

1 **Short title: Stage-specific eQTL hotspots in seed germination**

2 \* Corresponding authors: Margi Hartanto, email: [margi.hartanto@wur.nl](mailto:margi.hartanto@wur.nl); Harm Nijveen, email:  
3 [harm.nijveen@wur.nl](mailto:harm.nijveen@wur.nl)

4

5 **Title: Network Analysis Prioritizes DEWAX and ICE1 as the Candidate Genes for Major eQTL Hotspots  
6 in Seed Germination**

7

8 **Author names and affiliations<sup>1</sup>**

9 Margi Hartanto<sup>1\*</sup>, Ronny V. L. Joosen<sup>2</sup>, Basten L. Snoek<sup>3</sup>, Leo A. J. Willems<sup>2</sup>, Mark G. Sterken<sup>4</sup>, Dick de Ridder<sup>1</sup>,  
10 Henk W. M. Hilhorst<sup>2</sup>, Wilco Ligterink<sup>2</sup>, Harm Nijveen<sup>1\*</sup>

11 <sup>1</sup>Bioinformatics Group, Wageningen University, Droevedaalsesteeg 1, NL-6708 PB Wageningen, The  
12 Netherlands

13 <sup>2</sup>Laboratory of Plant Physiology, Wageningen University, Droevedaalsesteeg 1, NL-6708 PB Wageningen, The  
14 Netherlands

15 <sup>3</sup>Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

16 <sup>4</sup>Laboratory of Nematology, Wageningen University, Droevedaalsesteeg 1, NL-6708 PB Wageningen, The  
17 Netherlands

18

19 **One-sentence summary**

20 Two transcription factors, DEWAX and ICE1, may be important regulators of gene expression during seed  
21 germination, based on network analysis of eQTL hotspots.

22

23 **Abstract**

24 Seed germination is characterized by a constant change of gene expression across different time points. These  
25 changes are related to specific processes, which eventually determine the onset of seed germination. To get a better  
26 understanding on the regulation of gene expression during seed germination, we performed a quantitative trait

---

<sup>1</sup> Author contributions: HN, WL, HH, and DR conceived the study. RVLJ and LAJW performed the experiments. WL, RVLJ, and MH analyzed the data in consultation with MGS and LBS. MH wrote the manuscript with contributions from all authors. All authors read and approved the final manuscript.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the Journal policy described in the Instruction for Authors ([www.plantphysiol.org](http://www.plantphysiol.org)) is: Margi Hartanto, email: [margi.hartanto@wur.nl](mailto:margi.hartanto@wur.nl); Harm Nijveen ([harm.nijveen@wur.nl](mailto:harm.nijveen@wur.nl))

Funding: This work was supported by the Technology Foundation STW (RVLJ, LAJW, WL).  
Contact: [margi.hartanto@wur.nl](mailto:margi.hartanto@wur.nl); [harm.nijveen@wur.nl](mailto:harm.nijveen@wur.nl)

27 locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-  
28 ripened, six-hour after imbibition, and radicle protrusion stage) using *Arabidopsis thaliana* Bay x Sha recombinant  
29 inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found  
30 several eQTL hotspots across stages associated with the regulation of expression of a large number of genes.  
31 Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTLs  
32 in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for  
33 two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most  
34 likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression  
35 is dynamic along the course of seed germination.

36

37 **Keywords:** *Arabidopsis*, eQTL, network analysis, seed germination.

38

### 39 **Introduction**

40 Seed germination involves a series of events starting with the transition of *quiescent* to physiologically active seeds  
41 and ends with the emergence of the embryo from its surrounding tissues. Germination is initiated when seeds  
42 become imbibed by water, leading to the activation of seed physiological activities (Nonogaki et al., 2010; Bewley  
43 et al., 2013). Major metabolic activities occur after seeds become hydrated, for example, restoration of structural  
44 integrity, mitochondrial repair, initiation of respiration, and DNA repair (Nonogaki et al., 2010; Bewley et al.,  
45 2013). For some species such as *Arabidopsis thaliana*, germination can be blocked by seed dormancy. Dormant  
46 seeds need to sense and respond to environmental cues to break their dormancy and complete germination. In  
47 *Arabidopsis thaliana*, seed dormancy can be alleviated by periods of dry after-ripening or moist chilling (Bewley  
48 et al., 2013). Soon after dormancy is broken, the storage reserves are broken down, and germination-associated  
49 proteins are synthesized. Lastly, further water uptake followed by cell expansion leads to radicle protrusion through  
50 endosperm and seed coat, which marks the end of germination (Bewley et al., 2013).

51 A major determinant for the completion of seed germination is the transcription and translation of mRNAs. The  
52 activity of mRNA transcription is low in dry, mature seeds (Comai and Harada, 1990; Leubner-Metzger, 2005),  
53 and drastically increases after seeds become rehydrated (Bewley et al., 2013). Nevertheless, stored mRNAs of  
54 more than 12,000 genes with various functions are already present in dry seeds. These mRNAs are not only  
55 remnants from the seed developmental process, but also mRNAs for genes related to metabolism as well as protein  
56 synthesis and degradation required in early seed germination (Rajjou et al., 2004; Nakabayashi et al., 2005). Later

57 in after-ripened seeds, only a slight change in transcript composition was detected compared to the dry seeds  
58 (Finch-Savage et al., 2007). The major shift in transcriptome takes place after water imbibition (Nakabayashi et  
59 al., 2005). Interestingly, the transcriptome at the imbibition stage depends on the status of dormancy. For non-  
60 dormant seeds, most of the transcripts are associated with protein synthesis, while for dormant seeds, the transcripts  
61 are dominated by genes associated with stress-responses (Finch-Savage et al., 2007; Buijs et al., 2019). Even the  
62 transcript composition in primary dormant seeds, which occurs when the dormancy is initiated during  
63 development, is different from that of secondary dormant seeds, which occurs when the dormancy is reinduced  
64 (Cadman et al., 2006). These findings show the occurrence of phase transitions in transcript composition along the  
65 course from dormant to germinated seed.

66 As omics technology becomes more widely available, several transcriptomics studies in seed germination  
67 processes have been conducted on a larger-scale. More developmental stages, i.e., stratification and seedling stage,  
68 and even spatial analyses have been included in these studies, resulting in the identification of gene co-expression  
69 patterns as well as the predicted functions of hub-genes (Bassel et al., 2011; Narsai et al., 2011; Dekkers et al.,  
70 2013; Silva et al., 2016). Through guilt-by-association, these co-expression based studies can be used for the  
71 identification of regulatory genes that are involved in controlling the expression of downstream genes. These  
72 regulatory genes can be subjected to further studies by reverse genetics to provide more insight into the molecular  
73 mechanisms of gene expression in seed germination (i.e., Silva et al., 2016). Nevertheless, this approach still has  
74 limitations. Uygun et al. (2016) argued that co-expressed genes do not always have similar biological functions.  
75 On the other hand, genes involved in the same function are not always co-expressed since gene expression  
76 regulation could be the result of post-transcriptional or other layers of regulation (Lelli et al., 2012). Further, Uygun  
77 et al. (2016) emphasized the importance of combining the expression data with multiple relevant datasets to  
78 maximize the effort in the prioritization of candidate regulatory genes.

79 Genetical genomics is a promising approach to study the regulation of gene expression by combining genome-  
80 wide expression data with genotypic data of a segregating population (Jansen and Nap, 2001). To enable this  
81 strategy, the location of markers associated with variation in gene expression is mapped on the genome, which  
82 results in the identification of expression quantitative trait loci (eQTLs). Relative to the location of the associated  
83 gene, the eQTL can be locally or distantly mapped, known as local and distant eQTLs (Brem et al., 2002; Rockman  
84 and Kruglyak, 2006). Local eQTLs mostly arise because of variations in the corresponding gene or a cis-regulatory  
85 element. In contrast, distant eQTLs typically occur due to polymorphism on trans-regulatory elements located far  
86 away from the target genes (Rockman and Kruglyak, 2006). Therefore, given the positional information of distant

87 eQTLs, one can identify the possible regulators of gene expression. However, the eQTL interval typically spans a  
88 large area of the genome and harbors hundreds of candidate regulatory genes. A large number of candidate genes  
89 would cause the experimental validation (e.g. using knock-out or overexpression lines) to be costly and take a long  
90 time. Therefore, a prioritization method is needed to narrow down the list of candidate genes underlying eQTLs,  
91 particularly on distant eQTL hotspots. A distant eQTL hotspot is a genomic locus where a large number of distant  
92 eQTLs are collocated (Breitling et al., 2008). The common assumption is that the hotspot arises due to one or more  
93 polymorphic master regulatory genes affecting the expression of multiple target genes (Breitling et al., 2008).  
94 Therefore, the identification of master regulatory genes becomes the center of most genetical genomics studies as  
95 the findings might improve our understanding of the regulation of gene expression (i.e., in Keurentjes et al., 2007;  
96 Jimenez-Gomez et al., 2010; Terpstra et al., 2010; Valba et al., 2015; Sterken et al., 2017).

97 In this study, we carried out eQTL mapping to reveal loci controlling gene expression in seed germination. To  
98 capture whole transcriptome changes during seed germination, we included four important seed germination  
99 stages, which are primary dormant seeds (PD), after-ripened seeds (AR), six-hours imbibed seeds (IM), and seeds  
100 with radicle protrusion (RP). In total, 160 recombinant inbred lines (RILs) from a cross between genetically distant  
101 ecotypes Bay-0 and Shahdara (Bay x Sha) were used in this study (Loudet et al., 2002). Our results show that each  
102 seed germination stage has a unique eQTL landscape, confirming the stage-specificity of gene regulation,  
103 particularly for distant regulation. Based on network analysis, we identify the transcription factors ICE1 and  
104 DEWAX as prioritized candidate regulatory genes for two major eQTL hotspots in PD and RP, respectively.  
105 Finally, the resulting dataset complements the previous phenotypic QTL (Joosen et al., 2012) and metabolite QTL  
106 (Joosen et al., 2013) datasets, allowing systems genetics studies in seed germination. The identified eQTLs are  
107 available through the web-based AraQTL (<http://www.bioinformatics.nl/AraQTL/>) workbench (Nijveen et al.,  
108 2017).

109

## 110 **Results**

### 111 **Major transcriptional shifts take place after water imbibition and radicle protrusion**

112 To visualize the transcriptional states of the parental lines and the RILs at the four seed germination stages, we  
113 performed a principal component analysis using the log-intensities of all expressed genes (Figure 1). The first  
114 principal component explains 55.6% of the variation and separates the samples into three groups. Germination  
115 progresses from left to right with the PD and AR seeds grouping together, indicating that the after-ripening

116 treatment does not induce a considerable change in global transcript abundance. The large-scale transcriptome  
117 change only happens after water imbibition and radicle protrusion. This event was also observed by Finch-Savage  
118 et al. (2007) and Silva et al. (2016). The second principal component on the PCA explains 14.2% variance in the  
119 data and separates the RILs within each of the three clusters but not the parents. The source of this variation may  
120 be the genetic variation among samples and shows transgressive segregation of gene expression in RILs due to  
121 genetic reshuffling of the parental genomes during crossing and generations of selfing.

122 To identify specific expression patterns among genes in the course of seed germination, we performed an additional  
123 analysis of the transcriptome data using hierarchical clustering (Figure 2). For this analysis, we only selected the  
124 990 genes with a minimal fold change of two between any two consecutive stages (PD to AR, AR to IM, IM to  
125 RP). We then clustered both the genes and the seed samples. As shown in the figure, the clustering of samples  
126 shows similar grouping as in the previous PCA plot; three clusters were formed with one cluster containing both  
127 PD and AR, while IM and RP form separate clusters.

128 The clustering of genes shows at least three distinctive gene expression patterns. In the first pattern, transcript  
129 abundance is highest in the last stage, radicle protrusion. A GO enrichment test suggests that transcripts with this  
130 expression pattern are involved in the transition from the heterotrophic seed to the autotrophic seedling stage, with  
131 enriched processes such as photosynthesis, response to various light, and response to temperature. This is in  
132 agreement with Rajjou et al. (2004), who showed that genes required for seedling growth are expressed after water  
133 imbibition. The second pattern shows an opposite trend with higher transcript abundances in the first three stages  
134 and lower expression at the end of the seed germination process. Some of these transcripts may be the remnant of  
135 seed development since the GO term related to this process is overrepresented. Moreover, transcripts involved in  
136 response to hydrogen peroxide were also overrepresented, which provides more evidence for the importance of  
137 reactive oxygen species in seed germination (for review see Wojtyla et al., 2016). The last pattern represents genes  
138 that are upregulated at the IM stage. Genes with this pattern are functionally enriched in the catabolism of fatty  
139 acids, a likely source of energy for seedling growth (Bewley et al., 2013). Altogether, these results suggest that  
140 co-expression patterns of genes reflect particular functions during the seed germination process.

141

#### 142 **Distant eQTLs explain less variance than local eQTLs and are more specific to a seed germination stage**

143 To map loci associated with gene expression levels, we performed eQTL mapping of 29,913 genes for each seed  
144 population representing four seed germination stages (Table 1). We found eQTLs, numbers ranging from 1,335 to

145 1,719 per stage (FDR = 0.05), spread across the genome. Among the genes with an eQTL, only a few (less than  
146 1%) had more than one. We then categorized the eQTLs into local and distant based on the distance between the  
147 target gene and the eQTL peak marker or the confidence interval. Based on this criterion, over 72% of the eQTLs  
148 per stage were categorized as local, while the remainder were distant. Although the total of the identified eQTLs  
149 was different between the stages, the ratio of distant to local eQTLs was relatively similar for all stages. We then  
150 calculated the fraction of the total variation that is explained by the simple linear regression model for each eQTL.  
151 By comparing the density distributions (Figure S1), we showed that local eQTLs generally explain a more  
152 substantial fraction of gene expression variation than distant eQTLs. Finally, we determined the number of specific  
153 and shared eQTLs across stages (Figure 3). Here, we show that distant eQTLs are more specific to seed germination  
154 stages. Local eQTLs, on the other hand, are commonly shared between two or more stages, which is in line with  
155 previous experiments showing overlapping local eQTLs and specific distant eQTLs across different developmental  
156 stages (Vinuela et al., 2010), environments (Snoek et al., 2012; Lowry et al., 2013; Snoek et al., 2017) and  
157 populations (Cubillos et al., 2012).

158

159 **An eQTL hotspot on chromosome 5 is associated with genes related to seed germination and collocates**  
160 **with multiple metabolic and phenotypic QTLs**

161 To get an overview of how the eQTLs were mapped over the genome, we visualized the eQTL locations and their  
162 associated genes on a local/distant eQTL plot (Figure 4A). Here, the local eQTLs are aligned across the diagonal  
163 and spread relatively equally across the genome, while it is not the case for the distant eQTLs. Furthermore,  
164 specific loci show clustering of eQTLs, which could indicate the presence of major regulatory genes that cause  
165 genome-wide gene expression changes. We identified ten so-called (distant-) eQTL hotspots, with at least two  
166 hotspots per stage (Table 2). The number of distant eQTLs located within these hotspots ranges from 16 to 96. The  
167 major eQTL hotspots are PD2, IM2, and RP4, with 69, 69, and 96 distant eQTLs co-locating, respectively.  
168 Moreover, the landscape of the eQTL hotspots (Figure 4B) differs for every stage, including PD and AR, which is  
169 surprising since these two stages have a relatively similar transcriptome profile (Figure 1).

170 We remapped the QTLs for previously studied seed germination phenotypes (Joosen et al., 2012) and metabolites  
171 (Joosen et al., 2013) using the RNA-seq based genetic map (Serin et al., 2017). We then visualized the resulting  
172 QTL count histograms alongside the eQTL histogram (Figure 5). The histogram shows that several eQTL hotspots  
173 collocate with hotspots for phenotype and metabolite QTLs (phQTLs and mQTLs, respectively). The most striking

174 example is the collocation of QTLs on chromosome 5 around 24—25 Mb (IM2 and RP4) at the last two stages of  
175 seed germination. We performed gene ontology (GO) term enrichment analysis for genes with an eQTL mapping  
176 to these hotspots, and found ‘seed germination’ enriched among other terms (Table 2). These findings taken  
177 together indicate that the IM2 and RP4 hotspots harbor one or more important genes affecting gene expression  
178 during seed germination. Therefore, the identification of the regulatory gene(s) for one of these hotspots can give  
179 us more insight into the trans-regulation of gene expression during seed germination.

180

181 **Transcription factors were prioritized as the candidate genes for major eQTL hotspots**

182 To prioritize the candidate regulatory genes underlying eQTL hotspots in this study, we constructed a network  
183 based on the expression of genes with eQTLs on the hotspot location. We built the network for two hotspots: RP4,  
184 where QTLs for expression, metabolite, and phenotype are collocated; and PD2, another major eQTL hotspot in  
185 this study. For RP4, the total number of genes used to construct the network was 116, of which 20 had a local  
186 eQTL at the hotspot, whereas for PD2, 114 genes were identified, of which 45 with a local eQTL. The genes with  
187 local eQTLs were then labeled as candidates. The networks were constructed by integrating predictions from  
188 several gene regulatory network inference methods to ensure the robustness of the result (Marbach et al., 2012).  
189 The direction of the edges in the network is predicted using the GENIE3 method (Huynh-Thu et al., 2010). For  
190 each candidate gene, we calculated the outdegree, indicating the number of outgoing edges of a gene to other genes  
191 in the network, and the closeness centrality of the candidate gene nodes, which shows the efficiency of the gene  
192 in spreading information to the rest of the genes in the network (Pavlopoulos et al., 2011). Finally, these two  
193 network properties were used to prioritize the most likely regulator of the distant eQTL hotspot.

194 In the resulting network, genes encoding the transcription factors DECREASE WAX BIOSYNTHESIS/DEWAX  
195 (AT5G61590), and INDUCER OF CBP EXPRESSION 1/ICE1 (AT3G26744) were prioritized as the most likely  
196 candidate genes for RP4 (Figure 6) and PD2 (Figure 7), respectively. As many as 15 genes were predicted to be  
197 associated with DEWAX and 32 genes with ICE1. Note that these numbers depend on the chosen threshold;  
198 nonetheless, the current candidates are robust to changes when the parameter was changed (Table S3 and Table  
199 S4). Furthermore, these two genes also had the highest closeness centrality among the other candidates, showing  
200 that these genes have a strong influence within the network. We assessed the Bay x Sha SNP data (Genomes  
201 Consortium. Electronic address and Genomes, 2016) and found several SNPs between the Bay and Sha parents in  
202 both the DEWAX and ICE1 genes, including two that affect the amino acid sequence of the corresponding proteins  
203 (Table S5 and Table S6). Also, querying for DEWAX and ICE1 on AraQTL showed a local eQTL for both genes

204 in an experiment using the same RIL population on leaf tissue (West et al., 2007). This evidence supports the  
205 presence of DEWAX and ICE1 polymorphisms between the Bay and Sha allele that might be responsible for the  
206 steadily occurring local eQTLs at three stages (PD, IM, RP) for DEWAX and all four stages for ICE1.

207

208 **Discussion**

209 **The function of DEWAX may be related to seed cuticular wax biosynthesis**

210 In this study, we constructed a network of genes associated with the RP4 eQTL hotspot and showed that *DEWAX*  
211 was prioritized as the candidate gene for the hotspot. *DEWAX* encodes an AP2/ERF-type transcription factor that  
212 is well-known as a negative regulator of cuticular wax biosynthesis (Go et al., 2014; Suh and Go, 2014; Cui et al.,  
213 2016; Li et al., 2019) and a positive regulator of defense response against biotic stress (Ju et al., 2017; Froschel et  
214 al., 2019). This gene also seems to be involved in drought stress response (Huang et al., 2008) by inducing the  
215 expression of genes that confer drought tolerance (Sun et al., 2016), some of which (*LEA4-5*, *LTI-78*) have a distant  
216 eQTL at the RP4 hotspot. Moreover, the overexpression of *DEWAX* in *Arabidopsis* increases the seed germination  
217 rate (Sun et al., 2016). The role of *DEWAX* in seed germination is still unknown but may be related to cuticular  
218 wax biosynthesis.

219 Wax is a mixture of hydrophobic lipids, which is part of the plant cuticle together with cutin and suberin (Yeats  
220 and Rose, 2013). Previous studies have demonstrated that the biosynthesis of wax in the cuticular layer of stems  
221 and leaves is negatively regulated by *DEWAX* (Go et al., 2014; Suh and Go, 2014; Cui et al., 2016; Li et al., 2019).  
222 Although the function of this gene has never been reported in seeds, the presence of a cuticular layer indeed plays  
223 a significant role in maintaining seed dormancy (De Giorgi et al., 2015; Nonogaki, 2019). In *Arabidopsis* seeds,  
224 the thick cuticular structure covering the endosperm prevents cell expansion and testa rupture that precede radicle  
225 protrusion. Besides, this layer also reduces the diffusion of oxygen into the seed, thus preventing oxidative stress  
226 that may cause rapid seed aging and loss of dormancy (De Giorgi et al., 2015).

227 Besides *DEWAX*, *MUM2* is another possible regulatory gene for the RP4 hotspot based on QTL confirmation of  
228 an imbibed seed size phenotype using a heterogeneous inbred family approach (Joosen et al., 2012). In our study,  
229 we also discovered that most eQTLs on the RP4 hotspot peak at the marker located closely to the *MUM2* location  
230 (Figure S2), which provides more evidence for this gene as the regulator for the hotspot. *MUM2* encodes a cell-  
231 wall modifying beta-galactosidase involved in seed coat mucilage biosynthesis, and the *mum2* mutant is  
232 characterized by a failure in extruding mucilage after water imbibition (Dean et al., 2007). In our analysis, *MUM2*

233 did not have a distant eQTL on the RP4 hotspot; thus, it is not prioritized as a prominent candidate, pointing out a  
234 limitation of our approach in prioritizing candidate eQTL hotspot genes which will be discussed later. Nonetheless,  
235 we found some evidence connecting *DEWAX* to *MUM2*. First, Shi et al. (2019) found out that the mutant of *CPL2*,  
236 another gene involved in wax biosynthesis, showed a delayed secretion of the enzyme encoded by *MUM2* that  
237 disrupts seed coat mucilage extrusion. In the same study, they revealed that *CPL2* encodes a phosphatase involved  
238 in secretory protein trafficking required for the secretion of extracellular matrix materials, including wax and cell  
239 wall-modifying enzyme. This finding provides a link between wax biosynthesis and cell-wall modifying enzymes,  
240 and possibly between the genes involved in these processes.

241 Second, the expression of *DEWAX* may be the consequence of the disruption of seed mucilage extrusion. Penfield  
242 et al. (2001) suggest that seed mucilage helps enhance water uptake to ensure efficient germination in the condition  
243 of low water potential. This is supported by the evidence that the mucilage-impaired mutant showed reduced  
244 maximum germination only on osmotic polyethylene glycol solutions (Penfield et al., 2001). Therefore, the  
245 absence of mucilage in imbibed seed under low water potential may cause osmotic stress in the seed and, in turn,  
246 induce the expression of *DEWAX*, which is known to play a role in the response of plants against osmotic stress  
247 (Sun et al., 2016). If this is the case, then a scenario could be that *DEWAX* acts downstream of *MUM2*, and the  
248 expression variation of these two genes lead to the emergence of the RP4 eQTL hotspot.

249 **Network analysis shows the involvement of ICE1 as a regulator of gene expression during seed germination**  
250 ICE1 is an MYC-like basic helix-loop-helix (bHLH) transcription factor that shows pleiotropic effects in plants.  
251 Earlier studies of ICE1 mostly focus on the protein function in the acquisition of cold tolerance (Chinnusamy et  
252 al., 2003; Lee et al., 2005) and stomatal lineage development (Kanaoka et al., 2008). Recently, ICE1 was also  
253 shown to form a heterodimer with ZOU, another bHLH transcription factor, to regulate endosperm breakdown  
254 required for embryo growth during seed development (Denay et al., 2014). At a later stage, ICE1 negatively  
255 regulates ABA-dependent pathways to promote seed germination and seedling establishment (Liang and Yang,  
256 2015). This process involves repressing the expression of transcription factors in ABA signaling, such as *ABI3*  
257 and *ABI5*, and ABA-responsive genes, such as *EM6* and *EM1*, thus initiating seed germination and subsequent  
258 seedling establishment (Hu et al., 2019; MacGregor et al., 2019).

259 In this study, we performed a network analysis for genes having distant eQTLs on the PD2 hotspot and prioritized  
260 ICE1 as the most likely regulator using network analysis. The high connectivity of ICE1 with the other genes in  
261 the network could reflect an essential regulatory function of this gene during seed germination. However, we did

262 not find any of the known ICE1 target genes (i.e., *ABI3*, *ABI5*, *EM1*, and *EM6*) nor seed germination phenotype  
263 (Figure 5) having an eQTL at the *ICE1* locus. It could be that the ICE1 polymorphism is not severe enough to  
264 cause considerable trait variation, especially to break a robust biological system where several buffering  
265 mechanisms exist to prevent small molecular perturbation from propagating to the phenotypic level (Fu et al.,  
266 2009; Signor and Nuzhdin, 2018).

267 **Limitations of co-expression network in identifying candidate genes of eQTL hotspots**

268 The construction of a co-expression network is a promising approach to prioritize candidate eQTL genes (Serin et  
269 al., 2016). Despite its potential, there is a major limitation in using a co-expression network. The network is based  
270 on gene expression data; hence the identified causal genes are those that directly affect gene expression. For  
271 example, as we described above, our approach did not prioritize *MUM2* for the RP4 hotspot, possibly because the  
272 gene does not cause variation in the target gene expression but rather causes differences at another level of target  
273 gene regulation (e.g., enzyme biosynthesis) between two parental alleles in the RIL population. Other studies  
274 reported similar results where a known causal gene was not detected as a hub in the network (Jimenez-Gomez et  
275 al., 2010; Sterken et al., 2017). To overcome this, future work should focus on networks that are built upon multi-  
276 omics data by including metabolic, proteomic, and, more importantly, phenotypic measurement data (Hawe et al.,  
277 2019). Moreover, prior biological knowledge, including protein-protein interaction (Szklarczyk et al., 2017),  
278 transcription factor binding-site (Kulkarni et al., 2018), and other types of interactions (for review see Kulkarni  
279 and Vandepoele, 2019) can be incorporated to construct data-driven interaction networks. Nevertheless, our  
280 approach offers a simple and straightforward way to prioritize candidate genes underlying eQTL hotspots from a  
281 limited amount of resources.

282

283 **Materials and Methods**

284 **Plant materials**

285 In this study, we used 164 recombinant inbred lines (RILs) derived from a cross between the Bay-0 and Shahdara  
286 Arabidopsis ecotypes (Loudet et al., 2002) provided by the Versailles Biological Resource Centre for Arabidopsis  
287 (<http://dbgap.versailles.inra.fr/vnat>). The plants were sown in a fully randomized setup on 4x4 cm rockwool plugs  
288 (MM40/40, Groudan B. V.) and hydrated with 1 g/l Hyponex (NPK = 7:6:19, <http://www.hyonex.co.jp>) in a  
289 climate chamber (20°C day, 18°C night) with 16 hours of light (35 W/m<sup>2</sup>) at 70% relative humidity. Seeds from  
290 four to seven plants per RIL were bulk harvested for the experiment (see also Joosen et al., 2012; Joosen et al.,

291 2013). The genotypic data consisting of 1,059 markers per line was obtained from Serin et al. (2017). However,  
292 the genotypic data is available only for 160 RILs; therefore, we used this number of lines for eQTL mapping.

293

294 **Experimental setup**

295 The RIL population was grouped into four subpopulations, each one representing one of the four different seed  
296 germination stages. We used the designGG-package (Li et al., 2009) in R (version 3.6.0 Windows x64) to aid the  
297 grouping so that the distribution of Bay-0 and Sha alleles between sub-populations is optimized. The first stage is  
298 the primary dormant (PD) stage when the seeds were harvested and stored at -80°C after one week at ambient  
299 conditions. The second stage is after-ripened (AR) seeds that obtained maximum germination potential after five  
300 days of imbibition by storing at room temperature and ambient relative humidity. The third stage is the 6 hours  
301 imbibition (IM) stage. For this stage, the seeds were after-ripened and imbibed for six hours on water-saturated  
302 filter paper at 20°C and immediately transferred to a dry filter paper for 1 minute to remove the excess of water.  
303 The fourth stage is the radicle protrusion (RP) stage. To select seeds at this stage, we used a binocular to observe  
304 the presence of a protruded radicle tip.

305

306 **RNA isolation**

307 Total RNA was extracted according to the hot borate protocol modified from Wan and Wilkins (1994). For each  
308 treatment, 20 mg of seeds were homogenized and mixed with 800 µl of extraction buffer (0.2M Na  
309 boratedecahydrate (Borax), 30 mM EGTA, 1% SDS, 1% Na deoxycholate (Na-DOC)) containing 1.6 mg DTT  
310 and 48 mg PVP40 which had been heated to 80°C. Then, 1 mg proteinase K was added to this suspension and  
311 incubated for 15 min at 42°C. After adding 64 µl of 2 M KCL, the samples were incubated on ice for 30 min and  
312 subsequently centrifuged for 20 min at 12,000 g. Ice-cold 8 M LiCl was added to the supernatant in a final  
313 concentration of 2 M, and the tubes were incubated overnight on ice. After centrifugation for 20 min at 12,000 g  
314 at 4°C, the pellets were washed with 750 µl ice-cold 2 M LiCl. The samples were centrifuged for another 10 min  
315 at 10,000 g at 4°C, and the pellets were re-suspended in 100 µl DEPC treated water. The samples were phenol-  
316 chloroform extracted, DNase treated (RQ1 DNase, Promega), and further purified with RNeasy spin columns  
317 (Qiagen) following the manufacturer's instructions. The RNA quality and concentration were assessed by agarose  
318 gel electrophoresis and UV spectrophotometry.

319

320 **Microarray analysis**

321 RNA was processed for use on Affymetrix Arabidopsis SNPtile array (atSNPtilx520433), as described by the  
322 manufacturer. Briefly, 1 mg of total RNA was reverse transcribed using a T7-Oligo(dT) Promoter Primer in the  
323 first-strand cDNA synthesis reaction. Following RNase H-mediated second-strand cDNA synthesis, the double-  
324 stranded cDNA was purified and served as a template in the subsequent in vitro transcription reaction. The reaction  
325 was carried out in the presence of T7 RNA polymerase and a biotinylated nucleotide analog/ribonucleotide mix  
326 for complementary RNA (cRNA) amplification and biotin labeling. The biotinylated cRNA targets were then  
327 cleaned up, fragmented, and hybridized to the SNPtile array. The hybridization data were extracted using a custom  
328 R script with the help of an annotation-file based on TAIR10. Intensity data were log-transformed and normalized  
329 using the *normalizeBetweenArrays* function with the quantile method from Bioconductor package limma (Ritchie  
330 et al., 2015). Then, for each annotated gene, the log-intensities of anti-sense exon probes were averaged.

331

### 332 **Clustering analysis**

333 Principal component analysis for log-intensities of all parents and RIL population samples was done using the  
334 *pr.comp* function in R where the unscaled log intensities are shifted to be zero centered. For hierarchical clustering,  
335 we only selected genes with a minimal fold change of 2 between any pair of consecutive stages (PD to AR, AR to  
336 IM, or IM to RP). Then, the distance matrices of filtered genes and all samples were calculated using the absolute  
337 Pearson correlation. These matrices were clustered using Ward's method. We manually set the number of clusters  
338 to 8 and performed gene ontology enrichment for each of the clusters using the weight algorithm of the *topGO*  
339 package in R and used 29,913 genes detected by hybridization probes as the background (Alexa et al., 2006).

340

### 341 **eQTL mapping**

342 For eQTL mapping, we used 160 RILs separated into four subpopulations, each representing one specific seed  
343 germination stage. For each stage separately, eQTLs were mapped using a single-marker model, as in Sterken et  
344 al. (2017). The gene expression data were fitted to the linear model

345 
$$y_{i,j} \sim x_j + e_j$$

346 where  $y$  is the log-intensity representing the expression of a gene  $i$  ( $i = 1, 2, \dots, 29,913$ ) of RIL  $j$  ( $j = 1, 2, \dots, 160$ )  
347 explained by the parental allele on marker location  $x$  ( $x = 1, 2, \dots, 1,059$ ). The random error in the model is  
348 represented by  $e_j$ .

349 To account for the multiple-testing burden in this analysis, we determined the genome-wide significant threshold  
350 using a permutation approach (e.g. see Sterken et al., 2017). A permuted dataset was created by randomly

351 distributing the log-intensities of the gene under study over the genotypes. Then, the previous eQTL mapping  
352 model was performed on this permuted dataset. This procedure was repeated 100 times for each stage. The  
353 threshold was determined using:

354 
$$\frac{\text{FDS}}{\text{RDS}} \leq \frac{m_0}{m} q \cdot \log(m),$$

355 where, at a specific significance level, the false discoveries (FDS) were the averaged permutation result, and real  
356 discoveries (RDS) were the outcome of the eQTL mapping using the unpermuted dataset. The number of true  
357 hypotheses tested ( $m_0$ ) was 29,913 - RDS, and the number of hypotheses ( $m$ ) tested was the number of genes,  
358 which was 29,913. For the  $q$ -value, we used a threshold of 0.05. As a result, we got a threshold of 4.2 for PD and  
359 AR, 4.1 for IM, and 4.3 for RP.

360 The confidence interval of an eQTL was determined based on a  $-\log_{10}(p\text{-value})$  drop of 1.5 compared to the peak  
361 marker (as in Keurentjes et al., 2007; Cubillos et al., 2012). We determine an eQTL as local if the peak marker or  
362 the confidence interval lies within 1 Mb or less from the target gene location (as in Cubillos et al., 2012). All  
363 eQTLs that did not meet this criterion were defined as distant.

364 We defined a region as an eQTL hotspot if the number of distant-eQTLs mapped to a particular genomic region  
365 significantly exceeded the expectation. First, we divided the genome into bins of 2 Mb. Then, we determined the  
366 expected number of distant-eQTLs per genomic bin by dividing the total number of distant-eQTLs by the total  
367 number of bins. Based on a Poisson distribution, any bin having an actual number of distant-eQTLs larger than  
368 expected ( $p < 0.0001$ ) was then considered as an eQTL hotspot.

369

## 370 **Gene regulatory network inference and candidate genes prioritization of eQTL hotspot**

371 We used a community-based approach to infer regulatory networks of genes with an eQTL on a hotspot location  
372 using expression data. In this approach, we assume the hotspot is caused by a polymorphism in or near one or  
373 more regulatory genes causing altered expression that can be detected as a local eQTL (Breitling et al., 2008;  
374 Joosen et al., 2009; Jimenez-Gomez et al., 2010; Serin et al., 2017). Based on this assumption, we labeled all genes  
375 with a local eQTL on a hotspot as candidate regulators and genes with a distant eQTL as targets. The expression  
376 of these genes was subjected to five different network inference methods to predict the interaction weight. The  
377 methods used were TIGRESS (Haury et al., 2012), Spearman correlation, CLR (Faith et al., 2007), ARACNE  
378 (Margolin et al., 2006), and GENIE3 (Huynh-Thu et al., 2010). The predictions from GENIE3 were used to

379 establish the direction of the interaction by removing the one that has the lowest variable importance to the  
380 expression of the target genes between two pairs of genes. For instance, if the importance of gene<sub>i</sub> – gene<sub>j</sub> is smaller  
381 than gene<sub>j</sub> – gene<sub>i</sub>, then the former is removed. By averaging the rank, the predictions of all inference methods  
382 were integrated to produce a robust and high performance prediction (Marbach et al., 2012). The threshold was  
383 determined as the minimum average rank where all nodes are included in the network. Finally, the network was  
384 visualized using Cytoscape (version 3.7.1) (Shannon et al., 2003), and network properties were calculated using  
385 the NetworkAnalyzer tool (Assenov et al., 2008). The candidate genes for each eQTL hotspot were prioritized  
386 based on their outdegree and closeness centrality (Pavlopoulos et al., 2011).

387

### 388 **Script availability**

389 The code for the analysis and visualization is available in the form of R scripts at the Wageningen University  
390 GitLab repository (<https://git.wur.nl/harta003/seed-germination-qtl>).

391

### 392 **Accession numbers**

393 Cel files of microarray data have been deposited in the ArrayExpress database at EMBL-EBI  
394 ([www.ebi.ac.uk/arrayexpress](http://www.ebi.ac.uk/arrayexpress)) under accession number E-MTAB-xxxx.

395

### 396 **Supplemental materials**

397 **Supplemental Figure S1.** Density distribution of the absolute eQTL effect, -log(p), and explained phenotypic  
398 variance (R<sup>2</sup>) for local and distant eQTLs.

399 **Supplemental Figure S2.** The histogram of the number of distant eQTLs per marker location for the PD2 (A) and  
400 RP4 (B) hotspot.

401 **Supplemental Table S1.** Gene ontology enrichment for genes with distinctive expression patterns during seed  
402 germination.

403 **Supplemental Table S2.** Distant eQTL hotspots of the four seed germination stages

404 **Supplemental Table S3.** The mean rank and standard deviation of candidate genes as the most likely causal genes  
405 for the RP4 hotspot across different thresholds

406 **Supplemental Table S4.** The mean rank and standard deviation of candidate genes as the most likely causal genes  
407 for the PD2 hotspot across different thresholds.

408 **Supplemental Table S5.** The location and type of SNPs on candidate genes for the RP4 eQTL hotspot and *MUM2*.

409 **Supplemental Table S6.** The location and type of SNPs on candidate genes for the PD2 eQTL hotspot.

410 **Supplemental Table S7.** The list of genetic markers used for QTL mapping.

411 **Supplemental Table S8.** The genetic map of Bay-0 x Sha parents and the RIL population.

412 **Supplemental Table S9.** Gene expression levels of Bay-0 x Sha parents and the RIL population.

413 **Supplemental Table S10.** Phenotype measurements of Bay-0 x Sha parents and the RIL population.

414 **Supplemental Table S11.** Metabolite measurements of Bay-0 x Sha parents and the RIL population.

415 **Supplemental Table S12.** Differentially expressed genes between any of two consecutive stages.

416 **Supplemental Table S13.** The list of expression QTL.

417 **Supplemental Table S14.** The list of phenotype QTL.

418 **Supplemental Table S15.** The list of metabolite QTL.

419

420

421

422

423

424

425

426

427

428

429

430

431

432 **Tables**

433

434 **Table 1.** Summary of the eQTL mapping for the four different seed germination stages

| stage                             | eQTLs | genes with an eQTL | eQTL type | total | proportion |
|-----------------------------------|-------|--------------------|-----------|-------|------------|
| <b>primary dormant</b>            | 1,335 | 1,328              | local     | 955   | 0.72       |
|                                   |       |                    | distant   | 380   | 0.28       |
| <b>after-ripened</b>              | 1,395 | 1,377              | local     | 1,089 | 0.78       |
|                                   |       |                    | distant   | 306   | 0.22       |
| <b>six hours after imbibition</b> | 1,719 | 1,702              | local     | 1,320 | 0.77       |
|                                   |       |                    | distant   | 399   | 0.23       |
| <b>radicle protrusion</b>         | 1,426 | 1,418              | local     | 1,096 | 0.77       |
|                                   |       |                    | distant   | 330   | 0.23       |

437

438

439

440 **Table 2.** Distant eQTL hotspots of the four seed germination stages. These hotspots were identified by  
441 dividing the genome into bins of 2 Mbp and performing a test to determine whether the number of distant  
442 eQTLs on a particular bin is higher than expected ( $p > 0.0001$ ) assuming a Poisson distribution. Seed  
443 germination phenotype and metabolite data were taken from Joosen et al. (2012) and Joosen et al. (2013),  
444 respectively. Detailed information about enriched GO terms, metabolite, and phenotype can be seen on  
445 Supplemental Table S2 in the Supplementary Material.

| hotspot ID | position     | distant eQTLs | enriched GO terms | metabolite QTL | phenotype QTL |
|------------|--------------|---------------|-------------------|----------------|---------------|
| <b>PD1</b> | ch1:6-10 Mb  | 43            | 11                | 1              | 4             |
| <b>PD2</b> | ch3:8-12 Mb  | 69            | 3                 | 2              | 1             |
| <b>AR1</b> | ch2:12-14 Mb | 16            | 0                 | 0              | 0             |
| <b>AR2</b> | ch3:2-4 Mb   | 20            | 9                 | 1              | 1             |
| <b>IM1</b> | ch5:6-8 Mb   | 19            | 2                 | 24             | 1             |
| <b>IM2</b> | ch5:22-26 Mb | 69            | 6                 | 6              | 31            |
| <b>RP1</b> | ch1:0-2 Mb   | 23            | 1                 | 0              | 1             |
| <b>RP2</b> | ch1:6-8 Mb   | 18            | 0                 | 0              | 3             |
| <b>RP3</b> | ch5:14-16 Mb | 21            | 29                | 0              | 1             |
| <b>RP4</b> | ch5:24-26 Mb | 96            | 18                | 20             | 25            |

446

447

448

449

450

451

452 **Figure Legends**

453 **Figure 1.** Principal component plot derived from transcriptome measurements of 164 RILs, and the Bay-0 and  
454 Sha parental lines taken at primary dormant seed (PD), after-ripened seed (AR), six-hours after imbibition (IM),  
455 and at the time when the radicle is protruded (RP).

456 **Figure 2.** Hierarchical clustering of Bay-0, Sha, and 164 RILs transcriptome samples measured at four different  
457 seed germination stages (top) and 990 genes differentially expressed between two consecutive stages (left). Listed  
458 genes are the sample of genes for each cluster. Some enriched gene ontology terms for gene clusters are listed on  
459 the right.

460 **Figure 3.** Shared local and distant eQTLs per seed germination stage.

461 **Figure 4.** eQTL mapping from four different seed germination stages. The local-distant eQTL plot is shown on  
462 top (**A**). The positions of eQTLs are plotted along the five chromosomes on the x-axis and the location of the genes  
463 with an eQTL is plotted on the y-axis. The black dots (●) represent local eQTLs (located within 1 Mb of the  
464 associated gene) and the colored dots represent distant eQTLs (located far from the associated gene). The gray  
465 horizontal lines next to each dot indicate the confidence interval of the eQTL location based on a 1.5 drop in -  
466 log<sub>10</sub>(p-value). The histogram of the number of eQTLs per genomic location is shown at the bottom (**B**). The  
467 horizontal dashed black lines mark the significance threshold for an eQTL hotspot.

468 **Figure 5.** Hotspots for phQTLs, mQTLs, and eQTLs. A region of interest is located on chromosome 5 (around  
469 24—26 Mb) where hotspots from different QTL levels collocate.

470 **Figure 6.** The prioritization of candidate genes for RP4 eQTL hotspot. The network of genes associated with RP4  
471 is visualized in **A**. The genes in the network are represented by nodes with various sizes according to the outdegree.  
472 The unlabeled grey nodes are the targets (genes with a distant eQTL) and the labelled green nodes are the  
473 candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is  
474 DEWAX (AT5G61590). The list of top ten candidate genes for the hotspot is shown in **B**. The expression of  
475 DEWAX in 160 RILs across the four seed germination stages is visualized in **C**. The RILs with the Sha allele of  
476 the gene are depicted in blue, the ones with the Bay-0 allele of DEWAX are depicted in red.

477 **Figure 7.** The prioritization of candidate genes for the PD2 eQTL hotspot. The network of genes associated with  
478 PD2 is visualized in **A**. The genes in the network are represented by nodes with various sizes according to the  
479 outdegree. The unlabeled grey nodes are the targets (genes with a distant eQTL) and labelled green nodes are the

480 candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is ICE1  
481 (AT3G26744). The list of top ten candidate genes for the hotspot is shown in **B**. The expression of ICE1 in 160  
482 RILs across the four seed germination stages is visualized in **C**. The RILs with the Sha allele of the gene are  
483 depicted in blue, the ones with the Bay-0 allele of ICE1 are depicted in red.

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503 **Literature cited**

504 **Alexa A, Rahnenführer J, Lengauer T** (2006) Improved scoring of functional groups from gene expression  
505 data by decorrelating GO graph structure. *Bioinformatics* **22**: 1600-1607

506 **Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M** (2008) Computing topological parameters of  
507 biological networks. *Bioinformatics* **24**: 282-284

508 **Bassel GW, Lan H, Glaab E, Gibbs DJ, Gerjets T, Krasnogor N, Bonner AJ, Holdsworth MJ, Provart NJ**  
509 (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant  
510 cellular phase transitions. *Proc Natl Acad Sci U S A* **108**: 9709-9714

511 **Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H** (2013) Dormancy and the Control of Germination. *In*  
512 *JD Bewley, KJ Bradford, HWM Hilhorst, H Nonogaki, eds, Seeds: Physiology of Development, Germination*  
513 *and Dormancy, 3rd Edition. Springer New York, New York, NY, pp 247-297*

514 **Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H** (2013) Germination. *In JD Bewley, KJ Bradford, HWM*  
515 *Hilhorst, H Nonogaki, eds, Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition.*  
516 *Springer New York, New York, NY, pp 133-181*

517 **Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H** (2013) Synthesis of Storage Reserves. *In JD Bewley,*  
518 *KJ Bradford, HWM Hilhorst, H Nonogaki, eds, Seeds: Physiology of Development, Germination and*  
519 *Dormancy, 3rd Edition. Springer New York, New York, NY, pp 85-131*

520 **Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh LV, de Haan G, Su AI, Jansen  
521 *RC* (2008) Genetical genomics: spotlight on QTL hotspots. *PLoS Genet* **4**: e1000232**

522 **Brem RB, Yvert G, Clinton R, Kruglyak L** (2002) Genetic dissection of transcriptional regulation in budding  
523 yeast. *Science* **296**: 752-755

524 **Buijs G, Vogelzang A, Nijveen H, Bentsink L** (2019) Dormancy cycling: Translation related transcripts are the  
525 main difference between dormant and non-dormant seeds in the field. *Plant J*

526 **Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE** (2006) Gene expression profiles of *Arabidopsis* Cvi  
527 seeds during dormancy cycling indicate a common underlying dormancy control mechanism. *Plant J* **46**:  
528 805-822

529 **Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK** (2003) ICE1: a regulator of cold-  
530 induced transcriptome and freezing tolerance in *Arabidopsis*. *Genes Dev* **17**: 1043-1054

531 **Comai L, Harada JJ** (1990) Transcriptional activities in dry seed nuclei indicate the timing of the transition from  
532 embryogeny to germination. *Proc Natl Acad Sci U S A* **87**: 2671-2674

533 **Cubillos FA, Yansouni J, Khalili H, Balzergue S, Elftieh S, Martin-Magniette ML, Serrand Y, Lepiniec L,  
534 *Baud S, Dubreucq B, Renou JP, Camilleri C, Loudet O* (2012) Expression variation in connected  
535 recombinant populations of *Arabidopsis thaliana* highlights distinct transcriptome architectures. *BMC*  
536 *Genomics* **13**: 117**

537 **De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Baily C, Mene-Saffrane L, Lopez-Molina L** (2015)  
538 An Endosperm-Associated Cuticle Is Required for *Arabidopsis* Seed Viability, Dormancy and Early Control  
539 of Germination. *PLoS Genet* **11**: e1005708

540 **Dean GH, Zheng H, Tewari J, Huang J, Young DS, Hwang YT, Western TL, Carpita NC, McCann MC,  
541 *Mansfield SD, Haughn GW* (2007) The *Arabidopsis* MUM2 gene encodes a beta-galactosidase required  
542 for the production of seed coat mucilage with correct hydration properties. *Plant Cell* **19**: 4007-4021**

543 **Dekkers BJ, Pearce S, van Bolderen-Veldkamp RP, Marshall A, Widera P, Gilbert J, Drost HG, Bassel  
544 *GW, Muller K, King JR, Wood AT, Grosse I, Quint M, Krasnogor N, Leubner-Metzger G,*  
545 *Holdsworth MJ, Bentsink L* (2013) Transcriptional dynamics of two seed compartments with opposing  
546 roles in *Arabidopsis* seed germination. *Plant Physiol* **163**: 205-215**

547 **Denay G, Creff A, Moussu S, Wagnon P, Thevenin J, Gerentes MF, Chambrier P, Dubreucq B, Ingram G  
548 (2014) Endosperm breakdown in *Arabidopsis* requires heterodimers of the basic helix-loop-helix proteins  
549 ZHOUPI and INDUCER OF CBF EXPRESSION 1. *Development* **141**: 1222-1227**

550 **Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS  
551 (2007) Large-scale mapping and validation of *Escherichia coli* transcriptional regulation from a  
552 compendium of expression profiles. *PLoS Biol* **5**: e8**

553 **Finch-Savage WE, Cadman CS, Toorop PE, Lynn JR, Hilhorst HW** (2007) Seed dormancy release in  
554 *Arabidopsis* Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative  
555 patterns of gene expression directed by environmentally specific sensing. *Plant J* **51**: 60-78

556 **Froschel C, Iven T, Walper E, Bachmann V, Weiste C, Droege-Laser W** (2019) A Gain-of-Function Screen  
557 Reveals Redundant ERF Transcription Factors Providing Opportunities for Resistance Breeding Toward  
558 the Vascular Fungal Pathogen *Verticillium longisporum*. *Mol Plant Microbe Interact* **32**: 1095-1109

559 **Fu J, Keurentjes JJ, Bouwmeester H, America T, Verstappen FW, Ward JL, Beale MH, de Vos RC,  
560 *Dijkstra M, Scheltema RA, Johannes F, Koornneef M, Vreugdenhil D, Breitling R, Jansen RC*  
561 (2009) System-wide molecular evidence for phenotypic buffering in *Arabidopsis*. *Nat Genet* **41**: 166-167**

562 **Genomes Consortium. Electronic address mngoa, Genomes C** (2016) 1,135 Genomes Reveal the Global  
563 Pattern of Polymorphism in *Arabidopsis thaliana*. *Cell* **166**: 481-491

564 **Haury AC, Mordelet F, Vera-Licona P, Vert JP** (2012) TIGRESS: Trustful Inference of Gene REgulation using  
565 Stability Selection. *BMC Syst Biol* **6**: 145

566 **Hawe JS, Theis FJ, Heinig M** (2019) Inferring Interaction Networks From Multi-Omics Data. *Front Genet* **10**:  
567 535

568 **Hu Y, Han X, Yang M, Zhang M, Pan J, Yu D** (2019) The Transcription Factor INDUCER OF CBF EXPRESSION1  
569 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling  
570 during Seed Germination in *Arabidopsis*. *Plant Cell* **31**: 1520-1538

571 **Huang D, Wu W, Abrams SR, Cutler AJ** (2008) The relationship of drought-related gene expression in  
572 *Arabidopsis thaliana* to hormonal and environmental factors. *J Exp Bot* **59**: 2991-3007

573 **Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P** (2010) Inferring regulatory networks from expression data  
574 using tree-based methods. *PLoS One* **5**

575 **Jansen R, Nap J** (2001) Genetical genomics: the added value from segregation. *Trends in Genetics* **17**: 388-  
576 391

577 **Jimenez-Gomez JM, Wallace AD, Maloof JN** (2010) Network analysis identifies ELF3 as a QTL for the shade  
578 avoidance response in *Arabidopsis*. *PLoS Genet* **6**: e1001100

579 **Joosen RV, Arends D, Li Y, Willems LA, Keurentjes JJ, Ligterink W, Jansen RC, Hilhorst HW** (2013)  
580 Identifying genotype-by-environment interactions in the metabolism of germinating *arabidopsis* seeds  
581 using generalized genetical genomics. *Plant Physiol* **162**: 553-566

582 **Joosen RV, Arends D, Willems LA, Ligterink W, Jansen RC, Hilhorst HW** (2012) Visualizing the genetic  
583 landscape of *Arabidopsis* seed performance. *Plant Physiol* **158**: 570-589

584 **Joosen RV, Ligterink W, Hilhorst HW, Keurentjes JJ** (2009) Advances in genetical genomics of plants. *Curr  
585 Genomics* **10**: 540-549

586 **Ju S, Go YS, Choi HJ, Park JM, Suh MC** (2017) DEWAX Transcription Factor Is Involved in Resistance to *Botrytis*  
587 *cinerea* in *Arabidopsis thaliana* and *Camelina sativa*. *Front Plant Sci* **8**: 1210

588 **Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU** (2008)  
589 SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to *arabidopsis* stomatal  
590 differentiation. *Plant Cell* **20**: 1775-1785

591 **Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil  
592 D, Koornneef M, Jansen RC** (2007) Regulatory network construction in *Arabidopsis* by using genome-  
593 wide gene expression quantitative trait loci. *Proc Natl Acad Sci U S A* **104**: 1708-1713

594 **Kulkarni SR, Vandepoele K** (2019) Inference of plant gene regulatory networks using data-driven methods: A  
595 practical overview. *Biochim Biophys Acta Gene Regul Mech*: 194447

596 **Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K** (2018) TF2Network: predicting transcription  
597 factor regulators and gene regulatory networks in *Arabidopsis* using publicly available binding site  
598 information. *Nucleic Acids Res* **46**: e31

599 **Lee BH, Henderson DA, Zhu JK** (2005) The *Arabidopsis* cold-responsive transcriptome and its regulation by  
600 ICE1. *Plant Cell* **17**: 3155-3175

601 **Lelli KM, Slattery M, Mann RS** (2012) Disentangling the many layers of eukaryotic transcriptional regulation.  
602 *Annu Rev Genet* **46**: 43-68

603 **Leubner-Metzger G** (2005) beta-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for  
604 dormancy release during tobacco after-ripening. *Plant J* **41**: 133-145

605 **Li Y, Swertz MA, Vera G, Fu J, Breitling R, Jansen RC** (2009) designGG: an R-package and web tool for the  
606 optimal design of genetical genomics experiments. *BMC Bioinformatics* **10**: 188

607 **Liang CH, Yang CC** (2015) Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds  
608 and seedlings of *Arabidopsis*. *Plant Mol Biol* **88**: 459-470

609 **Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F** (2002) Bay-0 × Shahdara recombinant inbred  
610 line population: a powerful tool for the genetic dissection of complex traits in *Arabidopsis*. *Theoretical  
611 and Applied Genetics* **104**: 1173-1184

612 **Lowry DB, Logan TL, Santuari L, Hardtke CS, Richards JH, DeRose-Wilson LJ, McKay JK, Sen S, Juenger  
613 TE** (2013) Expression quantitative trait locus mapping across water availability environments reveals  
614 contrasting associations with genomic features in *Arabidopsis*. *Plant Cell* **25**: 3266-3279

615 **MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez-Molina L, Penfield S** (2019) ICE1 and ZOU  
616 determine the depth of primary seed dormancy in *Arabidopsis* independently of their role in endosperm  
617 development. *Plant J* **98**: 277-290

618 **Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Consortium D, Kellis M,  
619 Collins JJ, Stolovitzky G** (2012) Wisdom of crowds for robust gene network inference. *Nat Methods* **9**:  
620 796-804

621 **Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A** (2006)  
622 ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular  
623 context. *BMC Bioinformatics* **7 Suppl 1**: S7

624 **Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E** (2005) Genome-wide profiling of stored  
625 mRNA in *Arabidopsis thaliana* seed germination: epigenetic and genetic regulation of transcription in  
626 seed. *Plant J* **41**: 697-709

627 **Narsai R, Law SR, Carrie C, Xu L, Whelan J** (2011) In-depth temporal transcriptome profiling reveals a crucial  
628 developmental switch with roles for RNA processing and organelle metabolism that are essential for  
629 germination in *Arabidopsis*. *Plant Physiol* **157**: 1342-1362

630 **Nijveen H, Ligterink W, Keurentjes JJ, Loudet O, Long J, Sterken MG, Prins P, Hilhorst HW, de Ridder  
631 D, Kammenga JE, Snoek BL** (2017) AraQTL - workbench and archive for systems genetics in  
632 *Arabidopsis thaliana*. *Plant J* **89**: 1225-1235

633 **Nonogaki H** (2019) Seed germination and dormancy: The classic story, new puzzles, and evolution. *J Integr  
634 Plant Biol* **61**: 541-563

635 **Nonogaki H, Bassel GW, Bewley JD** (2010) Germination—Still a mystery. *Plant Science* **179**: 574-581

636 **Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG  
637** (2011) Using graph theory to analyze biological networks. *BioData Min* **4**: 10

638 **Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW** (2001) MYB61 Is Required for Mucilage  
639 Deposition and Extrusion in the *Arabidopsis* Seed Coat. *The Plant Cell* **13**: 2777-2791

640 **Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D** (2004) The effect of alpha-amanitin on  
641 the *Arabidopsis* seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during  
642 germination. *Plant Physiol* **134**: 1598-1613

643 **Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK** (2015) limma powers differential expression  
644 analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research* **43**: e47-e47

645 **Rockman MV, Kruglyak L** (2006) Genetics of global gene expression. *Nat Rev Genet* **7**: 862-872

646 **Serin EA, Nijveen H, Hilhorst HW, Ligterink W** (2016) Learning from Co-expression Networks: Possibilities  
647 and Challenges. *Front Plant Sci* **7**: 444

648 **Serin EAR, Snoek LB, Nijveen H, Willems LAJ, Jimenez-Gomez JM, Hilhorst HWM, Ligterink W** (2017)  
649 Construction of a High-Density Genetic Map from RNA-Seq Data for an *Arabidopsis* Bay-0 x Shahdara  
650 RIL Population. *Front Genet* **8**: 201

651 **Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T** (2003)  
652 Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome  
653 Res* **13**: 2498-2504

654 **Shi L, Dean GH, Zheng H, Meents MJ, Haslam TM, Haughn GW, Kunst L** (2019) ECERIFERUM11/C-  
655 TERMINAL DOMAIN PHOSPHATASE-LIKE2 Affects Secretory Trafficking. *Plant Physiol* **181**: 901-915

656 **Signor SA, Nuzhdin SV** (2018) The Evolution of Gene Expression in cis and trans. *Trends Genet* **34**: 532-544

657 **Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HW** (2016) A Predictive Coexpression Network Identifies  
658 Novel Genes Controlling the Seed-to-Seedling Phase Transition in *Arabidopsis thaliana*. *Plant Physiol*  
659 **170**: 2218-2231

660 **Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, Van't Hof A, Brenchley R, Riksen JAG, Cossins A,  
661 Kammenga JE** (2017) Contribution of trans regulatory eQTL to cryptic genetic variation in *C. elegans*.  
662 *BMC Genomics* **18**: 500

663 **Snoek LB, Terpstra IR, Dekter R, Van den Ackerveken G, Peeters AJ** (2012) Genetical Genomics Reveals  
664 Large Scale Genotype-By-Environment Interactions in *Arabidopsis thaliana*. *Front Genet* **3**: 317

665 **Sterken MG, van Bemmelen van der Plaat L, Riksen JAG, Rodriguez M, Schmid T, Hajnal A, Kammenga  
666 JE, Snoek BL** (2017) Ras/MAPK Modifier Loci Revealed by eQTL in *Caenorhabditis elegans*. *G3  
667 (Bethesda)* **7**: 3185-3193

668 **Sun ZM, Zhou ML, Dan W, Tang YX, Lin M, Wu YM** (2016) Overexpression of the *Lotus corniculatus* Soloist  
669 Gene LcAP2/ERF107 Enhances Tolerance to Salt Stress. *Protein Pept Lett* **23**: 442-449

670 **Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork  
671 P, Jensen LJ, von Mering C** (2017) The STRING database in 2017: quality-controlled protein-protein  
672 association networks, made broadly accessible. *Nucleic Acids Res* **45**: D362-D368

673 **Terpstra IR, Snoek LB, Keurentjes JJ, Peeters AJ, van den Ackerveken G** (2010) Regulatory network  
674 identification by genetical genomics: signaling downstream of the *Arabidopsis* receptor-like kinase  
675 ERECTA. *Plant Physiol* **154**: 1067-1078

676 **Uygun S, Peng C, Lehti-Shiu MD, Last RL, Shiu SH** (2016) Utility and Limitations of Using Gene Expression  
677 Data to Identify Functional Associations. *PLoS Comput Biol* **12**: e1005244

678 **Valba OV, Nechaev SK, Sterken MG, Snoek LB, Kammenga JE, Vasieva OO** (2015) On predicting regulatory  
679 genes by analysis of functional networks in *C. elegans*. *BioData Min* **8**: 33

680 **Vinuela A, Snoek LB, Riksen JA, Kammenga JE** (2010) Genome-wide gene expression regulation as a function  
681 of genotype and age in *C. elegans*. *Genome Res* **20**: 929-937

682 **Wan CY, Wilkins TA** (1994) A Modified Hot Borate Method Significantly Enhances the Yield of High-Quality RNA  
683 from Cotton (*Gossypium hirsutum* L.). *Analytical Biochemistry* **223**: 7-12

684 **West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA** (2007)  
685 Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in  
686 *Arabidopsis*. *Genetics* **175**: 1441-1450

687 **Wojtyla L, Lechowska K, Kubala S, Garnczarska M** (2016) Different Modes of Hydrogen Peroxide Action  
688 During Seed Germination. *Front Plant Sci* **7**: 66

689 **Yeats TH, Rose JK** (2013) The formation and function of plant cuticles. *Plant Physiol* **163**: 5-20

690

691

692

693

694

695

696

697

698

699