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ABSTRACT

Cytokine release syndrome (CRS) is known to be a factor in morbidity and mortality associated

with acute viral infections including those caused by filoviruses and coronaviruses. IL-6 has
been implicated as a cytokine negatively associated with survival after filovirus and coronavirus
infection. However, IL-6 has also been shown to be an important mediator of innate immunity
and important for the host response to an acute viral infection. Clinical studies are now being
conducted by various researchers to evaluate the possible role of IL-6 blockers to improve
outcomes in critically ill patients with CRS. Most of these studies involve the use of anti-IL-6R
monoclonal antibodies (a-IL-6R mAbs). We present data showing that direct neutralization of
IL-6 with an a-1L-6 mAb in a BALB/c Ebolavirus (EBOV) challenge model produced a statistically
significant improvement in outcome compared with controls when administered within the first
24 hours of challenge and repeated every 72 hours. A similar effect was seen in mice treated
with the same dose of a-IL-6R mAb when the treatment was delayed 48 hrs post-challenge.
These data suggest that direct neutralization of IL-6, early during the course of infection, may
provide additional clinical benefits to IL-6 receptor blockade alone during treatment of patients
with virus-induced CRS.
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1 INTRODUCTION

Under normal circumstances, interleukin-6 (IL-6) is secreted transiently by myeloid cells as part of the
innate immune response to injury or infections. However, unregulated synthesis and secretion of IL-6 has
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contributed to a host of pathological effects such as rheumatoid arthritis. (Swaak et al., | 1988) Furthermore,
IL-6 induces differentiation of B cells and promotes CD4+ T cell survival during antigen activation and
inhibits TGF-beta differentiation, providing a crucial link between innate and acquired immune responses
(Korn et al., 2008} |Dienz and Rincon, 2009). These actions place IL-6 in a central role in mediating
and amplifying cytokine release syndrome (CRS), commonly associated with Ebola virus disease (EVD)
infections. (Wauquier et al., 2010). CRS is known to be a factor in morbidity and mortality associated with
acute viral infections including those caused by filoviruses and coronaviruses. For example, non-survivors
of the West African EBOV epidemics exhibited significantly elevated levels of the overall inflammatory
response cytokines and monokines compared to survivors (Ruibal et al., 2016). It is thought that prolonged
exposure to elevated inflamatory cytokine levels is toxic to T cells and results in their apoptotic and necrotic
cell death (Younan et al., [2018)). Both lymphopenia and elevated serum I1-6 levels are found in Ebola
virus infection and are known to be inversely correlated with survival in patients post-infection (Wauquier:
et al., 2010) and in mouse models of Ebola infection (Herst et al., 2020). However, IL-6 has also been
shown to be an important mediator of innate immunity and important for the host recovery from acute viral
infection (Yang et al., [2017). Elevated IL-6 levels are also observed in SARS-CoV-2 infections, severe
influenza , rhinovirus , RSV infection, as well as in similar respiratory infections (Conti et al., [2020;
Hayden et al., [1998; Tang et al., 2016; Kerrin et al., 2017). Originally developed for the treatment of
arthritis, o-1L-6R mAbs have been used to treat CRS as a complication of cancer therapy using adaptive
T-cell therapies. (Tanaka et al., 2016; Ascierto et al., [ 2020; Lee et al., 2014). Warnings admonishing the
use of IL-6 blockers in the context of acute infection are present in the package inserts for tocilizumab
(Genentech, 2014), sarilumab (Sanofi, 2017) and siltuximab (EUSA/ 2015). Early mixed results of CRS
treatment with IL-6 blockers (Herper, 2020; |Clinical TrialsGenetech, 2020; |Clinical TrialsEUS A} 2020
Taylor, [2020; Saha et al., 2020), and our own observations of the role of IL-6 in morbidity and mortality
associated with Ebola virus infection (Herst et al., 2020), led us to evaluate the clinical effects of treatment
with not only antibody directed against the IL-6 receptor, but also with mAb directed to IL-6 itself. We
report here on the observed differences between treatments with o-IL-6R mAbs and o-IL-6 mAbs in a
mouse model of EBOV infection and comment on how IL-6 blockade may be relevant to the management
and therapy for patients with Ebola infection as well as patients infected with SARS-CoV-2.

2 METHODS
2.1 Virus Strain

For in-vivo experiments, a well-characterized mouse-adapted Ebola virus (maEBOV) stock (Bray et al.,
1998}, Lane et al., 2019) (Ebola virus M. musculus/COD/1976/Mayinga-CDC-808012), derived from the
1976 Zaire ebolavirus isolate Yambuku-Mayinga (Genebank accession NC002549), was used for all studies.
All work involving infectious maEBOV was performed in a biosafety level (BSL) 4 laboratory, registered
with the Centers for Disease Control and the Prevention Select Agent Program for the possession and use
of biological select agents.

2.2 Animal Studies

Animal studies were conducted at the University of Texas Medical Branch (UTMB), Galveston, TX
in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animal
research. UTMB is fully accredited by the Association for the Assessment and Accreditation of Laboratory
Animal Care International and has an approved OLAW Assurance. BALB/c mice (Envigo; n = 146) were
challenged with 100 plaque forming units (PFU) of maEBOV via intraperitoneal (i.p.) injection as described
previously (Comer et al., 2019; Hodge et al., 2016)). Experimental groups of 10 mice each were administered
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rat anti-mouse-IL-6 IgG1 monoclonal antibody (BioXCell, BE0046, Lebanon, NH, RRID AB1107709) or
rat anti-mouse-IL-6R IgG2 monoclonal antibody (BioXCell, BEO047, RRID AB1107588) at a dose of 100
g in sterile saline via intravenous (i.v.) administration via an indwelling central venous catheter, or 400 ug
via i.p. injection at 24, 48, or 72 hours post-challenge. Antibody dosing was based on amounts previously
reported to neutralize IL-6 and IL-6R in mice (Liang et al., 2015; DL et al., 2014). Antibody dosing was
performed once for the i.v. group or continued at 72-hour intervals for the i.p. groups resulting in a total
of four doses over the 14-day study period as summarized in Figure[I] and Tables S2-S5 (Supplemental
Materials). Control mice (n=36) were challenge with maEBOV in parallel, but were treated with antibody

vehicle alone. Serum IL-6 measurements were performed in control rodents at necropsy as previously
described (Herst et al., [2020).

2.3 In-Vivo Clinical Observations and Scoring

Following maEBOV challenge, mice were examined daily and scored for alterations in clinical appearance
and health as previously described (Lane et al.,|2019). Briefly, mice were assigned a score of 1 = Healthy;
score 2 = Lethargic and/or ruffled fur (triggers a second observation); score 3 = Ruffled fur, lethargic and
hunched posture, orbital tightening (triggers a third observation); score 4 = Ruffled fur, lethargic, hunched
posture, orbital tightening, reluctance to move when stimulated, paralysis or greater than 20% weight loss
(requires immediate euthanasia) and no score = deceased (Table S1, Supplemental Materials).

2.4 Statistical Methods

Descriptive and comparative statistics including arithmetic means, standard errors of the mean (SEM),
Survival Kaplan-Meier plots and Log-rank (Mantel-Cox) testing, D’ Agostino & Pearson test for normality,
Area-Under-The-Curve and Z Statistics were calculated using R with data from GraphPad Prism files.
The clinical composite score data used to calculate the AUC measures were normally distributed. The
significance of comparisons (P values) of AUC data was calculated using the Z statistic. P values < .05
were considered statistically significant.

3 RESULTS

Following maEBOV challenge, mice were dosed i.v. at 24, 48 or 72 hours post-challenge with a single
dose of a-IL-6R mAb, a single i.p. dose of o-IL-6R mAb 24 hours after maEBOV challange, or an initial
1.p. dose of a-1L-6 or a-IL-6R mAb, followed by additional i.p. doses at 72 hour intervals for a total of
four doses. Mice were observed for up to 14 days as summarized in Figure 1| The average serum IL-6
concentration at necropsy for mice (n=5) challenged with maEBOV was 1092 + 505 pg/ml, a concentration
similar to that reported in a previous publication for mice challenged with 10 PFU of maEBOV (Chan et al.,
2019). In mice not challenged with maEBOV the average serum IL-6 was 31 £ 11 pg/ml. The survival and
average clinical score for mice receiving a single i.v. dose of a-IL-6R mAb is shown in Figure S1 (Panel
A and Panel B, Supplemental Materials) . Little to no effects on survival or clinical score were observed
following maEBOV challenge and a single i.v. dose of a-IL-6R mAb.

The survival patterns for i.v. mAb treated and untreated groups following maEBOV challenge were
statistically different and most untreated mice succumbed to maEBOV infection by day seven( Figure S1 ,
Supplementary Materials). Because neither survival score alone or average clinical score represented the
overall possible clinical benefits of mAb treatment, a secondary composite outcome measure was calculated
from the quotient of mouse survival and the average clinical score for each day, similar to that previously
reported (Kaempf et al., 2019). We then summed these scores across the last 12 days of observation to

Frontiers 3


https://doi.org/10.1101/2020.06.20.162826
http://creativecommons.org/licenses/by-nc-nd/4.0/

106
107
108
109
110

111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142

143
144
145
146
147

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.162826; this version posted September 2, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Rubsamen et al. Disrupting CRS

create an AUC Survival/Clinical Score (see Figure S1, Panel C, Supplemental Materials). The Z statistic
and significance level for this metric was calculated for each experimental condition. We found a minor
clinical benefit (P <0.01) when mice were given one 100 ug dose of o-IL-6R mAb via central venous
catheter at 72 hours after maEBOV challenge, relative to vehicle alone, using the experimental design
described in Table S2 (Supplementary Materials).

Since the maEBOV challenge was administered intraperitoneally and murine peritoneal macrophages
represent a significant depot of cells (Cassado et al., 2015) able to produce 1L-6 (Vanoni et al., 2017)
following toll-like receptor activation, we next compared the activities of o-IL-6 and a-IL-6R mAbs
administered intraperitoneally following maEBOV challenge (Figures [2, [3] M} and [5). We observed
significant differences in the AUC Survival/Clinical Score when o-IL-6R mAb was administered 48 hours
post maEBOV challenge and then repeated three times at 72 hour intervals. The most significant beneficial
effect on the AUC Survival/Clinical Score (Figure [5)) was seen when o-IL-6 mAb was administered
beginning at 24 hours post maEBOV challenge, and then repeated three times at 72 hour intervals.

4 DISCUSSION

While EVD is classified as a viral haemorrhagic fever, there are many similarities between EVD and
COVID-19, the disease caused by infection with SARS-CoV-2 that can present as an acute respiratory
distress syndrome (ARDS) (Zhou et al., 2020; Chen et al., 2020; [Huang et al., 2020a; Lescure et al., 2020).
Like EVD, elevated IL-6 was found to be significantly correlated with death in COVID-19 patients (Ruan
et al., 2020), suggesting that patients with clinically severe SARS-CoV-2 infection might also have a CRS
syndrome (Huang et al., 2020b)). Both EVD and COVID-19 (Younan et al., 2019; [Tan et al., [2020) are
associated with lymphopenia. Since the severity of SARS-CoV-1 infection has been shown to be associated
with increased serum concentrations of IL-6, clinical scientists have proposed non-corticosteroid based
immunosuppression by using IL-6 blockade as a means to treat hyper inflammation observed in certain
patients with SARS-CoV-2 infections (Mehta et al., 2020a; |Wong et al., 2004). The potential value of using
IL-6 blockade to treat COVID-19 patients was discussed early during the 2020 SARS-CoV-2 outbreak
(Mehta et al., 2020b; L1u et al., 2020). Indeed, a recent (5/24/2020) search of ClinicalTrials.gov revealed at
least 62 clinical trials examining the efficacy and safety of a-IL-6R mAbs and o-1L-6 mAbs for management
of patients with COVID-19; 45 studies for tocilizumab (o-IL-6R mAbs), 14 for sarilumab (o-IL-6R mAbs)
and 3 for siltuximab (o-IL-6 mAbs). Most of the studies involve the use of a-IL-6R mAbs and have shown
promising results (summarized in Tables[I]and [2)), but there is clear need for improvement.

Using a mouse model of Ebola infection, we found clinical benefit when mice were administered multiple
i.p. doses of a-IL-6R mAb 48 hours after maEBOV challenge. At both earlier (24h) and later (72h) time
points of initiation of administration of o-IL-6R mAb, we observed little to no effects on the clinical benefit
score. Similarly, we found clinical benefit when o-IL-6 mAb was administered beginning at 24 hours post
maEBOV challenge, and then repeated three times at 72 hour intervals, but no benefit was observed if
o-IL-6 mADb was initiated at 48 or 72 hours post challenge. These data suggest that o-1L-6 mAb therapy
may also have clinical benefits similar to o-IL-6R mAb particularly when given early during the course of
maEBOV infection.

Previous experiments in the murine EBOV system (Herst et al., 2020) suggest that some degree of
activation of innate immunity and IL 6 release benefits survival post maEBOV challenge. It may be the
case that the observed clinical benefits of o-IL-6 mAbs are associated with incomplete blockade of the
I1-6 response particularly later than 24 post challenge. Overall our data suggest that human clinical trials
evaluating the benefits of o-IL-6 mAbs versus o-IL-6R mAbs versus combined early o-IL-6 mAb and
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later o-IL-6R mAb is warranted to evaluate the potential of IL-6 pathway blockade in the during Ebola or
SARS-CoV-2 infection.

Although antibody blood levels were not obtained during the mouse studies described here, we present a
pharmacokinetic model based on literature values (Sanofi, 2017; EUSA, 2015; Medesan et al., 1998) shown
in Table S5 in Supplemental Materials. Simulated PK curves for each of the three experiments described is
shown in Figure [6] Dosing o-IL-6 mAb at 24 hours after challenge produced a clinical benefit, whereas
dosing o-IL-6R beginning at the same time point did not. The shorter terminal half-life of o-IL-6 mAb (77 o
= 57h) versus o-IL-6R mAb (17 /5 = 223h), possibly due to isotype specific differnces in glycosylation
(Cobb, [2019) may help explain why giving a-IL-6 mAbD early after infection provided the most observed
clinical benefit. As can be seen from the simulated PK profile in Figure[6] (c), repeated dosing every 72
hours, beginning 24 hours after challenge, is predicted to maintain blood levels peaking at about 200
pg/ml. This is in contrast to blood levels predicted after similar dosing of o-IL-6R where the blood levels
continue to increase over the study period. These differences seen in the simulated PK profiles may have
allowed a-1L-6 mAb to partially block IL-6, allowing innate immunity to develop, while still providing
sufficient blockade to reduce the deleterious clinical effects of IL-6 as the study progressed. In addition, it
may be that the stoichiometry of a-IL-6 blockade versus o-IL-6R may favor achieving partial blockade
early during the evolution of CRS given that the amount of IL-6 present may exceed the number of IL-6
receptors. It is also possible that IL-6 may act on other sites not blocked by o-IL-6R mAb, and that this
may yield a potential advantage of using o-IL-6 mADb to treat CRS brought about by a viral infection.

It may be possible to develop a controlled release formulation of a-IL-6 mAb to obtain a clinically
beneficial effect from the administration of o-1L-6 mAD, o-IL-6R mADb, or a combination of both, after a
single injection early during the course of SARS-CoV-2 infection. For example, Figure [6] bottom-right
panel, shows various predicted controlled release PK profiles of a-IL-6 mAb that could be achieved by
using delivery systems producing different first order rates of delivery from an injection depot of 20mg/Kg.
Correlation of these release profiles with the AUC Survival/Clinical score described here in pre-clinical
models could lead to the development of a single dose treatment mitigating the effects of CRS on the host.

5 CONCLUDING REMARKS

Although the previous reports of use of IL-6 blockers to treat CRS have shown mixed results, recent
clinical data for a-IL-6 and o-IL-6R mAbs have shown early promise in human trials for treatment of
severe influenza and corona virus infections (QGritti et al., [2020; Xu et al., [2020). Pre-clinical studies and
various ongoing clinical trials evaluating the potential benefit of IL-6 blockers, for example, early o-I1L-6
mAD and later o-IL-6R mADb, for the treatment of patients with CRS may provide clinical correlation with
the results presented here.
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Figure 1. Dosing Schedule for o-IL-6 and o-IL-6R mAbs used in this study.
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ventilation
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Significantly improved
survival associated with use
of Tocilizumab(p<0.001)
Guaraldi et al.|(2020)
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Sp02<93% in room air
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ARM: Severe Disease versus
Non-Severe Disease (n=239)

Tocilizumab (o-IL-6R)
i.v. 8mg/Kg not

Tocilizumab-treated patients
with severe disease had
survival similar to that of

ICU admission with

Care plus Tocilizumab
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. OUTCOME: Clinical exceeding 800mg Tocilizumab-treated patients

or mechanical . . . .

ventilation parameters and historical total with nonsevere disease.
survival Price et al.| (2020)

RT-PCR confirmed PROSPECTIVE TWO Patients receiving

Sars Cov-2 pneumonia, ARMS: Standard of Care . Tocilizumab had

. . Tocil b (a-IL-6R ..
Sp02<93% in room air, | (n=420) and Standard of ocilizumab (« ) significantly decreased

hospital-related mortality

Clinical Diagnosis of

SINGLE ARM: Pre- and
Post-Tocilizumab outcome

Tocilizumab (o-IL-6R)
i.v. 80-600mg once or

or without mechanical (n=210) (p<0.004)
ventilation OUTCOME: Survival Biran et al.|(2020)
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Reduced C-Reative protein
levels relative to

Sars Cov-2 pneumonia,
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Tocilizumab (n=100)
OUTCOME: Clinical
parameters: BCRSS
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doses 12h apart.
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dose.

COVID-19 (n=15) multi 80-160me doses pretreatment levels
OUTCOME: Clinical & Luo et al.[(2020)
parameter: CRP level
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Tocilizumab.

Toniati et al.|(2020)

RT-PCR snd X-ray
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STUDY: Standard of
Care (n=25) and Standard
of Care plus Tocilizumab

Tocilizumab (o-IL-6R)
1.v. once or twice

Significantly Improved
survival associated with
adminstration of
Tocilizumab (p<0.002).
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Sp02<93% in room air
requiring mechanical
ventilation

ARMS: Standard of Care
(n=76) and Standard of
Care plus Tocilizumab
(n=78)

OUTCOME: Survival

Sarilumab (a-IL-6R)
i.v. 8mg/Kg

not exceeding
800mg total

e (n=20) Klopfenstein et al.|(2020)
OUTCOME: Survival
Improved survival
RT-PCR confirmed PROSPECTIVE TWO Tocilizumab or associated with

administration of
Tocilizumab deduced

from 45% reduction in
hazard of death [hazard
ratio 0.55 (95% CI 0.33,
0.90)]. Somers et al.|(2020)

Table 1. Summary of recent literature on use of o IL-6R mADb for treatment of SARS-CoV-2 infection. (1

of 2)
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Patient Population

Design, Number of Patients,
and Primary Qutcomes

Treatment/Dose

Conclusions and Reference

RT-PCR confirmed
Sars Cov-2 pneumonia,
Sp02<92% in room air

PROSPECTIVE SINGLE ARM:
Pre- and Post-Tocilizumab (n=63)
OUTCOME: Clinical parameters
(CRP levels and ratio PaO2/FiO2)

Tocilizumab (o-IL-6R)
i.v. 8mg/Kg not
exceeding 800mg total
once or twice

Improvement in clinical
parameters.
Sciascia et al.|(2020)

RT-PCR and X-Ray
confirmed Sars Cov-2
pneumonia, SpO2<93%

PROSPECTIVE TWO ARMS:
Standard of Care (n=28) and
Standard of Care plus
Tocilizumab (n=28)
OUTCOME: Survival

Tocilizumab (o-IL-6R)
i.v. 400mg total

No significant
Improvement in

clinical parameters, but
faster recovery in subset
with less severe disease.
Della-Torre et al.| (2020)

RT-PCR confirmed
Sars Cov-2 pneumonia,
Sp02<93% in room air
or mechanical

PROSPECTIVE SINGLE ARM:
Pre- and Post-Tocilizumab (n=15)
OUTCOME: Clinical parameters

Sarilumab (o-IL-6R)
s.c. 400mg one or
two doses

Rapid improvement in
clinical and biochemical
outcomes responders
(%66), but (33%) were
non-responders.

OUTCOME: Survival

given once or twice

ventilation Montesarchio et al. (2020)
Improved survival in
patients with severe disease

PROSPECTIVE SINGLE ARM Tocilizumab (o-IL-6R) | (subgroup A) as

RT-PCR confirmed with two subgroups (A (n=149): i.v. 400mg or compared to the subgroup B

Sars Cov-2 pneumonia. | requiring Fi02<45% and Sarilumab (a-IL-6R) suggests that anti-IL-6 R

Sp02<92% B (n=106): requiring Fi02>45%) | i.v. 400mg intervention should occur

prior to the onset of critical
illness for maximum benefit.
Sinha et al.| (2020)

Table 2. Summary of recent literature on use of o IL-6R mAb for treatment of SARS-CoV-2 infection. (2

of 2)
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Figure 2. Kaplan-Meier Survival Plots and Average clinical scores for a single or multiple i.p. doses of
a-IL-6 or o-IL-6R administered 24 hours after maEBOV challenge and followed by repeat dosing every 72
hours for a total of four doses. The survival curves were significantly different by Log-rank (Mantel-Cox)
testing (P < 0.05). SEM of the average clinicals scores were < 10% of the mean.

Frontiers 13


https://doi.org/10.1101/2020.06.20.162826
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.162826; this version posted September 2, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Rubsamen et al. Disrupting CRS

a-IL-6 v a-IL-6R 48h i.p. route Survival

100% A I Ag——
— 90%1 L—
_g 80% 1 1
C 70% |
S 60%
(£ 50% 1 |
C 40% —
8 30%: |
| -
D 20%1
O 10%- l _____________ N

%\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Post-Challenge Day
Legend: =+ a-IL-6 - 48h Q72 o-IL-6R - 48h Q72 =+ Vehicle
a-IL-6 v. a-IL-6R i.p. route 48h
Clinical Observations

o
5 o
O
U)(D
RS
S 2 21
O ]
o2
EO
2 19
<

0- - - - T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Post-Challenge Day

Legend [ o-IL-6-48h Q72 [] o-IL-6R-48h Q72 | | Vehicle

Figure 3. Kaplan-Meier Survival Plots and Average clinical scores for multiple i.p. doses of o-IL-6 or
o-IL-6R administered 48 hours after maEBOV challenge and followed by repeat dosing every 72 hours for
a total of four doses. The survival curves were significantly different by Log-rank (Mantel-Cox) testing
(P;0.05). SEM of the average clinical scores were < 10% of the mean.
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Figure 4. Kaplan-Meier Survival Plots and Average clinical scores for multiple i.p. doses of o-IL-6 or
a-IL-6R administered 72 hours after maEBOV challenge and followed by repeat dosing every 72 hours for
a total of four doses. The survival curves were significantly different by Log-rank (Mantel-Cox) testing
(P;0.05). SEM of the average clinical scores were < 10% of the mean.
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Figure 5. A clinical benefit metric was calculated as an area under curve for survival/clinical scores for
120 mice receiving a single or multiple 1.p. doses of o-IL-6 or o-IL-6R mAb following maEBOV challenge
on day 0. The given p values are determined from the Z statistic calculated for each experimental condition.
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Figure 6. Simulated PK profiles for i.v. and i.p. routes of administration based on literature PK parameters
shown in Table S5 in Supplemental Materials were determined. The top-left panel models the i.v. delivery
experiment. The top-right and bottom-left panels model i.p. delivery experiments one and two. For each
of these simulations, mice were dosed a total of four times at 72 hour intervals, beginning 24 hours after
challenge. The bottom-right panel models release profiles for simulated controlled release scenarios with
different absorption rates as indicated by the listed K, parameters after a single depot injection of 20mg/Kg.
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