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Abstract

Background: Antimicrobial resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public
health, as strains resistant to at least one of the two last line antibiotics used in empiric therapy of
gonorrhoea, ceftriaxone and azithromycin, have spread internationally. With new treatment
options not yet available, this has prompted a call for collaborative action on global surveillance
for this sexually transmitted pathogen. Whole genome sequencing (WGS) data can be used to
identify new AMR clones, outbreaks, transmission networks and inform the development of point-
of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community driven
tools that provide an easy access to and analysis of genomic and epidemiological data is the way

forward for public health surveillance.

Methods: Here we present a public health focussed scheme for genomic epidemiology of N.

gonorrhoeae using Pathogenwatch (https:/pathogen.watch/ngonorrhoeae), which enables the

processing of raw or assembled genomic data. We implement backwards compatibility with
MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR
determinants associated with resistance to eight antibiotics. A collection of over 12,000 N.
gonorrhoeae genome sequences from public archives has been quality-checked, assembled and

made public together with available metadata for contextualization.

Results: An international advisory group of experts in epidemiology, public health, genetics and
genomics of N. gonorrhoeae was convened to identify public health needs in the field and inform
on the utility of current and future analytics in the platform, including a customised library of
genetic AMR determinants. After uploading genome data, this platform automatically provides
typing information, detects genetic determinants of AMR for eight antibiotics including
azithromycin and the extended-spectrum cephalosporins ceftriaxone and cefixime, and infers
resistance based on the specific combination of mechanisms. Furthermore, genomes are

contextualised with globally available genomic data to aid epidemiological investigation.

Conclusions: The N. gonorrhoeae scheme in Pathogenwatch provides customized bioinformatic
pipelines guided by expert opinion that can be adapted to public health agencies and departments
with little expertise in bioinformatics and lower resourced settings with internet connection but
limited computational infrastructure. This advisory group will assess and identify ongoing public
health needs in the field of gonococcal AMR in order to further enhance utility with modified or

new analytic methods.
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Background

Antimicrobial resistance (AMR) is an urgent threat to public health. Neisseria gonorrhoeae, the
strictly human pathogen causing the sexually-transmitted infection (STI) gonorrhoea, has
developed or acquired resistance to the last-line antibiotics used in empiric therapy to treat the
infection, and thus has become one of the major global priorities in order to tackle AMR. In 2017,
due to the increase in AMR infections and the absence of an effective vaccine, the World Health
Organization (WHO) included N. gonorrhoeae as a high priority pathogen in need of research and
development of new antimicrobials and ideally a vaccine (1). In 2019, the Centers for Disease
Control and Prevention (CDC) again included the gonococcus on the list of urgent threats in the
United States (2). The most recent WHO estimates from 2016 indicate an annual global incidence
of 87 million cases of gonorrhoea among adults (3, 4). Untreated cases can develop complications
including an increased acquisition and transmission of HIV. In women, long-term infections can
cause infertility, pelvic inflammatory disease, ectopic pregnancy, miscarriage or premature labour
(5). Infections during pregnancy can transmit to newborns at birth causing eye damage that can

have permanent effects on vision (6).

Strains of N. gonorrhoeae resistant to every recommended treatment have rapidly emerged,
including resistance to penicillins, tetracyclines, fluoroquinolones, macrolides and the extended-
spectrum cephalosporins (ESCs) (5-7). The current recommended treatment in many countries
is a dual therapy with injectable ceftriaxone plus oral azithromycin, although reports of decreased
susceptibility to ceftriaxone as well as azithromycin resistance have increased globally (7, 8). One
case of failure of dual treatment was reported in 2016 in the United Kingdom (UK) (9). Additionally,
in 2018 a gonococcal strain with resistance to ceftriaxone combined with high-level resistance to
azithromycin was detected in both the UK and Australia (10, 11). A ceftriaxone-resistant clone

(FC428) has been transmitted internationally, raising concerns about the long-term effectiveness
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98 of the current treatment in the absence of an available alternative (12). In some countries such

99 asinJapan, China and since 2019 in the UK, a single dose of ceftriaxone 1 gram is recommended
100 due to the increasing incidence of azithromycin resistance in N. gonorrhoeae and other STI
101 pathogens such as Mycoplasma genitalium (13). Extensive investigations have been ongoing for
102  years to unveil the genetic mechanisms that explain most of the observed susceptibility patterns
103  for the main classes of antimicrobials for N. gonorrhoeae. For ciprofloxacin, nearly all of the
104 resistant strains have the GyrA S91F amino acid alteration (14-16), however, resistance
105 prediction from genomic data is not as straightforward for other antibiotics. Known resistance
106  mechanisms often involve additive or suppressive effects as well as epistatic interactions that all
107  together explain just part of the observed phenotypic resistance. For example, there is good
108 evidence that many mosaic structures of the penA gene are associated with decreased
109  susceptibility of ESCs (17, 18), however, mosaics do not explain all cases of ESC resistance,
110  especially for ceftriaxone, and some mosaic penA alleles do not cause decreased susceptibility
111 or resistance to this antibiotic (17-20). On top of these, variants that overexpress the MtrCDE
112  efflux pump, mutations in porB that reduce drug influx and non-mosaic mutations in penicillin-
113  binding proteins also contribute to decreased susceptibility to ESCs (21). Furthermore, mutations
114  in the rpoB and oD genes, encoding subunits of the RNA polymerase, have been recently
115  related to resistance to ESCs in clinical N. gonorrhoeae isolates (22). Mutations in the 23S rRNA
116  gene (A2045G and C2597T in N. gonorrhoeae nomenclature, coordinates from the WHO 2016
117  reference panel (23), A2059G and C2611T in Escherichia coli) are frequently associated with
118  azithromycin resistance, as do variants in mirR or its promoter that increase the expression of the
119  MtrCDE efflux pump (5). Recently, epistatic interactions between a mosaic mir promoter region
120 and a mosaic mirD gene have also been reported to increase the expression of this pump,
121 contributing to macrolide resistance (24, 25). Mutations in rp/D have also been associated with
122 reduced susceptibility to this antibiotic (26) and contrarily, loss-of-function mutations in mtrC have

123  been linked to increased susceptibility to several antibiotics including azithromycin (27).
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124 A myriad of methods have been used to discriminate among strains of N. gonorrhoeae, from
125  phenotypic to DNA-based techniques (28), but whole genome sequencing (WGS) can provide
126  the complete genome information of a bacterial strain. The cost of amplifying all loci of the different
127  typing schemes via nucleic acid amplification and traditional Sanger sequencing can be more
128  expensive than the cost of WGS of one bacterial genome in many settings. With WGS, multiple
129  genetic AMR mechanisms as well as virulence and typing regions can be targeted simultaneously
130  with the appropriate bioinformatic tools and pipelines. It also provides a significant improvement
131  in resolution and accuracy over traditional molecular epidemiology and typing methods, allowing
132 a genome-wide comparison of strains that can: identify AMR clones, outbreaks, transmission
133  networks, national and international spread, known and novel resistance mechanisms as well as
134 also inform on the development of point-of-care tests for antimicrobial susceptibility, novel
135  antimicrobials and vaccines (29, 30). However, implementation of WGS for genomic surveillance
136  poses practical challenges, especially for Low- and Middle-Income Countries (LMICs), due to the
137 need of a major investment to acquire and maintain the required infrastructure. The cost of
138 sequencing is decreasing very rapidly in well-resourced settings, especially in large sequencing

139  centres, but it is still prohibitive for routine surveillance in many others.

140 WGS produces a very high volume of data that needs to be pre-processed and analysed using
141 bioinformatics. Bioinformatics expertise is not always readily available in laboratory and public
142 health settings, and currently there are no international standards and proficiency trials for which
143  algorithms to use to process WGS data. There are several open source tools specialised in each
144  step of the pipeline as well as proprietary software containing workflows that simplify the analyses.
145  However, these are less customizable and may not be affordable for all (31, 32). Choosing the
146  best algorithms and parameters when analysing genomic data is not straightforward as it requires
147  a fair knowledge of the pathogen under study and its genome diversity. Multiple databases
148  containing genetic determinants of AMR for bacterial pathogens are available (31, 32), however,
149  choosing which one is most complete for a particular organism frequently requires an extensive

150 literature search. Public access web-based species-specific tools and AMR databases revised
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151 and curated by experts would be the most approachable option for both well-resourced and LMICs
152  with a reliable internet connection. Very importantly though, the full benefits of using WGS for
153  both molecular epidemiology and AMR prediction can only be achieved if the WGS data are linked
154  to phenotypic data for the gonococcal isolates and, as much as feasible, epidemiological data for

155  the patients.

156  Here, we present a public health focussed system to facilitate genomic epidemiology of M.

157  gonorrhoeae within Pathogenwatch (https://pathogen.watch/ngonorrhoeae), which includes the

158 latest analytics for typing, detection of genetic AMR determinants and prediction of AMR from N.
159  gonorrhoeae genome data, linked to metadata where available, as well as a collection of over
160 12,000 gonococcal genomes from public archives for contextualization. We formed an advisory
161 group including experts in the field of N. gonorrhoeae epidemiology, public health, AMR, genetics
162  and genomics to consult on the development and design of the tool, such as the analytics and
163  genetic AMR mechanisms to include, in order to adapt the platform for ongoing public health
164  needs. We present this scheme as a community-steered model for genomic surveillance of other
165 pathogens.

166

167 Methods

168  Generation of the N. gonorrhoeae core genome library

169  Pathogenwatch implements a library of core genome sequences for several supported organisms.
170 In the case of N. gonorrhoeae, a core gene set was built from the 14 reference genomes that
171  constitute the 2016 WHO reference strain panel (23) using the pangenome analysis tool Roary
172  (33) as described in Harris et al (2018) (16). Briefly, the minimum percentage of identity for blastp
173  was set to 97% and the resulting core genes were aligned individually using MAFFT. The resulting
174  genes with a percentage of identity above 99% were post-processed as described in (34).
175  Overlapping genes were merged into pseudocontigs and clusters representing paralogs or

176  fragment matches were removed. Representative sequences from each cluster were selected as
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177  the longest compared to a consensus obtained from the cluster alignment. The final core gene
178  set contains 1,542 sequences that span a total of 1,470,119 nucleotides. A BLAST database was

179  constructed from these core segments and used to profile new assembilies.

180  Profiling new assemblies

181 New genome assemblies can be uploaded by a user (drag and drop) or calculated from high-

182  throughput short read data directly within Pathogenwatch using SPAdes (35) as described in (36).

183 A taxonomy assignment step for species identification is performed on the uploaded assemblies
184 by using Speciator (37). New assemblies are then queried against a species-specific BLAST
185 database using blastn. For N. gonorrhoeae, every core loci needs to match at least 80% of its
186 length to be considered as present. Further filtering steps are applied to remove loci that can be
187  problematic for tree building, such as a paralogs or loci with unusually large number of variant
188  sites compared to an estimated substitution rate on the rest of the genome, as described in (38).
189  The overall substitution rate is calculated as the number of total differences in the core library
190 divided by the total number of nucleotides. Indels are ignored to minimise the noise that could be
191 caused by assembly or sequencing errors. The expected number of substitutions per locus is

192  determined by multiplying this substitution rate by the length of the representative sequence.

193 The number of substitutions observed for each locus between the new assembly and the
194  reference sequence are scaled to the total number of nucleotides that match the core library,
195 creating a pairwise score that it is saved on a distance matrix and is used for tree construction,

196  as described in (39).

197  Algorithms for sequence typing and cgMLST clustering

198 Alleles and sequence types (STs) for Multi-Locus Sequence Typing (MLST) (40) and cgMLST
199  (core genome MLST, N. gonorrhoeae cgMLST v1.0) (41) were obtained from PubMLST (42, 43),
200 for N. gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST) (44) from (45) and for N.

201  gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) (46) from (47). A search
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202  tool implemented as part of Pathogenwatch is used to make the assignments for MLST, cgMLST
203 and NG-STAR, while NGMASTER (48) is used for NG-MAST. Briefly, exact matches to known
204 alleles are searched for, while novel sequences are assigned a unique identifier. The combination
205 of alleles is used to assign a ST as described in (49). Databases are regularly updated and novel

206 alleles and STs should be submitted by the user to the corresponding schemes for designation.

207  cgMLST typing information is used for clustering individual genomes with others in the
208 Pathogenwatch database as described in (50). Users can select the clustering threshold (i.e.
209 number of loci with differing alleles) and a network graph is calculated within individual genome

210  reports.

211 AMR library and detection of genetic AMR determinants

212  Genes and point mutations (single nucleotide polymorphisms (SNPs) and indels) were detected
213  using PAARSNP v2.4.9 (51). PAARSNP also provides a prediction of AMR phenotype inferred
214 from the combination of identified mechanisms. Genetic determinants described in the literature
215 asinvolved in AMR in N. gonorrhoeae were collated into a library in TOML format (version 0.0.11).
216  Atestdataset containing 3,987 isolates from 13 studies (16, 19, 23, 52-61) (Additional file 1: Table
217  S1) providing minimum inhibitory concentration (MIC) information for six antibiotics
218  (benzylpenicillin, tetracycline, ciprofloxacin, cefixime, ceftriaxone and azithromycin) was used to
219  benchmark and to curate this library. A validation benchmark was posteriorly run with a dataset
220 0of 1,607 isolates from 3 other publications (62-64) with MIC information for the same six antibiotics
221 plus spectinomycin (Additional file 1: Table S1). EUCAST clinical breakpoints v9.0 (65) were used
222  for S (susceptibility), | (intermediate resistance/decreased susceptibility) or R (resistance) (SIR)
223  categorical interpretation of MICs for all antibiotics except for azithromycin, for which the
224  epidemiological cut-off (ECOFF) was used. As a result of the benchmark analyses, sensitivity,
225  specificity and positive/negative predictive values (PPV/NPV) were obtained for the AMR
226  mechanisms implemented in the library and, globally, for each of the antibiotics. Confidence

227 intervals for these statistics were calculated using the epi.tests function in the epiR R package
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228 v1.0-14 (66). Individual or combined AMR mechanisms with a PPV below 15% were discarded
229 from the library to optimise the overall predictive values. Visual representations of the observed
230 ranges of MIC values for a particular antibiotic for each of the observed combinations of genetic
231  AMR mechanisms on the test dataset were used to identify and assess combinations of
232 mechanisms that have an additive or suppressive effect on AMR. These were included in the
233  library.

234  As part of the quality assessment of the AMR library, we ran the 2016 WHO N. gonorrhoeae
235 reference genomes 2016 panel (n=14) through Pathogenwatch and compared the detected list
236  of genetic AMR mechanisms with the list published in the original study (23). For the WHO U
237  strain, a discrepancy on a mutation in parC was further investigated by mapping the original raw
238 lllumina data (European Nucleotide Archive (ENA) run accession ERR449479) to the reference

239 genome assembly (ENA genome accession LT592159.1) and visualized using Artemis (67).

240 In short-read assembilies, the four copies of the 23S rDNA gene are collapsed into one, thus the
241  detection of the A2045G and C2597T mutations is dependent on the consensus bases resulting

242  from the number of mutated copies (57, 60, 68).

243  Quality check and assembly of public sequencing data

244  Public N. gonorrhoeae genomes with geolocation data were obtained from the ENA in November
245  2019. This list was complemented by an exhaustive literature search of studies on N. gonorrhoeae
246  genomics without metadata submitted to the ENA but instead made available as supplementary
247  information in the corresponding publications. Raw paired-end short read data from a list of
248 12,192 isolates was processed with the GHRU assembly pipeline v1.5.4 (69). This pipeline runs
249  a Nextflow workflow to quality-check (QC) paired-end short read fastq files before and after
250 filtering and trimming, assembles the data and quality-checks the resulting assembly. In this
251  pipeline, QC of short reads was performed using FastQC v0.11.8 (70). Trimming was done with
252  Trimmomatic v0.38 (71) by cutting bases from the start and end of reads if they were below a

253  Phred score of 25, trimming using a sliding window of size 4 and cutting once the average quality
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254  within the window fell below a Phred score of 20. Only reads with length above a third of the
255  original minimum read length were kept for further analyses. After trimming, reads were corrected
256  using the kmer-based approach implemented in Lighter v1.1.1 (72) with a kmer length of 32 bp
257  and a maximum number of corrections allowed within a 20 bp window of 1. ConFindr v0.7.2 was
258 used to assess intra- and inter-species contamination (73). Mash v2.1 (74) was applied to
259  estimate genome size using a kmer size of 32 bp and Seqtk v1.3 (75) to down sample fastq files
260 if the depth of coverage was above 100x. Flash v1.2.11 (76) was used to merge reads with a
261 minimum overlap length of 20 bp and a maximum overlap of 100 bp to facilitate the subsequent
262  assembly process. SPAdes v3.12 (35) was used for genome assembly with the --careful option
263  selected to reduce the number of mismatches and short indels with a range of kmer lengths
264  depending on the minimum read length. The final assemblies were quality-checked using Quast
265 v5.0.2 (77) and ran through the species identification tool Bactinspector (78). QC conditions were

266  assessed and summarised using Qualifyr (79).

267  Fastq files with poor quality in which the trimming step discarded all reads from either one or both
268  pairs were excluded from the analyses. Assemblies with an N50 below 25,000 bp, a number of
269  contigs above 300, a total assembly length above 2.5 Mb or a percentage of contamination above

270 5% were also excluded.

271  Metadata for public genomes

272  Geolocation data (mainly country), collection dates (day, month and year when available), ENA
273  project accession and associated Pubmed ID were obtained from the ENA API for all the genomes
274 in the pipeline (80). A manual extensive literature search was performed to identify the
275  publications containing the selected genomes. In order to complete published studies as much
276  as possible, extra genomes were downloaded and added to the dataset. Metadata for the final
277  set was completed with the information contained in supplementary tables on the corresponding
278  publications, including MIC data. Submission date was considered instead of collection date when

279 the latter was not available, however, this occurred in only a few cases (<0.5%).

10
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280

281 Results

282  Upload and analyse N. gonorrhoeae genome data

283 Data can be uploaded in the form of assemblies or raw data (fastq format) into Pathogenwatch,
284  which allows users to run different analytics on genomic data simultaneously (Figure 1). If raw
285 data is provided, an assembly is calculated before running the analyses. These analytics include
286  four typing schemes for N. gonorrhoeae as well as a genotypic AMR prediction using a
287  customized AMR library that includes known genetic mechanisms of resistance for 8
288 antimicrobials: ceftriaxone, cefixime, azithromycin, ciprofloxacin, spectinomycin, tetracycline,
289  benzylpenicillin and sulfonamides. Statistics on the quality of the assemblies are also provided in
290 the form of matches to the core genome, total genome length, N50, number of contigs, number

291  of non-ATCG bases and GC content (Additional file 2: Figure S1).

292  Genomes from one or multiple studies can be grouped into collections (Figure 2 and Additional
293 file 2: Figure S2), and the genomic data are automatically processed by comparing with a core N.
294  gonorrhoeae genome built from WHO reference strain genomes (16, 23). A phylogenetic tree,
295 inferred using the Neighbour-Joining algorithm on core SNPs, is obtained as a result, representing
296 the genetic relationship among the isolates in the collection. Metadata can be uploaded at the
297 same time as the genome data, and if the collection location coordinates for an isolate are
298 provided, this information is plotted into a map (Additional file 2: Figure S1). If date or year of
299 isolation is also provided, this information is represented in a timeline. The three panels on the
300 main collection layout - the tree, the map and a table or timeline — are functionally integrated so
301 filters and selections made by the user update all of them simultaneously. Users can also easily
302 switch among the metadata and the results of the main analytics: typing, genome assembly
303 statistics, genotypic AMR prediction, AMR-associated SNPs, AMR-associated genes and the
304 timeline (Additional file 2: Figure S1). A video demonstrating the usage and main features of

305 Pathogenwatch is available (81).

11
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Figure 1. Main workflow in Pathogenwatch. New genomes can be uploaded and combined with public data for
contextualisation. The collection view allows data exploration through a combined phylogenetic tree, a map, a timeline
and the metadata table, which can be switched to show typing information (Multi-Locus Sequence Typing, MLST; N.
gonorrhoeae Sequence Typing for Antimicrobial Resistance, NG-STAR; and N. gonorrhoeae Multi-Antigen Sequence
Typing, NG-MAST) as well as known genetic AMR mechanisms for eight antibiotics. Genome reports summarise the
metadata, typing and AMR marker results for individual isolates and allow finding other close genomes in
Pathogenwatch based on core genome MLST (cgMLST). SNPs: single nucleotide polymorphisms.
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331

332 Figure 2. Main display of a Pathogenwatch collection, showing a phylogenetic tree, a map and a table of SNPs
333 associated to AMR of 395 N. gonorrhoeae genomes from a global study (58, 82). Isolates carrying three mosaic penA
334 marker mutations are marked in red in the tree and the map. The table can be switched to show the metadata, a
335 timeline, typing results (Multi-Locus Sequence Typing, MLST; N. gonorrhoeae Sequence Typing for Antimicrobial
336 Resistance, NG-STAR and N. gonorrhoeae Multi-Antigen Sequence Typing, NG-MAST) as well as AMR analytics
337 (known genetic mechanisms and genotypic AMR prediction) implemented in the platform. Further detail is shown in
338  Additional file 2: Figure S1

339
340 Sequence typing schemes: cgMLST, MLST, NG-MAST and NG-STAR

341  Pathogenwatch implements four sequence typing schemes for N. gonorrhoeae: cgMLST (41),
342  MLST (40), NG-MAST (44) and NG-STAR (46) (Table 1). Each of the schemes is based on a
343  group of loci for which individual allele numbers are assigned relying on an existing database of
344  allele sequences. A unique ST is generated from the combination of allele numbers to represent
345  each isolate. The cgMLST scheme includes 1,649 loci from the N. gonorrhoeae cgMLST v1.0
346  scheme in PubMLST (43) and it is used for clustering individual genomes with others in the
347 database based on allele differences (Additional file 2: Figure S3). The MLST scheme, also
348 hosted in PubMLST, includes 7 housekeeping genes and gene fragments more conserved and
349  slowly evolving in the Neisseria genus. NG-MAST includes internal fragments from two highly
350  polymorphic and rapidly evolving outer membrane protein genes, porB and tbpB. NG-STAR was

351  developed more recently with the aim of standardizing the nomenclature associated with AMR

13


https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/

352

353

354

355
356

357
358
359

360
361

362

363

364

365

366

367

368

369

370

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186726; this version posted July 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

determinants as well as having a typing scheme that would distinguish among lineages with

different AMR mechanisms. It includes 7 genes associated with resistance to B-lactams,
macrolides and fluoroquinolones (Table 1).
Table 1. N. gonorrhoeae sequence typing schemes implemented in Pathogenwatch.
Typing Loci (number) Note Pathogenwatch References
scheme* implementation
cgMLST (N=1,649) N. gonorrhoeae Typing algorithm, database (41-43, 83)
cgMLST v1.0 from PubMLST
MLST abcZ, adk, aroE, Housekeeping genes  In-house MLST tool, database (40, 42, 43, 83)
fumC, gdh, pdhC, in Neisseria spp. from PubMLST
pgm (N=7)
NG-MAST porB, tbpB (N=2) Genes encoding NG-MASTER, database from (44, 45, 48)
highly-variable NG-MAST website
membrane proteins
NG-STAR penA, mtrR, porB, Genes involved in In-house MLST tool, database (46, 47, 83)

ponA, gyrA, parC,
23S rDNA (N=7)

antimicrobial
resistance

from NG-STAR website

* Typing scheme: cgMLST = core genome Multi-Locus Sequence Typing, MLST = Multi-Locus Sequence Typing, NG-
MAST = N. gonorrhoeae Multi-Antigen Sequence Typing, NG-STAR = N. gonorrhoeae Sequence Typing for
Antimicrobial Resistance.

Library of genetic AMR mechanisms: test and validation

We compiled described genetic AMR mechanisms previously reported for N. gonorrhoeae up to

the writing of this manuscript into the AMR library in Pathogenwatch (Table 2).
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371 Table 2. List of N. gonorrhoeae genetic antimicrobial resistance (AMR) determinants in Pathogenwatch. References
372 that report evidence of association of each mechanism to AMR in clinical isolates and/or where their role on AMR has
373 been confirmed in the laboratory through, i.e. transformation experiments, are included in the table. Effect: R =
374 Resistance, | = Intermediate resistance (decreased susceptibility), A = Additive effect, N = Negative effect. R and |
375 follow the EUCAST clinical breakpoints except for azithromycin, for which the epidemiological cut-off (ECOFF) is
376  reported and used instead.

Antibiotic Genetic AMR determinants Effect Evidence
(MIC breakpoint (References)
mg/L)
Azithromycin 23S rDNA 2045A>G substitution (2059A>G in E. coli) R (68)
(R: MIC>1, ECOFF) 23S rDNA 2597C>T substitution (2611C>T in E. coli) R (84)
ermA, ermB, ermC, ermF genes R (85, 86)
ereA, ereB genes R (23)
mefA gene R (86, 87)
macAB promoter -48G>T substitution* R (88)
mitr mosaic**
N. meningitidis-like mosaic (n=1) R (24)
N. lactamica-like mosaic (n=2) R (24)
mtrD mosaic**
N. meningitidis-like mosaic (n=1) R (24)
N. lactamica-like mosaic (n=2) R (24)
mtrR promoter -57delA* A (89, 90)
mitrR G45D A (91, 92)
mirC loss-of-function N (27)
rplV ARAK tandem duplication (position 90) R (19)
rplV KGPSLK tandem duplication (position 83) R (19)
rplD G70D A (26)
Ceftriaxone*** penA mosaic (A311V, 1312M, V316P/T, T483S and G545S) R (93-95)
(R: MIC>0.125) penA V316P, T483S, A501P/V, G542S R (93, 94)
rpoB P157L, G158V, R201H R (22)
rpoD D92-95 deletion, E98K I (22)
Cefixime*** mitrR G45D A (91, 92)
(R: MIC>0.125) penA mosaic (I1312M, V316T, G545S) R (93-95)
penA mosaic (A311V, 1312M, V316P/T, T483S and G545S) R (93-95)
penA V316P, T483S, A501P I (93, 94)
rpoB P157L, G158V, R201H I (22)
rpoD D92-95 deletion, E98K I (22)
Ciprofloxacin gyrA S91F, D95A/N R (96)
(I: 0.03<MIC<0.06; gyrA D95G I (96)
R: MIC>0.06) norM promoter -7A>G, -104C>T substitutions*® I (97)
parC D86N, S87R R (96)
parC S87I/N, S88P, E91K I (96)
parE G410V I (98)
Tetracycline™** mitrR A39T, G45D A (91, 92)
(I: 0.5<MIC<1; mtrR loss-of-function I (23)
R: MIC>1) mirR promoter -56A>C substitution, -57delA deletion* | (24, 89, 90)
mtrR promoter -131G>A (mtrC -120G>A substitution, mtr120)* | (91)
rpsJ V57M I (99)
tetM gene R (100)
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Penicillins blaTEM gene R (101)
(I: 0.06<MIC<T; mitrR G45D I (91, 92)
R: MIC>1) mtrR A39T A (91)
mirR loss-of-function I (23)
mtrR promoter -56A>C, -57delA* I (24, 90)
mtrR promoter -131G>A (mtrC -120G>A substitution, mtr120)* | (91)
penA 1312M, V316P/T, ins346D, T483S, A501P/T/V, G542S, I (93, 94)
G545S, P551S
penA mosaic (I1312M, V316T, G545S) A (93-95)
ponA1L421P I (102)
porB1b G120K, A121N/D I (103)
Spectinomycin 16S rDNA 1184C>T (1192C>T in E. coli) R (104)
(R: MIC>64) rpsk T24P R (105)
rpsE V27- deletion, K28E R/A (105)
Sulfonamides folP R228S R (23, 106)

*kkkk

377

378 *Nomenclature of the mutations on the macAB, mtrR and norM promoter regions is based on N. gonorrhoeae coordinates considering
379  the distance from the start of the macAB, mtrR and norM genes, respectively. **Note that mosaics are caused by recombination events,
380  which can have variable breakpoints with different effects on azithromycin MIC if any. In this version, we have included the three
381  mosaics described by Wadsworth et al. (24), but the list will be expanded as new mosaic mir (intergenic region between mtrR and
382 mtrC) and mirD alleles having an effect on azithromycin MICs are published. ***The list of genetic AMR mechanisms for the ESCs
383 ceftriaxone and cefixime do not include all known porB1b or mitrR-associated variants as their effect was found not to be relevant in
384 increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes despite the experimental evidence reported in
385 Zhaoetal (107). In case of strains carrying penA-associated mutations, their inmediate predicted phenotype is that of those carrying
386 penA-associated variants. ****The list of genetic AMR mechanisms for tetracycline does not include porB1b mutations as their effect
387  was found not to be relevant in increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes. *****Sulfonamides
388  are not a treatment alternative for gonorrhoea, however the folP R228S mutation is kept in this version of the library for surveillance

389 purposes.
390

391  This list was benchmarked using a test dataset of 3,987 N. gonorrhoeae isolates from 13 different
392  studies containing MIC information for at least part of the following six antibiotics: ceftriaxone,
393  cefixime, azithromycin, ciprofloxacin, benzylpenicillin and tetracycline (Additional file 1: Table S1).
394  EUCAST clinical breakpoints were applied for five of the antimicrobials except for azithromycin,
395 for which the adoption of an ECOFF>1 mg/L is now recommended to distinguish isolates with
396  azithromycin resistance determinants, instead of a clinical resistance breakpoint (108, 109). A
397  visualization of the range of MICs on each particular combination of genetic AMR mechanisms
398 observed on the isolates from the benchmark test dataset (Figure 3a-b and Additional file 2:
399  Figures S4-S9) revealed combinations that show an additive effect on AMR. These combinations
400 were included in the AMR library to improve the accuracy of the genotypic prediction. For
401 example, rmpsd V57M and some mirR-associated mutations individually cause decreased

402  susceptibility or intermediate resistance to tetracycline (MICs between 0.5-1 mg/L), however, a
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403 combination of these variants can increase MICs above the EUCAST resistance breakpoint for
404 tetracycline (MICs>1 mg/L) (Additional file 2: Figure S8). This is the case of the combination of
405 rpsd V57M with the mtrR promoter -57delA mutation (N=681 isolates, 94.9% positive predictive
406 value, PPV) or with mirR promoter -57delA and mtrR G45D (N=83 isolates, 93.9% PPV). Several
407  combinations of penA, ponA1, mtrR and porB1b mutations were observed to be able to increase
408 the benzylpenicillin MIC above the resistant threshold in most of the cases (Additional file 2: Figure
409 S9). This is the case of the porB1b mutations combined with mtrR A39T (N=31 isolates, 100%
410 PPV), with the mtrR promoter -57delA deletion (N=286 isolates, 96.5% PPV) or with mtrR
411 promoter -57delA and ponA1 L421P (N=269 isolates, 96.3%). Despite mosaic penA not being a
412  main driver of resistance to penicillins, a combination of the porB7b mutations with the three main
413  mosaic penA mutations (G545S, 1312M and V316T) was also observed to produce a resistant
414  phenotype in all cases (N=17 isolates, 100% PPV). A recent publication showed that loss-of-
415  function mutations in mirC increased susceptibility to azithromycin and are associated with
416 isolates from the cervical environment (27). We included the presence of a disrupted mtrC as a
417  modifier of antimicrobial susceptibility in the presence of an mitr mosaic, as it did not show a

418  significant effect in the presence of 23S rDNA A2045G and C2597T mutations.
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421 Figure 3. Distribution of minimum inhibitory concentration (MIC) values (mg/L) for the last-line antibiotics for N.

422 gonorrhoeae azithromycin (a) and ceftriaxone (b) in a collection of 3,987 N. gonorrhoeae isolates with different
423 combinations of genetic antimicrobial resistance (AMR) mechanisms. Only combinations observed in at least 5 isolates
424 are shown (see Additional file 2: Figure S4-S9 for expanded plots for six antibiotics). Dashed horizontal lines on the
425 violin plots mark the EUCAST epidemiological cut-off (ECOFF) for azithromycin and EUCAST clinical breakpoint for
426 ceftriaxone. Point colours inside violins represent the genotypic AMR prediction by Pathogenwatch on each
427 combination of mechanisms (indicated by black circles connected vertically; horizontal thick grey lines connect
428 combinations of mechanisms that share an individual determinant). Barplots on the top show the abundance of isolates
429 with each combination of mechanisms. Bar colours represent the differences between the predicted and the observed
430 SIR (i.e. red for a predicted susceptible mechanism when the observed phenotype is resistant). (c) Radar plots
431 comparing the sensitivity, specificity, positive and negative predictive values (PPV/NPV) for six antibiotics for the test
432 and validation benchmark analyses. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO = Ceftriaxone,
433  PEN = Benzylpenicillin, TET = Tetracycline.

434

435 Results from the benchmark (Additional file 1: Table S2) show sensitivity values (true positive
436 rates, TP/(TP+FN); TP=True Positives, FN=False Negatives) above 96% for tetracycline (99.2%),
437  benzylpenicillin (98.1%), ciprofloxacin (97.1%) and cefixime (96.1%), followed by azithromycin

438 (71.6%) and ceftriaxone (33.3%). These results reflect the complexity of the resistance
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439 mechanisms for azithromycin and ceftriaxone, where the known genetic determinants explain
440 only part of the antimicrobial susceptibility. However, specificity values (true negative rates,
441  TN/(TN+FP); TN=True Negatives, FP=False Positives) for these two antibiotics as well as
442  ciprofloxacin were above 99% (Additional file 1: Table S2), demonstrating that the genetic
443  mechanisms included in the database have a role in AMR. The specificity value for cefixime was
444  lower but nearly 90%, mainly due to the high number of isolates with an MIC below the threshold
445  but with three mutations characterising a mosaic penA allele (G545S, 1312M and V316T, TP=367,
446  TN=323, PPV=53.2%; Additional file 1: Table S3). Benzylpenicillin and tetracycline showed
447  specificity values of 77.3% and 61.3%, respectively. In the first case, all the mechanisms included
448 in the library showed a PPV value above 94%. For tetracycline, a considerable number of false
449  positive results are mainly caused by the presence of rpsJ V57M, for which PPV=83.8%
450 (TP=1083, FP=209; Additional file 1: Table S3). However, this mutation was kept in the AMR
451 library because it can cause intermediate resistance to tetracycline on its own (Additional file 2:

452  Figure S8).

453 Results from the benchmark analysis on the 3,987-isolates dataset were used to curate and
454  optimize the AMR library. Thus, in order to objectively validate it, the benchmark analysis was
455  also run on a combination of three different collections (N=1,607, Additional file 1: Table S1) with
456  available MIC information for seven antibiotics including spectinomycin (Additional file 1: Table
457  S4) (63, 64, 110). Results from the test and validation benchmark runs were compared, showing
458 that sensitivity values on the six overlapping antibiotics were very similar, with the validation set
459  performing even better for azithromycin and ceftriaxone (Figure 3c). In terms of specificity, both
460 datasets performed equally well for all antibiotics except for benzylpenicillin, in which specificity
461  drops in the validation dataset. This is due to the penA_ins346D mutation (TP=1125, FP=83) and
462 the blaTEM genes (TP=525, FP=36), which despite showing false positives, have a PPV above
463 93% (Additional file 1: Table S4). In general, discrepancies found between the test and the

464  validation datasets can be explained by particular mechanisms that on their own show high
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465 predictive values and affect antibiotics for which we do not currently understand all the factors

466 involved in resistance, such as azithromycin and the ESCs (Additional file 1: Table S4).

467  An additional quality assessment of the AMR library was performed using the 14 N. gonorrhoeae
468 reference genomes from the WHO 2016 panel (23), which were uploaded into Pathogenwatch.
469  All the genetic AMR determinants described as present in these isolates and implemented in the
470 Pathogenwatch AMR library were obtained as a result (Additional file 1: Table S5). Only one
471  discrepancy was found when compared to the original publication. The WHO U strain was
472  reported as carrying a parC S87W mutation. However, mapping the original lllumina data from
473  this isolate with the final genome assembly revealed that this strain carries a wild type allele
474  (Additional file 2: Figure S10). MLST and NG-MAST types were the same as those reported in
475  the original publication (note that NG-STAR was not available at that time) and the porA mutant
476  gene was found in WHO U as previously described. This mutant porA has nearly a 95% nucleotide
477  identity to N. meningitidis and 89% to N. gonorrhoeae, and it is included as screening because it
478 has previously been shown to cause false negative results in some molecular detection tests for

479  N. gonorrhoeae (111).

480 Over 12,000 public genomes available

481  All N. gonorrhoeae short-read sequencing raw data with geolocation data (minimum of country
482  and preferably also year) and associated to a scientific publication was downloaded from the
483 ENA. This collection was expanded after an exhaustive literature search on studies that did not
484  upload geolocation data to the ENA but released as a part of scientific publication(s). Over 12,000
485 genomes were assessed for sequencing quality data and contamination, assembled using a
486 common pipeline and thresholds as well as post-assembly quality check (Additional file 3). Data
487  for 11,461 isolates were successfully assembled and passed all quality cut-offs, providing 12,515
488 isolates after including the previously-available Euro-GASP 2013 dataset (16). New assemblies
489  were uploaded and made public on Pathogenwatch, which now constitutes the largest repository

490 of curated N. gonorrhoeae genomic data with associated metadata, typing and AMR information
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491  at the time of submission of this manuscript. Updated data spans 27 different publications (19,
492 44,48, 52-55,57-59, 61-64, 110, 112-125) and is organized into individual collections associated
493  with the different studies (Additional file 1: Table S6). Available metadata was added for the
494  genomes from these publications while basic metadata fields were kept for others (country,

495  year/date and ENA project number).

496 The N. gonorrhoeae public data available on Pathogenwatch spans nearly a century (1928-2018)
497  and almost 70 different countries (Additional file 2: Figure S11). However, sequencing efforts are
498 unevenly distributed around the world, and over 90% of the published isolates were isolated in
499  only 10 countries, headed by the United Kingdom (N=3,476), the United States (N=2,774) and
500 Australia (N=2,388) (Additional file 1: Table S7, Figure 4). A total of 554 MLST, 1,670 NG-MAST
501 and 1,769 NG-STAR different STs were found in the whole dataset, from which a considerable
502 number were new profiles caused by previously undetected alleles or new combinations of known
503 alleles (N=92 new MLST STs, N=769 new NG-STAR STs and N=2,289 isolates with new NG-
504 MAST porB and/or tbpB alleles). These new alleles and profiles were submitted to the

505 corresponding scheme servers.
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Figure 4. Summary of the geolocalization and collection date of 12,515 public N. gonorrhoeae genomes in
Pathogenwatch. Coloured bars represent the genotypic antimicrobial resistance (AMR) prediction based on the
mechanisms included in the library. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO =
Ceftriaxone, PEN = Benzylpenicillin, TET = Tetracycline.

Genomic studies are often biased towards AMR isolates, and this is reflected in the most
abundant STs found for the three typing schemes within the public data. Isolates with MLST
ST1901, ST9363 and ST7363, which contain resistance mechanisms to almost every antibiotic
included in the study, represent over 25% of the data (Figure 5). Isolates with MLST ST1901 and
ST7363 are almost always resistant to tetracycline, sulfonamides, benzylpenicillin and
ciprofloxacin and nearly 50% of isolates from these two types harbour resistance mechanisms to
cefixime. Ciprofloxacin resistance is not widespread among ST9363 isolates, in which

azithromycin resistance can approach to nearly 50% of the isolates for this ST (Figure 5). NG-
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515 STAR ST63 (carrying the non-mosaic penA-2 allele, penA A517G and mtrR A39T mutations as
516  described in (47)) is the most represented in the dataset and carries resistance mechanisms to
517  tetracycline, sulfonamides, and benzylpenicillin, but is largely susceptible to spectinomycin,
518 ciprofloxacin, the ESCs cefixime and ceftriaxone and azithromycin. NG-STAR ST90 isolates,
519  conversely, are largely resistant to cefixime, ciprofloxacin and benzylpenicillin as they carry the
520 key resistance mutations in mosaic penA-34, as well as in the mtrR promoter, porB1b, ponA, gyrA
521  and parC (as described in (47)). NG-MAST ST1407 is commonly associated with MLST ST1901
522  and is the second most represented ST in the dataset following NG-MAST ST2992, which mainly

523  harbours resistance to tetracycline, benzylpenicillin and sulfonamides (Figure 5).
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Figure 5. Predicted antimicrobial resistance (AMR) profiles of the top five Multi-Locus Sequence Typing (MLST),
N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) and N. gonorrhoeae Multi-Antigen
Sequence Typing (NG-MAST) types in the N. gonorrhoeae public data in Pathogenwatch. The main graph shows
the proportion of resistant (including intermediate phenotypes, in red) versus susceptible genomes (in dark blue)
from each sequence type (ST) and antibiotic. Bars on the top show the number of isolates from each ST coloured
by the number of antibiotics the genomes are predicted to be resistant to.
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527  Data sharing and privacy

528 Sequencing data and metadata files uploaded by the user are kept within the user’s private
529  account. Genomes can be grouped into collections and these can be toggled between private
530 and accessible to collaborators via a URL. Collection URLs include a 12-letter random string to
531  secure them against brute force searching. Setting a collection to ‘off-line mode’ allows users to
532  work in challenging network conditions, which may be beneficial in LMICs — all data are held within
533  the browser. Users can also integrate private and potentially confidential metadata into the display
534  without uploading it to the Pathogenwatch servers (locally within the browser on a user’s

535 machine).

536

537 Discussion

538 We present a public health focussed N. gonorrhoeae framework within Pathogenwatch, an open
539  access platform for genomic surveillance supported by an expert group that can be adapted to
540  any public health or microbiology laboratory. Little bioinformatics expertise is required, and users
541 can choose to either upload raw short read data or assembled genomes. In both cases, the upload
542  of high-quality data is encouraged in the form of quality-checked reads and/or quality-checked
543  assemblies. Recent benchmark analyses show particular recommendations for long-read or
544  hybrid data (126) as well as short read-only data (35, 127). On upload, several analyses are run
545  onthe genomes, and results for the three main typing schemes (MLST, NG-MAST and NG-STAR)
546  as well as the detection of genetic determinants of AMR and a prediction of phenotypic resistance
547  using these mechanisms can be obtained simultaneously. The library of AMR determinants
548 contained in Pathogenwatch for N. gonorrhoeae has been revised and extended to include the
549 latest mechanisms and epistatic interactions with experimental evidence of decreasing
550  susceptibility or increasing resistance to at least one of eight antibiotics (Tables 2 and 3). A
551  benchmark analysis on a test and validation datasets revealed sensitivity and/or specificity values

552  >90% for most of the tested antibiotics (Additional file 1: Table S2).

24


https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186726; this version posted July 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

553  The continuous increase in reporting of N. gonorrhoeae AMR isolates worldwide led to a call for
554  international collaborative action in 2017 to join efforts towards a global surveillance scheme. This
555  was part of the WHO global health sector strategy on STls (2016-2021), which set the goal of
556 ending STI epidemics as a public health concern by year 2030 (7, 8). Several programmes are
557  currently in place at different global, regional or national levels to monitor gonorrhoea AMR trends,
558 emerging resistances and refine treatment guidelines and public health policies. This is the case
559  of, for example, the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO
560 GASP) (8), the Euro-GASP in Europe (6, 16, 128), the Gonococcal Isolate Surveillance Project
561 (GISP) in the United States (129), the Canadian Gonococcal Antimicrobial Surveillance
562  Programme (130), the Gonococcal Surveillance Programme (AGSP) in Australia (131) or the
563  Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and
564 Wales (132). The WHO in collaboration with CDC has recently started an enhanced GASP
565 (EGASP) (133) in some sentinel countries such as the Philippines and Thailand (134), aimed at
566 collecting standardized and quality-assured epidemiological, clinical, microbiological and AMR
567  data. On top of these programs, WHO launched the Global AMR Surveillance System (GLASS)
568 in 2015 to foster national surveillance systems and enable standardized, comparable and
569 validated AMR data on priority human bacterial pathogens (135). Efforts are now underway to link
570 GASP to GLASS. However, gonococcal AMR surveillance is still suboptimal or even lacking in
571 many locations, especially in LMICs, such as some parts of Asia, Central and Latin America,
572  Eastern Europe and Africa, which worryingly have the greatest incidence of gonorrhoea (3).
573  LMICs often have access to antimicrobials without prescription, have limited access to an optimal
574  treatment, lack the capacity needed to perform a laboratory diagnosis due to limited or non-
575  existent quality-assured laboratories, microbiological and bioinformatics expertise or training,
576 insufficient availability and exorbitant prices of some reagents on top of a lack of funding, which

577  altogether compromises infection control.

578 High throughput sequencing approaches have proved invaluable over traditional molecular

579  methods to identify AMR clones of bacterial pathogens, outbreaks, transmission networks and
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580 national and international spread among others (29, 30). Genomic surveillance efforts to capture
581  the local and international spread of N. gonorrhoeae have resulted in several publications within
582 the last decade involving high throughput sequence data of thousands of isolates from many
583 locations across the world. The analysis of this data requires expertise, not always completely
584  available, in bioinformatics, genomics, genetics, AMR, phylogenetics, epidemiology, etc. For
585 lower-resourced settings, initiatives such as the NIHR Global Health Research Unit, Genomic
586  Surveillance of Antimicrobial Resistance (136) are essential to build genomic surveillance
587  capacity and provide the necessary microbiology and bioinformatics training for quality-assured

588  genomic surveillance of AMR.

589  One of the strengths of genomic epidemiology is being able to compare new genomes with
590 existing data from a broader geographical level, which provides additional information on, i.e. if
591 new cases are part of a single clonal expansion or multiple introductions from outside a specific
592  location. Currently, over 12,000 isolates of N. gonorrhoeae have been sequenced using high
593  throughput approaches and publicly deposited on the ENA linked to a scientific publication. We
594  have quality-checked and assembled these data using a common pipeline and we make it
595 available through Pathogenwatch, with the aim of representing as much genomic diversity of this
596 pathogen as possible to serve as background for new analyses. These public genomes are
597  associated with at least 27 different scientific publications, and have been organized in

598 Pathogenwatch as individual collections (Additional file 1: Table S6).

599 In this study, we have gathered an advisory group of N. gonorrhoeae experts in different fields
600 such as AMR, microbiology, genetics, genomics, epidemiology and public health who will consult
601  and discuss current and future analytics to be included to address the global public health needs
602  of the community. We suggest this strategy as a role model for other pathogens in this and other
603  genomic surveillance platforms, so the end user, who may not have full computational experience
604 in some cases, can be confident that the analytics and databases underlying this tool are
605 appropriate, and can have access to all the results provided by Pathogenwatch through uploading

606 the data via a web browser. We are aware that this is a constantly moving field and analytics will
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607 be expanded and updated in the future. These updates will be discussed within an advisory group
608 to make sure they are useful in the field and the way results are reported is of use to different

609 profiles (microbiologists, epidemiologists, public health professionals, etc.).

610  Future analytics that are under discussion include the automatic submission of new MLST, NG-
611  STAR and NG-MAST STs and alleles to the corresponding servers and the automatic submission
612  of data to public archives such as the ENA. Including a separate library to automatically screen
613  targets of potential interest for vaccine design (137-139) as well as targets of new antibiotics on
614  phase Il or lll clinical trials (i.e. zoliflodacin (140) or gepotidacin (141)) can also be an interesting
615  addition to the scheme. Regarding AMR, new methods for phenotypic prediction using genetic
616  data are continuously being reported (56, 142, 143), especially those based on machine learning

617  algorithms (144), and will be considered for future versions of the platform.

618 Conclusions

619 In summary, we present a genomic surveillance platform adapted to N. gonorrhoeae, one of the
620 main public health priorities compromising the control of AMR infections, where decisions on
621  existing and updated databases and analytics as well as how results are reported will be
622  discussed with an advisory board of experts in different public health areas. This will allow
623  scientists from both higher or lower resourced settings with different capacities regarding high
624  throughput sequencing, bioinformatics and data interpretation, to be able to use a reproducible
625 and quality-assured platform where analyse and contextualise genomic data resulting from the
626 investigation of treatment failures, outbreaks, transmission chains and networks at different
627  regional scales. This open access and reproducible platform constitutes one step further into an
628 international collaborative effort where countries can keep ownership of their data in line with
629 national STI and AMR surveillance and control programs while aligning with global strategies for
630 a joint action towards battling AMR N. gonorrhoeae.

631

632
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633 List of abbreviations

634  AGSP: Australian Gonococcal Surveillance Programme

635 AMR: Antimicrobial Resistance

636 AZM: Azithromycin

637  CDC: Centers for Disease Control and Prevention

638 CFM: Cefixime

639 cgMLST: Core Genome Multi-Locus Sequence Typing

640 CIP: Ciprofloxacin

641  CRO: Ceftriaxone

642 ECOFF: Epidemiological Cut-Off

643 EGASP: Enhanced Gonococcal Antimicrobial Surveillance Programme
644  ENA: European Nucleotide Archive

645 ESCs: Extended Spectrum Cephalosporins

646  EUCAST: European Committee on Antimicrobial Susceptibility Testing
647  Euro-GASP: European Global Antimicrobial Surveillance Programme
648 FN: False Negative

649 FP: False Positive

650 GASP: Global Gonococcal Antimicrobial Surveillance Programme

651  GISP: Gonococcal Isolate Surveillance Project

652 GRASP: Gonococcal Resistance to Antimicrobials Surveillance Programme
653  HIV: Human Immunodeficiency Virus

654  LMICs: Low and Middle-Income Countries

655  MIC: Minimum Inhibitory Concentration

656  MLST: Multi-Locus Sequence Typing

657 NG-MAST: N. gonorrhoeae Multi-Antigen Sequence Typing

658 NG-STAR: N. gonorrhoeae Sequence Typing for Antimicrobial Resistance
659 NPV: Negative Predictive Value

660 PEN: Benzylpenicillin

28


https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/

661
662
663
664
665
666
667
668
669
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186726; this version posted July 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

PPV: Positive Predictive Value

SNPs: Single Nucleotide Polymorphisms
ST: Sequence Type

STI: Sexually-Transmitted Infection
TET: Tetracycline

TN: True Negative

TP: True Positive

UK: United Kingdom

WGS: Whole Genome Sequencing

WHO: World Health Organization
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