

1 A community-driven resource for genomic surveillance of 2 *Neisseria gonorrhoeae* at Pathogenwatch

3
4 Leonor Sánchez-Busó^{1,^*}, Corin A. Yeats¹, Ben Taylor^{1,2}, Richard Goater², Anthony Underwood²,
5 Khalil Abudahab², Silvia Argimón², Kevin C. Ma³, Tatum D. Mortimer³, Michelle J. Cole^{4,^}, Yonatan
6 H. Grad^{3,5,^}, Irene Martin^{6,^}, Brian H. Raphael^{7,^}, William M. Shafer^{8,9,^}, Gianfranco Spiteri^{10,^},
7 Katy Town^{7,^}, Teodora Wi^{11,^}, Simon R. Harris¹², Magnus Unemo^{13,^} and David M.
8 Aanensen^{1,2,^,*}, representing the *N. gonorrhoeae* Pathogenwatch Scientific Steering Group.
9

10 ¹ Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine,
11 University of Oxford, Oxford, Oxfordshire, United Kingdom.

12 ² Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome
13 Campus, Hinxton, Cambridgeshire, United Kingdom.

14 ³ Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health,
15 Boston, Massachusetts, United States of America.

16 ⁴ National Infection Service, Public Health England, London, United Kingdom.

17 ⁵ Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard
18 Medical School, Boston, Massachusetts, United States of America.

19 ⁶ National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.

20 ⁷ Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention,
21 Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.

22 ⁸ Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory
23 University School of Medicine, Atlanta, Georgia, United States of America.

24 ⁹ Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, United
25 States of America.

26 ¹⁰ European Centre for Disease Prevention and Control, Stockholm, Sweden.

27 ¹¹ Department of the Global HIV, Hepatitis and STI programmes, World Health Organization,
28 Geneva, Switzerland.

29 ¹² Microbiotica, Biodata Innovation Centre, Hinxton, Cambridgeshire, United Kingdom.

30 ¹³ World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of
31 Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

32 [^]Current members of the *N. gonorrhoeae* Pathogenwatch Scientific Steering Group.
33

34 *Corresponding authors: Leonor Sánchez-Busó (leo.sanchez-buso@cgps.group) and David M.
35 Aanensen (david.aanensen@cgps.group).
36

37 **Keywords:** *Neisseria gonorrhoeae*, Pathogenwatch, public health, genomics, epidemiology,
38 surveillance, antimicrobial resistance.

39

40 **Abstract**

41 **Background:** Antimicrobial resistant (AMR) *Neisseria gonorrhoeae* is an urgent threat to public
42 health, as strains resistant to at least one of the two last line antibiotics used in empiric therapy of
43 gonorrhoea, ceftriaxone and azithromycin, have spread internationally. With new treatment
44 options not yet available, this has prompted a call for collaborative action on global surveillance
45 for this sexually transmitted pathogen. Whole genome sequencing (WGS) data can be used to
46 identify new AMR clones, outbreaks, transmission networks and inform the development of point-
47 of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community driven
48 tools that provide an easy access to and analysis of genomic and epidemiological data is the way
49 forward for public health surveillance.

50 **Methods:** Here we present a public health focussed scheme for genomic epidemiology of *N.*
51 *gonorrhoeae* using Pathogenwatch (<https://pathogen.watch/ngonorrhoeae>), which enables the
52 processing of raw or assembled genomic data. We implement backwards compatibility with
53 MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR
54 determinants associated with resistance to eight antibiotics. A collection of over 12,000 *N.*
55 *gonorrhoeae* genome sequences from public archives has been quality-checked, assembled and
56 made public together with available metadata for contextualization.

57 **Results:** An international advisory group of experts in epidemiology, public health, genetics and
58 genomics of *N. gonorrhoeae* was convened to identify public health needs in the field and inform
59 on the utility of current and future analytics in the platform, including a customised library of
60 genetic AMR determinants. After uploading genome data, this platform automatically provides
61 typing information, detects genetic determinants of AMR for eight antibiotics including
62 azithromycin and the extended-spectrum cephalosporins ceftriaxone and cefixime, and infers
63 resistance based on the specific combination of mechanisms. Furthermore, genomes are
64 contextualised with globally available genomic data to aid epidemiological investigation.

65 **Conclusions:** The *N. gonorrhoeae* scheme in Pathogenwatch provides customized bioinformatic
66 pipelines guided by expert opinion that can be adapted to public health agencies and departments
67 with little expertise in bioinformatics and lower resourced settings with internet connection but
68 limited computational infrastructure. This advisory group will assess and identify ongoing public
69 health needs in the field of gonococcal AMR in order to further enhance utility with modified or
70 new analytic methods.

71

72

73

74 **Background**

75 Antimicrobial resistance (AMR) is an urgent threat to public health. *Neisseria gonorrhoeae*, the
76 strictly human pathogen causing the sexually-transmitted infection (STI) gonorrhoea, has
77 developed or acquired resistance to the last-line antibiotics used in empiric therapy to treat the
78 infection, and thus has become one of the major global priorities in order to tackle AMR. In 2017,
79 due to the increase in AMR infections and the absence of an effective vaccine, the World Health
80 Organization (WHO) included *N. gonorrhoeae* as a high priority pathogen in need of research and
81 development of new antimicrobials and ideally a vaccine (1). In 2019, the Centers for Disease
82 Control and Prevention (CDC) again included the gonococcus on the list of urgent threats in the
83 United States (2). The most recent WHO estimates from 2016 indicate an annual global incidence
84 of 87 million cases of gonorrhoea among adults (3, 4). Untreated cases can develop complications
85 including an increased acquisition and transmission of HIV. In women, long-term infections can
86 cause infertility, pelvic inflammatory disease, ectopic pregnancy, miscarriage or premature labour
87 (5). Infections during pregnancy can transmit to newborns at birth causing eye damage that can
88 have permanent effects on vision (6).

89 Strains of *N. gonorrhoeae* resistant to every recommended treatment have rapidly emerged,
90 including resistance to penicillins, tetracyclines, fluoroquinolones, macrolides and the extended-
91 spectrum cephalosporins (ESCs) (5-7). The current recommended treatment in many countries
92 is a dual therapy with injectable ceftriaxone plus oral azithromycin, although reports of decreased
93 susceptibility to ceftriaxone as well as azithromycin resistance have increased globally (7, 8). One
94 case of failure of dual treatment was reported in 2016 in the United Kingdom (UK) (9). Additionally,
95 in 2018 a gonococcal strain with resistance to ceftriaxone combined with high-level resistance to
96 azithromycin was detected in both the UK and Australia (10, 11). A ceftriaxone-resistant clone
97 (FC428) has been transmitted internationally, raising concerns about the long-term effectiveness

98 of the current treatment in the absence of an available alternative (12). In some countries such
99 as in Japan, China and since 2019 in the UK, a single dose of ceftriaxone 1 gram is recommended
100 due to the increasing incidence of azithromycin resistance in *N. gonorrhoeae* and other STI
101 pathogens such as *Mycoplasma genitalium* (13). Extensive investigations have been ongoing for
102 years to unveil the genetic mechanisms that explain most of the observed susceptibility patterns
103 for the main classes of antimicrobials for *N. gonorrhoeae*. For ciprofloxacin, nearly all of the
104 resistant strains have the GyrA S91F amino acid alteration (14-16), however, resistance
105 prediction from genomic data is not as straightforward for other antibiotics. Known resistance
106 mechanisms often involve additive or suppressive effects as well as epistatic interactions that all
107 together explain just part of the observed phenotypic resistance. For example, there is good
108 evidence that many mosaic structures of the *penA* gene are associated with decreased
109 susceptibility of ESCs (17, 18), however, mosaics do not explain all cases of ESC resistance,
110 especially for ceftriaxone, and some mosaic *penA* alleles do not cause decreased susceptibility
111 or resistance to this antibiotic (17-20). On top of these, variants that overexpress the MtrCDE
112 efflux pump, mutations in *porB* that reduce drug influx and non-mosaic mutations in penicillin-
113 binding proteins also contribute to decreased susceptibility to ESCs (21). Furthermore, mutations
114 in the *rpoB* and *rpoD* genes, encoding subunits of the RNA polymerase, have been recently
115 related to resistance to ESCs in clinical *N. gonorrhoeae* isolates (22). Mutations in the 23S rRNA
116 gene (A2045G and C2597T in *N. gonorrhoeae* nomenclature, coordinates from the WHO 2016
117 reference panel (23), A2059G and C2611T in *Escherichia coli*) are frequently associated with
118 azithromycin resistance, as do variants in *mtrR* or its promoter that increase the expression of the
119 MtrCDE efflux pump (5). Recently, epistatic interactions between a mosaic *mtr* promoter region
120 and a mosaic *mtrD* gene have also been reported to increase the expression of this pump,
121 contributing to macrolide resistance (24, 25). Mutations in *rplD* have also been associated with
122 reduced susceptibility to this antibiotic (26) and contrarily, loss-of-function mutations in *mtrC* have
123 been linked to increased susceptibility to several antibiotics including azithromycin (27).

124 A myriad of methods have been used to discriminate among strains of *N. gonorrhoeae*, from
125 phenotypic to DNA-based techniques (28), but whole genome sequencing (WGS) can provide
126 the complete genome information of a bacterial strain. The cost of amplifying all loci of the different
127 typing schemes via nucleic acid amplification and traditional Sanger sequencing can be more
128 expensive than the cost of WGS of one bacterial genome in many settings. With WGS, multiple
129 genetic AMR mechanisms as well as virulence and typing regions can be targeted simultaneously
130 with the appropriate bioinformatic tools and pipelines. It also provides a significant improvement
131 in resolution and accuracy over traditional molecular epidemiology and typing methods, allowing
132 a genome-wide comparison of strains that can: identify AMR clones, outbreaks, transmission
133 networks, national and international spread, known and novel resistance mechanisms as well as
134 also inform on the development of point-of-care tests for antimicrobial susceptibility, novel
135 antimicrobials and vaccines (29, 30). However, implementation of WGS for genomic surveillance
136 poses practical challenges, especially for Low- and Middle-Income Countries (LMICs), due to the
137 need of a major investment to acquire and maintain the required infrastructure. The cost of
138 sequencing is decreasing very rapidly in well-resourced settings, especially in large sequencing
139 centres, but it is still prohibitive for routine surveillance in many others.

140 WGS produces a very high volume of data that needs to be pre-processed and analysed using
141 bioinformatics. Bioinformatics expertise is not always readily available in laboratory and public
142 health settings, and currently there are no international standards and proficiency trials for which
143 algorithms to use to process WGS data. There are several open source tools specialised in each
144 step of the pipeline as well as proprietary software containing workflows that simplify the analyses.
145 However, these are less customizable and may not be affordable for all (31, 32). Choosing the
146 best algorithms and parameters when analysing genomic data is not straightforward as it requires
147 a fair knowledge of the pathogen under study and its genome diversity. Multiple databases
148 containing genetic determinants of AMR for bacterial pathogens are available (31, 32), however,
149 choosing which one is most complete for a particular organism frequently requires an extensive
150 literature search. Public access web-based species-specific tools and AMR databases revised

151 and curated by experts would be the most approachable option for both well-resourced and LMICs
152 with a reliable internet connection. Very importantly though, the full benefits of using WGS for
153 both molecular epidemiology and AMR prediction can only be achieved if the WGS data are linked
154 to phenotypic data for the gonococcal isolates and, as much as feasible, epidemiological data for
155 the patients.

156 Here, we present a public health focussed system to facilitate genomic epidemiology of *N.*
157 *gonorrhoeae* within Pathogenwatch (<https://pathogen.watch/ngonorrhoeae>), which includes the
158 latest analytics for typing, detection of genetic AMR determinants and prediction of AMR from *N.*
159 *gonorrhoeae* genome data, linked to metadata where available, as well as a collection of over
160 12,000 gonococcal genomes from public archives for contextualization. We formed an advisory
161 group including experts in the field of *N. gonorrhoeae* epidemiology, public health, AMR, genetics
162 and genomics to consult on the development and design of the tool, such as the analytics and
163 genetic AMR mechanisms to include, in order to adapt the platform for ongoing public health
164 needs. We present this scheme as a community-steered model for genomic surveillance of other
165 pathogens.

166

167 **Methods**

168 ***Generation of the N. gonorrhoeae core genome library***

169 Pathogenwatch implements a library of core genome sequences for several supported organisms.
170 In the case of *N. gonorrhoeae*, a core gene set was built from the 14 reference genomes that
171 constitute the 2016 WHO reference strain panel (23) using the pangenome analysis tool Roary
172 (33) as described in Harris *et al* (2018) (16). Briefly, the minimum percentage of identity for blastp
173 was set to 97% and the resulting core genes were aligned individually using MAFFT. The resulting
174 genes with a percentage of identity above 99% were post-processed as described in (34).
175 Overlapping genes were merged into pseudocontigs and clusters representing paralogs or
176 fragment matches were removed. Representative sequences from each cluster were selected as

177 the longest compared to a consensus obtained from the cluster alignment. The final core gene
178 set contains 1,542 sequences that span a total of 1,470,119 nucleotides. A BLAST database was
179 constructed from these core segments and used to profile new assemblies.

180 ***Profiling new assemblies***

181 New genome assemblies can be uploaded by a user (drag and drop) or calculated from high-
182 throughput short read data directly within Pathogenwatch using SPAdes (35) as described in (36).

183 A taxonomy assignment step for species identification is performed on the uploaded assemblies
184 by using Speciator (37). New assemblies are then queried against a species-specific BLAST
185 database using blastn. For *N. gonorrhoeae*, every core loci needs to match at least 80% of its
186 length to be considered as present. Further filtering steps are applied to remove loci that can be
187 problematic for tree building, such as a paralogs or loci with unusually large number of variant
188 sites compared to an estimated substitution rate on the rest of the genome, as described in (38).
189 The overall substitution rate is calculated as the number of total differences in the core library
190 divided by the total number of nucleotides. Indels are ignored to minimise the noise that could be
191 caused by assembly or sequencing errors. The expected number of substitutions per locus is
192 determined by multiplying this substitution rate by the length of the representative sequence.

193 The number of substitutions observed for each locus between the new assembly and the
194 reference sequence are scaled to the total number of nucleotides that match the core library,
195 creating a pairwise score that it is saved on a distance matrix and is used for tree construction,
196 as described in (39).

197 ***Algorithms for sequence typing and cgMLST clustering***

198 Alleles and sequence types (STs) for Multi-Locus Sequence Typing (MLST) (40) and cgMLST
199 (core genome MLST, *N. gonorrhoeae* cgMLST v1.0) (41) were obtained from PubMLST (42, 43),
200 for *N. gonorrhoeae* Multi-Antigen Sequence Typing (NG-MAST) (44) from (45) and for *N.*
201 *gonorrhoeae* Sequence Typing for Antimicrobial Resistance (NG-STAR) (46) from (47). A search

202 tool implemented as part of Pathogenwatch is used to make the assignments for MLST, cgMLST
203 and NG-STAR, while NGMASTER (48) is used for NG-MAST. Briefly, exact matches to known
204 alleles are searched for, while novel sequences are assigned a unique identifier. The combination
205 of alleles is used to assign a ST as described in (49). Databases are regularly updated and novel
206 alleles and STs should be submitted by the user to the corresponding schemes for designation.

207 cgMLST typing information is used for clustering individual genomes with others in the
208 Pathogenwatch database as described in (50). Users can select the clustering threshold (i.e.
209 number of loci with differing alleles) and a network graph is calculated within individual genome
210 reports.

211 ***AMR library and detection of genetic AMR determinants***

212 Genes and point mutations (single nucleotide polymorphisms (SNPs) and indels) were detected
213 using PAARSNP v2.4.9 (51). PAARSNP also provides a prediction of AMR phenotype inferred
214 from the combination of identified mechanisms. Genetic determinants described in the literature
215 as involved in AMR in *N. gonorrhoeae* were collated into a library in TOML format (version 0.0.11).
216 A test dataset containing 3,987 isolates from 13 studies (16, 19, 23, 52-61) (Additional file 1: Table
217 S1) providing minimum inhibitory concentration (MIC) information for six antibiotics
218 (benzylpenicillin, tetracycline, ciprofloxacin, cefixime, ceftriaxone and azithromycin) was used to
219 benchmark and to curate this library. A validation benchmark was posteriorly run with a dataset
220 of 1,607 isolates from 3 other publications (62-64) with MIC information for the same six antibiotics
221 plus spectinomycin (Additional file 1: Table S1). EUCAST clinical breakpoints v9.0 (65) were used
222 for S (susceptibility), I (intermediate resistance/decreased susceptibility) or R (resistance) (SIR)
223 categorical interpretation of MICs for all antibiotics except for azithromycin, for which the
224 epidemiological cut-off (ECOFF) was used. As a result of the benchmark analyses, sensitivity,
225 specificity and positive/negative predictive values (PPV/NPV) were obtained for the AMR
226 mechanisms implemented in the library and, globally, for each of the antibiotics. Confidence
227 intervals for these statistics were calculated using the *epi.tests* function in the *epiR* R package

228 v1.0-14 (66). Individual or combined AMR mechanisms with a PPV below 15% were discarded
229 from the library to optimise the overall predictive values. Visual representations of the observed
230 ranges of MIC values for a particular antibiotic for each of the observed combinations of genetic
231 AMR mechanisms on the test dataset were used to identify and assess combinations of
232 mechanisms that have an additive or suppressive effect on AMR. These were included in the
233 library.

234 As part of the quality assessment of the AMR library, we ran the 2016 WHO *N. gonorrhoeae*
235 reference genomes 2016 panel (n=14) through Pathogenwatch and compared the detected list
236 of genetic AMR mechanisms with the list published in the original study (23). For the WHO U
237 strain, a discrepancy on a mutation in *parC* was further investigated by mapping the original raw
238 Illumina data (European Nucleotide Archive (ENA) run accession ERR449479) to the reference
239 genome assembly (ENA genome accession LT592159.1) and visualized using Artemis (67).

240 In short-read assemblies, the four copies of the 23S rDNA gene are collapsed into one, thus the
241 detection of the A2045G and C2597T mutations is dependent on the consensus bases resulting
242 from the number of mutated copies (57, 60, 68).

243 ***Quality check and assembly of public sequencing data***

244 Public *N. gonorrhoeae* genomes with geolocation data were obtained from the ENA in November
245 2019. This list was complemented by an exhaustive literature search of studies on *N. gonorrhoeae*
246 genomics without metadata submitted to the ENA but instead made available as supplementary
247 information in the corresponding publications. Raw paired-end short read data from a list of
248 12,192 isolates was processed with the GHRU assembly pipeline v1.5.4 (69). This pipeline runs
249 a Nextflow workflow to quality-check (QC) paired-end short read fastq files before and after
250 filtering and trimming, assembles the data and quality-checks the resulting assembly. In this
251 pipeline, QC of short reads was performed using FastQC v0.11.8 (70). Trimming was done with
252 Trimmomatic v0.38 (71) by cutting bases from the start and end of reads if they were below a
253 Phred score of 25, trimming using a sliding window of size 4 and cutting once the average quality

254 within the window fell below a Phred score of 20. Only reads with length above a third of the
255 original minimum read length were kept for further analyses. After trimming, reads were corrected
256 using the kmer-based approach implemented in Lighter v1.1.1 (72) with a kmer length of 32 bp
257 and a maximum number of corrections allowed within a 20 bp window of 1. ConFindr v0.7.2 was
258 used to assess intra- and inter-species contamination (73). Mash v2.1 (74) was applied to
259 estimate genome size using a kmer size of 32 bp and Seqtk v1.3 (75) to down sample fastq files
260 if the depth of coverage was above 100x. Flash v1.2.11 (76) was used to merge reads with a
261 minimum overlap length of 20 bp and a maximum overlap of 100 bp to facilitate the subsequent
262 assembly process. SPAdes v3.12 (35) was used for genome assembly with the --careful option
263 selected to reduce the number of mismatches and short indels with a range of kmer lengths
264 depending on the minimum read length. The final assemblies were quality-checked using Quast
265 v5.0.2 (77) and ran through the species identification tool Bactinspector (78). QC conditions were
266 assessed and summarised using Qualifyr (79).

267 Fastq files with poor quality in which the trimming step discarded all reads from either one or both
268 pairs were excluded from the analyses. Assemblies with an N50 below 25,000 bp, a number of
269 contigs above 300, a total assembly length above 2.5 Mb or a percentage of contamination above
270 5% were also excluded.

271 ***Metadata for public genomes***

272 Geolocation data (mainly country), collection dates (day, month and year when available), ENA
273 project accession and associated Pubmed ID were obtained from the ENA API for all the genomes
274 in the pipeline (80). A manual extensive literature search was performed to identify the
275 publications containing the selected genomes. In order to complete published studies as much
276 as possible, extra genomes were downloaded and added to the dataset. Metadata for the final
277 set was completed with the information contained in supplementary tables on the corresponding
278 publications, including MIC data. Submission date was considered instead of collection date when
279 the latter was not available, however, this occurred in only a few cases (<0.5%).

280

281 **Results**

282 ***Upload and analyse N. gonorrhoeae genome data***

283 Data can be uploaded in the form of assemblies or raw data (fastq format) into Pathogenwatch,
284 which allows users to run different analytics on genomic data simultaneously (Figure 1). If raw
285 data is provided, an assembly is calculated before running the analyses. These analytics include
286 four typing schemes for *N. gonorrhoeae* as well as a genotypic AMR prediction using a
287 customized AMR library that includes known genetic mechanisms of resistance for 8
288 antimicrobials: ceftriaxone, cefixime, azithromycin, ciprofloxacin, spectinomycin, tetracycline,
289 benzylpenicillin and sulfonamides. Statistics on the quality of the assemblies are also provided in
290 the form of matches to the core genome, total genome length, N50, number of contigs, number
291 of non-ATCG bases and GC content (Additional file 2: Figure S1).

292 Genomes from one or multiple studies can be grouped into collections (Figure 2 and Additional
293 file 2: Figure S2), and the genomic data are automatically processed by comparing with a core *N.*
294 *gonorrhoeae* genome built from WHO reference strain genomes (16, 23). A phylogenetic tree,
295 inferred using the Neighbour-Joining algorithm on core SNPs, is obtained as a result, representing
296 the genetic relationship among the isolates in the collection. Metadata can be uploaded at the
297 same time as the genome data, and if the collection location coordinates for an isolate are
298 provided, this information is plotted into a map (Additional file 2: Figure S1). If date or year of
299 isolation is also provided, this information is represented in a timeline. The three panels on the
300 main collection layout - the tree, the map and a table or timeline – are functionally integrated so
301 filters and selections made by the user update all of them simultaneously. Users can also easily
302 switch among the metadata and the results of the main analytics: typing, genome assembly
303 statistics, genotypic AMR prediction, AMR-associated SNPs, AMR-associated genes and the
304 timeline (Additional file 2: Figure S1). A video demonstrating the usage and main features of
305 Pathogenwatch is available (81).

306

307

308

310

311

312

313

314

315

316

317

318

319

320

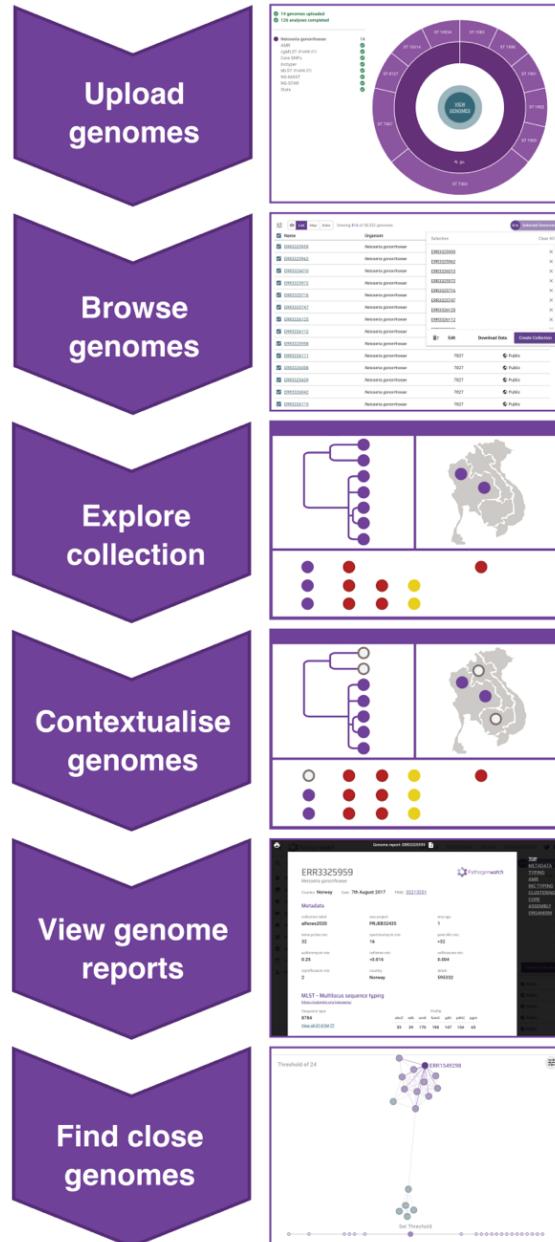
321

322

323

324

325


326

327

328

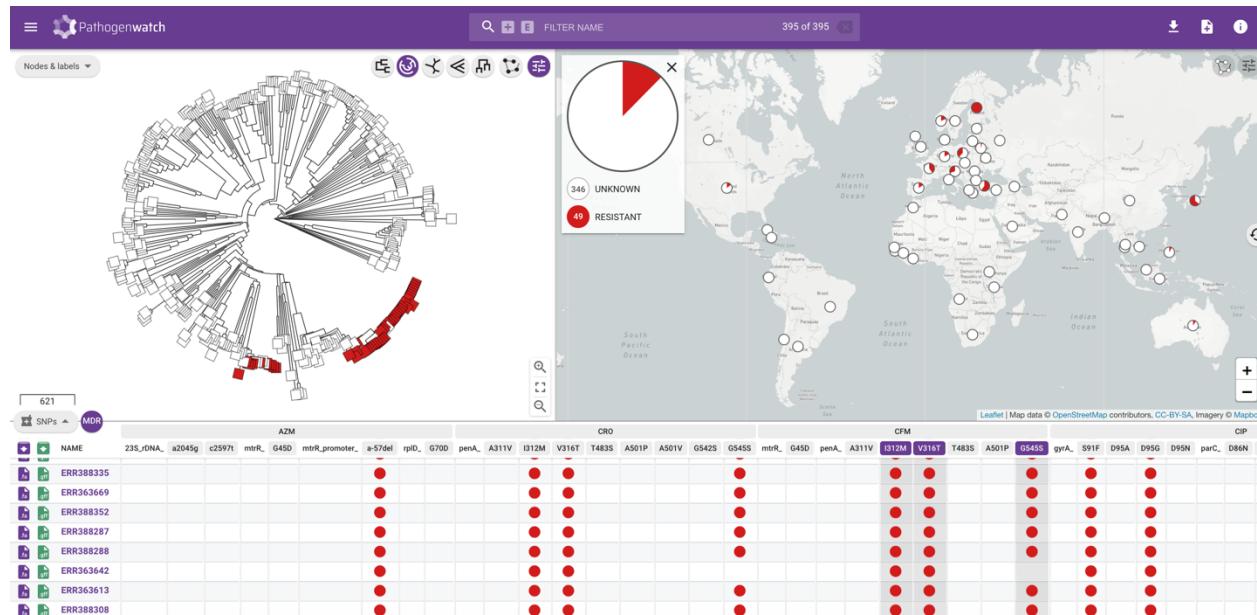
329

330

- Drag and drop new assemblies (fasta) or reads (fastq) to upload.
- After upload, typing and AMR modules are run automatically.

- List of public and private genomes with species identification, MLST, country and date information.
- Map and assembly statistics.
- Group genomes into collections.

- Collection tree of selected genomes.
- Map and timeline.
- Metadata table.
- Typing: MLST, NG-STAR, NG-MAST.
- AMR: Antibiotics, Genes, SNPs.


- Contextualise new genomes with other public or private genomes.
- Over 12,000 public genomes from 28 studies available.

Individual genome reports containing:

- Species identification and metadata.
- Typing: MLST, NG-STAR, NG-MAST.
- AMR: genetic determinants/prediction.
- cgMLST-based clustering.

- Find close genomes in Pathogenwatch based on cgMLST allele differences.

Figure 1. Main workflow in Pathogenwatch. New genomes can be uploaded and combined with public data for contextualisation. The collection view allows data exploration through a combined phylogenetic tree, a map, a timeline and the metadata table, which can be switched to show typing information (Multi-Locus Sequence Typing, MLST; *N. gonorrhoeae* Sequence Typing for Antimicrobial Resistance, NG-STAR; and *N. gonorrhoeae* Multi-Antigen Sequence Typing, NG-MAST) as well as known genetic AMR mechanisms for eight antibiotics. Genome reports summarise the metadata, typing and AMR marker results for individual isolates and allow finding other close genomes in Pathogenwatch based on core genome MLST (cgMLST). SNPs: single nucleotide polymorphisms.

331

332 Figure 2. Main display of a Pathogenwatch collection, showing a phylogenetic tree, a map and a table of SNPs
333 associated to AMR of 395 *N. gonorrhoeae* genomes from a global study (58, 82). Isolates carrying three mosaic *penA*
334 marker mutations are marked in red in the tree and the map. The table can be switched to show the metadata, a
335 timeline, typing results (Multi-Locus Sequence Typing, MLST; *N. gonorrhoeae* Sequence Typing for Antimicrobial
336 Resistance, NG-STAR and *N. gonorrhoeae* Multi-Antigen Sequence Typing, NG-MAST) as well as AMR analytics
337 (known genetic mechanisms and genotypic AMR prediction) implemented in the platform. Further detail is shown in
338 Additional file 2: Figure S1

339

340 **Sequence typing schemes: cgMLST, MLST, NG-MAST and NG-STAR**

341 Pathogenwatch implements four sequence typing schemes for *N. gonorrhoeae*: cgMLST (41),
342 MLST (40), NG-MAST (44) and NG-STAR (46) (Table 1). Each of the schemes is based on a
343 group of loci for which individual allele numbers are assigned relying on an existing database of
344 allele sequences. A unique ST is generated from the combination of allele numbers to represent
345 each isolate. The cgMLST scheme includes 1,649 loci from the *N. gonorrhoeae* cgMLST v1.0
346 scheme in PubMLST (43) and it is used for clustering individual genomes with others in the
347 database based on allele differences (Additional file 2: Figure S3). The MLST scheme, also
348 hosted in PubMLST, includes 7 housekeeping genes and gene fragments more conserved and
349 slowly evolving in the *Neisseria* genus. NG-MAST includes internal fragments from two highly
350 polymorphic and rapidly evolving outer membrane protein genes, *porB* and *tbpB*. NG-STAR was
351 developed more recently with the aim of standardizing the nomenclature associated with AMR

352 determinants as well as having a typing scheme that would distinguish among lineages with
353 different AMR mechanisms. It includes 7 genes associated with resistance to β -lactams,
354 macrolides and fluoroquinolones (Table 1).

355 Table 1. *N. gonorrhoeae* sequence typing schemes implemented in Pathogenwatch.
356

Typing scheme*	Loci (number)	Note	Pathogenwatch implementation	References
cgMLST	(N=1,649)	<i>N. gonorrhoeae</i> cgMLST v1.0	Typing algorithm, database from PubMLST	(41-43, 83)
MLST	<i>abcZ, adk, aroE, fumC, gdh, pdhC, pgm</i> (N=7)	Housekeeping genes in <i>Neisseria</i> spp.	In-house MLST tool, database from PubMLST	(40, 42, 43, 83)
NG-MAST	<i>porB, tbpB</i> (N=2)	Genes encoding highly-variable membrane proteins	NG-MASTER, database from NG-MAST website	(44, 45, 48)
NG-STAR	<i>penA, mtrR, porB, ponA, gyrA, parC, 23S rDNA</i> (N=7)	Genes involved in antimicrobial resistance	In-house MLST tool, database from NG-STAR website	(46, 47, 83)

357 * Typing scheme: cgMLST = core genome Multi-Locus Sequence Typing, MLST = Multi-Locus Sequence Typing, NG-
358 MAST = *N. gonorrhoeae* Multi-Antigen Sequence Typing, NG-STAR = *N. gonorrhoeae* Sequence Typing for
359 Antimicrobial Resistance.

360
361

362 ***Library of genetic AMR mechanisms: test and validation***

363 We compiled described genetic AMR mechanisms previously reported for *N. gonorrhoeae* up to
364 the writing of this manuscript into the AMR library in Pathogenwatch (Table 2).

365

366

367

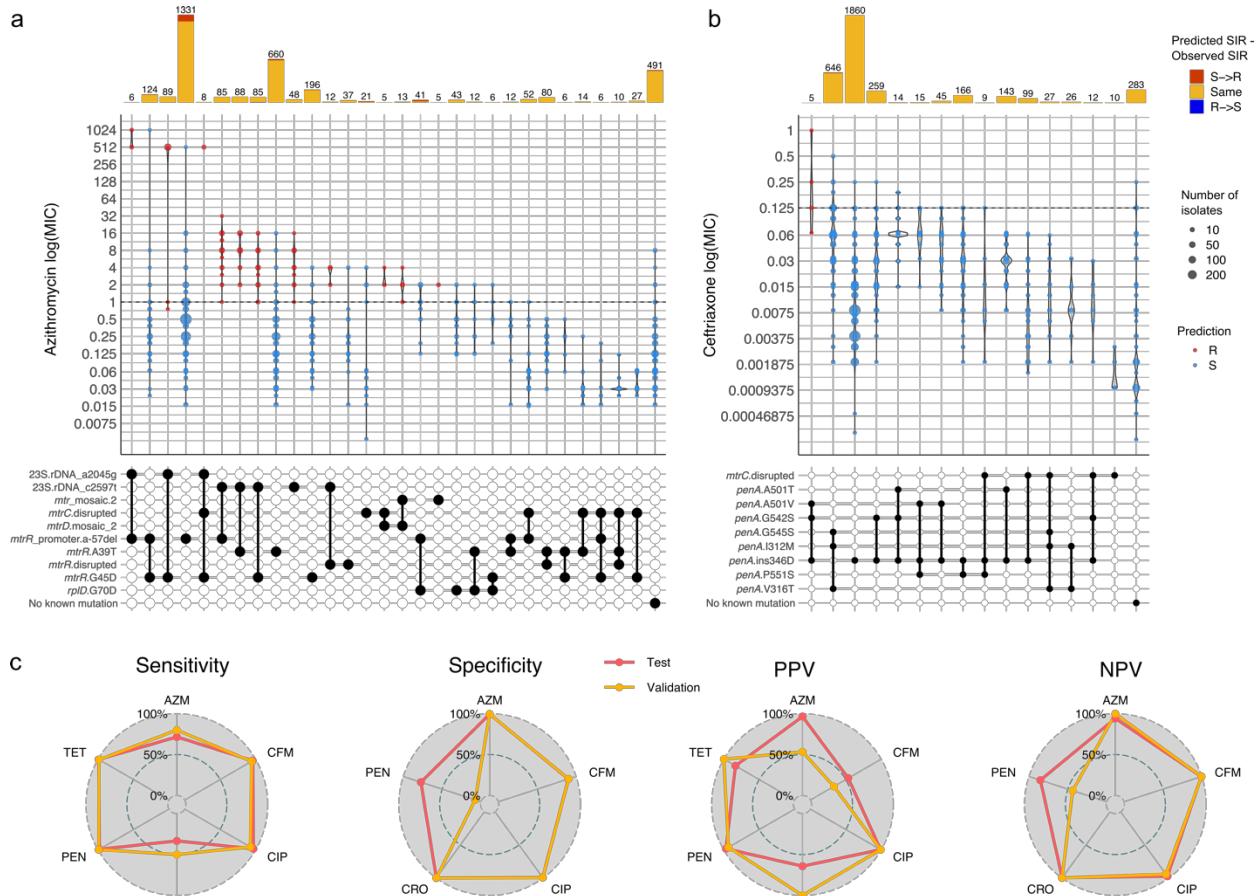
368

369

370

371 Table 2. List of *N. gonorrhoeae* genetic antimicrobial resistance (AMR) determinants in Pathogenwatch. References
 372 that report evidence of association of each mechanism to AMR in clinical isolates and/or where their role on AMR has
 373 been confirmed in the laboratory through, i.e. transformation experiments, are included in the table. Effect: R =
 374 Resistance, I = Intermediate resistance (decreased susceptibility), A = Additive effect, N = Negative effect. R and I
 375 follow the EUCAST clinical breakpoints except for azithromycin, for which the epidemiological cut-off (ECOFF) is
 376 reported and used instead.

Antibiotic (MIC breakpoint mg/L)	Genetic AMR determinants	Effect	Evidence (References)
Azithromycin (R: MIC>1, ECOFF)	23S rDNA 2045A>G substitution (2059A>G in <i>E. coli</i>) 23S rDNA 2597C>T substitution (2611C>T in <i>E. coli</i>) <i>ermA</i> , <i>ermB</i> , <i>ermC</i> , <i>ermF</i> genes <i>ereA</i> , <i>ereB</i> genes <i>mefA</i> gene <i>macAB</i> promoter -48G>T substitution* <i>mtr</i> mosaic** <i>N. meningitidis</i> -like mosaic (n=1) <i>N. lactamica</i> -like mosaic (n=2) <i>mtrD</i> mosaic** <i>N. meningitidis</i> -like mosaic (n=1) <i>N. lactamica</i> -like mosaic (n=2) <i>mtrR</i> promoter -57delA* <i>mtrR</i> G45D <i>mtrC</i> loss-of-function <i>rplV</i> ARAK tandem duplication (position 90) <i>rplV</i> KGPSLK tandem duplication (position 83) <i>rplD</i> G70D	R R R R R R R R R R R R R R A A N R R A	(68) (84) (85, 86) (23) (86, 87) (88) (24) (24) (24) (24) (24) (91, 92) (27) (19) (19) (26)
Ceftriaxone*** (R: MIC>0.125)	<i>penA</i> mosaic (A311V, I312M, V316P/T, T483S and G545S) <i>penA</i> V316P, T483S, A501P/V, G542S <i>rpoB</i> P157L, G158V, R201H <i>rpoD</i> D92-95 deletion, E98K	R R R I	(93-95) (93, 94) (22) (22)
Cefixime*** (R: MIC>0.125)	<i>mtrR</i> G45D <i>penA</i> mosaic (I312M, V316T, G545S) <i>penA</i> mosaic (A311V, I312M, V316P/T, T483S and G545S) <i>penA</i> V316P, T483S, A501P <i>rpoB</i> P157L, G158V, R201H <i>rpoD</i> D92-95 deletion, E98K	A R R I I I	(91, 92) (93-95) (93-95) (93, 94) (22) (22)
Ciprofloxacin (I: 0.03<MIC≤0.06; R: MIC>0.06)	<i>gyrA</i> S91F, D95A/N <i>gyrA</i> D95G <i>norM</i> promoter -7A>G, -104C>T substitutions* <i>parC</i> D86N, S87R <i>parC</i> S87I/N, S88P, E91K <i>parE</i> G410V	R I I R I I	(96) (96) (97) (96) (96) (98)
Tetracycline**** (I: 0.5<MIC≤1; R: MIC>1)	<i>mtrR</i> A39T, G45D <i>mtrR</i> loss-of-function <i>mtrR</i> promoter -56A>C substitution, -57delA deletion* <i>mtrR</i> promoter -131G>A (<i>mtrC</i> -120G>A substitution, <i>mtr120</i>)* <i>rpsJ</i> V57M <i>tetM</i> gene	A I I I I R	(91, 92) (23) (24, 89, 90) (91) (99) (100)


Penicillins (I: 0.06<MIC≤1; R: MIC>1)	<i>blaTEM</i> gene <i>mtrR</i> G45D <i>mtrR</i> A39T <i>mtrR</i> loss-of-function <i>mtrR</i> promoter -56A>C, -57delA* <i>mtrR</i> promoter -131G>A (<i>mtrC</i> -120G>A substitution, <i>mtr120</i>)* <i>penA</i> I312M, V316P/T, ins346D, T483S, A501P/T/V, G542S, G545S, P551S <i>penA</i> mosaic (I312M, V316T, G545S) <i>ponA1</i> L421P <i>porB1b</i> G120K, A121N/D	R I A I I I A I I	(101) (91, 92) (91) (23) (24, 90) (91) (93, 94) (93-95) (102) (103)
Spectinomycin (R: MIC>64)	16S rDNA 1184C>T (1192C>T in <i>E. coli</i>) <i>rpsE</i> T24P <i>rpsE</i> V27- deletion, K28E	R R R/A	(104) (105) (105)
Sulfonamides *****	<i>folP</i> R228S	R	(23, 106)

377
378 *Nomenclature of the mutations on the *macAB*, *mtrR* and *norM* promoter regions is based on *N. gonorrhoeae* coordinates considering
379 the distance from the start of the *macAB*, *mtrR* and *norM* genes, respectively. **Note that mosaics are caused by recombination events,
380 which can have variable breakpoints with different effects on azithromycin MIC if any. In this version, we have included the three
381 mosaics described by Wadsworth *et al.* (24), but the list will be expanded as new mosaic *mtr* (intergenic region between *mtrR* and
382 *mtrC*) and *mtrD* alleles having an effect on azithromycin MICs are published. ***The list of genetic AMR mechanisms for the ESCs
383 ceftriaxone and cefixime do not include all known *porB1b* or *mtrR*-associated variants as their effect was found not to be relevant in
384 increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes despite the experimental evidence reported in
385 Zhao *et al.* (107). In case of strains carrying *penA*-associated mutations, their immediate predicted phenotype is that of those carrying
386 *penA*-associated variants. ****The list of genetic AMR mechanisms for tetracycline does not include *porB1b* mutations as their effect
387 was found not to be relevant in increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes. *****Sulfonamides
388 are not a treatment alternative for gonorrhoea, however the *folP* R228S mutation is kept in this version of the library for surveillance
389 purposes.

390

391 This list was benchmarked using a test dataset of 3,987 *N. gonorrhoeae* isolates from 13 different
392 studies containing MIC information for at least part of the following six antibiotics: ceftriaxone,
393 cefixime, azithromycin, ciprofloxacin, benzylpenicillin and tetracycline (Additional file 1: Table S1).
394 EUCAST clinical breakpoints were applied for five of the antimicrobials except for azithromycin,
395 for which the adoption of an ECOFF>1 mg/L is now recommended to distinguish isolates with
396 azithromycin resistance determinants, instead of a clinical resistance breakpoint (108, 109). A
397 visualization of the range of MICs on each particular combination of genetic AMR mechanisms
398 observed on the isolates from the benchmark test dataset (Figure 3a-b and Additional file 2:
399 Figures S4-S9) revealed combinations that show an additive effect on AMR. These combinations
400 were included in the AMR library to improve the accuracy of the genotypic prediction. For
401 example, *rpsJ* V57M and some *mtrR*-associated mutations individually cause decreased
402 susceptibility or intermediate resistance to tetracycline (MICs between 0.5-1 mg/L), however, a

403 combination of these variants can increase MICs above the EUCAST resistance breakpoint for
404 tetracycline (MICs>1 mg/L) (Additional file 2: Figure S8). This is the case of the combination of
405 *rpsJ* V57M with the *mtrR* promoter -57delA mutation (N=681 isolates, 94.9% positive predictive
406 value, PPV) or with *mtrR* promoter -57delA and *mtrR* G45D (N=83 isolates, 93.9% PPV). Several
407 combinations of *penA*, *ponA1*, *mtrR* and *porB1b* mutations were observed to be able to increase
408 the benzylpenicillin MIC above the resistant threshold in most of the cases (Additional file 2: Figure
409 S9). This is the case of the *porB1b* mutations combined with *mtrR* A39T (N=31 isolates, 100%
410 PPV), with the *mtrR* promoter -57delA deletion (N=286 isolates, 96.5% PPV) or with *mtrR*
411 promoter -57delA and *ponA1* L421P (N=269 isolates, 96.3%). Despite mosaic *penA* not being a
412 main driver of resistance to penicillins, a combination of the *porB1b* mutations with the three main
413 mosaic *penA* mutations (G545S, I312M and V316T) was also observed to produce a resistant
414 phenotype in all cases (N=17 isolates, 100% PPV). A recent publication showed that loss-of-
415 function mutations in *mtrC* increased susceptibility to azithromycin and are associated with
416 isolates from the cervical environment (27). We included the presence of a disrupted *mtrC* as a
417 modifier of antimicrobial susceptibility in the presence of an *mtr* mosaic, as it did not show a
418 significant effect in the presence of 23S rDNA A2045G and C2597T mutations.

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

Figure 3. Distribution of minimum inhibitory concentration (MIC) values (mg/L) for the last-line antibiotics for *N. gonorrhoeae* azithromycin (a) and ceftriaxone (b) in a collection of 3,987 *N. gonorrhoeae* isolates with different combinations of genetic antimicrobial resistance (AMR) mechanisms. Only combinations observed in at least 5 isolates are shown (see Additional file 2: Figure S4-S9 for expanded plots for six antibiotics). Dashed horizontal lines on the violin plots mark the EUCAST epidemiological cut-off (ECOFF) for azithromycin and EUCAST clinical breakpoint for ceftriaxone. Point colours inside violins represent the genotypic AMR prediction by Pathogenwatch on each combination of mechanisms (indicated by black circles connected vertically; horizontal thick grey lines connect combinations of mechanisms that share an individual determinant). Barplots on the top show the abundance of isolates with each combination of mechanisms. Bar colours represent the differences between the predicted and the observed SIR (i.e. red for a predicted susceptible mechanism when the observed phenotype is resistant). (c) Radar plots comparing the sensitivity, specificity, positive and negative predictive values (PPV/NPV) for six antibiotics for the test and validation benchmark analyses. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO = Ceftriaxone, PEN = Benzylpenicillin, TET = Tetracycline.

439

Results from the benchmark (Additional file 1: Table S2) show sensitivity values (true positive rates, TP/(TP+FN); TP=True Positives, FN=False Negatives) above 96% for tetracycline (99.2%), benzylpenicillin (98.1%), ciprofloxacin (97.1%) and cefixime (96.1%), followed by azithromycin (71.6%) and ceftriaxone (33.3%). These results reflect the complexity of the resistance

439 mechanisms for azithromycin and ceftriaxone, where the known genetic determinants explain
440 only part of the antimicrobial susceptibility. However, specificity values (true negative rates,
441 TN/(TN+FP); TN=True Negatives, FP=False Positives) for these two antibiotics as well as
442 ciprofloxacin were above 99% (Additional file 1: Table S2), demonstrating that the genetic
443 mechanisms included in the database have a role in AMR. The specificity value for cefixime was
444 lower but nearly 90%, mainly due to the high number of isolates with an MIC below the threshold
445 but with three mutations characterising a mosaic *penA* allele (G545S, I312M and V316T, TP=367,
446 TN=323, PPV=53.2%; Additional file 1: Table S3). Benzylpenicillin and tetracycline showed
447 specificity values of 77.3% and 61.3%, respectively. In the first case, all the mechanisms included
448 in the library showed a PPV value above 94%. For tetracycline, a considerable number of false
449 positive results are mainly caused by the presence of *rpsJ* V57M, for which PPV=83.8%
450 (TP=1083, FP=209; Additional file 1: Table S3). However, this mutation was kept in the AMR
451 library because it can cause intermediate resistance to tetracycline on its own (Additional file 2:
452 Figure S8).

453 Results from the benchmark analysis on the 3,987-isolates dataset were used to curate and
454 optimize the AMR library. Thus, in order to objectively validate it, the benchmark analysis was
455 also run on a combination of three different collections (N=1,607, Additional file 1: Table S1) with
456 available MIC information for seven antibiotics including spectinomycin (Additional file 1: Table
457 S4) (63, 64, 110). Results from the test and validation benchmark runs were compared, showing
458 that sensitivity values on the six overlapping antibiotics were very similar, with the validation set
459 performing even better for azithromycin and ceftriaxone (Figure 3c). In terms of specificity, both
460 datasets performed equally well for all antibiotics except for benzylpenicillin, in which specificity
461 drops in the validation dataset. This is due to the *penA*_ins346D mutation (TP=1125, FP=83) and
462 the *blaTEM* genes (TP=525, FP=36), which despite showing false positives, have a PPV above
463 93% (Additional file 1: Table S4). In general, discrepancies found between the test and the
464 validation datasets can be explained by particular mechanisms that on their own show high

465 predictive values and affect antibiotics for which we do not currently understand all the factors
466 involved in resistance, such as azithromycin and the ESCs (Additional file 1: Table S4).

467 An additional quality assessment of the AMR library was performed using the 14 *N. gonorrhoeae*
468 reference genomes from the WHO 2016 panel (23), which were uploaded into Pathogenwatch.
469 All the genetic AMR determinants described as present in these isolates and implemented in the
470 Pathogenwatch AMR library were obtained as a result (Additional file 1: Table S5). Only one
471 discrepancy was found when compared to the original publication. The WHO U strain was
472 reported as carrying a *parC* S87W mutation. However, mapping the original Illumina data from
473 this isolate with the final genome assembly revealed that this strain carries a wild type allele
474 (Additional file 2: Figure S10). MLST and NG-MAST types were the same as those reported in
475 the original publication (note that NG-STAR was not available at that time) and the *porA* mutant
476 gene was found in WHO U as previously described. This mutant *porA* has nearly a 95% nucleotide
477 identity to *N. meningitidis* and 89% to *N. gonorrhoeae*, and it is included as screening because it
478 has previously been shown to cause false negative results in some molecular detection tests for
479 *N. gonorrhoeae* (111).

480 ***Over 12,000 public genomes available***

481 All *N. gonorrhoeae* short-read sequencing raw data with geolocation data (minimum of country
482 and preferably also year) and associated to a scientific publication was downloaded from the
483 ENA. This collection was expanded after an exhaustive literature search on studies that did not
484 upload geolocation data to the ENA but released as a part of scientific publication(s). Over 12,000
485 genomes were assessed for sequencing quality data and contamination, assembled using a
486 common pipeline and thresholds as well as post-assembly quality check (Additional file 3). Data
487 for 11,461 isolates were successfully assembled and passed all quality cut-offs, providing 12,515
488 isolates after including the previously-available Euro-GASP 2013 dataset (16). New assemblies
489 were uploaded and made public on Pathogenwatch, which now constitutes the largest repository
490 of curated *N. gonorrhoeae* genomic data with associated metadata, typing and AMR information

491 at the time of submission of this manuscript. Updated data spans 27 different publications (19,
492 44, 48, 52-55, 57-59, 61-64, 110, 112-125) and is organized into individual collections associated
493 with the different studies (Additional file 1: Table S6). Available metadata was added for the
494 genomes from these publications while basic metadata fields were kept for others (country,
495 year/date and ENA project number).

496 The *N. gonorrhoeae* public data available on Pathogenwatch spans nearly a century (1928-2018)
497 and almost 70 different countries (Additional file 2: Figure S11). However, sequencing efforts are
498 unevenly distributed around the world, and over 90% of the published isolates were isolated in
499 only 10 countries, headed by the United Kingdom (N=3,476), the United States (N=2,774) and
500 Australia (N=2,388) (Additional file 1: Table S7, Figure 4). A total of 554 MLST, 1,670 NG-MAST
501 and 1,769 NG-STAR different STs were found in the whole dataset, from which a considerable
502 number were new profiles caused by previously undetected alleles or new combinations of known
503 alleles (N=92 new MLST STs, N=769 new NG-STAR STs and N=2,289 isolates with new NG-
504 MAST *porB* and/or *tbpB* alleles). These new alleles and profiles were submitted to the
505 corresponding scheme servers.

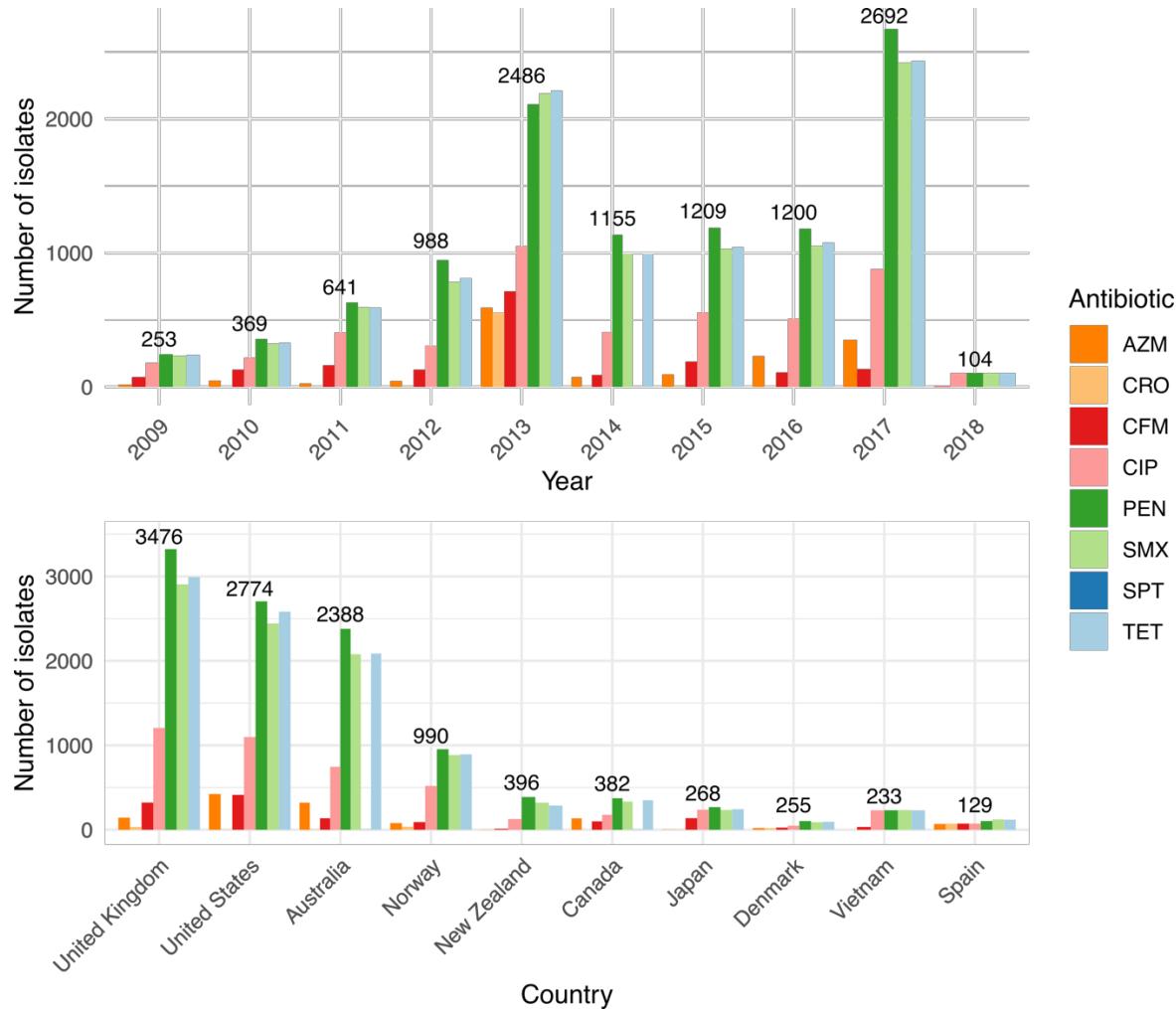


Figure 4. Summary of the geolocalization and collection date of 12,515 public *N. gonorrhoeae* genomes in Pathogenwatch. Coloured bars represent the genotypic antimicrobial resistance (AMR) prediction based on the mechanisms included in the library. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO = Ceftriaxone, PEN = Benzylpenicillin, TET = Tetracycline.

506
507 Genomic studies are often biased towards AMR isolates, and this is reflected in the most
508 abundant STs found for the three typing schemes within the public data. Isolates with MLST
509 ST1901, ST9363 and ST7363, which contain resistance mechanisms to almost every antibiotic
510 included in the study, represent over 25% of the data (Figure 5). Isolates with MLST ST1901 and
511 ST7363 are almost always resistant to tetracycline, sulfonamides, benzylpenicillin and
512 ciprofloxacin and nearly 50% of isolates from these two types harbour resistance mechanisms to
513 cefixime. Ciprofloxacin resistance is not widespread among ST9363 isolates, in which
514 azithromycin resistance can approach to nearly 50% of the isolates for this ST (Figure 5). NG-

515 STAR ST63 (carrying the non-mosaic *penA*-2 allele, *penA* A517G and *mtrR* A39T mutations as
516 described in (47)) is the most represented in the dataset and carries resistance mechanisms to
517 tetracycline, sulfonamides, and benzylpenicillin, but is largely susceptible to spectinomycin,
518 ciprofloxacin, the ESCs cefixime and ceftriaxone and azithromycin. NG-STAR ST90 isolates,
519 conversely, are largely resistant to cefixime, ciprofloxacin and benzylpenicillin as they carry the
520 key resistance mutations in mosaic *penA*-34, as well as in the *mtrR* promoter, *porB1b*, *ponA*, *gyrA*
521 and *parC* (as described in (47)). NG-MAST ST1407 is commonly associated with MLST ST1901
522 and is the second most represented ST in the dataset following NG-MAST ST2992, which mainly
523 harbours resistance to tetracycline, benzylpenicillin and sulfonamides (Figure 5).

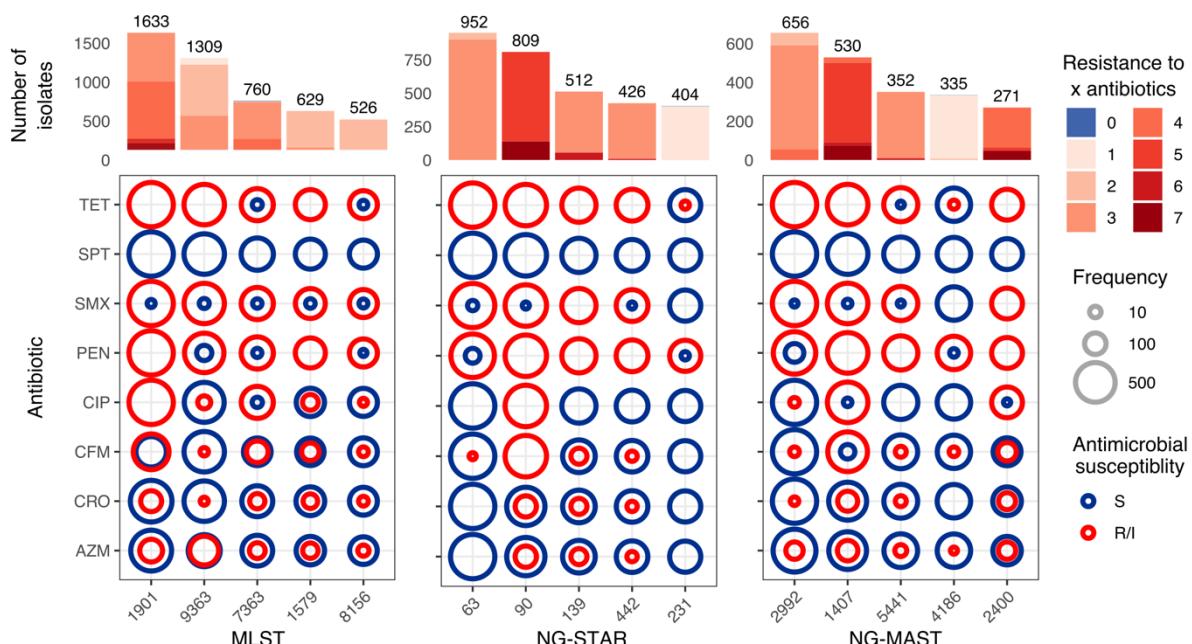


Figure 5. Predicted antimicrobial resistance (AMR) profiles of the top five Multi-Locus Sequence Typing (MLST), *N. gonorrhoeae* Sequence Typing for Antimicrobial Resistance (NG-STAR) and *N. gonorrhoeae* Multi-Antigen Sequence Typing (NG-MAST) types in the *N. gonorrhoeae* public data in Pathogenwatch. The main graph shows the proportion of resistant (including intermediate phenotypes, in red) versus susceptible genomes (in dark blue) from each sequence type (ST) and antibiotic. Bars on the top show the number of isolates from each ST coloured by the number of antibiotics the genomes are predicted to be resistant to.

524

525

526

527 **Data sharing and privacy**

528 Sequencing data and metadata files uploaded by the user are kept within the user's private
529 account. Genomes can be grouped into collections and these can be toggled between private
530 and accessible to collaborators via a URL. Collection URLs include a 12-letter random string to
531 secure them against brute force searching. Setting a collection to 'off-line mode' allows users to
532 work in challenging network conditions, which may be beneficial in LMICs – all data are held within
533 the browser. Users can also integrate private and potentially confidential metadata into the display
534 without uploading it to the Pathogenwatch servers (locally within the browser on a user's
535 machine).

536

537 **Discussion**

538 We present a public health focussed *N. gonorrhoeae* framework within Pathogenwatch, an open
539 access platform for genomic surveillance supported by an expert group that can be adapted to
540 any public health or microbiology laboratory. Little bioinformatics expertise is required, and users
541 can choose to either upload raw short read data or assembled genomes. In both cases, the upload
542 of high-quality data is encouraged in the form of quality-checked reads and/or quality-checked
543 assemblies. Recent benchmark analyses show particular recommendations for long-read or
544 hybrid data (126) as well as short read-only data (35, 127). On upload, several analyses are run
545 on the genomes, and results for the three main typing schemes (MLST, NG-MAST and NG-STAR)
546 as well as the detection of genetic determinants of AMR and a prediction of phenotypic resistance
547 using these mechanisms can be obtained simultaneously. The library of AMR determinants
548 contained in Pathogenwatch for *N. gonorrhoeae* has been revised and extended to include the
549 latest mechanisms and epistatic interactions with experimental evidence of decreasing
550 susceptibility or increasing resistance to at least one of eight antibiotics (Tables 2 and 3). A
551 benchmark analysis on a test and validation datasets revealed sensitivity and/or specificity values
552 >90% for most of the tested antibiotics (Additional file 1: Table S2).

553 The continuous increase in reporting of *N. gonorrhoeae* AMR isolates worldwide led to a call for
554 international collaborative action in 2017 to join efforts towards a global surveillance scheme. This
555 was part of the WHO global health sector strategy on STIs (2016-2021), which set the goal of
556 ending STI epidemics as a public health concern by year 2030 (7, 8). Several programmes are
557 currently in place at different global, regional or national levels to monitor gonorrhoea AMR trends,
558 emerging resistances and refine treatment guidelines and public health policies. This is the case
559 of, for example, the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO
560 GASP) (8), the Euro-GASP in Europe (6, 16, 128), the Gonococcal Isolate Surveillance Project
561 (GISP) in the United States (129), the Canadian Gonococcal Antimicrobial Surveillance
562 Programme (130), the Gonococcal Surveillance Programme (AGSP) in Australia (131) or the
563 Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and
564 Wales (132). The WHO in collaboration with CDC has recently started an enhanced GASP
565 (EGASP) (133) in some sentinel countries such as the Philippines and Thailand (134), aimed at
566 collecting standardized and quality-assured epidemiological, clinical, microbiological and AMR
567 data. On top of these programs, WHO launched the Global AMR Surveillance System (GLASS)
568 in 2015 to foster national surveillance systems and enable standardized, comparable and
569 validated AMR data on priority human bacterial pathogens (135). Efforts are now underway to link
570 GASP to GLASS. However, gonococcal AMR surveillance is still suboptimal or even lacking in
571 many locations, especially in LMICs, such as some parts of Asia, Central and Latin America,
572 Eastern Europe and Africa, which worryingly have the greatest incidence of gonorrhoea (3).
573 LMICs often have access to antimicrobials without prescription, have limited access to an optimal
574 treatment, lack the capacity needed to perform a laboratory diagnosis due to limited or non-
575 existent quality-assured laboratories, microbiological and bioinformatics expertise or training,
576 insufficient availability and exorbitant prices of some reagents on top of a lack of funding, which
577 altogether compromises infection control.

578 High throughput sequencing approaches have proved invaluable over traditional molecular
579 methods to identify AMR clones of bacterial pathogens, outbreaks, transmission networks and

580 national and international spread among others (29, 30). Genomic surveillance efforts to capture
581 the local and international spread of *N. gonorrhoeae* have resulted in several publications within
582 the last decade involving high throughput sequence data of thousands of isolates from many
583 locations across the world. The analysis of this data requires expertise, not always completely
584 available, in bioinformatics, genomics, genetics, AMR, phylogenetics, epidemiology, etc. For
585 lower-resourced settings, initiatives such as the NIHR Global Health Research Unit, Genomic
586 Surveillance of Antimicrobial Resistance (136) are essential to build genomic surveillance
587 capacity and provide the necessary microbiology and bioinformatics training for quality-assured
588 genomic surveillance of AMR.

589 One of the strengths of genomic epidemiology is being able to compare new genomes with
590 existing data from a broader geographical level, which provides additional information on, i.e. if
591 new cases are part of a single clonal expansion or multiple introductions from outside a specific
592 location. Currently, over 12,000 isolates of *N. gonorrhoeae* have been sequenced using high
593 throughput approaches and publicly deposited on the ENA linked to a scientific publication. We
594 have quality-checked and assembled these data using a common pipeline and we make it
595 available through Pathogenwatch, with the aim of representing as much genomic diversity of this
596 pathogen as possible to serve as background for new analyses. These public genomes are
597 associated with at least 27 different scientific publications, and have been organized in
598 Pathogenwatch as individual collections (Additional file 1: Table S6).

599 In this study, we have gathered an advisory group of *N. gonorrhoeae* experts in different fields
600 such as AMR, microbiology, genetics, genomics, epidemiology and public health who will consult
601 and discuss current and future analytics to be included to address the global public health needs
602 of the community. We suggest this strategy as a role model for other pathogens in this and other
603 genomic surveillance platforms, so the end user, who may not have full computational experience
604 in some cases, can be confident that the analytics and databases underlying this tool are
605 appropriate, and can have access to all the results provided by Pathogenwatch through uploading
606 the data via a web browser. We are aware that this is a constantly moving field and analytics will

607 be expanded and updated in the future. These updates will be discussed within an advisory group
608 to make sure they are useful in the field and the way results are reported is of use to different
609 profiles (microbiologists, epidemiologists, public health professionals, etc.).

610 Future analytics that are under discussion include the automatic submission of new MLST, NG-
611 STAR and NG-MAST STs and alleles to the corresponding servers and the automatic submission
612 of data to public archives such as the ENA. Including a separate library to automatically screen
613 targets of potential interest for vaccine design (137-139) as well as targets of new antibiotics on
614 phase II or III clinical trials (i.e. zoliflodacin (140) or gepotidacin (141)) can also be an interesting
615 addition to the scheme. Regarding AMR, new methods for phenotypic prediction using genetic
616 data are continuously being reported (56, 142, 143), especially those based on machine learning
617 algorithms (144), and will be considered for future versions of the platform.

618 **Conclusions**

619 In summary, we present a genomic surveillance platform adapted to *N. gonorrhoeae*, one of the
620 main public health priorities compromising the control of AMR infections, where decisions on
621 existing and updated databases and analytics as well as how results are reported will be
622 discussed with an advisory board of experts in different public health areas. This will allow
623 scientists from both higher or lower resourced settings with different capacities regarding high
624 throughput sequencing, bioinformatics and data interpretation, to be able to use a reproducible
625 and quality-assured platform where analyse and contextualise genomic data resulting from the
626 investigation of treatment failures, outbreaks, transmission chains and networks at different
627 regional scales. This open access and reproducible platform constitutes one step further into an
628 international collaborative effort where countries can keep ownership of their data in line with
629 national STI and AMR surveillance and control programs while aligning with global strategies for
630 a joint action towards battling AMR *N. gonorrhoeae*.

631

632

633 **List of abbreviations**

634 AGSP: Australian Gonococcal Surveillance Programme

635 AMR: Antimicrobial Resistance

636 AZM: Azithromycin

637 CDC: Centers for Disease Control and Prevention

638 CFM: Cefixime

639 cgMLST: Core Genome Multi-Locus Sequence Typing

640 CIP: Ciprofloxacin

641 CRO: Ceftriaxone

642 ECOFF: Epidemiological Cut-Off

643 EGASP: Enhanced Gonococcal Antimicrobial Surveillance Programme

644 ENA: European Nucleotide Archive

645 ESCs: Extended Spectrum Cephalosporins

646 EUCAST: European Committee on Antimicrobial Susceptibility Testing

647 Euro-GASP: European Global Antimicrobial Surveillance Programme

648 FN: False Negative

649 FP: False Positive

650 GASP: Global Gonococcal Antimicrobial Surveillance Programme

651 GISP: Gonococcal Isolate Surveillance Project

652 GRASP: Gonococcal Resistance to Antimicrobials Surveillance Programme

653 HIV: Human Immunodeficiency Virus

654 LMICs: Low and Middle-Income Countries

655 MIC: Minimum Inhibitory Concentration

656 MLST: Multi-Locus Sequence Typing

657 NG-MAST: *N. gonorrhoeae* Multi-Antigen Sequence Typing

658 NG-STAR: *N. gonorrhoeae* Sequence Typing for Antimicrobial Resistance

659 NPV: Negative Predictive Value

660 PEN: Benzylpenicillin

661 PPV: Positive Predictive Value
662 SNPs: Single Nucleotide Polymorphisms
663 ST: Sequence Type
664 STI: Sexually-Transmitted Infection
665 TET: Tetracycline
666 TN: True Negative
667 TP: True Positive
668 UK: United Kingdom
669 WGS: Whole Genome Sequencing
670 WHO: World Health Organization
671

672 **Declarations**

673 ***Ethics approval and consent to participate***

674 Not applicable.

675 ***Consent for publication***

676 Not applicable.

677 ***Availability of data and materials***

678 The assemblies included in the current version of the *N. gonorrhoeae* Pathogenwatch scheme
679 and used for the AMR benchmark analyses were generated from raw sequencing data stored in
680 the ENA. Project accession numbers are included in Additional File 1: Tables S1 and S6. The
681 generated assemblies can be downloaded from Pathogenwatch. The AMR library can be
682 accessed from: <https://gitlab.com/cgps/pathogenwatch/amr-libraries/-/blob/master/485.toml>. The
683 code to reproduce the figures and analyses in this manuscript can be found in
684 <https://gitlab.com/cgps/pathogenwatch/publications>.

685 ***Competing interests***

686 The authors declare that they have no competing interests.

687

688 **Funding**

689 Pathogenwatch is developed with support from Li Ka Shing Foundation (Big Data Institute,
690 University of Oxford) and Wellcome (099202). LSB and DMA are supported by the Li Ka Shing
691 Foundation (Big Data Institute, University of Oxford) and the Centre for Genomic Pathogen
692 Surveillance (CGPS, <http://pathogensurveillance.net>). DMA and SA are supported by the National
693 Institute for Health Research (UK) Global Health Research Unit on Genomic Surveillance of AMR
694 (16_136_111). The department of MJC receives funding from the European Centre for Disease
695 Prevention and Control and the National Institute for Health Research (Health Protection
696 Research Unit) for gonococcal whole-genome sequencing. YHG was supported by the NIH/NIAID
697 grant R01 AI132606. KCM is supported by the NSF GRFP grant number DGE1745303. TDM is
698 supported by the National Institute of Allergy and Infectious Diseases at the National Institutes of
699 Health [1 F32 AI145157-01]. WMS is a recipient of a Senior Research Career Scientist Award
700 from the Biomedical Laboratory Research and Development Service of the Department of
701 Veterans. Work on antibiotic resistance in his laboratory is supported by NIH grants R37 AI-
702 021150 and R01 AI-147609. The content of this article is solely the responsibility of the authors
703 and does not necessarily represent the official views of the Department of Veterans Affairs, The
704 National Institutes of Health or the United States Government. The findings and conclusions in
705 this article are those of the author(s) and do not necessarily represent the official position of the
706 Centers for Disease Control and Prevention. The WHO Collaborating Centre for Gonorrhoea and
707 other STIs directed by MU receives funding from the European Centre for Disease Prevention
708 and Control and the World Health Organization. This publication made use of the Neisseria Multi-
709 Locus Sequence Typing website (<https://pubmlst.org/neisseria/>) sited at the University of Oxford
710 (43) and funded by Wellcome and European Union.

711 **Authors' contributions**

712 DMA conceived the Pathogenwatch application. CY, RG, KA, BT, AU and DMA developed the
713 Pathogenwatch application. LSB and DMA contributed to the conception and design of the work.
714 CY and LSB generated, updated and benchmarked the *N. gonorrhoeae* AMR library. BT, CY, AU
715 and LSB obtained, quality-checked and reassembled the raw data from the ENA. LSB revised the

716 assembled data, obtained all metadata available from the corresponding scientific publications
717 and created collections. LSB drafted the manuscript. LSB, DMA, CY, SA, KCM, TDM, MJC, YHG,
718 IM, BHR, WMS, GS, KT, TW and MU contributed to the acquisition, interpretation and discussion
719 of the data. LSB, CY and LSB analysed the data. All authors read and approved the final
720 manuscript.

721 **Acknowledgements**

722 We would like to thank MJC, YHG, IM, BHR, WMS, GS, KT, TW and MU for their support on the
723 development of the *N. gonorrhoeae* Pathogenwatch scheme and the creation of the *N.*
724 *gonorrhoeae* Pathogenwatch Scientific Steering Group.

725

726 **References**

- 727 1. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide
728 research, discovery, and development of new antibiotics.
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. 2017.
- 731 2. Centres for Disease Prevention and Control. U.S. Department of Health and Human
732 Services. Atlanta, GA. Antibiotic Resistance Threats in the United States, 2019.
<https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf>. 2019.
- 734 3. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al.
735 Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates,
736 2016. Bull World Health Organ. 2019;97(8):548-62P.
- 737 4. World Health Organization. Report on global sexually transmitted infection surveillance
738 2018. <http://apps.who.int/iris/bitstream/handle/10665/277258/9789241565691-eng.pdf?ua=1>.
739 2019.
- 740 5. Unemo M, Shafer WM. Antimicrobial resistance in *Neisseria gonorrhoeae* in the 21st
741 century: past, evolution, and future. Clin Microbiol Rev. 2014;27(3):587-613.
- 742 6. Cole MJ, Spiteri G, Town K, Unemo M, Hoffmann S, Chisholm SA, et al. Risk factors for
743 antimicrobial-resistant *Neisseria gonorrhoeae* in Europe. Sex Transm Dis. 2014;41(12):723-9.
- 744 7. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial
745 resistance in *Neisseria gonorrhoeae*: Global surveillance and a call for international
746 collaborative action. PLoS Med. 2017;14(7):e1002344.
- 747 8. Unemo M, Lahra MM, Cole M, Galarza P, Ndowa F, Martin I, et al. World Health
748 Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of
749 new data and evidence to inform international collaborative actions and research efforts. Sex
750 Health. 2019;16(5):412-25.
- 751 9. Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, et al. Failure of
752 Dual Antimicrobial Therapy in Treatment of Gonorrhea. N Engl J Med. 2016;374(25):2504-6.
- 753 10. Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L, et al.
754 Gonorrhoea treatment failure caused by a *Neisseria gonorrhoeae* strain with combined
755 ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill.
756 2018;23(27).

757 11. Whiley DM, Jennison A, Pearson J, Lahra MM. Genetic characterisation of *Neisseria*
758 gonorrhoeae resistant to both ceftriaxone and azithromycin. *Lancet Infect Dis.* 2018;18(7):717-
759 8.

760 12. Lahra MM, Martin I, Demczuk W, Jennison AV, Lee KI, Nakayama SI, et al. Cooperative
761 Recognition of Internationally Disseminated Ceftriaxone-Resistant *Neisseria gonorrhoeae*
762 Strain. *Emerg Infect Dis.* 2018;24(4).

763 13. Fifer H, Saunders J, Soni S, Sadiq ST, FitzGerald M. 2018 UK national guideline for the
764 management of infection with *Neisseria gonorrhoeae*. *Int J STD AIDS.* 2020;31(1):4-15.

765 14. Deguchi T, Yasuda M, Asano M, Tada K, Iwata H, Komeda H, et al. DNA gyrase
766 mutations in quinolone-resistant clinical isolates of *Neisseria gonorrhoeae*. *Antimicrob Agents*
767 *Chemother.* 1995;39(2):561-3.

768 15. Tanaka M, Takahashi K, Saika T, Kobayashi I, Ueno T, Kumazawa J. Development of
769 fluoroquinolone resistance and mutations involving GyrA and ParC proteins among *Neisseria*
770 gonorrhoeae isolates in Japan. *J Urol.* 1998;159(6):2215-9.

771 16. Harris SR, Cole MJ, Spiteri G, Sanchez-Buso L, Golparian D, Jacobsson S, et al. Public
772 health surveillance of multidrug-resistant clones of *Neisseria gonorrhoeae* in Europe: a genomic
773 survey. *Lancet Infect Dis.* 2018;18(7):758-68.

774 17. Spratt BG. Hybrid penicillin-binding proteins in penicillin-resistant strains of *Neisseria*
775 gonorrhoeae. *Nature.* 1988;332(6160):173-6.

776 18. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, et al. Is *Neisseria*
777 gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the
778 first strain with high-level resistance to ceftriaxone. *Antimicrob Agents Chemother.*
779 2011;55(7):3538-45.

780 19. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic
781 epidemiology of gonococcal resistance to extended spectrum cephalosporins, macrolides, and
782 fluoroquinolones in the US, 2000-2013. *J Infect Dis.* 2016;214:1579-87.

783 20. Abrams AJ, Kirkcaldy RD, Pettus K, Fox JL, Kubin G, Trees DL. A Case of Decreased
784 Susceptibility to Ceftriaxone in *Neisseria gonorrhoeae* in the Absence of a Mosaic Penicillin-
785 Binding Protein 2 (penA) Allele. *Sex Transm Dis.* 2017;44(8):492-4.

786 21. Lindberg R, Fredlund H, Nicholas R, Unemo M. *Neisseria gonorrhoeae* isolates with
787 reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in
788 penA, mtrR, porB1b, and ponA. *Antimicrob Agents Chemother.* 2007;51(6):2117-22.

789 22. Palace SG, Wang Y, Rubin DH, Welsh MA, Mortimer TD, Cole K, et al. RNA polymerase
790 mutations cause cephalosporin resistance in clinical *Neisseria gonorrhoeae* isolates. *Elife.*
791 2020;9.

792 23. Unemo M, Golparian D, Sanchez-Buso L, Grad Y, Jacobsson S, Ohnishi M, et al. The
793 novel 2016 WHO *Neisseria gonorrhoeae* reference strains for global quality assurance of
794 laboratory investigations: phenotypic, genetic and reference genome characterization. *J*
795 *Antimicrob Chemother.* 2016;71(11):3096-108.

796 24. Wadsworth CB, Arnold BJ, Sater MRA, Grad YH. Azithromycin Resistance through
797 Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional
798 Regulator in *Neisseria gonorrhoeae*. *mBio.* 2018;9(4).

799 25. Rouquette-Loughlin CE, Reimche JL, Balthazar JT, Dhulipala V, Gernert KM, Kersh EN,
800 et al. Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of
801 *Neisseria gonorrhoeae* Possessing a Mosaic-Like mtr Efflux Pump Locus. *mBio.* 2018;9(6).

802 26. Ma KC, Mortimer TD, Duckett MA, Hicks AL, Wheeler NE, Sánchez-Busó L, et al.
803 Increased power from bacterial genome-wide association conditional on known effects identifies
804 *Neisseria gonorrhoeae* macrolide resistance mutations in the 50S ribosomal protein L4. *bioRxiv.*
805 2020.

806 27. Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, et al.
807 Increased antibiotic susceptibility in *Neisseria gonorrhoeae* through adaptation to the cervical
808 environment. *bioRxiv.* 2020.

809 28. Unemo M, Dillon JA. Review and international recommendation of methods for typing
810 *neisseria gonorrhoeae* isolates and their implications for improved knowledge of gonococcal
811 epidemiology, treatment, and biology. *Clin Microbiol Rev.* 2011;24(3):447-58.

812 29. Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. *Nat Rev Microbiol.*
813 2015;13(12):787-94.

814 30. Balloux F, Bronstad Brynildsrud O, van Dorp L, Shaw LP, Chen H, Harris KA, et al. From
815 Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. *Trends
816 Microbiol.* 2018;26(12):1035-48.

817 31. Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to
818 study antimicrobial resistance. *Nat Rev Genet.* 2019;20(6):356-70.

819 32. Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using
820 Genomics to Track Global Antimicrobial Resistance. *Front Public Health.* 2019;7:242.

821 33. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid
822 large-scale prokaryote pan genome analysis. *Bioinformatics.* 2015;31(22):3691-3.

823 34. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions. Core
824 assignment. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/core-genome-tree/core-assignment>. Accessed 30 June 2020.

825 35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a
826 new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol.*
827 2012;19(5):455-77.

828 36. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions. Short
829 read assembly. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/short-read-assembly>. Accessed 30 June 2020.

830 37. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions.
831 Speciator. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/species-assignment/speciator>. Accessed 30 June 2020.

832 38. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions. Core
833 filter. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/core-genome-tree/core-filter>.
834 Accessed 30 June 2020.

835 39. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions. Tree
836 construction. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/core-genome-tree/tree-construction>. Accessed 30 June 2020.

837 40. Bennett JS, Jolley KA, Sparling PF, Saunders NJ, Hart CA, Feavers IM, et al. Species
838 status of *Neisseria gonorrhoeae*: evolutionary and epidemiological inferences from multilocus
839 sequence typing. *BMC Biol.* 2007;5:35.

840 41. Harrison OB, Cole K, Peters J, Cresswell F, Dean G, Eyre DW, et al. Genomic analysis
841 of urogenital and rectal *Neisseria meningitidis* isolates reveals encapsulated hyperinvasive
842 meningococci and coincident multidrug-resistant gonococci. *Sex Transm Infect.* 2017;93(6):445-
843 51.

844 42. PubMLST. *Neisseria* Multi-Locus Sequence Typing website.
845 <https://pubmlst.org/neisseria/>. Accessed 30 June 2020.

846 43. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb
847 software, the PubMLST.org website and their applications. *Wellcome Open Res.* 2018;3:124.

848 44. Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based
849 identification of gonococcal transmission clusters in a large metropolitan area. *J Infect Dis.*
850 2004;189(8):1497-505.

851 45. NG-MAST. *Neisseria gonorrhoeae* Multi-Antigen Sequence Typing database.
852 <http://www.ng-mast.net/>. Accessed 30 June 2020.

853 46. Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG, Dillon JR, et al. *Neisseria
854 gonorrhoeae* Sequence Typing for Antimicrobial Resistance, a Novel Antimicrobial Resistance
855 Multilocus Typing Scheme for Tracking Global Dissemination of *N. gonorrhoeae* Strains. *J Clin
856 Microbiol.* 2017;55(5):1454-68.

857 47. NG-STAR. *Neisseria gonorrhoeae* Sequence Typing for Antimicrobial Resistance.
858 <https://ngstar.canada.ca/>. Accessed 30 June 2020.

859 48. Kwong JC, Gonçalves da Silva A, Dyet K, Williamson DA, Stinear TP, Howden BP, et al.
860 NGMASTER: in silico Multi-Antigen Sequence Typing for *Neisseria gonorrhoeae*. *Microb
861 Genom.* 2016;2(8):e000076.

866 49. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions.
867 MLST. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/typing-methods/mlst>.
868 Accessed 30 June 2020.

869 50. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions.
870 cgMLST clustering. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/cgmlst-clusters>. Accessed 30 June 2020.

872 51. Centre for Genomic Pathogen Surveillance. Pathogenwatch technical descriptions.
873 PAARSNP. <https://cgps.gitbook.io/pathogenwatch/technical-descriptions/antimicrobial-resistance-prediction/paarsnp>. Accessed 30 June 2020.

875 52. Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A, Schaefer U, et al. An
876 outbreak of high-level azithromycin resistant *Neisseria gonorrhoeae* in England. *Sex Transm
877 Infect.* 2015;0:1-3.

878 53. Golparian D, Harris SR, Sanchez-Buso L, Hoffmann S, Shafer WM, Bentley SD, et al.
879 Genomic evolution of *Neisseria gonorrhoeae* since the preantibiotic era (1928-2013):
880 antimicrobial use/misuse selects for resistance and drives evolution. *BMC Genomics.*
881 2020;21(1):116.

882 54. Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M, Bharat A, et al. Whole-
883 genome phylogenomic heterogeneity of *Neisseria gonorrhoeae* isolates with decreased
884 cephalosporin susceptibility collected in Canada between 1989 and 2013. *J Clin Microbiol.*
885 2015;53(1):191-200.

886 55. Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G, Graham M, et al.
887 Genomic Epidemiology and Molecular Resistance Mechanisms of Azithromycin-Resistant
888 *Neisseria gonorrhoeae* in Canada from 1997 to 2014. *J Clin Microbiol.* 2016;54(5):1304-13.

889 56. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, et al. WGS to predict
890 antibiotic MICs for *Neisseria gonorrhoeae*. *J Antimicrob Chemother.* 2017;72(7):1937-47.

891 57. Fifer H, Cole M, Hughes G, Padfield S, Smolarchuk C, Woodford N, et al. Sustained
892 transmission of high-level azithromycin-resistant *Neisseria gonorrhoeae* in England: an
893 observational study. *Lancet Infect Dis.* 2018;18(5):573-81.

894 58. Sanchez-Buso L, Golparian D, Corander J, Grad YH, Ohnishi M, Flemming R, et al. The
895 impact of antimicrobials on gonococcal evolution. *Nat Microbiol.* 2019.

896 59. Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR, Goldstein E, et al. Genomic
897 epidemiology of *Neisseria gonorrhoeae* with reduced susceptibility to cefixime in the USA: a
898 retrospective observational study. *Lancet Infect Dis.* 2014;14(3):220-6.

899 60. Jacobsson S, Golparian D, Cole M, Spiteri G, Martin I, Bergheim T, et al. WGS analysis
900 and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) *Neisseria*
901 *gonorrhoeae* isolates in Europe from 2009 to 2014. *J Antimicrob Chemother.* 2016.

902 61. Lee RS, Seemann T, Heffernan H, Kwong JC, Goncalves da Silva A, Carter GP, et al.
903 Genomic epidemiology and antimicrobial resistance of *Neisseria gonorrhoeae* in New Zealand.
904 *J Antimicrob Chemother.* 2018;73(2):353-64.

905 62. Town K, Harris S, Sanchez-Buso L, Cole MJ, Pitt R, Fifer H, et al. Genomic and
906 Phenotypic Variability in *Neisseria gonorrhoeae* Antimicrobial Susceptibility, England. *Emerg
907 Infect Dis.* 2020;26(3):505-15.

908 63. Yahara K, Nakayama SI, Shimuta K, Lee KI, Morita M, Kawahata T, et al. Genomic
909 surveillance of *Neisseria gonorrhoeae* to investigate the distribution and evolution of
910 antimicrobial-resistance determinants and lineages. *Microb Genom.* 2018;4(8).

911 64. Kwong JC, Chow EPF, Stevens K, Stinear TP, Seemann T, Fairley CK, et al. Whole-
912 genome sequencing reveals transmission of gonococcal antibiotic resistance among men who
913 have sex with men: an observational study. *Sex Transm Infect.* 2018;94(2):151-7.

914 65. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for
915 interpretation of MICs and zone diameters. Version 9.0.
916 https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf. Accessed 30 June 2020.

918 66. Stevenson M, Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, et al. epiR: Tools
919 for the Analysis of Epidemiological Data. R package version 1.0-14. <https://CRAN.R-project.org/package=epiR>. 2020.

921 67. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated
922 platform for visualization and analysis of high-throughput sequence-based experimental data.
923 *Bioinformatics*. 2012;28(4):464-9.

924 68. Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in *Neisseria*
925 *gonorrhoeae* as a result of a single point mutation in the 23S rRNA genes. *Antimicrob Agents*
926 *Chemother*. 2010;54(9):3812-6.

927 69. Underwood A. Global Health Research Unit (GHRU) assembly pipeline.
928 <https://gitlab.com/cgps/ghru/pipelines/assembly>. Accessed 30 June 2020.

929 70. Babraham Bioinformatics. FastQC.
930 <https://bioinformatics.babraham.ac.uk/projects/fastqc/>. Accessed 30 June 2020.

931 71. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
932 data. *Bioinformatics*. 2014;30(15):2114-20.

933 72. Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error
934 correction without counting. *Genome Biol*. 2014;15(11):509.

935 73. Low AJ, Kozoli AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of
936 intraspecies and cross-species contamination in bacterial whole-genome sequence data. *PeerJ*.
937 2019;7:e6995.

938 74. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash:
939 fast genome and metagenome distance estimation using MinHash. *Genome Biol*.
940 2016;17(1):132.

941 75. Li H. Seqtk. <https://github.com/lh3/seqtk>. Accessed 30 June 2020.

942 76. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome
943 assemblies. *Bioinformatics*. 2011;27(21):2957-63.

944 77. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for
945 genome assemblies. *Bioinformatics*. 2013;29(8):1072-5.

946 78. Underwood A. Bactinspector. <https://gitlab.com/antunderwood/bactinspector>. Accessed
947 30 June 2020.

948 79. Underwood A. Qualifyr. <https://gitlab.com/cgps/qualifyr>. Accessed 30 June 2020.

949 80. European Nucleotide Archive API portal. <https://www.ebi.ac.uk/ena/portal/api/>. Accessed
950 30 June 2020.

951 81. Sánchez-Busó L. N. gonorrhoeae Pathogenwatch video demo.
952 <https://vimeo.com/434706201>. 2020.

953 82. Centre for Genomic Pathogen Surveillance. Pathogenwatch collection. Sánchez-Busó et
954 al. (2019). <https://pathogen.watch/collection/9stz0m94hin7-sanchez-buso-et-al-2019>.

955 83. Page A, Taylor B, Keane J. Multilocus sequence typing by blast from de novo
956 assemblies against PubMLST. *Journal of Open Source Software*. 2016;1(8).

957 84. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide
958 resistance in *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother*. 2002;46(9):3020-5.

959 85. Roberts MC, Chung WO, Roe D, Xia M, Marquez C, Borthagaray G, et al. Erythromycin-
960 resistant *Neisseria gonorrhoeae* and oral commensal *Neisseria* spp. carry known rRNA
961 methylase genes. *Antimicrob Agents Chemother*. 1999;43(6):1367-72.

962 86. Cousin S, Jr., Whittington WL, Roberts MC. Acquired macrolide resistance genes in
963 pathogenic *Neisseria* spp. isolated between 1940 and 1987. *Antimicrob Agents Chemother*.
964 2003;47(12):3877-80.

965 87. Luna VA, Cousin S, Jr., Whittington WL, Roberts MC. Identification of the conjugative
966 *mef* gene in clinical *Acinetobacter junii* and *Neisseria gonorrhoeae* isolates. *Antimicrob Agents*
967 *Chemother*. 2000;44(9):2503-6.

968 88. Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA-MacB
969 efflux system in *Neisseria gonorrhoeae*. *J Antimicrob Chemother*. 2005;56(5):856-60.

970 89. Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump
971 due to an *mtrR* mutation is required for chromosomally mediated penicillin resistance in
972 *Neisseria gonorrhoeae*. *J Bacteriol*. 2002;184(20):5619-24.

973 90. Cousin SL, Jr., Whittington WL, Roberts MC. Acquired macrolide resistance genes and
974 the 1 bp deletion in the mtrR promoter in *Neisseria gonorrhoeae*. *J Antimicrob Chemother*.
975 2003;51(1):131-3.

976 91. Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression
977 of the *Neisseria gonorrhoeae* MtrC-MtrD-MtrE Efflux pump system confer different levels of
978 antimicrobial resistance and in vivo fitness. *Mol Microbiol*. 2008;70(2):462-78.

979 92. Shafer WM, Balthazar JT, Hagman KE, Morse SA. Missense mutations that alter the
980 DNA-binding domain of the MtrR protein occur frequently in rectal isolates of *Neisseria*
981 *gonorrhoeae* that are resistant to faecal lipids. *Microbiology*. 1995;141 (Pt 4):907-11.

982 93. Tomberg J, Unemo M, Davies C, Nicholas RA. Molecular and structural analysis of
983 mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-
984 spectrum cephalosporins in *Neisseria gonorrhoeae*: role of epistatic mutations. *Biochemistry*.
985 2010;49(37):8062-70.

986 94. Tomberg J, Unemo M, Ohnishi M, Davies C, Nicholas RA. Identification of amino acids
987 conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from
988 *Neisseria gonorrhoeae* strain H041. *Antimicrob Agents Chemother*. 2013;57(7):3029-36.

989 95. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level
990 cefixime- and ceftriaxone-resistant *Neisseria gonorrhoeae* in France: novel penA mosaic allele
991 in a successful international clone causes treatment failure. *Antimicrob Agents Chemother*.
992 2012;56(3):1273-80.

993 96. Belland RJ, Morrison SG, Ison C, Huang WM. *Neisseria gonorrhoeae* acquires
994 mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. *Mol*
995 *Microbiol*. 1994;14(2):371-80.

996 97. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM. The NorM efflux
997 pump of *Neisseria gonorrhoeae* and *Neisseria meningitidis* recognizes antimicrobial cationic
998 compounds. *J Bacteriol*. 2003;185(3):1101-6.

999 98. Lindback E, Rahman M, Jalal S, Wretlind B. Mutations in gyrA, gyrB, parC, and parE in
1000 quinolone-resistant strains of *Neisseria gonorrhoeae*. *APMIS*. 2002;110(9):651-7.

1001 99. Hu M, Nandi S, Davies C, Nicholas RA. High-level chromosomally mediated tetracycline
1002 resistance in *Neisseria gonorrhoeae* results from a point mutation in the rpsJ gene encoding
1003 ribosomal protein S10 in combination with the mtrR and penB resistance determinants.
1004 *Antimicrob Agents Chemother*. 2005;49(10):4327-34.

1005 100. Morse SA, Johnson SR, Biddle JW, Roberts MC. High-level tetracycline resistance in
1006 *Neisseria gonorrhoeae* is result of acquisition of streptococcal tetM determinant. *Antimicrob*
1007 *Agents Chemother*. 1986;30(5):664-70.

1008 101. Ashford WA, Golash RG, Hemming VG. Penicillinase-producing *Neisseria gonorrhoeae*.
1009 *Lancet*. 1976;2(7987):657-8.

1010 102. Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA, the gene encoding
1011 penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally
1012 mediated penicillin resistance in *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother*.
1013 2002;46(3):769-77.

1014 103. Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in
1015 porin IB that mediate intermediate-level resistance to penicillin and tetracycline in *Neisseria*
1016 *gonorrhoeae*. *Antimicrob Agents Chemother*. 2002;46(9):2811-20.

1017 104. Bilgin N, Richter AA, Ehrenberg M, Dahlberg AE, Kurland CG. Ribosomal RNA and
1018 protein mutants resistant to spectinomycin. *EMBO J*. 1990;9(3):735-9.

1019 105. Unemo M, Golparian D, Skogen V, Olsen AO, Moi H, Syversen G, et al. *Neisseria*
1020 *gonorrhoeae* strain with high-level resistance to spectinomycin due to a novel resistance
1021 mechanism (mutated ribosomal protein S5) verified in Norway. *Antimicrob Agents Chemother*.
1022 2013;57(2):1057-61.

1023 106. Fiebelkorn KR, Crawford SA, Jorgensen JH. Mutations in folP associated with elevated
1024 sulfonamide MICs for *Neisseria meningitidis* clinical isolates from five continents. *Antimicrob*
1025 *Agents Chemother*. 2005;49(2):536-40.

1026 107. Zhao S, Duncan M, Tomberg J, Davies C, Unemo M, Nicholas RA. Genetics of
1027 chromosomally mediated intermediate resistance to ceftriaxone and cefixime in *Neisseria*
1028 *gonorrhoeae*. *Antimicrob Agents Chemother*. 2009;53(9):3744-51.

1029 108. Kersh EN, Allen V, Ransom E, Schmerer M, Cyr S, Workowski K, et al. Rationale for a
1030 *Neisseria gonorrhoeae* Susceptible-only Interpretive Breakpoint for Azithromycin. *Clin Infect Dis*.
1031 2020;70(5):798-804.

1032 109. Cole MJ, Tan W, Fifer H, Brittain C, Duley L, Hepburn T, et al. Gentamicin, azithromycin
1033 and ceftriaxone in the treatment of gonorrhoea: the relationship between antibiotic MIC and
1034 clinical outcome. *J Antimicrob Chemother*. 2020;75(2):449-57.

1035 110. Town K, Field N, Harris SR, Sanchez-Buso L, Cole MJ, Pitt R, et al. Phylogenomic
1036 analysis of *Neisseria gonorrhoeae* transmission to assess sexual mixing and HIV transmission
1037 risk in England: a cross-sectional, observational, whole-genome sequencing study. *Lancet*
1038 *Infect Dis*. 2020;20(4):478-86.

1039 111. Ison CA, Golparian D, Saunders P, Chisholm S, Unemo M. Evolution of *Neisseria*
1040 *gonorrhoeae* is a continuing challenge for molecular detection of gonorrhoea: false negative
1041 gonococcal porA mutants are spreading internationally. *Sex Transm Infect*. 2013;89(3):197-201.

1042 112. Williamson DA, Chow EPF, Gorrie CL, Seemann T, Ingle DJ, Higgins N, et al. Bridging
1043 of *Neisseria gonorrhoeae* lineages across sexual networks in the HIV pre-exposure prophylaxis
1044 era. *Nat Commun*. 2019;10(1):3988.

1045 113. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, et al. Whole-genome
1046 sequencing to determine transmission of *Neisseria gonorrhoeae*: an observational study. *Lancet*
1047 *Infect Dis*. 2016;16(11):1295-303.

1048 114. Mortimer TD, Pathela P, Crawley A, Rakeman JL, Lin Y, Harris SR, et al. The
1049 distribution and spread of susceptible and resistant *Neisseria gonorrhoeae* across demographic
1050 groups in a major metropolitan center. *medRxiv*. 2020;2020.04.30.20086413.

1051 115. Alfsnes K, Eldholm V, Olsen AO, Brynildsrud OB, Bohlin J, Steinbakk M, et al. Genomic
1052 epidemiology and population structure of *Neisseria gonorrhoeae* in Norway, 2016-2017. *Microb*
1053 *Genom*. 2020.

1054 116. Thomas JC, Seby S, Abrams AJ, Cartee J, Lucking S, Vidyaprakash E, et al. Evidence
1055 of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to
1056 Cephalosporins or Azithromycin in the United States, 2014-2016. *J Infect Dis*. 2019;220(2):294-
1057 305.

1058 117. Schmerer MW, Abrams AJ, Seby S, Thomas JCt, Cartee J, Lucking S, et al. Genomic
1059 Characterization of *Neisseria gonorrhoeae* Strains from 2016 U.S. Sentinel Surveillance
1060 Displaying Reduced Susceptibility to Azithromycin. *Antimicrob Agents Chemother*. 2020;64(5).

1061 118. Lan PT, Golparian D, Ringlander J, Van Hung L, Van Thuong N, Unemo M. Genomic
1062 analysis and antimicrobial resistance of *Neisseria gonorrhoeae* isolates from Vietnam in 2011
1063 and 2015-16. *J Antimicrob Chemother*. 2020;75(6):1432-8.

1064 119. Didelot X, Dordel J, Whittles LK, Collins C, Bilek N, Bishop CJ, et al. Genomic Analysis
1065 and Comparison of Two Gonorrhea Outbreaks. *MBio*. 2016;7(3).

1066 120. Osnes MN, Didelot X, de Korne-Elenbaas J, Alfsnes K, Brynildsrud OB, Syversen G, et
1067 al. The sudden emergence of a *Neisseria gonorrhoeae* strain with reduced susceptibility to
1068 extended-spectrum cephalosporins, Norway. *bioRxiv*. 2020;2020.02.07.935825.

1069 121. Cehovin A, Harrison OB, Lewis SB, Ward PN, Ngetsa C, Graham SM, et al.
1070 Identification of Novel *Neisseria gonorrhoeae* Lineages Harboring Resistance Plasmids in
1071 Coastal Kenya. *J Infect Dis*. 2018;218(5):801-8.

1072 122. Buckley C, Forde BM, Trembizki E, Lahra MM, Beatson SA, Whiley DM. Use of whole
1073 genome sequencing to investigate an increase in *Neisseria gonorrhoeae* infection among
1074 women in urban areas of Australia. *Sci Rep*. 2018;8(1):1503.

1075 123. Ryan L, Golparian D, Fnelly N, Rose L, Walsh P, Lawlor B, et al. Antimicrobial
1076 resistance and molecular epidemiology using whole-genome sequencing of *Neisseria*
1077 *gonorrhoeae* in Ireland, 2014-2016: focus on extended-spectrum cephalosporins and
1078 azithromycin. *Eur J Clin Microbiol Infect Dis*. 2018;37(9):1661-72.

1079 124. Wind CM, de Vries E, Schim van der Loeff MF, van Rooijen MS, van Dam AP, Demczuk
1080 WHB, et al. Decreased Azithromycin Susceptibility of *Neisseria gonorrhoeae* Isolates in Patients
1081 Recently Treated with Azithromycin. *Clin Infect Dis.* 2017;65(1):37-45.

1082 125. Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, et al.
1083 Population structure of *Neisseria gonorrhoeae* based on whole genome data and its relationship
1084 with antibiotic resistance. *PeerJ.* 2015;3:e806.

1085 126. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome
1086 sequencing. *F1000Res.* 2019;8:2138.

1087 127. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous
1088 assemblies. *Genome Biol.* 2018;19(1):153.

1089 128. Spiteri G, Cole M, Unemo M, Hoffmann S, Ison C, van de Laar M. The European
1090 Gonococcal Antimicrobial Surveillance Programme (Euro-GASP)--a sentinel approach in the
1091 European Union (EU)/European Economic Area (EEA). *Sex Transm Infect.* 2013;89 Suppl
1092 4:iv16-8.

1093 129. Schwarcz SK, Zenilman JM, Schnell D, Knapp JS, Hook EW, 3rd, Thompson S, et al.
1094 National surveillance of antimicrobial resistance in *Neisseria gonorrhoeae*. The Gonococcal
1095 Isolate Surveillance Project. *JAMA.* 1990;264(11):1413-7.

1096 130. Public Health Agency of Canada National Microbiology Laboratory. National surveillance
1097 of antimicrobial susceptibilities of *Neisseria gonorrhoeae*. Annual summary 2017.
<https://www.canada.ca/en/public-health/services/publications/drugs-health-products/national-surveillance-antimicrobial-susceptibilities-neisseria-gonorrhoeae-annual-summary-2017.html>.
1098 2017.

1099 131. Lahra MM, Enriquez R, George CRR. Australian Gonococcal Surveillance Programme
1100 Annual Report, 2017. *Commun Dis Intell* (2018). 2019;43.

1101 132. Paine TC, Fenton KA, Herring A, Turner A, Ison C, Martin I, et al. GRASP: a new
1102 national sentinel surveillance initiative for monitoring gonococcal antimicrobial resistance in
1103 England and Wales. *Sex Transm Infect.* 2001;77(6):398-401.

1104 133. Weston EJ, Wi T, Papp J. Strengthening Global Surveillance for Antimicrobial Drug-
1105 Resistant *Neisseria gonorrhoeae* through the Enhanced Gonococcal Antimicrobial Surveillance
1106 Program. *Emerg Infect Dis.* 2017;23(13).

1107 134. Sirivongrangson P, Girdthep N, Sukwicha W, Buasakul P, Tongtoyai J, Weston E, et al.
1108 The first year of the global Enhanced Gonococcal Antimicrobial Surveillance Programme
1109 (EGASP) in Bangkok, Thailand, 2015-2016. *PLoS One.* 2018;13(11):e0206419.

1110 135. Seale AC, Gordon NC, Islam J, Peacock SJ, Scott JAG. AMR Surveillance in low and
1111 middle-income settings - A roadmap for participation in the Global Antimicrobial Surveillance
1112 System (GLASS). *Wellcome Open Res.* 2017;2:92.

1113 136. NIHR-GHRU. Global Health Research Unit, Genomic Surveillance of Antimicrobial
1114 Resistance. <https://ghru.pathogensurveillance.net/>. Accessed 30 June 2020.

1115 137. Gottlieb SL, Ndowa F, Hook EW, 3rd, Deal C, Bachmann L, Abu-Raddad L, et al.
1116 Gonococcal vaccines: Public health value and preferred product characteristics; report of a
1117 WHO global stakeholder consultation, January 2019. *Vaccine.* 2020.

1118 138. Marjuki H, Topaz N, Joseph SJ, Gernert KM, Kersh EN, Antimicrobial-Resistant
1119 *Neisseria gonorrhoeae* Working G, et al. Genetic Similarity of Gonococcal Homologs to
1120 Meningococcal Outer Membrane Proteins of Serogroup B Vaccine. *mBio.* 2019;10(5).

1121 139. Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The
1122 Way Forward. *Front Immunol.* 2019;10:2417.

1123 140. Taylor SN, Marrazzo J, Batteiger BE, Hook EW, 3rd, Sena AC, Long J, et al. Single-
1124 Dose Zolifludacin (ETX0914) for Treatment of Urogenital Gonorrhea. *N Engl J Med.*
1125 2018;379(19):1835-45.

1126 141. Taylor SN, Morris DH, Avery AK, Workowski KA, Batteiger BE, Tiffany CA, et al.
1127 Gepotidacacin for the Treatment of Uncomplicated Urogenital Gonorrhea: A Phase 2,
1128 Randomized, Dose-Ranging, Single-Oral Dose Evaluation. *Clin Infect Dis.* 2018;67(4):504-12.

1129 142. Institute of Medicine BoGH, Forum on Microbial Threats. Antibiotic Resistance:
1130 Implications for Global Health and Novel Intervention Strategies: Workshop Summary. The

1133 National Academies Collection: Reports funded by National Institutes of Health. Washington
1134 (DC)2010.

1135 143. Demczuk W, Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang L, et al. Equations To
1136 Predict Antimicrobial MICs in *Neisseria gonorrhoeae* Using Molecular Antimicrobial Resistance
1137 Determinants. *Antimicrob Agents Chemother*. 2020;64(3).

1138 144. Hicks AL, Wheeler N, Sanchez-Buso L, Rakeman JL, Harris SR, Grad YH. Evaluation of
1139 parameters affecting performance and reliability of machine learning-based antibiotic
1140 susceptibility testing from whole genome sequencing data. *PLoS Comput Biol*.
1141 2019;15(9):e1007349.

1142

1143