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Abstract16

Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at17

the heart of improved cancer immunotherapy, but predictive models capable of high-throughput18

assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystal-19

lography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce20

a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune21

repertoire level. RACER applies supervised machine learning to efficiently and accurately re-22

solve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable23

a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system.24

When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER ac-25

curately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus26

demonstrating its utility in helping address the large computational challenge of reliably identify-27

ing the properties of tumor antigen-specific T-cells at the level of an individual patient’s immune28

repertoire.29

Significance Statement30

Effective TCR-epitope prediction for optimized cancer immunotherapy requires an accurate assess-31

ment of billions of TCR-antigen interacting pairs. We introduce RACER, a supervised, physics-32

based machine learning algorithm trained on deposited TCR-p-MHCs sequences and structures.33

RACER is capable of estimating TCR-peptide binding affinity at a rate of 0.02 seconds per pair, thus34

enabling large-scale evaluations of TCR epitope recognition. When restricted to the same MHC al-35

lele, RACER accurately estimates TCR binding specificities by determining their associated strong36

binders. We apply RACER to simulate thymic negative selection, demonstrating that this technique37

can accurately quantify the recognition rate of tumor-associated neoantigens and foreign peptides.38

Taken together, our approach demonstrates RACER’s potential as a high-throughput tool for inves-39

tigating TCR-peptide interactions between the TCR repertoire cancer peptidome.40
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1 Introduction41

The advent of new strategies that unleash the host immune system to battle malignant cells represents42

one of the largest paradigm shifts in treating cancer and has ushered in a new frontier of cancer43

immunotherapy [1]. Various treatments have emerged, including checkpoint blockade therapy [2,44

3, 4], tumor antigen vaccine development [5, 6], and the infusion of a donor-derived admixtures of45

immune cells [7]. A majority of successful treatments to-date rely on the anti-tumor potential of the46

CD8+ T-cell repertoire, a collection of immune cells capable of differentiating between malignant47

cells and normal tissue by recognizing tumor-associated neoantigens (TANs) detectable on the cell48

surface [8]. Therefore, accurately assessing a T-cell repertoire’s ability to identify cancer cells by49

recognizing their tumor antigens lies at the heart of optimizing cancer immunotherapy.50

A complete understanding of adaptive immune recognition and the tumor-immune interaction51

has remained a formidable task, owing in part to the daunting complexity of the system. For example,52

antigens and self-peptides contained in an epitope (i.e. recognizable peptide sequences) space of53

size ∼ 209 are presented to ∼ 107 unique T-cell clones in each individual [9], a small fraction of54

the upper limit of TCR diversity (∼ 1020) [10, 11]. Moreover, their behavior is tempered via an55

elaborate thymic negative selection process in order to avoid auto-recognition [12, 13]. Here, T-cell56

clones, each with uniquely generated T-cell receptors (TCRs), interface with numerous (∼ 104) self-57

peptides presented on the major histocompatibility complex (p-MHC) of thymic medullary epithelial58

cells via TCR CDR3α and β chains, and survive only if they do not bind too strongly [14, 15, 16].59

This process, together with systems-level peripheral tolerance [17, 18], imparts T-cells with durable60

tolerance to major self-peptides and influences many of the recognition properties of the resultant61

repertoire. The complexity of the adaptive immune system has attracted numerous mathematical62

modeling efforts quantifying the mechanisms underlying T-cell immune response. Collectively, the63

field has made significant progress in understanding at a population level the effects of tolerance on64

T-cell recognition and self vs. non-self discrimination [14, 19], including the effectiveness of the65

repertoire at discerning tumor from self-antigens [20], the repertoire’s ability to impart immunity66

against current and future threats [21, 22], and the extent of selection pressure that the repertoire67

exerts on an evolving cancer population [23, 24].68

Any approach to furthering the understanding of these system-scale properties must start with69

an ability to evaluate the interaction between specific TCR-p-MHC pairs. Despite this, a compre-70

hensive, biophysical model capable of learning the energy contributions of each contact pair in a71

TCR-p-MHC system and applying them to new predictions remains elusive. To-date, experimental72

research has integrated solved crystal structures [25, 26] with peptide sequencing [27, 28, 29] to73

probe the physiochemical hallmarks of epitope-specific TCRs. Publicly available crystal structures74

have enabled researchers to identify detailed structural features that influence the binding specificity75
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of TCR-p-MHC pairs, and machine learning algorithms have made progress on the complementary76

task of accurately predicting peptide-MHC binding [30, 31, 32, 33, 34, 35, 36] as well as TCR-77

peptide binding [37, 38]. However, the limited number of available structures relative to the diver-78

sity in MHC alleles and TCR-peptide combinations complicates extrapolation to unsolved systems.79

Alternate template-based structural modeling [39] and docking [40] approaches are limited by cal-80

culation speeds (at best one structure per minute), thus it is unlikely in the foreseeable future that81

such strategies can be used to investigate the number of TCR-peptide interactions necessary to study82

the problem at the immune-repertoire level, as this task easily requires the assessment of more than83

109 pairs simultaneously [16]. Prior attempts have approximated binding affinity by implementing84

statistical scores calculated from docking algorithms [40]. These scores are trained using examples85

of generic protein binding and thus lose the unique aspects of the TCR-peptide interactions.86

To deal with this challenge, we develop a systematic TCR-p-MHC prediction strategy for rapid87

and accurate assessment of TCR specificity. Our strategy, which we refer to as the Rapid Coarse-88

grained Epitope TCR (RACER) model, is capable of differentiating between self and foreign anti-89

gens and can evaluate 109 TCR-peptide pairs in the setting of TCR-peptide combinations restricted90

to a single MHC allele. This method we develop employs supervised machine learning on known91

TCR-peptide structures and experimental data to derive a coarse-grained, chemically-accurate en-92

ergy model governing TCR-p-MHC interactions, a strategy adapted from earlier efforts to predict93

protein folding [41, 42, 43, 44, 45, 46]. The MHC loci, while polymorphic, bind comparable num-94

bers of peptides across various alleles [47]. Our calculations are restricted to a fixed MHC allele,95

but could be generalized with the use of additional training data. Confining our predictions to TCRs96

with a given MHC restriction enables the transferability of the method to TCRs that are not included97

in the training set. The approach provides a tractable means to extract pertinent TCR-peptide inter-98

actions so that affinity may be predicted based on similarly restricted TCR-peptide primary sequence99

data. RACER accurately distinguishes binding peptides across various TCRs and validation tests.100

Lastly, as a preliminary test of the usefulness of our approach, we simulate a thymic selection and101

show agreement with previously established estimates of T-cell binding energy distributions, tumor102

neoantigen and foreign peptide recognition rates for a given class of MHC-restricted TCRs [48, 49].103

Taken together, our results demonstrate RACER’s utility in learning the interactions relevant for104

high-throughput TCR-epitope binding predictions.105
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2 Results106

2.1 RACER can distinguish peptides that bind strongly to a given TCR from107

those that bind weakly108

The RACER’s optimization protocol (Fig. 1A) utilizes high-throughput deep sequencing data on109

TCR-peptide interactions across a large peptide library [27], together with known physical contacts110

between TCRs and peptides obtained from deposited crystal structures [50]. The training data comes111

from cases where the peptide is displayed by the same allele of a mouse MHC class II molecule.112

Adapting an approach previously implemented for studying folding of proteins [51, 45], the RACER113

optimization strategy trains a pairwise energy model which maximizes TCR-peptide binding speci-114

ficity. The energy model was optimized by maximizing the z-score defined to separate the affinities115

of experimentally determined strong-binding peptides, called “strong binders” hereafter, from com-116

putationally generated, randomized decoys1. The optimized residue type-dependent energy model117

can then be used to calculate the binding energies of an ensemble of new TCR-peptide systems. As118

will be shown below, we performed three different levels of test (Fig. 1B), and find the predicted119

binding energies can differentiate strongly binding peptides from weak ones, provided they are dis-120

played by the same MHC allele as that of the training set. Crucially, accurate predictions can be121

made even without knowledge of the actual crystal structure, although the predictions are improved122

when this additional information is available.123

Fig. 2 summarizes RACER’s predictive performance for a specific TCR (Case I in Fig. 1B).124

For this fixed TCR, pre-identified strong binding peptides and decoy peptides with randomized se-125

quences were used to train the energy model (See Methods section for details). Another set of pep-126

tides independently verified experimentally as weak binders constitutes the testing set. The resulting127

energy model was then applied to calculate binding energies for the strong binders in the training128

set as well as the peptides in the testing set. This approach was repeated on three independent TCRs129

that are associated with the IEk MHC-II allele: 2B4, 5CC7 and 226. Although the experimentally130

identified weak binders were omitted from the training set, RACER effectively resolves binding en-131

ergy differences between experimentally determined strong and weak binders, with z-scores larger132

than 3.5 in all cases (Fig. 2A), highlighting the predictive power of this approach.133

Despite their relative sparsity in antigen space, strong binders play a central role in T-cell epi-134

tope recognition. It is obviously more difficult to predict strong binders than weak binders. To135

test RACER’s ability to identify strong binders, we performed a leave-one-out cross-validation136

(LOOCV) test, using data from TCR 2B4 as an example. For each test iteration, one known strong137

1The z-score is defined as the difference between the average binding energies of strong binders versus decoys,
divided by the standard deviation of the decoy energies. Throughout this manuscript, we report the absolute value of the
calculated z-score, except for Fig. 5C.
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binder was withheld from the training set of 44 strong binders. Our optimization protocol was ap-138

plied to train the energy model by using the remaining 43 peptides and then predicting the binding139

energy of the withheld peptide. This prediction was then compared to predicted binding energies of140

known weak binders, and the procedure was repeated for each of the 44 peptides. Our model is able141

to accurately distinguish the withheld strong binder in 43 cases (Fig. 2B). This is in stark contrast142

to a cluster-based attempt at strong binder identification based on peptide sequences alone, which at143

best correctly identifies 19 out of 44 strong binders (See SI for details). The same LOOCV test was144

performed for TCR 5cc7 and 226, which correctly identified 120 out of 126 strong binders of 5cc7,145

and 267 out of 274 strong binders of 226.146

In order to further characterize RACER’s predictive power, an independent set ofKd values mea-147

sured by surface plasmon resonance (SPR) [27] were compared with predicted affinities. The SPR148

experiments were performed over 9 independent peptides for each of the aforementioned three TCRs.149

The free energies, kBT log(Kd), were compared with calculated binding energies from RACER as150

a quantitative test of binding affinity prediction accuracy. Lower binding energies indicate stronger151

binding affinity so that a positive correlation between the kBT log(Kd) values and calculated binding152

energies implies a successful prediction. As shown in Fig. 2C, RACER was able to correctly predict153

the order of binding affinities of these 9 peptides for all TCRs, with an average Pearson correlation154

coefficient of 0.74, and an average Spearman’s rank correlation coefficient of 0.65.155

2.2 RACER’s residue type-dependent interactions are optimized specifically156

for TCR-peptide recognition157

The data utilized by RACER includes strong binders and an input crystal structure, as well as TCR158

and peptide primary sequences, which determine an interaction pattern that was then used to con-159

struct a system-specific force field. To illustrate this, we focus on the 2B4 TCR as an example (Fig.160

3). The crystal structure of TCR 2B4 (Fig. 3A) reveals that there can be many threonine (T) and161

asparagine (N) residues on the CDR loops region of the TCR. In the strong binder set, these residues162

tend to interact with specific peptide residues such as alanine (A), as seen for the specific peptide163

given in the figure. This notion can be formalized by showing the matrix of observed probabilities164

of close proximity of specific residue pairs. Thus, we see that certain pairs such as A-T and A-N165

are significantly enriched in the set of strong binders, while much less so in the decoy set (Fig. 3B).166

This then will mean that the optimized energy model shows the strongest attractions between the167

A-T, A-N residue pairs (Fig. 3C). This relative enrichment contrasts with the TCR tryptophan (W)168

residue which frequently interacts with alanine (A) in both strong binders and decoy peptides. As a169

result, the optimized energy model does not favor the A-W interaction.170

This eneryg model is rather distinct from ones typically used for studying protein folding. In171

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.04.06.028415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028415
http://creativecommons.org/licenses/by-nc-nd/4.0/


order to compare the RACER-derived interaction matrix to well-established force fields described in172

the protein folding literature, we substitute our interaction matrix with the standard AWSEM force173

field [46] (optimized on deposited folded proteins) and the Miyazawa-Jernigan (MJ) force field [52]174

(constructed using the probability distribution of contacting residues from deposited proteins) and175

calculate the corresponding binding energy predictions for the TCR 2B4 peptides. We find that176

neither force field fully resolves these groups, with z-scores of 0.69 and 1.28, respectively (Fig.177

S1). Similar trends were observed utilizing the peptides corresponding to the 5CC7 and 226 TCRs,178

effectively demonstrating the necessity of RACER’s de novo identification of pertinent structural179

information for studying the TCR-peptide system.180

2.3 RACER’s interactions generalize across TCRs associated with a given181

MHC allele182

Given RACER’s accuracy in resolving test peptides presented to the specific TCR used for training,183

we next explored the feasibility of extending predictions to additional TCR-peptide pairs albeit with184

the same MHC restriction. Toward this end, we assessed whether the physical contacts implicitly185

encoded in RACER’s optimized force field were conserved within IEk-restricted TCR-peptide pairs.186

The three IEk-restricted TCRs considered in our analysis all have been tested with peptides bound to187

the IEk mouse MHC molecule. The available crystal structures have a significant degree of structural188

similarity at the TCR CDR3-peptide binding interface (see Fig. 5 of [27]). We further quantified189

the TCR CDR3-peptide contacts for each pair, constructing a contact map based on their crystal190

structures (see Methods section for full details). Our results shown in Fig. 4 suggest that despite191

differences in TCR and peptide sequences, this set of TCRs share common structural features which192

should aid in imparting transferability to the trained interaction matrix. We find however that these193

features are not preserved across different MHC class II genes (Fig. S3).194

RACER’s ability to accurately identify strong binders based on training with a fixed TCR,195

together with the fact that a majority of the contact structure is preserved within a given MHC-196

restricted set of TCRs, suggested that we assess RACER’s ability to accurately predict binding pep-197

tides for other similarly restricted TCRs. Toward this end, we apply the energy model optimized198

using binding data for one of the three TCRs to predict the TCR-peptide binding energies of the199

remaining two holdout TCRs (Case II in Fig. 1B). To do this, we initially use a known structure for200

each of the holdouts, and the interaction matrix learned on the training TCR to predict the binding201

energies of the experimentally determined strong and weak binders for each of those holdout TCRs.202

Although the z-scores measured for these alternate TCRs are lower than those found previously in203

Sec 2.1, RACER still successfully distinguishes a majority of strong binders from weak binders,204

with an average z-score of 1.8 (Fig. 5A). This demonstrates that, despite CDR3 primary sequence205
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diversity, distinct TCR-p-MHC systems still share similar structural-sequence patterns, as long as206

they are associated with the same MHC allele.207

In order to test whether the incorporation of additional TCR structural information in the op-208

timization step could improve RACER’s predictive accuracy, we next included crystal structures209

for the remaining TCRs (5cc7 and 226) together with a single strong binder for each case into the210

training set comprised of 2B4 peptide pairs (See Methods section for details). This procedure was211

repeated three times by substituting for the training set TCR and peptide pairs. We find that the212

new energy model demonstrates significant improvement in z-scores. These results suggest that fu-213

ture incorporation of additional crystal structures of target TCRs may lead to improved resolution of214

strong and weak binders via refinement of the optimized energy model.215

To provide an additional test and to quantify our discrimination capability, we used an indepen-216

dent dataset from [53]. Four independent TCRs (PDB ID: 3QIB, 3QIU, 4P2Q, 4P2R) from their217

curated benchmark dataset are associated with the IEk allele; note that three of these overlap with218

the TCRs in our current study. To test the performance of RACER for different TCR-peptide pairs,219

we used the energy model trained based on 2B4 (3QIB) to predict the binding energies of both strong220

and weak binders for the three remaining TCRs. This calculation again uses the structure found for221

the one strong binding peptide for each of the 3 TCRs. Our calculation re-emphasizes that RACER222

can successfully distinguish strong binders even when it is trained based on a different TCR (Fig.223

5C), with an AUC of 0.89. Of note, when we tested data from the same study involving TCR-p-224

MHCs with different MHC alleles, RACER cannot pick out strong binders, presumably due to the225

markedly different TCR-peptide interacting patterns (Fig. S3).226

Next we address the question of the extent to which it is necessary to have at hand at least one227

TCR-p-MHC crystal structure in order to use RACER’s interaction matrix to identify other good228

binders (Case III in Fig. 1B). Of course to evaluate the binding energy we must have a structure; the229

alternative to having a measured structure for a new sequence is to thread that new CDR3 sequence230

into the crystal structure used for the training data. For MHC II, this introduces an uncertainty in231

registration. For the cases at hand, this issue arises only for the α chain as the β chains for all232

three TCRs are all of length 12 and there is no residual ambiguity. We tested the simplest possible233

assumption, namely that we start at the same place where all three chains have the first two residues234

AA and leave no gaps (See Methods for full details). Fig. S4 shows that this procedure again235

leads to successful discrimination between good and poor binders, with an average z-score of 2.36.236

Thus, we conclude that the structures are sufficiently similar that not only can we use the interaction237

matrix derived from a single TCR training set for other TCRs but we can also use the same structure.238

This then allows us to make estimates at the repertoire scale without the impossible task of creating239

extremely large numbers of TCR-p-MHC structures.240
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2.4 RACER-optimized T-cell repertoire binding assessment accurately rep-241

resents thymic selection242

Using RACER, we can determine general properties of TCR-p-MHC binding distributions and com-243

pare to empirical observations. These results highlight the advantage of a method capable of high-244

throughput analysis. The basic idea follows from the fact shown above that we can make reasonable245

assessments of binding strength by using only one structure and its associated interaction matrix.246

Our focus here is the process of negative selection and its effect on the surviving repertoire. Toward247

this end, we utilized the crystal structure of the 2B4 TCR-peptide contact region to create 105 simu-248

lated TCRs and 104 self-peptides by randomizing uniformly the CDR3 and peptide sequences over249

amino acid space. To avoid registration issues, we always choose simulated TCRs to have exactly250

the same number of α and β chain residues as does the 2B4 TCR. This was repeated using 104 self-251

peptides and 2000 TCRs, this time weighting the CDR3-peptide interactions by each of the the three252

contact maps in Fig. 4. The same approach was applied to a model that assumes a strictly diagonal253

contact map motivated by previous analytical work [20], with randomization of the TCR sequence254

taken over all possible positions in the contact map.255

A given TCR survives only if it binds to all self-peptides below a fixed activation threshold. The256

maximum binding energy over the set of self-peptides for each TCR defines a selection curve (Fig.257

6A), which describes the percentage of negatively-selected T-cells as a function of the cutoff energy258

threshold. Selection curves for the three TCR sets using the contact maps in Fig. 4 utilized the259

RACER energy matrix and compare reasonably to the diagonal contact map motivated by previous260

analytical work (Fig. 6A red curve). While the variance in each case is similar, mean-shifts in each261

selection curve correlate directly with the number of contacts in the CDR3 α and β chains (Fig.262

4). These findings further reinforce the relevance of TCR-p-MHC-specific structural interactions263

encoded in the RACER-derived energy potential for binding prediction and T-cell repertoire gen-264

eration. Although empirical estimates of the percentage of surviving TCRs during thymic negative265

selection vary between 20% and 50% [54, 55, 56], we calculate relevant recognition behavior for all266

selection rates, restricting our analysis to 50%, when applicable.267

Most self-peptides present in thymic selection are expected to participate in the deletion of self-268

reactive T-cells. Previous work has suggested that this desideratum can be used to determine if269

a high-throughput model is behaving in a statistically sensible manner; specifically, a reasonable270

model of thymic selection would feature a majority of self-peptides contributing to the selection of271

immature T-cells. A rank order of these self-peptides based on their ability to recognize unique T-272

cells, or potency, characterizes the extent to which each self-peptide is utilized in thymic selection.273

The RACER-derived rank order using the 2B4-optimized data generates reasonable behavior with274

respect to this criterion (Fig. S5A).275
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One key issue influencing adaptive immune recognition of tumor-associated neoantigens (TANs)276

is the recognition efficiency of peptides closely related to self (e.g. point mutants) relative to for-277

eign peptide recognition. The fact that the immune system can in fact be enlisted to attack tumors278

suggests that negative selection leaves intact the ability to bind strongly to tumor associated anti-279

gens. Comparison of a post-selection TCR’s individual recognition potential shows relatively minor280

differences between foreign and point-mutant self-peptides (Fig. 6B), with variances of these es-281

timates overlapping with one another and in line with previous theoretical estimates (Fig. S5B).282

While individual recognition probability measure a single TCR’s ability to recognize antigen, reper-283

toire recognition probability estimates a particular MHC-restricted post-selection repertoire’s ability284

to recognize antigen. An analogous comparison of the post-selection TCR repertoire recognition285

probability of foreign and mutant peptides demonstrates that this minimal difference is maintained286

at the aggregate immune system level (Fig. 6C). This then explains the observed ability of adaptive287

immune targeting of tumors in a manner that depends on the mutational load of the malignant cells.288

Lastly, our prior theoretical model posited thymic selection as an optimization problem with a289

survival cutoff of 1/e resulting in the production of maximally efficient thymic selection [9, 20].290

Calculating the product of survival and recognition probabilities yields a broad curve with large291

values located at intermediate survival cutoffs, including the previously predicted optimal survival292

cutoff (Fig. S5C). Taken together, these results agree with previous studies and reinforce the utility293

of RACER for performing repertoire-level analyses.294
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3 Discussion295

We have introduced RACER, an optimized molecular energy model that can be utilized to quickly296

assess TCR-peptide interactions and distinguish strong-binding pairs. RACER requires only∼0.02s297

for evaluating one TCR-peptide pair, thousands of times faster than available alternative approaches,298

while preserving reasonable prediction accuracy (Figs. 2, 5). Consequently, our method can be used299

to study large collections of MHC-restricted TCR-peptide pairs, enabling in silico studies of thymic300

selection and T-cell antigen recognition.301

3.1 Specificity v.s. Generality of the optimized energy model302

The unique topology of the TCR-p-MHC structure encodes a system-specific residue-type dependent303

interaction matrix for TCR-peptide pairs. Significantly, the sequences and structures of TCR-peptide304

systems were found experimentally to be relatively conserved among various peptides [27, 28, 26].305

The preserved sequence and structural features could dramatically limit the physiochemical space306

explorable by TCR-peptide residue pairs. Moreover, since RACER is optimized on a TCR-peptide307

system, the arrangement of the contacts between TCR and its cognate peptide (Fig. 4) gives rise to a308

post-optimization energy model (Fig. 3) rather distinct from the traditional hydrophobic-hydrophilic309

interaction patterns [58] used for protein folding, such as the MJ potential [52]. This hypothesis310

is strongly supported by the observation that RACER is capable of identifying strong binders of311

corresponding TCRs (Fig. 2) while previous methods fall short (Fig. S1).312

The departure of RACER from a typical protein-folding force field also results from the opti-313

mization performed for TCR-peptide systems. Because we are interested in resolving strong binders314

from weak ones with a finite dataset, our optimization distinguishes between these two sets of binders315

by enlarging their energetic gap in the training process. By maximizing the z-score between strong316

and weak binders, RACER learns an effective binding energy which likely amplifies small differ-317

ence in thermo-stability among candidate binders. Such amplification, however, affects neither the318

identification of the strong binders of a specific TCR nor the subsequent ensemble study of peptide319

recognition, since only the order of binding affinities among individual TCR-p-MHC pairs matters320

for our results.321

3.2 Structural information from available crystal structures improves the pre-322

dictive power of RACER323

Our pairwise RACER model offers a novel avenue for developing models that incorporate infor-324

mation contained in available protein structures. Prior investigations have applied artificial neural325

networks for predicting strong binders of TCR [37] and MHC [30] molecules based only on the326
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primary sequences. Although deep learning can implicitly account for higher-order interactions,327

such approaches may still be limited by the available sequences that can be identified from exper-328

iments. RACER alleviates the high demands for primary sequences by including existing crystal329

structures in a pairwise potential. The resulting prediction accuracy demonstrates that such a struc-330

turally educated pairwise model is able to resolve the specificity of TCR-p-MHC interactions in a331

biological environment, justifying the linear constitutive assumption which sums up the binding en-332

ergies of individual TCR-peptide residue pairs for quantifying the interactions between TCRs and333

peptides, utilized here and in prior theoretical analyses [20, 14]. Moreover, the predictive accuracy334

of RACER can be further improved by including additional strong binders from crystal structures335

that are deposited in the database (Fig. 5B), thus providing a mechanism for additional refinement336

and improvements in predictive accuracy as more sequence and structural data become available.337

RACER maintained predictive accuracy when substituting either or both of the TCR and peptide338

used in training on a given MHC II allele. In cases with available crystal structures, contact map339

analysis revealed a largely conserved interaction pattern reproduced across a variety of TCR-peptide340

pairs associated with the IEk MHC II allele (Fig. 4), providing an explanation for the transferability341

of RACER-derived interactions when trained on a particular crystal structure. Moreover, these re-342

sults contributed to variety in the selection behavior of individual TCRs in that TCR-peptide systems343

having more interactions in their corresponding contact map were correlated with systematic shifts344

in their mean binding energies, which subsequently correspond to differences in their post-thymic345

selection inclusion probability (Fig. 6). Previous investigations have characterized the probability346

distribution for generating particular TCR sequences in VDJ recombination, and have even suggested347

that the a posteriori observed post-selection TCRs had greater generation probabilities [15, 59], with348

so-called “public” TCR sequences being observed in multiple individuals. Incorporation of contact349

maps into our generative model contributes to variations in T-cell survival probability, and may offer350

a physical interpretation of why public repertoires may survive thymic selection at higher rates[60],351

in addition to providing an explicit means of estimating post-selection T-cell prevalence within a352

given MHC-class restriction.353

3.3 Recognition of foreign and point-mutated self-peptides354

RACER, which leverages structural information to assess binding strength, can be used to simulate355

the influence of selection on the resulting T-cell repertoire and, hence, on the recognition of tumor-356

associated TANs across patients and cancer subtypes. Applying our model to CDR3 α, β chains357

obtained from T-cell sequencing, together with possible TAN lists generated by deep sequencing358

of cancer populations could provide a rapid method of generating clinically actionable information359

for cancer specific TCRs in the form of putative TCR-TAN pairs, provided those TANs are similarly360
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presented on the original MHC [48, 49]. While we focused our analysis on a single MHC restriction,361

our approach could also be applied to the crystal structure of another TCR-p-MHC pair, together with362

several known strong and weak binder candidates.363

The relative efficacy of targeting TANs remains an important question with significant clinical364

implications. We have shown that RACER can readily simulate full-scale thymic selection to pro-365

duce an MHC-restricted T-cell repertoire. The overall agreement in post-selection behavior between366

this study and our previous theoretical analysis is reassuring for both approaches. Taken together, our367

findings suggest that thymic selection affords little to no recognition protection of peptides closely368

related to self, thus supporting the notion that T-cells undergoing central tolerance to thymic self-369

peptides are essentially memorizing a list of antigens to avoid. Given that a large class of TANs are370

generated via point mutations in self-peptide, this result also provides a quantitative argument for the371

efficacy of immunotherapies which target point-mutated neoantigens. Currently, we have focused372

on predicting binding affinities of TCR-peptide pairs restricted to a particular MHC allele, offering373

a proof-of-principle for epitope identification. This procedure can in general be repeated for other374

MHC alleles. An immediate future goal will be to generalize RACER for predictions across MHC375

alleles and gene classes.376

While important, studying TCR-p-MHC pairwise interactions on the scale of an entire T-cell377

repertoire is only one factor influencing adaptive immune system recognition. Signaling between378

other adaptive immune system elements (including helper T-cells and natural killer cells) and intra-379

cellular factors which influence antigen generation, abundance, and availability on the cell surface380

also affect recognition rates. Encouraged by the RACER model’s reasonable selection and recogni-381

tion behavior, we propose this optimized framework as the first of its kind tool for tackling general382

questions regarding the interactions between the T-cell repertoire and relevant antigen landscape. Al-383

though we calculate static antigen recognition probabilities, the temporal tumor-immune interaction384

leads to dynamic co-evolution [24] reliant on the quality, abundance, and systems-level signaling of385

antigens. In the setting of stem cell transplantation approaches, the availability of time series as-386

sessments of immune cell repertoires, self-peptides, and tumor antigens promises to inform optimal387

treatment strategies based on the donor immune system and host cancer population.388
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4 Methods389

4.1 Details of the Hamiltonian used in our optimization390

To evaluate the binding energies on the basis of a structurally motivated molecular energy model,391

the framework of a coarse-grained protein energy model, AWSEM force field [46], was utilized for392

calculating the binding energies between the T-cell receptors (TCRs) and the peptide displayed on393

top of a MHC molecule. AWSEM is a coarse-grained model with each residue described by the394

positions of its 3 atoms – Cα, Cβ and O atoms (except for glycine, which does not have Cβ atoms)395

[46]. We used the Cβ atom (except for glycine, where the Cα atom was used) of each residue to396

calculate inter-residue interactions. The original AWSEM Hamiltonian includes both bonded and397

non-bonded interactions.398

Vtotal = Vbonded + Vnonbonded (1)

Since those residue pairs that contribute to the TCR-peptide binding energy, specifically those from399

the CDR loops and peptides, are in separate protein chains, only non-bonded interactions are con-400

sidered. Vnonbonded is composed of three terms:401

Vnobonded = Vpairwise + Vburial + Vdatabase (2)

Among them, Vburial is a one-body term describing the propensity of residues to be buried in or402

exposed on the surface of proteins. Vdatabase is a protein sequence-specific term that uses information403

from existing protein database, such as secondary and tertiary interactions, to ensure locally accurate404

chemistry of protein structure. Since the TCR-p-MHC system features pairwise interactions between405

a TCR and its corresponding peptide, only the term Vpairwise is used for this study.406

The pairwise Hamiltonian of AWSEM potential describes the interactions between any two non-407

bonded residues and can be further separated into two terms:408

Vpairwise = Vdirect + Vmediated (3)

Vdirect captures the direct protein-protein interaction of residues that are in between 4.5 and 6.5 Å.409

The functional form of Vdirect is410

Vdirect =
∑
i∈TCR
j∈peptide

γij(ai, aj)Θ
I
ij (4)

in which ΘI
ij = 1

4
(1 + tanh[5.0 · (rij − rImin)])(1 + tanh[5.0 · (rImax − rij)]) is a switching function411

capturing the effective range of interactions between two residues (here taken between rImin = 4.5Å412
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and rImax = 6.5Å). Thus, two residues are defined to be “in contact” if their distance falls between413

4.5 Å and 6.5 Å. γij(ai, aj) describes the residue-type dependent interaction strength, and is the414

most important parameter that enters the optimization of RACER.415

Vmediated is not used in this study, but we describe for completeness and because it will arise416

in future extensions of our current model. Vmediated describes the longer range interactions of two417

residues separated between 6.5 and 9.5 Å. Depending on the local density of residue environment,418

Vmediated can be further divided into a protein-mediated term and a water-mediated term.419

Vmediated = −
∑
i∈TCR
j∈peptide

ΘII
ij (σwatij γwatij (ai, aj) + σprotij γprotij (ai, aj)) (5)

where σwatij = 1
4
(1−tanh[7.0·(ρi−2.6)])(1−tanh[7.0·(ρj−2.6)]) and σprotij = 1−σwatij are switching420

functions indicating the local environment based on the density of each residue (ρj =
∑N

j=1 ΘII
ij ,421

where N is the total number of residues, i.e., ρj depicts the number of residues in this “potential422

well”). ΘII
ij = 1

4
(1 + tanh[5.0 · (rij − rIImin)])(1 + tanh[5.0 · (rIImax − rij)]) with rIImin = 6.5Å and423

rIImax = 9.5Å. One can optimize γwatij (ai, aj), γprotij (ai, aj) together with γij(ai, aj). Vmediated ensures424

a more accurate description of long-range interaction between two non-bonded residues, but such an425

approach will also increase computational expense when evaluating the binding energy in between426

TCR and peptides by more than 5 folds, compared with only using Vdirect. Since we show that427

the use of Vdirect sufficiently separates strong binders from weak ones, only Vdirect is employed for428

calculating the binding energies throughout our manuscript, for computational efficiency in studying429

the TCR repertoire.430

4.2 Optimization of RACER to maximize specificity of TCR-peptide recogni-431

tion432

For each interaction type, the γij(ai, aj) parameters constitute a 20-by-20 matrix of parameters that433

describes the pairwise interaction between any two residues i, j, each with one of the 20 residue434

types, ai, aj . Guided by the principle of minimum frustration [43], γij(ai, aj) was previously op-435

timized self-consistently to best separate the folded states from the misfolded states of proteins.436

Distilled into mathematical details, the energy model was optimized to maximize the functional437

δE/∆E, where δE is the energy gap between folded and misfolded proteins, and ∆E measures the438

standard deviation of the energies of the misfolded states. An energy model was optimized based on439

a pool of selected protein structures [61], where a series of decoy structures were generated by either440

threading the sequences along the existing crystal structures, or by biasing the proteins into molten441

globule structures using MD simulations [45]. The resultant γ parameter thus determines an energy442
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model that facilitates the folding of proteins with given sequences.443

Motivated by this idea, RACER was parameterized to maximize the z-scores for fully separating444

TCR strong binders from weak ones. Strong binders were chosen to be those top peptides that445

survive and were enriched by more than 50 copies after four rounds of experimental deep sequencing446

processes (details in Section Data used in our analyses) [27], together with the peptides present in447

the deposited crystal structures [50]. The decoy sequences were generated by randomizing the non-448

anchoring residues of each strong binder thereby generating a 1000 copies, and excludes the strong-449

binder sequences. The γ parameters were then optimized to maximize the stability gap between450

strong and randomized set of decoy binders, δE = Aγ, and the standard deviation of decoy energies,451

∆E = γBγ, where the matrix A and B are defined as:452

Ai = 〈φi〉wb − φsb

Bi,j = 〈φiφj〉wb − 〈φi〉wb〈φj〉wb

(6)

In the above Eq. 6, φi is the functional form for each interaction type, either Vdirect or Vmediated. φi453

also summaries the probability of contacts formation (interaction matrix) between pairs of amino454

acids in a specific TCR-peptide system. The subscripts “wb” stands for “weak binders” and “sb”455

stands for “strong binders”. The optimization of δE/∆E = Aγ/
√
γBγ can be performed effectively456

by maximizing the functional objective R = Aγ−λ1
√
γBγ, where the Lagarange multiplier λ1 sets457

the energy scale. The solution of this optimization gives γ ∝ B−1A. In the practice of protein458

folding, this optimization was performed in an iterative way where the optimized parameters were459

used for generating a new set of decoy protein structures. In this study, since different peptides460

are structurally degenerate on top of MHC as observed from experiments [27], only one round461

of optimization was performed. Since the optimization leaves a scaling factor as a free parameter,462

throughout this manuscript, the binding energies are presented with reduced units. To obtain binding463

energies that have physical units, the scaling factor can be further calibrated to fit the experimentally464

determined binding affinities, such as the Kd values measured by SPR experiments (Fig. 2C).465

4.3 Data input used in our analyses466

A deep-sequencing technique was developed to assess the binding affinity of a diverse repertoire of467

MHC-II-presented peptides towards a certain type of TCR [27]. Specifically, 3 types of TCRs: 2B4,468

5CC7 and 226, were used for selecting peptides upon four rounds of purification. The peptides that469

survived and enriched with multiple copies bind strongly with the corresponding TCR. In contrast,470

the peptides present initially but become extinct during purification represent experimentally deter-471

mined weak binders. For each of the 3 TCRs, the peptides that end up with more than 50 copies472

after the purification process, together with the peptides presented in the crystal structures, were473
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selected as strong binders. 1000 decoy sequences were generated for each of the strong binders by474

randomizing the non-anchoring residues. Both strong binders and decoys were included in the train-475

ing set. In addition, to test the performance of RACER, peptides having at least 8 copies initially but476

disappearing during purification were selected as experimentally determined weak binders and were477

assigned to the test set for each TCR. To test the transferability of the model, we used weak-binding478

peptides of two different TCRs (e.g., 5CC7 and 226) as additional test sets distinct from the TCR479

used in training (e.g., 2B4).480

When structural data for a specific TCR-peptide pair of interest is unavailable, we built the struc-481

ture by homology modeling [62], based on a known TCR-peptide crystal structure incorporating482

the same TCR. Since potential steric clashes after switching peptide sequences may disfavor the483

strong binders used in our training set, we used Modeller [62] to relax structures of strong binders484

before including them in the training process. Likewise, the binding energies of the experimentally485

determined weak binders were also evaluated after structural relaxation. The structural relaxation486

adds several seconds of computational time for each TCR-peptide pair, and thus poses a challenge487

for large scale repertoire analysis. However, the coarse-grained nature of RACER framework may488

significantly reduce the probability of side-chain clashes after switching peptide sequences. To test489

the accuracy of our model prediction without structural relaxation, we calculated the binding ener-490

gies of strong and weak binders of TCR 2B4 by only switching the peptide sequences, omitting any491

structural adjustment. Our result (Fig. S2) shows comparable accuracy in separating strong from492

weak binders, similar to that reported in Fig. 2. In the same vein, the transferrability of RACER493

was also maintained without structural relaxation (Fig. S4). Encouraged by the accuracy of our494

coarse-grained model without relaxation, we modeled large pairwise collections of TCR-peptide495

interactions by only altering their corresponding sequences.496

For blind assessment of TCR transferability, we ask whether we can improve prediction accuracy497

if there are available strong binders determined in crystal structures of the target TCRs. To test this,498

we added interaction matrices calculated from the crystal structures of the other two TCRs as two499

additional strong binders in the training set. For example, in the case of TCR 2B4, the interaction500

matrices from the crystal structures of TCR 5CC7 and 226 were added into the training set of TCR501

2B4, constituting a total of 46 strong binders. The test shows a significant improvement in predicting502

the binding specificity of TCR 5CC7 and 226 (Fig. 5B).503

For an additional independent test of the transferability of RACER under the same MHC allele,504

we used the benchmark set reported in [53]. Four crystal structures are curated in their benchmark505

set, including three TCRs: 3QIB (2B4), 3QIU (226), 4P2Q (5CC7) and 4P2R (5CC7). Each of them506

have one strong-binding peptide presented in the crystal structure, and 4 weakly binding peptides.507

All the TCR-peptide pairs are associated with MHC-II allele IEk, and three of them overlap with508

the main dataset reported in [27]. We therefore used the energy model previously trained from TCR509
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2B4 to test its transferability for the other three TCR-peptide pairs. The calculated binding energies510

were converted into a Z score by referencing to a set of 1000 randomized peptides of corresponding511

TCRs: Z =
Ebinding−Edecoys

σ(Edecoys)
, with σ(Edecoys) being the standard deviation of Edecoys. The ROC curve512

and AUC score were calculated by scanning through different thresholds of the Z score.513

4.4 Accuracy of RACER predictions omiting the crystal structure of target514

TCR-peptide pairs515

To test the transferability of RACER without requiring any measured structure for a new TCR, we516

threaded the sequences of the CDR3 loops of the new TCR on the TCR structure used in our train-517

ing. The length of CDR3β chain is the same among three TCRs (2B4: ASSLNWSQDTQY; 5cc7:518

ASSLNNANSDYT, 226: ASSLNNANSDYT), but the length of CDR3α chain is different (2B4:519

AALRATGGNNKLT; 5cc7: AAEASNTNKVV; 226: AAEPSSGQKLV). In order to accommodate520

such difference when threading the CDR3α sequences, we used a simple approach: aligning them521

based on the first two AA residues, leaving two gaps for the TCR 5cc7 and 226. Modeller[62] was522

used to build the new loop structure based on these aligned new sequence, using the single struc-523

ture in the training set as the template. These homology-modeled structures were then used for524

calculating the binding energies of the strong and weak binders of the new TCRs, using the trained525

interaction matrix. We also omitted the step of structural relaxation when replacing a new peptide526

sequence on the built structure. Such approach is unlikely to reduce RACER’s performance, as527

demonstrated in Fig. S2.528

4.5 The leave-one-out cross validation529

The Leave-one-out cross validation (LOOCV) was used to test the predictive power of RACER on530

its ability to identify strong binders. Specifically, one of the 44 strong binders of the TCR 2B4531

was removed from the training set, and its predicted binding energy Epred was compared with the532

experimentally determined weak binders. If the median of the weak binders is larger than Epred (a533

larger binding energy is associated with smaller affinity), the testing strong binder is successfully534

identified. Similar tests were performed for TCR 5cc7 and TCR 226. The performance of RACER535

is compared with that from the clustering of peptide sequences using the algorithm from CD-Hit536

[63] (See SI for details).537
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4.6 Comparing the correlation of binding energies with the Kd from SPR538

experiments539

Surface plasmon resonance (SPR) was performed to assess the binding affinities of the three TCRs540

towards 9 selected peptides [27]. The correlation between the predicted binding energies from541

RACER and the dissociation constant Kd evaluated from the SPR experiments thus constitutes a542

separate set of tests for the accuracy of RACER. The Kd values were obtained from fitting the SPR543

titration curves (Fig. S4F of [27]) using equation Req = C·Rmax

C+Kd
with C, Kd and Rmax as free param-544

eters. The Pearson correlation coefficient and the Spearman’s rank correlation coefficient between545

kBT log(Kd) and predicted binding energies were used to quantify this correlation.546

4.7 Evaluation of contact residues of MHC-restricted TCR-peptide pairs547

The contact map of a given TCR-peptide structure was constructed by measuring the proximity Wi,j548

between each residue of peptide (residue i) and CDR loops (residue j) based on their mutual distance,549

using a smoothed step function:550

Wij =
1− tanh (d− dmax)

2
, with dmax = 6.5Å. (7)

Only Cβ atoms were included in our calculation (except for glycine, where the Cα atom was551

used). The CDR3 loops were utilized as defined in the IEDB database [64]. The constructed contact552

map represents those residues that are spatially close to each other in the given crystal structure.553

4.8 Evaluation of different TCR-p-MHC interactions used for statistical study554

In order to assess the statistical behavior of the inferential model, we calculated the pairwise binding555

interactions between a simulated T-cell population of size Nt and collection of Nn = 104 thymic556

self-peptides. For this proof-of-principle study, we used the TCR 2B4 as an example, uniformly557

varying the 104 amino acids of the peptides, as well as those residues from the TCR that are in spatial558

contact with the peptide. TCR-peptide pairwise energies were calculated for Nt = 105 randomized559

TCR sequences using the RACER energy matrix optimized for TCR 2B4, and Nt = 2000 for each560

of the TCR-p-IEk systems given in Fig. 4 using energies weighted according to their contact maps,561

along with a model using a contact map with diagonal interactions (Fig. 6A). Substitution of TCR-562

peptide sequences with the newly generated ensemble yielded a total ofNt∗Nn (109 in the 2B4 case;563

2∗107 for each of the cases involving the TCR-p-IEk and diagonal contact maps) TCR-peptide pairs564

representing interactions occurring during thymic selection. Given our previous results (Fig. S2),565

we avoid the computationally expensive task of structural relaxation, and instead calculate pairwise566
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interactions with the original structure, requiring 5,000 CPU hours on an Intel(R) Xeon(R) CPU567

E5-2650 v2 for the large-scale 2B4-optimized simulation.568

4.8.1 Thymic selection569

Each T-cell survives if the maximal interaction over all self-peptides does not exceed some up-570

per threshold. Selection thresholds were chosen to achieve 50% [11]. In all cases, the RACER-571

optimized energy matrix was used for energy assignment. Thymic selection was performed for each572

of the TCR-p-IEk examples and their corresponding contact maps given in Fig. 4 (Fig. 6A). For573

each TCR-p-IEk example, Nt = 2000 preselection TCRs were created by varying uniformly the574

original TCR CDR3 α and β sequences over amino acid space, keeping the seuqnece lengths un-575

changed. A similar randomization yielded Nn = 104 randomized peptide sequences representing576

self-peptides. For each of the 2000 randomized TCRs, binding energies were calculated against577

the 104 self-peptides by selecting the corresponding entries in the RACER-optimized energy matrix578

weighted by the original TCR-p-IEk contact maps, and the maximum energy was recorded. The579

fraction of TCRs whose maximal binding energy exceeded the selection threshold En traces the580

survival curves. This procedure, utilizing the RACER-optimized energy matrix, was repeated for a581

simplified model that utilizes only adjacent contacts (i.e. a strictly diagonal contact map with each582

entry having weight one) in the TCR-peptide interaction. The number of diagonal elements in the583

diagonal contact model was taken to be 20 (10 for each of the CDR3α-peptide and CDR3β-peptide584

pairs).585

4.8.2 Self-peptide potency586

Most self-peptides present in thymic selection are expected to participate in the deletion of self-587

reactive T-cells. Thus, a reasonable model of thymic selection would feature a majority of self-588

peptides contributing to the selection of immature T-cells. A rank order of these self-peptides based589

on their ability to recognize unique T-cells, or potency, characterizes the extent to which each self-590

peptide is utilized in thymic selection. The rank order of potency was created for the RACER model591

utilizing the crystal structure of the 2B4 TCR (PDB ID: 3QIB) and its corresponding energy matrix592

derived from the set of experimentally determined good-binders. The thymic selection process using593

104 self-peptides and 105 TCRs for the 2B4-optimized RACER model described above generates a594

total of 109 pairwise binding energies. The negative selection thresholdEn was selected to yield 50%595

selection, resulting in ∼ 5 · 104 deleted TCRs. The number of TCRs deleted by each self-peptide596

was recorded. The peptide deleting the most TCRs defines the most potent self-peptide. TCRs597

recognized by this peptide are removed from the list of total TCRs, and this peptide is similarly598

removed from the list of self-peptides. This process is repeated on the smaller TCR and self-peptide599

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.04.06.028415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028415
http://creativecommons.org/licenses/by-nc-nd/4.0/


list to determine the second most potent peptide. Additional iteration until no TCRs remain provides600

the rank order of self-peptides in decreasing order of potency. The cumulative number of deleted601

TCRs is plotted in decreasing order of peptide potency.602

4.8.3 Antigen recognition probabilities for individual T-cells and T-cell repertoires603

Utilizing the same post-selection T-cell repertoire from the previous section, post-selection T-cells604

were quantified for their ability to recognize random non-self-antigens and tumor neoantigens that605

differ from one of the Nn thymic self peptides by one residue. 50% selection of TCRs result in606

approximately 5 · 104 surviving, for which pairwise interactions are generated against 103 random607

and 103 point-mutated self-peptides, representing foreign and tumor-associated neoantigens, respec-608

tively (randomly generated peptides were checked to ensure non-membership in the set of thymic609

self-peptides). Estimates of individual TCR recognition probability were calculated by averaging610

the 5 · 104-by-103 indicator matrix, having values of 1 (resp. 0) corresponding to recognition (resp.611

no recognition). The previous quantity estimates an individual TCR’s antigen recognition ability.612

Estimates of the corresponding recognition probability for the entire post-selection MHC-restricted613

T-cell repertoire was calculated by assessing the 1-by-103 vector indicating the presence or absence614

of at least 1 recognizing TCR. The post-selection individual and repertoire T-cell recognition prob-615

abilities of random and point-mutant antigens were then compared with previously derived analytic616

results for two random energy models [20].617
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Figure 1: Summary of the modeling approach employed in this study. A. The optimization of RACER starts
from a series of TCR binders obtained from the deep-sequencing experiments [27], as well as the correspond-
ing TCR-p-MHC crystal structures deposited in the database [50]. The sequences of the strong binders, as
well as the generated decoy binders from randomizing the non-anchoring sequences of the strong binders, are
collected for parameterizing a pairwise energy model which maximizes the energetic gap between the strong
binders and a randomized set of decoys. The resulting energy model can be used to quickly evaluate the
binding affinities of an ensemble of TCR-peptide interactions at the population level. The calculated binding
affinities can be used for simulating the negative selection process in the thymus, as well as measuring the
recognition probability of the post-selection TCRs. Finally, this kind of ensemble study can be used for im-
munogenic applications that require input from an entire T-cell repertoire. B. Three tests were conducted to
evaluate the performance of RACER. Case I: the training set includes one TCR-p-MHC structure and multiple
peptide sequences. The test set includes the same TCR structure and a separate set of peptide sequences. Case
II: the training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes
two different TCR structures (restricted on the same MHC allele) and two separate sets of peptide sequences.
Structures for the two additional test TCRs are included in predictions. Case III: The training set includes
one TCR-p-MHC structure and multiple peptide sequences. The test set includes only the sequences of two
different TCRs (restricted on the same MHC allele) and two separate sets of peptides. Only the structure from
the original training TCR was used in prediction (The interactions of interest are indicated by double-sided
arrows between TCR and p-MHC). 28
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Figure 2: RACER can fully separate the strong binders of a specific TCR from its weak binders. A. For
three TCRs (2B4, 5CC7 and 226) whose strong and weak binders have been experimentally determined [27],
the RACER-derived calculated binding energies can well separate the strong binders from the weak ones of
each individual TCR. B. In the leave-one-out-cross-validation exemplified using the TCR 2B4, RACER can
successfully recognize the withheld strong binders in 43 out of 44 tests, where the predicted binding energies
of the withheld test binder (green) is lower than the median (red bar) of the experimentally determined weak
binders. The only exception is marked as a black square. C. In a completely independent testing data measured
by surface plasmon resonance (SPR) [27], the calculated binding energies of testing peptides correlate well
with their experimentally determined dissociation constant Kd. Best-fit linear regression is depicted for each
case. Corr: Pearson correlation coefficient. Sprman Corr: Spearman’s rank correlation coefficient.
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Figure 3: The specific contact pattern from the TCR-peptide structures dictates a optimized energy model
different from those of a typical protein-folding force field. A. The 3D crystal structure of the 2B4 TCR
bound to a specific peptide (PDBID: 3QIB). The parts of the structure that are in contact between the TCR and
peptide are color-highlighted as green (TCR) and orange (peptide). Also shown are residues alanine (blue),
threonine (magenta) and asparagine (tan) which are prevalent in this structure (CPK representation [57]). B.
The probability of contact formation between each two of the 20 amino acids in the set of strong binders (left)
and the set of randomized decoy binders (right) of the TCR 2B4. C. The residue-based interaction strength
determined by RACER for the TCR 2B4. A more negative value indicates a stronger attractive interaction
between the corresponding two residues.
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Figure 4: The contact maps of TCR-peptide pairs within the same MHCII allele share structural similarity.
Contact maps are calculated using distances from each pairwise TCR-peptide amino acid combination us-
ing Eq. 7 for the following MHC-II IEk-restricted TCR-peptide pairs: 3QIB - peptide ADLIAYLKQATK
with TCR 2B4 A. CDR3α (AALRATGGNNKLT) and B. CDR3β (ASSLNWSQDTQY) chains; 3QIU - pep-
tide ADLIAYLKQATK with TCR 226 C. CDR3α (AAEPSSGQKLV) and D. CDR3β (ASSLNNANSDYT)
chains; 4P2R - peptide ADGVAFFLTPFKA with TCR 5cc7 E. CDR3α (AAEASNTNKVV) and F. CDR3β
(ASSLNNANSDYT) chains. Similarity in interaction topology across TCR-peptide pairs is observed by com-
paring the contact silhouette of interacting coordinates for the α (top row) and β (bottom row) TCR sequences.
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Figure 5: RACER shows transferability in terms of predicting TCR-p-MHC interactions across different
TCRs. A. The energy model trained based on one TCR (e.g. 2B4) is capable of resolving the experimen-
tally determined strong binders from weak binders of the other two TCRs (e.g., 5CC7 and 226). B. By adding
strong binders from crystal structures of the other two TCRs into training sets, RACER can be further im-
proved for identifying the experimentally determined strong binders. The title of each figures follows the
format of “target training TCRs”, e.g., “2B4 5CC7” means using the energy model trained from the TCR
5CC7 for predicting the peptide binding affinities of the TCR 2B4. “Xtals” means the strong binders from the
crystal structures of the other two TCRs were added into the training set. C. Upper panel: The energy model
trained on TCR 2B4 is used to predict the binding energies of sequences from other TCRs associated with the
IEk-associated TCRs [53]. Z-scores of known strong binders (grey) and weak binders (orange) provided by
[53] were calculated referenced to a set of 1000 decoy peptides with randomized sequences (blue violin plot),
with lower z-scores indicating better predictive performance. Lower panel: The calculated z-scores of each
TCR were used to depict Corresponding ROC curve and AU-ROC (0.89, lower panel).
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Figure 6: T-cell repertoire simulations of thymic selection and antigen recognition in the RACER model.
RACER-derived simulations of TCR recognition exhibit sensible thymic selection and similarity in the recog-
nition rates of foreign and point-mutated self antigens. A. Simulated thymic selection curves (T-cell recog-
nition probability as a function of negative selection binding energy cutoff) incorporating the effects of non-
adjacent contacts (given in Fig. 4) using Nn = 104 uniformly randomized self-peptides and Nt = 2000
randomized IEk-restricted TCRs. 4P2Q and 4P2R (purple) use T-cells generated by randomizing the CDR3
region of TCR 5cc7, while 3QIB (blue) randomizes the CDR3 of TCR 2B4, and 3QIU (yellow) randomizes
the CDR3 TCR of 226 (in all cases, randomized CDR3 lengths were unchanged from the original TCR) (red
curve uses RACER energy using a diagonal contact map model whose study here is motivated by previous
work [20]). B. Utilizing RACER-derived energy assessments from the 2B4 crystal structure, the probability
of recognizing foreign and point-mutant antigens for individual post-selection T-cells is plotted as a function
of the percentage of TCRs surviving negative selection (ordinate of the graph in panel a, simulations averaged
over all post-selection TCRs with pairwise interactions amongst 103 random peptides and 103 point-mutant
peptides). C. The recognition probability of foreign (black) and mutant (red) peptides by the entirety of
the TCR repertoire is plotted as a function of pre-selection TCR repertoire diversity, with negative selection
thresholds giving 50% survival.
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