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One-sentence summary
Two transcription factors, DEWAX and ICE1, may be important regulators of gene expression during seed

germination, based on network analysis of eQTL hotspots.

Abstract
Seed germination is characterized by a constant change of gene expression across different time points. These
changes are related to specific processes, which eventually determine the onset of seed germination. To get a better

understanding on the regulation of gene expression during seed germination, we performed a quantitative trait
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locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-
ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant
inbred lines (RILS). The mapping displayed the distinctness of the eQTL landscape for each stage. We found
several eQTL hotspots across stages associated with the regulation of expression of a large number of genes.
Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTLs
in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for
two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most
likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression

is dynamic along the course of seed germination.

Keywords: Arabidopsis, eQTL, network analysis, seed germination.

Introduction

Seed germination involves a series of events starting with the transition of quiescent to physiologically active seeds
and ends with the emergence of the embryo from its surrounding tissues. Germination is initiated when seeds
become imbibed by water, leading to the activation of seed physiological activities (Nonogaki et al., 2010; Bewley
et al., 2013). Major metabolic activities occur after seeds become hydrated, for example, restoration of structural
integrity, mitochondrial repair, initiation of respiration, and DNA repair (Nonogaki et al., 2010; Bewley et al.,
2013). For some species such as Arabidopsis thaliana, germination can be blocked by seed dormancy. Dormant
seeds need to sense and respond to environmental cues to break their dormancy and complete germination. In
Arabidopsis thaliana, seed dormancy can be alleviated by periods of dry after-ripening or moist chilling (Bewley
et al., 2013). Soon after dormancy is broken, the storage reserves are broken down, and germination-associated
proteins are synthesized. Lastly, further water uptake followed by cell expansion leads to radicle protrusion through

endosperm and seed coat, which marks the end of germination (Bewley et al., 2013).

A major determinant for the completion of seed germination is the transcription and translation of mMRNAs. The
activity of mRNA transcription is low in dry, mature seeds (Comai and Harada, 1990; Leubner-Metzger, 2005),
and drastically increases after seeds become rehydrated (Bewley et al., 2013). Nevertheless, stored mMRNAs of
more than 12,000 genes with various functions are already present in dry seeds. These mMRNAs are not only
remnants from the seed developmental process, but also mMRNAs for genes related to metabolism as well as protein

synthesis and degradation required in early seed germination (Rajjou et al., 2004; Nakabayashi et al., 2005). Later
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in after-ripened seeds, only a slight change in transcript composition was detected compared to the dry seeds
(Finch-Savage et al., 2007). The major shift in transcriptome takes place after water imbibition (Nakabayashi et
al., 2005). Interestingly, the transcriptome at the imbibition stage depends on the status of dormancy. For non-
dormant seeds, most of the transcripts are associated with protein synthesis, while for dormant seeds, the transcripts
are dominated by genes associated with stress-responses (Finch-Savage et al., 2007; Buijs et al., 2019). Even the
transcript composition in primary dormant seeds, which occurs when the dormancy is initiated during
development, is different from that of secondary dormant seeds, which occurs when the dormancy is reinduced
(Cadman et al., 2006). These findings show the occurrence of phase transitions in transcript composition along the

course from dormant to germinated seed.

As omics technology becomes more widely available, several transcriptomics studies in seed germination
processes have been conducted on a larger-scale. More developmental stages, i.e., stratification and seedling stage,
and even spatial analyses have been included in these studies, resulting in the identification of gene co-expression
patterns as well as the predicted functions of hub-genes (Bassel et al., 2011; Narsai et al., 2011; Dekkers et al.,
2013; Silva et al., 2016). Through guilt-by-association, these co-expression based studies can be used for the
identification of regulatory genes that are involved in controlling the expression of downstream genes. These
regulatory genes can be subjected to further studies by reverse genetics to provide more insight into the molecular
mechanisms of gene expression in seed germination (i.e., Silva et al., 2016). Nevertheless, this approach still has
limitations. Uygun et al. (2016) argued that co-expressed genes do not always have similar biological functions.
On the other hand, genes involved in the same function are not always co-expressed since gene expression
regulation could be the result of post-transcriptional or other layers of regulation (Lelli et al., 2012). Further, Uygun
et al. (2016) emphasized the importance of combining the expression data with multiple relevant datasets to

maximize the effort in the prioritization of candidate regulatory genes.

Genetical genomics is a promising approach to study the regulation of gene expression by combining genome-
wide expression data with genotypic data of a segregating population (Jansen and Nap, 2001). To enable this
strategy, the location of markers associated with variation in gene expression is mapped on the genome, which
results in the identification of expression quantitative trait loci (eQTLS). Relative to the location of the associated
gene, the eQTL can be locally or distantly mapped, known as local and distant eQTLs (Brem et al., 2002; Rockman
and Kruglyak, 2006). Local eQTLs mostly arise because of variations in the corresponding gene or a cis-regulatory
element. In contrast, distant eQTLs typically occur due to polymorphism on trans-regulatory elements located far

away from the target genes (Rockman and Kruglyak, 2006). Therefore, given the positional information of distant
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87  eQTLs, one can identify the possible regulators of gene expression. However, the eQTL interval typically spans a
88 large area of the genome and harbors hundreds of candidate regulatory genes. A large number of candidate genes
89  would cause the experimental validation (e.g. using knock-out or overexpression lines) to be costly and take a long
90 time. Therefore, a prioritization method is needed to narrow down the list of candidate genes underlying eQTLs,
91 particularly on distant eQTL hotspots. A distant eQTL hotspot is a genomic locus where a large number of distant
92  eQTLsare collocated (Breitling et al., 2008). The common assumption is that the hotspot arises due to one or more
93 polymorphic master regulatory genes affecting the expression of multiple target genes (Breitling et al., 2008).
94  Therefore, the identification of master regulatory genes becomes the center of most genetical genomics studies as
95 the findings might improve our understanding of the regulation of gene expression (i.e., in Keurentjes et al., 2007;

96 Jimenez-Gomez et al., 2010; Terpstra et al., 2010; Valba et al., 2015; Sterken et al., 2017).

97 In this study, we carried out eQTL mapping to reveal loci controlling gene expression in seed germination. To

98 capture whole transcriptome changes during seed germination, we included four important seed germination

99 stages, which are primary dormant seeds (PD), after-ripened seeds (AR), six-hours imbibed seeds (IM), and seeds
100 with radicle protrusion (RP). In total, 160 recombinant inbred lines (RILs) from a cross between genetically distant
101 ecotypes Bay-0 and Shahdara (Bay x Sha) were used in this study (Loudet et al., 2002). Our results show that each
102  seed germination stage has a unique eQTL landscape, confirming the stage-specificity of gene regulation,
103 particularly for distant regulation. Based on network analysis, we identify the transcription factors ICE1 and
104 DEWAX as prioritized candidate regulatory genes for two major eQTL hotspots in PD and RP, respectively.
105 Finally, the resulting dataset complements the previous phenotypic QTL (Joosen et al., 2012) and metabolite QTL
106 (Joosen et al., 2013) datasets, allowing systems genetics studies in seed germination. The identified eQTLs are

107  available through the web-based AraQTL (http://www.bioinformatics.nl/AraQTL/) workbench (Nijveen et al.,

108  2017).
109
110 Results

111 Major transcriptional shifts take place after water imbibition and radicle protrusion

112 To visualize the transcriptional states of the parental lines and the RILs at the four seed germination stages, we
113 performed a principal component analysis using the log-intensities of all expressed genes (Figure 1). The first
114  principal component explains 55.6% of the variation and separates the samples into three groups. Germination

115  progresses from left to right with the PD and AR seeds grouping together, indicating that the after-ripening
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116  treatment does not induce a considerable change in global transcript abundance. The large-scale transcriptome
117  change only happens after water imbibition and radicle protrusion. This event was also observed by Finch-Savage
118 et al. (2007) and Silva et al. (2016). The second principal component on the PCA explains 14.2% variance in the
119 data and separates the RILs within each of the three clusters but not the parents. The source of this variation may
120 be the genetic variation among samples and shows transgressive segregation of gene expression in RILs due to

121 genetic reshuffling of the parental genomes during crossing and generations of selfing.

122 Toidentify specific expression patterns among genes in the course of seed germination, we performed an additional
123 analysis of the transcriptome data using hierarchical clustering (Figure 2). For this analysis, we only selected the
124 990 genes with a minimal fold change of two between any two consecutive stages (PD to AR, AR to IM, IM to
125 RP). We then clustered both the genes and the seed samples. As shown in the figure, the clustering of samples
126 shows similar grouping as in the previous PCA plot; three clusters were formed with one cluster containing both

127 PD and AR, while IM and RP form separate clusters.

128  The clustering of genes shows at least three distinctive gene expression patterns. In the first pattern, transcript
129 abundance is highest in the last stage, radicle protrusion. A GO enrichment test suggests that transcripts with this
130 expression pattern are involved in the transition from the heterotrophic seed to the autotrophic seedling stage, with
131 enriched processes such as photosynthesis, response to various light, and response to temperature. This is in
132 agreement with Rajjou et al. (2004), who showed that genes required for seedling growth are expressed after water
133 imbibition. The second pattern shows an opposite trend with higher transcript abundances in the first three stages
134 and lower expression at the end of the seed germination process. Some of these transcripts may be the remnant of
135 seed development since the GO term related to this process is overrepresented. Moreover, transcripts involved in
136 response to hydrogen peroxide were also overrepresented, which provides more evidence for the importance of
137 reactive oxygen species in seed germination (for review see Wojtyla et al., 2016). The last pattern represents genes
138  that are upregulated at the 1M stage. Genes with this pattern are functionally enriched in the catabolism of fatty
139  acids, a likely source of energy for seedling growth (Bewley et al., 2013). Altogether, these results suggest that

140 co-expression patterns of genes reflect particular functions during the seed germination process.

141

142 Distant eQTLs explain less variance than local eQTLs and are more specific to a seed germination stage

143 To map loci associated with gene expression levels, we performed eQTL mapping of 29,913 genes for each seed

144  population representing four seed germination stages (Table 1). We found eQTLs, numbers ranging from 1,335 to
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145 1,719 per stage (FDR = 0.05), spread across the genome. Among the genes with an eQTL, only a few (less than
146 1%) had more than one. We then categorized the eQTLSs into local and distant based on the distance between the
147  target gene and the eQTL peak marker or the confidence interval. Based on this criterion, over 72% of the eQTLsS
148 per stage were categorized as local, while the remainder were distant. Although the total of the identified eQTLs
149  was different between the stages, the ratio of distant to local eQTLs was relatively similar for all stages. We then
150 calculated the fraction of the total variation that is explained by the simple linear regression model for each eQTL.
151 By comparing the density distributions (Figure S1), we showed that local eQTLs generally explain a more
152 substantial fraction of gene expression variation than distant eQTLs. Finally, we determined the number of specific
153 and shared eQTLs across stages (Figure 3). Here, we show that distant eQTLs are more specific to seed germination
154 stages. Local eQTLs, on the other hand, are commonly shared between two or more stages, which is in line with
155 previous experiments showing overlapping local eQTLs and specific distant eQTLs across different developmental
156 stages (Vinuela et al., 2010), environments (Snoek et al., 2012; Lowry et al., 2013; Snoek et al., 2017) and

157 populations (Cubillos et al., 2012).

158

159 An eQTL hotspot on chromosome 5 is associated with genes related to seed germination and collocates

160 with multiple metabolic and phenotypic QTLs

161 To get an overview of how the eQTLs were mapped over the genome, we visualized the eQTL locations and their
162  associated genes on a local/distant eQTL plot (Figure 4A). Here, the local eQTLs are aligned across the diagonal
163 and spread relatively equally across the genome, while it is not the case for the distant eQTLs. Furthermore,
164  specific loci show clustering of eQTLs, which could indicate the presence of major regulatory genes that cause
165 genome-wide gene expression changes. We identified ten so-called (distant-) eQTL hotspots, with at least two
166 hotspots per stage (Table 2). The number of distant eQTLs located within these hotspots ranges from 16 to 96. The
167 major eQTL hotspots are PD2, IM2, and RP4, with 69, 69, and 96 distant eQTLs co-locating, respectively.
168 Moreover, the landscape of the eQTL hotspots (Figure 4B) differs for every stage, including PD and AR, which is

169  surprising since these two stages have a relatively similar transcriptome profile (Figure 1).

170  We remapped the QTLs for previously studied seed germination phenotypes (Joosen et al., 2012) and metabolites
171 (Joosen et al., 2013) using the RNA-seq based genetic map (Serin et al., 2017). We then visualized the resulting
172 QTL count histograms alongside the eQTL histogram (Figure 5). The histogram shows that several eQTL hotspots

173 collocate with hotspots for phenotype and metabolite QTLs (phQTLs and mQTLs, respectively). The most striking
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174  example is the collocation of QTLs on chromosome 5 around 24—25 Mb (IM2 and RP4) at the last two stages of
175 seed germination. We performed gene ontology (GO) term enrichment analysis for genes with an eQTL mapping
176  to these hotspots, and found ‘seed germination’ enriched among other terms (Table 2). These findings taken
177  together indicate that the IM2 and RP4 hotspots harbor one or more important genes affecting gene expression
178 during seed germination. Therefore, the identification of the regulatory gene(s) for one of these hotspots can give

179 us more insight into the trans-regulation of gene expression during seed germination.

180

181 Transcription factors were prioritized as the candidate genes for major eQTL hotspots

182 To prioritize the candidate regulatory genes underlying eQTL hotspots in this study, we constructed a network
183 based on the expression of genes with eQTLs on the hotspot location. We built the network for two hotspots: RP4,
184  where QTLs for expression, metabolite, and phenotype are collocated; and PD2, another major eQTL hotspot in
185  this study. For RP4, the total number of genes used to construct the network was 116, of which 20 had a local
186  eQTL at the hotspot, whereas for PD2, 114 genes were identified, of which 45 with a local eQTL. The genes with
187 local eQTLs were then labeled as candidates. The networks were constructed by integrating predictions from
188 several gene regulatory network inference methods to ensure the robustness of the result (Marbach et al., 2012).
189 The direction of the edges in the network is predicted using the GENIE3 method (Huynh-Thu et al., 2010). For
190  each candidate gene, we calculated the outdegree, indicating the number of outgoing edges of a gene to other genes
191 in the network, and the closeness centrality of the candidate gene nodes, which shows the efficiency of the gene
192 in spreading information to the rest of the genes in the network (Pavlopoulos et al., 2011). Finally, these two
193 network properties were used to prioritize the most likely regulator of the distant eQTL hotspot.

194 In the resulting network, genes encoding the transcription factors DECREASE WAX BIOSYNTHESIS/DEWAX
195 (AT5G61590), and INDUCER OF CBP EXPRESSION 1/ICE1 (AT3G26744) were prioritized as the most likely
196 candidate genes for RP4 (Figure 6) and PD2 (Figure 7), respectively. As many as 15 genes were predicted to be
197  associated with DEWAX and 32 genes with ICEL. Note that these numbers depend on the chosen threshold;
198 nonetheless, the current candidates are robust to changes when the parameter was changed (Table S3 and Table
199 S4). Furthermore, these two genes also had the highest closeness centrality among the other candidates, showing
200  that these genes have a strong influence within the network. We assessed the Bay x Sha SNP data (Genomes
201 Consortium. Electronic address and Genomes, 2016) and found several SNPs between the Bay and Sha parents in
202 both the DEWAX and ICE1 genes, including two that affect the amino acid sequence of the corresponding proteins

203 (Table S5 and Table S6). Also, querying for DEWAX and ICE1 on AraQTL showed a local eQTL for both genes
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204 in an experiment using the same RIL population on leaf tissue (West et al., 2007). This evidence supports the
205 presence of DEWAX and ICE1 polymorphisms between the Bay and Sha allele that might be responsible for the
206  steadily occurring local eQTLs at three stages (PD, IM, RP) for DEWAX and all four stages for ICE1.

207

208 Discussion

209  The function of DEWAX may be related to seed cuticular wax biosynthesis

210 In this study, we constructed a network of genes associated with the RP4 eQTL hotspot and showed that DEWAX
211 was prioritized as the candidate gene for the hotspot. DEWAX encodes an AP2/ERF-type transcription factor that
212 is well-known as a negative regulator of cuticular wax biosynthesis (Go et al., 2014; Suh and Go, 2014; Cui et al.,
213 2016; Li et al., 2019) and a positive regulator of defense response against biotic stress (Ju et al., 2017; Froschel et
214 al.,, 2019). This gene also seems to be involved in drought stress response (Huang et al., 2008) by inducing the
215  expression of genes that confer drought tolerance (Sun et al., 2016), some of which (LEA4-5, LTI-78) have a distant
216  eQTL at the RP4 hotspot. Moreover, the overexpression of DEWAX in Arabidopsis increases the seed germination
217 rate (Sun et al., 2016). The role of DEWAX in seed germination is still unknown but may be related to cuticular

218 wax biosynthesis.

219 Wax is a mixture of hydrophobic lipids, which is part of the plant cuticle together with cutin and suberin (Yeats
220 and Rose, 2013). Previous studies have demonstrated that the biosynthesis of wax in the cuticular layer of stems
221 and leaves is negatively regulated by DEWAX (Go et al., 2014; Suh and Go, 2014; Cui et al., 2016; Li et al., 2019).
222 Although the function of this gene has never been reported in seeds, the presence of a cuticular layer indeed plays
223 a significant role in maintaining seed dormancy (De Giorgi et al., 2015; Nonogaki, 2019). In Arabidopsis seeds,
224 the thick cuticular structure covering the endosperm prevents cell expansion and testa rupture that precede radicle
225 protrusion. Besides, this layer also reduces the diffusion of oxygen into the seed, thus preventing oxidative stress

226 that may cause rapid seed aging and loss of dormancy (De Giorgi et al., 2015).

227 Besides DEWAX, MUM?2 is another possible regulatory gene for the RP4 hotspot based on QTL confirmation of
228  animbibed seed size phenotype using a heterogeneous inbred family approach (Joosen et al., 2012). In our study,
229  we also discovered that most eQTLs on the RP4 hotspot peak at the marker located closely to the MUMZ2 location
230 (Figure S2), which provides more evidence for this gene as the regulator for the hotspot. MUMZ2 encodes a cell-
231 wall modifying beta-galactosidase involved in seed coat mucilage biosynthesis, and the mum2 mutant is

232 characterized by a failure in extruding mucilage after water imbibition (Dean et al., 2007). In our analysis, MUM2
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233 did not have a distant eQTL on the RP4 hotspot; thus, it is not prioritized as a prominent candidate, pointing out a
234 limitation of our approach in prioritizing candidate eQTL hotspot genes which will be discussed later. Nonetheless,
235  we found some evidence connecting DEWAX to MUM2. First, Shi et al. (2019) found out that the mutant of CPL2,
236  another gene involved in wax biosynthesis, showed a delayed secretion of the enzyme encoded by MUM2 that
237 disrupts seed coat mucilage extrusion. In the same study, they revealed that CPL2 encodes a phosphatase involved
238 in secretory protein trafficking required for the secretion of extracellular matrix materials, including wax and cell
239  wall-modifying enzyme. This finding provides a link between wax biosynthesis and cell-wall modifying enzymes,

240  and possibly between the genes involved in these processes.

241 Second, the expression of DEWAX may be the consequence of the disruption of seed mucilage extrusion. Penfield
242 etal. (2001) suggest that seed mucilage helps enhance water uptake to ensure efficient germination in the condition
243 of low water potential. This is supported by the evidence that the mucilage-impaired mutant showed reduced
244 maximum germination only on osmotic polyethylene glycol solutions (Penfield et al., 2001). Therefore, the
245 absence of mucilage in imbibed seed under low water potential may cause osmotic stress in the seed and, in turn,
246 induce the expression of DEWAX, which is known to play a role in the response of plants against osmotic stress
247  (Sun et al., 2016). If this is the case, then a scenario could be that DEWAX acts downstream of MUMZ2, and the

248  expression variation of these two genes lead to the emergence of the RP4 eQTL hotspot.

249 Network analysis shows the involvement of ICE1 as a regulator of gene expression during seed germination

250 ICE1 is an MYC-like basic helix-loop-helix (bHLH) transcription factor that shows pleiotropic effects in plants.
251 Earlier studies of ICE1 mostly focus on the protein function in the acquisition of cold tolerance (Chinnusamy et
252  al., 2003; Lee et al., 2005) and stomatal lineage development (Kanaoka et al., 2008). Recently, ICE1 was also
253 shown to form a heterodimer with ZOU, another bHLH transcription factor, to regulate endosperm breakdown
254 required for embryo growth during seed development (Denay et al., 2014). At a later stage, ICEL negatively
255 regulates ABA-dependent pathways to promote seed germination and seedling establishment (Liang and Yang,
256  2015). This process involves repressing the expression of transcription factors in ABA signaling, such as ABI3
257  and ABI5, and ABA-responsive genes, such as EM6 and EM1, thus initiating seed germination and subsequent

258  seedling establishment (Hu et al., 2019; MacGregor et al., 2019).

259 In this study, we performed a network analysis for genes having distant eQTLs on the PD2 hotspot and prioritized
260 ICEL1 as the most likely regulator using network analysis. The high connectivity of ICE1 with the other genes in

261 the network could reflect an essential regulatory function of this gene during seed germination. However, we did
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262 not find any of the known ICE1 target genes (i.e., ABI3, ABI5, EM1, and EM6) nor seed germination phenotype
263 (Figure 5) having an eQTL at the ICE1 locus. It could be that the ICE1 polymorphism is not severe enough to
264  cause considerable trait variation, especially to break a robust biological system where several buffering
265 mechanisms exist to prevent small molecular perturbation from propagating to the phenotypic level (Fu et al.,

266 2009; Signor and Nuzhdin, 2018).

267 Limitations of co-expression network in identifying candidate genes of eQTL hotspots

268  The construction of a co-expression network is a promising approach to prioritize candidate eQTL genes (Serin et
269  al., 2016). Despite its potential, there is a major limitation in using a co-expression network. The network is based
270 on gene expression data; hence the identified causal genes are those that directly affect gene expression. For
271 example, as we described above, our approach did not prioritize MUM2 for the RP4 hotspot, possibly because the
272 gene does not cause variation in the target gene expression but rather causes differences at another level of target
273 gene regulation (e.g., enzyme biosynthesis) between two parental alleles in the RIL population. Other studies
274 reported similar results where a known causal gene was not detected as a hub in the network (Jimenez-Gomez et
275 al., 2010; Sterken et al., 2017). To overcome this, future work should focus on networks that are built upon multi-
276 omics data by including metabolic, proteomic, and, more importantly, phenotypic measurement data (Hawe et al.,
277 2019). Moreover, prior biological knowledge, including protein-protein interaction (Szklarczyk et al., 2017),
278  transcription factor binding-site (Kulkarni et al., 2018), and other types of interactions (for review see Kulkarni
279  and Vandepoele, 2019) can be incorporated to construct data-driven interaction networks. Nevertheless, our
280 approach offers a simple and straightforward way to prioritize candidate genes underlying eQTL hotspots from a

281 limited amount of resources.

282

283 Materials and Methods

284 Plant materials

285 In this study, we used 164 recombinant inbred lines (RILs) derived from a cross between the Bay-0 and Shahdara
286  Arabidopsis ecotypes (Loudet et al., 2002) provided by the Versailles Biological Resource Centre for Arabidopsis

287 (http://dbsgap.versailles.inra.fr/vnat). The plants were sown in a fully randomized setup on 4x4 cm rockwool plugs

288 (MM40/40, Groudan B. V.) and hydrated with 1 g/l Hyponex (NPK = 7:6:19, http://www.hyponex.co.jp) in a

289  climate chamber (20°C day, 18°C night) with 16 hours of light (35 W/m2) at 70% relative humidity. Seeds from

290  four to seven plants per RIL were bulk harvested for the experiment (see also Joosen et al., 2012; Joosen et al.,
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291 2013). The genotypic data consisting of 1,059 markers per line was obtained from Serin et al. (2017). However,
292 the genotypic data is available only for 160 RILs; therefore, we used this number of lines for eQTL mapping.
293

294 Experimental setup

295  The RIL population was grouped into four subpopulations, each one representing one of the four different seed
296 germination stages. We used the designGG-package (Li et al., 2009) in R (version 3.6.0 Windows x64) to aid the
297  grouping so that the distribution of Bay-0 and Sha alleles between sub-populations is optimized. The first stage is
298  the primary dormant (PD) stage when the seeds were harvested and stored at -80°C after one week at ambient
299 conditions. The second stage is after-ripened (AR) seeds that obtained maximum germination potential after five
300 days of imbibition by storing at room temperature and ambient relative humidity. The third stage is the 6 hours
301 imbibition (IM) stage. For this stage, the seeds were after-ripened and imbibed for six hours on water-saturated
302 filter paper at 20°C and immediately transferred to a dry filter paper for 1 minute to remove the excess of water.
303 The fourth stage is the radicle protrusion (RP) stage. To select seeds at this stage, we used a binocular to observe
304  the presence of a protruded radicle tip.

305

306 RNA isolation

307 Total RNA was extracted according to the hot borate protocol modified from Wan and Wilkins (1994). For each
308 treatment, 20 mg of seeds were homogenized and mixed with 800 pl of extraction buffer (0.2M Na
309  boratedecahydrate (Borax), 30 mM EGTA, 1% SDS, 1% Na deoxycholate (Na-DOC)) containing 1.6 mg DTT
310  and 48 mg PVP40 which had been heated to 80°C. Then, 1 mg proteinase K was added to this suspension and
311 incubated for 15 min at 42°C. After adding 64 ul of 2 M KCL, the samples were incubated on ice for 30 min and
312 subsequently centrifuged for 20 min at 12,000 g. Ice-cold 8 M LiCl was added to the supernatant in a final
313 concentration of 2 M, and the tubes were incubated overnight on ice. After centrifugation for 20 min at 12,000 g
314 at 4°C, the pellets were washed with 750 pl ice-cold 2 M LiCl. The samples were centrifuged for another 10 min
315  at 10,000 g at 4°C, and the pellets were re-suspended in 100 ul DEPC treated water. The samples were phenol-
316 chloroform extracted, DNAse treated (RQ1 DNase, Promega), and further purified with RNeasy spin columns
317 (Qiagen) following the manufacturer’s instructions. The RNA quality and concentration were assessed by agarose
318 gel electrophoresis and UV spectrophotometry.

319

320 Microarray analysis
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321 RNA was processed for use on Affymetrix Arabidopsis SNPtile array (atSNPtilx520433), as described by the
322 manufacturer. Briefly, 1 mg of total RNA was reverse transcribed using a T7-Oligo(dT) Promoter Primer in the
323  first-strand cDNA synthesis reaction. Following RNase H-mediated second-strand cDNA synthesis, the double-
324  stranded cDNA was purified and served as a template in the subsequent in vitro transcription reaction. The reaction
325  was carried out in the presence of T7 RNA polymerase and a biotinylated nucleotide analog/ribonucleotide mix
326  for complementary RNA (cRNA) amplification and biotin labeling. The biotinylated cRNA targets were then
327  cleaned up, fragmented, and hybridized to the SNPtile array. The hybridization data were extracted using a custom
328 R script with the help of an annotation-file based on TAIR10. Intensity data were log-transformed and normalized
329 using the normalizeBetweenArrays function with the quantile method from Bioconductor package limma (Ritchie
330 et al., 2015). Then, for each annotated gene, the log-intensities of anti-sense exon probes were averaged.

331

332 Clustering analysis

333 Principal component analysis for log-intensities of all parents and RIL population samples was done using the
334 pr.comp function in R where the unscaled log intensities are shifted to be zero centered. For hierarchical clustering,
335  we only selected genes with a minimal fold change of 2 between any pair of consecutive stages (PD to AR, AR to
336 IM, or IM to RP). Then, the distance matrices of filtered genes and all samples were calculated using the absolute
337 Pearson correlation. These matrices were clustered using Ward’s method. We manually set the number of clusters
338  to 8 and performed gene ontology enrichment for each of the clusters using the weight algorithm of the topGO
339 package in R and used 29,913 genes detected by hybridization probes as the background (Alexa et al., 2006).
340

341 eQTL mapping

342 For eQTL mapping, we used 160 RILs separated into four subpopulations, each representing one specific seed
343 germination stage. For each stage separately, eQTLs were mapped using a single-marker model, as in Sterken et

344  al. (2017). The gene expression data were fitted to the linear model
345 yi,j ~ x]' + e]'

346  wherey is the log-intensity representing the expression ofagene i (i =1, 2, ..., 29,913) of RIL j (j =1, 2, ..., 160)
347  explained by the parental allele on marker location x (x =1, 2, ..., 1,059). The random error in the model is
348 represented by e;.

349  To account for the multiple-testing burden in this analysis, we determined the genome-wide significant threshold

350 using a permutation approach (e.g. see Sterken et al., 2017). A permuted dataset was created by randomly
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351 distributing the log-intensities of the gene under study over the genotypes. Then, the previous eQTL mapping
352 model was performed on this permuted dataset. This procedure was repeated 100 times for each stage. The
353  threshold was determined using:

354 FDS (Mo ) (m)
RDS — m 108V

355  where, at a specific significance level, the false discoveries (FDS) were the averaged permutation result, and real
356 discoveries (RDS) were the outcome of the eQTL mapping using the unpermuted dataset. The number of true
357 hypotheses tested (m,) was 29,913 - RDS, and the number of hypotheses (m) tested was the number of genes,
358  which was 29,913. For the g-value, we used a threshold of 0.05. As a result, we got a threshold of 4.2 for PD and

359 AR, 4.1 for IM, and 4.3 for RP.

360 The confidence interval of an eQTL was determined based on a -logio(p-value) drop of 1.5 compared to the peak
361 marker (as in Keurentjes et al., 2007; Cubillos et al., 2012). We determine an eQTL as local if the peak marker or
362 the confidence interval lies within 1 Mb or less from the target gene location (as in Cubillos et al., 2012). All

363 eQTLs that did not meet this criterion were defined as distant.

364 We defined a region as an eQTL hotspot if the number of distant-eQTLs mapped to a particular genomic region
365  significantly exceeded the expectation. First, we divided the genome into bins of 2 Mb. Then, we determined the
366  expected number of distant-eQTLs per genomic bin by dividing the total number of distant-eQTLs by the total
367 number of bins. Based on a Poisson distribution, any bin having an actual number of distant-eQTLs larger than

368 expected (p < 0.0001) was then considered as an eQTL hotspot.
369
370 Gene regulatory network inference and candidate genes prioritization of eQTL hotspot

371 We used a community-based approach to infer regulatory networks of genes with an eQTL on a hotspot location
372 using expression data. In this approach, we assume the hotspot is caused by a polymorphism in or near one or
373 more regulatory genes causing altered expression that can be detected as a local eQTL (Breitling et al., 2008;
374  Joosen et al., 2009; Jimenez-Gomez et al., 2010; Serin et al., 2017). Based on this assumption, we labeled all genes
375  with a local eQTL on a hotspot as candidate regulators and genes with a distant eQTL as targets. The expression
376 of these genes was subjected to five different network inference methods to predict the interaction weight. The
377 methods used were TIGRESS (Haury et al., 2012), Spearman correlation, CLR (Faith et al., 2007), ARACNE

378  (Margolin et al., 2006), and GENIE3 (Huynh-Thu et al., 2010). The predictions from GENIE3 were used to
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379  establish the direction of the interaction by removing the one that has the lowest variable importance to the
380  expression of the target genes between two pairs of genes. For instance, if the importance of gene; — gene; is smaller
381 than genej — gene;, then the former is removed. By averaging the rank, the predictions of all inference methods
382  were integrated to produce a robust and high performance prediction (Marbach et al., 2012). The threshold was
383 determined as the minimum average rank where all nodes are included in the network. Finally, the network was
384  visualized using Cytoscape (version 3.7.1) (Shannon et al., 2003), and network properties were calculated using
385 the NetworkAnalyzer tool (Assenov et al., 2008). The candidate genes for each eQTL hotspot were prioritized

386  based on their outdegree and closeness centrality (Pavlopoulos et al., 2011).

387

388 Script availability

389 The code for the analysis and visualization is available in the form of R scripts at the Wageningen University

390 GitLab repository (https://git.wur.nl/harta003/seed-germination-qtl).

391

392 Accession numbers

393 Cel files of microarray data have been deposited in the ArrayExpress database at EMBL-EBI

394 (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-xXXX.

395

396 Supplemental materials

397 Supplemental Figure S1. Density distribution of the absolute eQTL effect, -log(p), and explained phenotypic
398  variance (R2) for local and distant eQTLs.

399 Supplemental Figure S2. The histogram of the number of distant eQTLs per marker location for the PD2 (A) and
400 RP4 (B) hotspot.

401 Supplemental Table S1. Gene ontology enrichment for genes with distinctive expression patterns during seed
402 germination.

403 Supplemental Table S2. Distant eQTL hotspots of the four seed germination stages

404 Supplemental Table S3. The mean rank and standard deviation of candidate genes as the most likely causal genes

405  for the RP4 hotspot across different thresholds
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406 Supplemental Table S4. The mean rank and standard deviation of candidate genes as the most likely causal genes
407  for the PD2 hotspot across different thresholds.

408 Supplemental Table S5. The location and type of SNPs on candidate genes for the RP4 eQTL hotspot and MUM2.
409 Supplemental Table S6. The location and type of SNPs on candidate genes for the PD2 eQTL hotspot.

410 Supplemental Table S7. The list of genetic markers used for QTL mapping.

411 Supplemental Table S8. The genetic map of Bay-0 x Sha parents and the RIL population.

412 Supplemental Table S9. Gene expression levels of Bay-0 x Sha parents and the RIL population.

413 Supplemental Table S10. Phenotype measurements of Bay-0 x Sha parents and the RIL population.

414 Supplemental Table S11. Metabolite measurements of Bay-0 x Sha parents and the RIL population.

415 Supplemental Table S12. Differentially expressed genes between any of two consecutive stages.

416 Supplemental Table S13. The list of expression QTL.

417 Supplemental Table S14. The list of phenotype QTL.

418 Supplemental Table S15. The list of metabolite QTL.
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432 Tables
433
434 Table 1. Summary of the eQTL mapping for the four different seed germination stages
435
stage eQTLs genes eQTL total proportion
withan  type
436 eQTL
primary 1,335 1,328 local 955 0.72
dormant distant 380 0.28
after-ripened 1,395 1,377 local 1,089 0.78
distant 306 0.22
six hours after 1,719 1,702 local 1,320 0.77
imbibition distant 399 0.23
radicle 1,426 1,418 local 1,096 0.77
protrusion distant 330 0.23
437
438
439
440 Table 2. Distant eQTL hotspots of the four seed germination stages. These hotspots were identified by
441 dividing the genome into bins of 2 Mbp and performing a test to determine whether the number of distant
442 eQTLs on a particular bin is higher than expected (p > 0.0001) assuming a Poisson distribution. Seed
443 germination phenotype and metabolite data were taken from Joosen et al. (2012) and Joosen et al. (2013),
444 respectively. Detailed information about enriched GO terms, metabolite, and phenotype can be seen on
445 Supplemental Table S2 in the Supplementary Material.
hotspot position distant enriched metabolite phenotype
ID eQTLs GO terms QTL QTL
PD1 ch1:6-10 Mb 43 11 1 4
PD2 ch3:8-12 Mb 69 3 2 1
AR1 ch2:12-14 Mb 16 0 0 0
AR2 ch3:2-4 Mb 20 9 1 1
IM1 ch5:6-8 Mb 19 2 24 1
IM2 ch5:22-26 Mb 69 6 6 31
RP1 ch1:0-2 Mb 23 1 0 1
RP2 ch1:6-8 Mb 18 0 0
RP3 ch5:14-16 Mb 21 29 0 1
RP4 ch5:24-26Mb 96 18 20 25
446
447
448
449
450

451
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452 Figure Legends

453 Figure 1. Principal component plot derived from transcriptome measurements of 164 RILs, and the Bay-0 and
454 Sha parental lines taken at primary dormant seed (PD), after-ripened seed (AR), six-hours after imbibition (IM),

455  and at the time when the radicle is protruded (RP).

456 Figure 2. Hierarchical clustering of Bay-0, Sha, and 164 RILs transcriptome samples measured at four different
457  seed germination stages (top) and 990 genes differentially expressed between two consecutive stages (left). Listed
458 genes are the sample of genes for each cluster. Some enriched gene ontology terms for gene clusters are listed on

459  the right.

460 Figure 3. Shared local and distant eQTLs per seed germination stage.

461 Figure 4. eQTL mapping from four different seed germination stages. The local-distant eQTL plot is shown on
462  top (A). The positions of eQTLs are plotted along the five chromosomes on the x-axis and the location of the genes
463 with an eQTL is plotted on the y-axis. The black dots (e) represent local eQTLs (located within 1 Mb of the
464 associated gene) and the colored dots represent distant eQTLs (located far from the associated gene). The gray
465 horizontal lines next to each dot indicate the confidence interval of the eQTL location based on a 1.5 drop in -
466 log10(p-value). The histogram of the number of eQTLs per genomic location is shown at the bottom (B). The

467 horizontal dashed black lines mark the significance threshold for an eQTL hotspot.

468 Figure 5. Hotspots for phQTLs, mQTLs, and eQTLs. A region of interest is located on chromosome 5 (around

469 24—26 Mb) where hotspots from different QTL levels collocate.

470 Figure 6. The prioritization of candidate genes for RP4 eQTL hotspot. The network of genes associated with RP4
471 is visualized in A. The genes in the network are represented by nodes with various sizes according to the outdegree.
472 The unlabeled grey nodes are the targets (genes with a distant eQTL) and the labelled green nodes are the
473 candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is
474 DEWAX (AT5G61590). The list of top ten candidate genes for the hotspot is shown in B. The expression of
475  DEWAX in 160 RILs across the four seed germination stages is visualized in C. The RILs with the Sha allele of

476  the gene are depicted in blue, the ones with the Bay-0 allele of DEWAX are depicted in red.

477  Figure 7. The prioritization of candidate genes for the PD2 eQTL hotspot. The network of genes associated with
478 PD?2 is visualized in A. The genes in the network are represented by nodes with various sizes according to the

479 outdegree. The unlabeled grey nodes are the targets (genes with a distant eQTL) and labelled green nodes are the
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480 candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is ICE1
481 (AT3G26744). The list of top ten candidate genes for the hotspot is shown in B. The expression of ICE1 in 160
482 RILs across the four seed germination stages is visualized in C. The RILs with the Sha allele of the gene are

483 depicted in blue, the ones with the Bay-0 allele of ICE1 are depicted in red.
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