In Arabidopsis seeds, 223 

the thick cuticular structure covering the endosperm prevents cell expansion and testa rupture that precede radicle 224 

protrusion. Besides, this layer also reduces the diffusion of oxygen into the seed, thus preventing oxidative stress 225 

that may cause rapid seed aging and loss of dormancy (De Giorgi et al., 2015).  226 

Besides DEWAX, MUM2 is another possible regulatory gene for the RP4 hotspot based on QTL confirmation of 227 

an imbibed seed size phenotype using a heterogeneous inbred family approach (Joosen et al., 2012). In our study, 228 

we also discovered that most eQTLs on the RP4 hotspot peak at the marker located closely to the MUM2 location 229 

(Figure S2), which provides more evidence for this gene as the regulator for the hotspot.  MUM2 encodes a cell-230 

wall modifying beta-galactosidase involved in seed coat mucilage biosynthesis, and the mum2 mutant is 231 

characterized by a failure in extruding mucilage after water imbibition (Dean et al., 2007). In our analysis, MUM2 232 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.29.050567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.050567
http://creativecommons.org/licenses/by-nc-nd/4.0/


did not have a distant eQTL on the RP4 hotspot; thus, it is not prioritized as a prominent candidate, pointing out a 233 

limitation of our approach in prioritizing candidate eQTL hotspot genes which will be discussed later. Nonetheless, 234 

we found some evidence connecting DEWAX to MUM2. First, Shi et al. (2019) found out that the mutant of CPL2, 235 

another gene involved in wax biosynthesis, showed a delayed secretion of the enzyme encoded by MUM2 that 236 

disrupts seed coat mucilage extrusion. In the same study, they revealed that CPL2 encodes a phosphatase involved 237 

in secretory protein trafficking required for the secretion of extracellular matrix materials, including wax and cell 238 

wall-modifying enzyme. This finding provides a link between wax biosynthesis and cell-wall modifying enzymes, 239 

and possibly between the genes involved in these processes.  240 

Second, the expression of DEWAX may be the consequence of the disruption of seed mucilage extrusion.  Penfield 241 

et al. (2001) suggest that seed mucilage helps enhance water uptake to ensure efficient germination in the condition 242 

of low water potential. This is supported by the evidence that the mucilage-impaired mutant showed reduced 243 

maximum germination only on osmotic polyethylene glycol solutions (Penfield et al., 2001). Therefore, the 244 

absence of mucilage in imbibed seed under low water potential may cause osmotic stress in the seed and, in turn, 245 

induce the expression of DEWAX, which is known to play a role in the response of plants against osmotic stress  246 

(Sun et al., 2016). If this is the case, then a scenario could be that DEWAX acts downstream of MUM2, and the 247 

expression variation of these two genes lead to the emergence of the RP4 eQTL hotspot. 248 

Network analysis shows the involvement of ICE1 as a regulator of gene expression during seed germination 249 

ICE1 is an MYC-like basic helix-loop-helix (bHLH) transcription factor that shows pleiotropic effects in plants. 250 

Earlier studies of ICE1 mostly focus on the protein function in the acquisition of cold tolerance (Chinnusamy et 251 

al., 2003; Lee et al., 2005) and stomatal lineage development (Kanaoka et al., 2008). Recently, ICE1 was also 252 

shown to form a heterodimer with ZOU, another bHLH transcription factor, to regulate endosperm breakdown 253 

required for embryo growth during seed development (Denay et al., 2014). At a later stage, ICE1 negatively 254 

regulates ABA-dependent pathways to promote seed germination and seedling establishment (Liang and Yang, 255 

2015). This process involves repressing the expression of transcription factors in ABA signaling, such as ABI3 256 

and ABI5, and ABA-responsive genes, such as EM6 and EM1, thus initiating seed germination and subsequent 257 

seedling establishment (Hu et al., 2019; MacGregor et al., 2019). 258 

In this study, we performed a network analysis for genes having distant eQTLs on the PD2 hotspot and prioritized 259 

ICE1 as the most likely regulator using network analysis. The high connectivity of ICE1 with the other genes in 260 

the network could reflect an essential regulatory function of this gene during seed germination. However, we did 261 
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not find any of the known ICE1 target genes (i.e., ABI3, ABI5, EM1, and EM6) nor seed germination phenotype 262 

(Figure 5) having an eQTL at the ICE1 locus. It could be that the ICE1 polymorphism is not severe enough to 263 

cause considerable trait variation, especially to break a robust biological system where several buffering 264 

mechanisms exist to prevent small molecular perturbation from propagating to the phenotypic level (Fu et al., 265 

2009; Signor and Nuzhdin, 2018).  266 

Limitations of co-expression network in identifying candidate genes of eQTL hotspots 267 

The construction of a co-expression network is a promising approach to prioritize candidate eQTL genes (Serin et 268 

al., 2016). Despite its potential, there is a major limitation in using a co-expression network. The network is based 269 

on gene expression data; hence the identified causal genes are those that directly affect gene expression. For 270 

example, as we described above, our approach did not prioritize MUM2 for the RP4 hotspot, possibly because the 271 

gene does not cause variation in the target gene expression but rather causes differences at another level of target 272 

gene regulation (e.g., enzyme biosynthesis) between two parental alleles in the RIL population. Other studies 273 

reported similar results where a known causal gene was not detected as a hub in the network (Jimenez-Gomez et 274 

al., 2010; Sterken et al., 2017). To overcome this, future work should focus on networks that are built upon multi-275 

omics data by including metabolic, proteomic, and, more importantly, phenotypic measurement data  (Hawe et al., 276 

2019). Moreover, prior biological knowledge, including protein-protein interaction (Szklarczyk et al., 2017), 277 

transcription factor binding-site (Kulkarni et al., 2018), and other types of interactions (for review see Kulkarni 278 

and Vandepoele, 2019) can be incorporated to construct data-driven interaction networks. Nevertheless, our 279 

approach offers a simple and straightforward way to prioritize candidate genes underlying eQTL hotspots from a 280 

limited amount of resources.  281 

 282 

Materials and Methods 283 

Plant materials 284 

In this study, we used 164 recombinant inbred lines (RILs) derived from a cross between the Bay-0 and Shahdara 285 

Arabidopsis ecotypes (Loudet et al., 2002) provided by the Versailles Biological Resource Centre for Arabidopsis 286 

(http://dbsgap.versailles.inra.fr/vnat). The plants were sown in a fully randomized setup on 4x4 cm rockwool plugs 287 

(MM40/40, Groudan B. V.) and hydrated with 1 g/l Hyponex (NPK = 7:6:19, http://www.hyponex.co.jp) in a 288 

climate chamber (20°C day, 18°C night) with 16 hours of light (35 W/m2) at 70% relative humidity. Seeds from 289 

four to seven plants per RIL were bulk harvested for the experiment (see also Joosen et al., 2012; Joosen et al., 290 
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2013). The genotypic data consisting of 1,059 markers per line was obtained from Serin et al. (2017). However, 291 

the genotypic data is available only for 160 RILs; therefore, we used this number of lines for eQTL mapping. 292 

 293 

Experimental setup 294 

The RIL population was grouped into four subpopulations, each one representing one of the four different seed 295 

germination stages. We used the designGG-package (Li et al., 2009) in R (version 3.6.0 Windows x64) to aid the 296 

grouping so that the distribution of Bay-0 and Sha alleles between sub-populations is optimized. The first stage is 297 

the primary dormant (PD) stage when the seeds were harvested and stored at -80°C after one week at ambient 298 

conditions. The second stage is after-ripened (AR) seeds that obtained maximum germination potential after five 299 

days of imbibition by storing at room temperature and ambient relative humidity. The third stage is the 6 hours 300 

imbibition (IM) stage. For this stage, the seeds were after-ripened and imbibed for six hours on water-saturated 301 

filter paper at 20°C and immediately transferred to a dry filter paper for 1 minute to remove the excess of water. 302 

The fourth stage is the radicle protrusion (RP) stage. To select seeds at this stage, we used a binocular to observe 303 

the presence of a protruded radicle tip. 304 

 305 

RNA isolation 306 

Total RNA was extracted according to the hot borate protocol modified from Wan and Wilkins (1994). For each 307 

treatment, 20 mg of seeds were homogenized and mixed with 800 μl of extraction buffer (0.2M Na 308 

boratedecahydrate (Borax), 30 mM EGTA, 1% SDS, 1% Na deoxycholate (Na-DOC)) containing 1.6 mg DTT 309 

and 48 mg PVP40 which had been heated to 80°C. Then, 1 mg proteinase K was added to this suspension and 310 

incubated for 15 min at 42°C. After adding 64 μl of 2 M KCL, the samples were incubated on ice for 30 min and 311 

subsequently centrifuged for 20 min at 12,000 g. Ice-cold 8 M LiCl was added to the supernatant in a final 312 

concentration of 2 M, and the tubes were incubated overnight on ice. After centrifugation for 20 min at 12,000 g 313 

at 4°C, the pellets were washed with 750 μl ice-cold 2 M LiCl. The samples were centrifuged for another 10 min 314 

at 10,000 g at 4°C, and the pellets were re-suspended in 100 μl DEPC treated water. The samples were phenol-315 

chloroform extracted, DNAse treated (RQ1 DNase, Promega), and further purified with RNeasy spin columns 316 

(Qiagen) following the manufacturer’s instructions. The RNA quality and concentration were assessed by agarose 317 

gel electrophoresis and UV spectrophotometry. 318 

 319 

Microarray analysis 320 
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RNA was processed for use on Affymetrix Arabidopsis SNPtile array (atSNPtilx520433), as described by the 321 

manufacturer. Briefly, 1 mg of total RNA was reverse transcribed using a T7-Oligo(dT) Promoter Primer in the 322 

first-strand cDNA synthesis reaction. Following RNase H-mediated second-strand cDNA synthesis, the double-323 

stranded cDNA was purified and served as a template in the subsequent in vitro transcription reaction. The reaction 324 

was carried out in the presence of T7 RNA polymerase and a biotinylated nucleotide analog/ribonucleotide mix 325 

for complementary RNA (cRNA) amplification and biotin labeling. The biotinylated cRNA targets were then 326 

cleaned up, fragmented, and hybridized to the SNPtile array. The hybridization data were extracted using a custom 327 

R script with the help of an annotation-file based on TAIR10. Intensity data were log-transformed and normalized 328 

using the normalizeBetweenArrays function with the quantile method from Bioconductor package limma (Ritchie 329 

et al., 2015). Then, for each annotated gene, the log-intensities of anti-sense exon probes were averaged. 330 

 331 

Clustering analysis 332 

Principal component analysis for log-intensities of all parents and RIL population samples was done using the 333 

pr.comp function in R where the unscaled log intensities are shifted to be zero centered. For hierarchical clustering, 334 

we only selected genes with a minimal fold change of 2 between any pair of consecutive stages (PD to AR, AR to 335 

IM, or IM to RP). Then, the distance matrices of filtered genes and all samples were calculated using the absolute 336 

Pearson correlation. These matrices were clustered using Ward’s method. We manually set the number of clusters 337 

to 8 and performed gene ontology enrichment for each of the clusters using the weight algorithm of the topGO 338 

package in R and used 29,913 genes detected by hybridization probes as the background (Alexa et al., 2006). 339 

 340 

eQTL mapping 341 

For eQTL mapping, we used 160 RILs separated into four subpopulations, each representing one specific seed 342 

germination stage. For each stage separately, eQTLs were mapped using a single-marker model, as in Sterken et 343 

al. (2017). The gene expression data were fitted to the linear model 344 

𝑦𝑖,𝑗  ~ 𝑥𝑗 + 𝑒𝑗 345 

where y is the log-intensity representing the expression of a gene 𝑖 (𝑖  = 1, 2, ..., 29,913) of RIL 𝑗 (𝑗 = 1, 2, ..., 160) 346 

explained by the parental allele on marker location 𝑥 (𝑥 = 1, 2, ..., 1,059). The random error in the model is 347 

represented by 𝑒𝑗. 348 

To account for the multiple-testing burden in this analysis, we determined the genome-wide significant threshold 349 

using a permutation approach (e.g. see Sterken et al., 2017). A permuted dataset was created by randomly 350 
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distributing the log-intensities of the gene under study over the genotypes. Then, the previous eQTL mapping 351 

model was performed on this permuted dataset. This procedure was repeated 100 times for each stage. The 352 

threshold was determined using: 353 

FDS

RDS
≤

𝑚0

𝑚
𝑞. log(𝑚), 354 

where, at a specific significance level, the false discoveries (FDS) were the averaged permutation result, and real 355 

discoveries (RDS) were the outcome of the eQTL mapping using the unpermuted dataset. The number of true 356 

hypotheses tested (𝑚0) was 29,913 - RDS, and the number of hypotheses (𝑚) tested was the number of genes, 357 

which was 29,913. For the 𝑞-value, we used a threshold of 0.05. As a result, we got a threshold of 4.2 for PD and 358 

AR, 4.1 for IM, and 4.3 for RP.  359 

The confidence interval of an eQTL was determined based on a -log10(p-value) drop of 1.5 compared to the peak 360 

marker (as in Keurentjes et al., 2007; Cubillos et al., 2012). We determine an eQTL as local if the peak marker or 361 

the confidence interval lies within 1 Mb or less from the target gene location (as in Cubillos et al., 2012). All 362 

eQTLs that did not meet this criterion were defined as distant. 363 

We defined a region as an eQTL hotspot if the number of distant-eQTLs mapped to a particular genomic region 364 

significantly exceeded the expectation. First, we divided the genome into bins of 2 Mb. Then, we determined the 365 

expected number of distant-eQTLs per genomic bin by dividing the total number of distant-eQTLs by the total 366 

number of bins. Based on a Poisson distribution, any bin having an actual number of distant-eQTLs larger than 367 

expected (p < 0.0001) was then considered as an eQTL hotspot. 368 

 369 

Gene regulatory network inference and candidate genes prioritization of eQTL hotspot 370 

We used a community-based approach to infer regulatory networks of genes with an eQTL on a hotspot location 371 

using expression data. In this approach, we assume the hotspot is caused by a polymorphism in or near one or 372 

more regulatory genes causing altered expression that can be detected as a local eQTL (Breitling et al., 2008; 373 

Joosen et al., 2009; Jimenez-Gomez et al., 2010; Serin et al., 2017). Based on this assumption, we labeled all genes 374 

with a local eQTL on a hotspot as candidate regulators and genes with a distant eQTL as targets. The expression 375 

of these genes was subjected to five different network inference methods to predict the interaction weight. The 376 

methods used were TIGRESS (Haury et al., 2012), Spearman correlation, CLR (Faith et al., 2007), ARACNE 377 

(Margolin et al., 2006), and GENIE3 (Huynh-Thu et al., 2010). The predictions from GENIE3 were used to 378 
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establish the direction of the interaction by removing the one that has the lowest variable importance to the 379 

expression of the target genes between two pairs of genes. For instance, if the importance of genei – genej is smaller 380 

than genej – genei, then the former is removed. By averaging the rank, the predictions of all inference methods 381 

were integrated to produce a robust and high performance prediction (Marbach et al., 2012). The threshold was 382 

determined as the minimum average rank where all nodes are included in the network. Finally, the network was 383 

visualized using Cytoscape (version 3.7.1) (Shannon et al., 2003), and network properties were calculated using 384 

the NetworkAnalyzer tool (Assenov et al., 2008). The candidate genes for each eQTL hotspot were prioritized 385 

based on their outdegree and closeness centrality (Pavlopoulos et al., 2011). 386 

 387 

Script availability 388 

The code for the analysis and visualization is available in the form of R scripts at the Wageningen University 389 

GitLab repository (https://git.wur.nl/harta003/seed-germination-qtl). 390 

 391 

Accession numbers 392 

Cel files of microarray data have been deposited in the ArrayExpress database at EMBL-EBI 393 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-xxxx. 394 

 395 

Supplemental materials 396 

Supplemental Figure S1. Density distribution of the absolute eQTL effect, -log(p), and explained phenotypic 397 

variance (R2) for local and distant eQTLs. 398 

Supplemental Figure S2. The histogram of the number of distant eQTLs per marker location for the PD2 (A) and 399 

RP4 (B) hotspot. 400 

Supplemental Table S1. Gene ontology enrichment for genes with distinctive expression patterns during seed 401 

germination. 402 

Supplemental Table S2. Distant eQTL hotspots of the four seed germination stages 403 

Supplemental Table S3. The mean rank and standard deviation of candidate genes as the most likely causal genes 404 

for the RP4 hotspot across different thresholds 405 
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Supplemental Table S4.  The mean rank and standard deviation of candidate genes as the most likely causal genes 406 

for the PD2 hotspot across different thresholds. 407 

Supplemental Table S5. The location and type of SNPs on candidate genes for the RP4 eQTL hotspot and MUM2. 408 

Supplemental Table S6. The location and type of SNPs on candidate genes for the PD2 eQTL hotspot. 409 

Supplemental Table S7. The list of genetic markers used for QTL mapping. 410 

Supplemental Table S8. The genetic map of Bay-0 x Sha parents and the RIL population.  411 

Supplemental Table S9. Gene expression levels of  Bay-0 x Sha parents and the RIL population.  412 

Supplemental Table S10. Phenotype measurements of  Bay-0 x Sha parents and the RIL population.  413 

Supplemental Table S11. Metabolite measurements of  Bay-0 x Sha parents and the RIL population.  414 

Supplemental Table S12. Differentially expressed genes between any of two consecutive stages. 415 

Supplemental Table S13. The list of expression QTL. 416 

Supplemental Table S14. The list of phenotype QTL. 417 

Supplemental Table S15. The list of metabolite QTL. 418 
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Tables 432 

 433 

Table 1. Summary of the eQTL mapping for the four different seed germination stages 434 

 435 

 436 

 437 

 438 

 439 

Table 2. Distant eQTL hotspots of the four seed germination stages. These hotspots were identified by 440 

dividing the genome into bins of 2 Mbp and performing a test to determine whether the number of distant 441 

eQTLs on a particular bin is higher than expected (p > 0.0001) assuming a Poisson distribution. Seed 442 

germination phenotype and metabolite data were taken from Joosen et al. (2012) and Joosen et al. (2013), 443 

respectively. Detailed information about enriched GO terms, metabolite, and phenotype can be seen on 444 

Supplemental Table S2 in the Supplementary Material. 445 

hotspot 
ID 

position distant 
eQTLs 

enriched 
GO terms 

metabolite 

QTL 

phenotype 
QTL 

PD1 ch1:6-10 Mb 43 11 1 4 

PD2 ch3:8-12 Mb 69 3 2 1 

AR1 ch2:12-14 Mb  16 0 0 0 

AR2 ch3:2-4 Mb 20 9 1 1 

IM1 ch5:6-8 Mb 19 2 24 1 

IM2 ch5:22-26 Mb  69 6 6 31 

RP1 ch1:0-2 Mb 23 1 0 1 

RP2 ch1:6-8 Mb 18 0 0 3 

RP3 ch5:14-16 Mb 21 29 0 1 

RP4 ch5:24-26Mb 96 18 20 25 

 446 

 447 

 448 

 449 

 450 

 451 

stage   eQTLs genes 

with an 

eQTL 

eQTL 

type 

total proportion 

primary 

dormant 

1,335 1,328 local 955 0.72 

distant 380 0.28 

after-ripened 1,395 1,377 local 1,089 0.78 

distant 306 0.22 

six hours after 

imbibition 

1,719 1,702 local 1,320 0.77 

distant 399 0.23 

radicle 

protrusion 

1,426 1,418 local 1,096 0.77 

distant 330 0.23 
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Figure Legends 452 

Figure 1. Principal component plot derived from transcriptome measurements of 164 RILs, and the Bay-0 and 453 

Sha parental lines taken at primary dormant seed (PD), after-ripened seed (AR), six-hours after imbibition (IM), 454 

and at the time when the radicle is protruded (RP). 455 

Figure 2. Hierarchical clustering of Bay-0, Sha, and 164 RILs transcriptome samples measured at four different 456 

seed germination stages (top) and 990 genes differentially expressed between two consecutive stages (left). Listed 457 

genes are the sample of genes for each cluster. Some enriched gene ontology terms for gene clusters are listed on 458 

the right. 459 

Figure 3. Shared local and distant eQTLs per seed germination stage. 460 

Figure 4. eQTL mapping from four different seed germination stages. The local-distant eQTL plot is shown on 461 

top (A). The positions of eQTLs are plotted along the five chromosomes on the x-axis and the location of the genes 462 

with an eQTL is plotted on the y-axis. The black dots (●) represent local eQTLs (located within 1 Mb of the 463 

associated gene) and the colored dots represent distant eQTLs (located far from the associated gene). The gray 464 

horizontal lines next to each dot indicate the confidence interval of the eQTL location based on a 1.5 drop in -465 

log10(p-value). The histogram of the number of eQTLs per genomic location is shown at the bottom (B). The 466 

horizontal dashed black lines mark the significance threshold for an eQTL hotspot. 467 

Figure 5. Hotspots for phQTLs, mQTLs, and eQTLs. A region of interest is located on chromosome 5 (around 468 

24—26 Mb) where hotspots from different QTL levels collocate. 469 

Figure 6. The prioritization of candidate genes for RP4 eQTL hotspot. The network of genes associated with RP4 470 

is visualized in A. The genes in the network are represented by nodes with various sizes according to the outdegree. 471 

The unlabeled grey nodes are the targets (genes with a distant eQTL) and the labelled green nodes are the 472 

candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is 473 

DEWAX (AT5G61590). The list of top ten candidate genes for the hotspot is shown in B. The expression of 474 

DEWAX in 160 RILs across the four seed germination stages is visualized in C. The RILs with the Sha allele of 475 

the gene are depicted in blue, the ones with the Bay-0 allele of DEWAX are depicted in red. 476 

Figure 7. The prioritization of candidate genes for the PD2 eQTL hotspot. The network of genes associated with 477 

PD2 is visualized in A. The genes in the network are represented by nodes with various sizes according to the 478 

outdegree. The unlabeled grey nodes are the targets (genes with a distant eQTL) and labelled green nodes are the 479 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.29.050567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.050567
http://creativecommons.org/licenses/by-nc-nd/4.0/


candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is ICE1 480 

(AT3G26744). The list of top ten candidate genes for the hotspot is shown in B. The expression of ICE1 in 160 481 

RILs across the four seed germination stages is visualized in C. The RILs with the Sha allele of the gene are 482 

depicted in blue, the ones with the Bay-0 allele of ICE1 are depicted in red. 483 

 484 
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 495 
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 499 

 500 

 501 

 502 
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