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Abstract

Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at
the heart of improved cancer immunotherapy, but predictive models capable of high-throughput
assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystal-
lography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce
a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune
repertoire level. RACER applies supervised machine learning to efficiently and accurately re-
solve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable
a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system.
When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER ac-
curately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus
demonstrating its utility in helping address the large computational challenge of reliably identify-
ing the properties of tumor antigen-specific T-cells at the level of an individual patient’s immune

repertoire.

Significance Statement

Effective TCR-epitope prediction for optimized cancer immunotherapy requires an accurate assess-
ment of billions of TCR-antigen interacting pairs. We introduce RACER, a supervised, physics-
based machine learning algorithm trained on deposited TCR-p-MHCs sequences and structures.
RACER is capable of estimating TCR-peptide binding affinity at a rate of 0.02 seconds per pair, thus
enabling large-scale evaluations of TCR epitope recognition. When restricted to the same MHC al-
lele, RACER accurately estimates TCR binding specificities by determining their associated strong
binders. We apply RACER to simulate thymic negative selection, demonstrating that this technique
can accurately quantify the recognition rate of tumor-associated neoantigens and foreign peptides.
Taken together, our approach demonstrates RACER’s potential as a high-throughput tool for inves-

tigating TCR-peptide interactions between the TCR repertoire cancer peptidome.
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1 Introduction

The advent of new strategies that unleash the host immune system to battle malignant cells represents
one of the largest paradigm shifts in treating cancer and has ushered in a new frontier of cancer
immunotherapy [1]. Various treatments have emerged, including checkpoint blockade therapy [2,
3, 4], tumor antigen vaccine development [5, 6], and the infusion of a donor-derived admixtures of
immune cells [7]. A majority of successful treatments to-date rely on the anti-tumor potential of the
CD8+ T-cell repertoire, a collection of immune cells capable of differentiating between malignant
cells and normal tissue by recognizing tumor-associated neoantigens (TANs) detectable on the cell
surface [8]. Therefore, accurately assessing a T-cell repertoire’s ability to identify cancer cells by
recognizing their tumor antigens lies at the heart of optimizing cancer immunotherapy.

A complete understanding of adaptive immune recognition and the tumor-immune interaction
has remained a formidable task, owing in part to the daunting complexity of the system. For example,
antigens and self-peptides contained in an epitope (i.e. recognizable peptide sequences) space of
size ~ 20° are presented to ~ 107 unique T-cell clones in each individual [9], a small fraction of
the upper limit of TCR diversity (~ 10?) [10, 11]. Moreover, their behavior is tempered via an
elaborate thymic negative selection process in order to avoid auto-recognition [12, 13]. Here, T-cell
clones, each with uniquely generated T-cell receptors (TCRs), interface with numerous (~ 10%) self-
peptides presented on the major histocompatibility complex (p-MHC) of thymic medullary epithelial
cells via TCR CDR3« and 5 chains, and survive only if they do not bind too strongly [14, 15, 16].
This process, together with systems-level peripheral tolerance [17, 18], imparts T-cells with durable
tolerance to major self-peptides and influences many of the recognition properties of the resultant
repertoire. The complexity of the adaptive immune system has attracted numerous mathematical
modeling efforts quantifying the mechanisms underlying T-cell immune response. Collectively, the
field has made significant progress in understanding at a population level the effects of tolerance on
T-cell recognition and self vs. non-self discrimination [14, 19], including the effectiveness of the
repertoire at discerning tumor from self-antigens [20], the repertoire’s ability to impart immunity
against current and future threats [21, 22], and the extent of selection pressure that the repertoire
exerts on an evolving cancer population [23, 24].

Any approach to furthering the understanding of these system-scale properties must start with
an ability to evaluate the interaction between specific TCR-p-MHC pairs. Despite this, a compre-
hensive, biophysical model capable of learning the energy contributions of each contact pair in a
TCR-p-MHC system and applying them to new predictions remains elusive. To-date, experimental
research has integrated solved crystal structures [25, 26] with peptide sequencing [27, 28, 29] to
probe the physiochemical hallmarks of epitope-specific TCRs. Publicly available crystal structures

have enabled researchers to identify detailed structural features that influence the binding specificity
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of TCR-p-MHC pairs, and machine learning algorithms have made progress on the complementary
task of accurately predicting peptide-MHC binding [30, 31, 32, 33, 34, 35, 36] as well as TCR-
peptide binding [37, 38]. However, the limited number of available structures relative to the diver-
sity in MHC alleles and TCR-peptide combinations complicates extrapolation to unsolved systems.
Alternate template-based structural modeling [39] and docking [40] approaches are limited by cal-
culation speeds (at best one structure per minute), thus it is unlikely in the foreseeable future that
such strategies can be used to investigate the number of TCR-peptide interactions necessary to study
the problem at the immune-repertoire level, as this task easily requires the assessment of more than
10 pairs simultaneously [16]. Prior attempts have approximated binding affinity by implementing
statistical scores calculated from docking algorithms [40]. These scores are trained using examples
of generic protein binding and thus lose the unique aspects of the TCR-peptide interactions.

To deal with this challenge, we develop a systematic TCR-p-MHC prediction strategy for rapid
and accurate assessment of TCR specificity. Our strategy, which we refer to as the Rapid Coarse-
grained Epitope TCR (RACER) model, is capable of differentiating between self and foreign anti-
gens and can evaluate 10° TCR-peptide pairs in the setting of TCR-peptide combinations restricted
to a single MHC allele. This method we develop employs supervised machine learning on known
TCR-peptide structures and experimental data to derive a coarse-grained, chemically-accurate en-
ergy model governing TCR-p-MHC interactions, a strategy adapted from earlier efforts to predict
protein folding [41, 42, 43, 44, 45, 46]. The MHC loci, while polymorphic, bind comparable num-
bers of peptides across various alleles [47]. Our calculations are restricted to a fixed MHC allele,
but could be generalized with the use of additional training data. Confining our predictions to TCRs
with a given MHC restriction enables the transferability of the method to TCRs that are not included
in the training set. The approach provides a tractable means to extract pertinent TCR-peptide inter-
actions so that affinity may be predicted based on similarly restricted TCR-peptide primary sequence
data. RACER accurately distinguishes binding peptides across various TCRs and validation tests.
Lastly, as a preliminary test of the usefulness of our approach, we simulate a thymic selection and
show agreement with previously established estimates of T-cell binding energy distributions, tumor
neoantigen and foreign peptide recognition rates for a given class of MHC-restricted TCRs [48, 49].
Taken together, our results demonstrate RACER’s utility in learning the interactions relevant for

high-throughput TCR-epitope binding predictions.
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w 2 Results

w 2.1 RACER can distinguish peptides that bind strongly to a given TCR from
108 those that bind weakly

10 The RACER’s optimization protocol (Fig. 1A) utilizes high-throughput deep sequencing data on
110 TCR-peptide interactions across a large peptide library [27], together with known physical contacts
111 between TCRs and peptides obtained from deposited crystal structures [S0]. The training data comes
112 from cases where the peptide is displayed by the same allele of a mouse MHC class II molecule.
113 Adapting an approach previously implemented for studying folding of proteins [51, 45], the RACER
114 optimization strategy trains a pairwise energy model which maximizes TCR-peptide binding speci-
11s ficity. The energy model was optimized by maximizing the z-score defined to separate the affinities
116 of experimentally determined strong-binding peptides, called ‘“strong binders” hereafter, from com-
117 putationally generated, randomized decoys'. The optimized residue type-dependent energy model
118 can then be used to calculate the binding energies of an ensemble of new TCR-peptide systems. As
119 will be shown below, we performed three different levels of test (Fig. 1B), and find the predicted
120 binding energies can differentiate strongly binding peptides from weak ones, provided they are dis-
121 played by the same MHC allele as that of the training set. Crucially, accurate predictions can be
122 made even without knowledge of the actual crystal structure, although the predictions are improved
123 when this additional information is available.

124 Fig. 2 summarizes RACER’s predictive performance for a specific TCR (Case I in Fig. 1B).
125 For this fixed TCR, pre-identified strong binding peptides and decoy peptides with randomized se-
126 quences were used to train the energy model (See Methods section for details). Another set of pep-
127 tides independently verified experimentally as weak binders constitutes the testing set. The resulting
126 energy model was then applied to calculate binding energies for the strong binders in the training
120 set as well as the peptides in the testing set. This approach was repeated on three independent TCRs
130 that are associated with the IEX MHC-II allele: 2B4, 5CC7 and 226. Although the experimentally
131 1dentified weak binders were omitted from the training set, RACER effectively resolves binding en-
122 ergy differences between experimentally determined strong and weak binders, with z-scores larger
133 than 3.5 in all cases (Fig. 2A), highlighting the predictive power of this approach.

134 Despite their relative sparsity in antigen space, strong binders play a central role in T-cell epi-
135 tope recognition. It is obviously more difficult to predict strong binders than weak binders. To
136 test RACER’s ability to identify strong binders, we performed a leave-one-out cross-validation

137 (LOOCYV) test, using data from TCR 2B4 as an example. For each test iteration, one known strong

IThe z-score is defined as the difference between the average binding energies of strong binders versus decoys,
divided by the standard deviation of the decoy energies. Throughout this manuscript, we report the absolute value of the
calculated z-score, except for Fig. 5C.
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binder was withheld from the training set of 44 strong binders. Our optimization protocol was ap-
plied to train the energy model by using the remaining 43 peptides and then predicting the binding
energy of the withheld peptide. This prediction was then compared to predicted binding energies of
known weak binders, and the procedure was repeated for each of the 44 peptides. Our model is able
to accurately distinguish the withheld strong binder in 43 cases (Fig. 2B). This is in stark contrast
to a cluster-based attempt at strong binder identification based on peptide sequences alone, which at
best correctly identifies 19 out of 44 strong binders (See SI for details). The same LOOCYV test was
performed for TCR 5cc7 and 226, which correctly identified 120 out of 126 strong binders of 5cc7,
and 267 out of 274 strong binders of 226.

In order to further characterize RACER’s predictive power, an independent set of /Ky values mea-
sured by surface plasmon resonance (SPR) [27] were compared with predicted affinities. The SPR
experiments were performed over 9 independent peptides for each of the aforementioned three TCRs.
The free energies, kg7 log(K4), were compared with calculated binding energies from RACER as
a quantitative test of binding affinity prediction accuracy. Lower binding energies indicate stronger
binding affinity so that a positive correlation between the kg7 log(K4) values and calculated binding
energies implies a successful prediction. As shown in Fig. 2C, RACER was able to correctly predict
the order of binding affinities of these 9 peptides for all TCRs, with an average Pearson correlation

coefficient of 0.74, and an average Spearman’s rank correlation coefficient of 0.65.

2.2 RACER’s residue type-dependent interactions are optimized specifically
for TCR-peptide recognition

The data utilized by RACER includes strong binders and an input crystal structure, as well as TCR
and peptide primary sequences, which determine an interaction pattern that was then used to con-
struct a system-specific force field. To illustrate this, we focus on the 2B4 TCR as an example (Fig.
3). The crystal structure of TCR 2B4 (Fig. 3A) reveals that there can be many threonine (T) and
asparagine (N) residues on the CDR loops region of the TCR. In the strong binder set, these residues
tend to interact with specific peptide residues such as alanine (A), as seen for the specific peptide
given in the figure. This notion can be formalized by showing the matrix of observed probabilities
of close proximity of specific residue pairs. Thus, we see that certain pairs such as A-T and A-N
are significantly enriched in the set of strong binders, while much less so in the decoy set (Fig. 3B).
This then will mean that the optimized energy model shows the strongest attractions between the
A-T, A-N residue pairs (Fig. 3C). This relative enrichment contrasts with the TCR tryptophan (W)
residue which frequently interacts with alanine (A) in both strong binders and decoy peptides. As a
result, the optimized energy model does not favor the A-W interaction.

This eneryg model is rather distinct from ones typically used for studying protein folding. In
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order to compare the RACER-derived interaction matrix to well-established force fields described in
the protein folding literature, we substitute our interaction matrix with the standard AWSEM force
field [46] (optimized on deposited folded proteins) and the Miyazawa-Jernigan (MJ) force field [52]
(constructed using the probability distribution of contacting residues from deposited proteins) and
calculate the corresponding binding energy predictions for the TCR 2B4 peptides. We find that
neither force field fully resolves these groups, with z-scores of 0.69 and 1.28, respectively (Fig.
S1). Similar trends were observed utilizing the peptides corresponding to the SCC7 and 226 TCRs,
effectively demonstrating the necessity of RACER’s de novo identification of pertinent structural

information for studying the TCR-peptide system.

2.3 RACER’s interactions generalize across TCRs associated with a given
MHC allele

Given RACER’s accuracy in resolving test peptides presented to the specific TCR used for training,
we next explored the feasibility of extending predictions to additional TCR-peptide pairs albeit with
the same MHC restriction. Toward this end, we assessed whether the physical contacts implicitly
encoded in RACER’s optimized force field were conserved within IE*-restricted TCR-peptide pairs.
The three IEX-restricted TCRs considered in our analysis all have been tested with peptides bound to
the IEX mouse MHC molecule. The available crystal structures have a significant degree of structural
similarity at the TCR CDR3-peptide binding interface (see Fig. 5 of [27]). We further quantified
the TCR CDR3-peptide contacts for each pair, constructing a contact map based on their crystal
structures (see Methods section for full details). Our results shown in Fig. 4 suggest that despite
differences in TCR and peptide sequences, this set of TCRs share common structural features which
should aid in imparting transferability to the trained interaction matrix. We find however that these
features are not preserved across different MHC class II genes (Fig. S3).

RACER’s ability to accurately identify strong binders based on training with a fixed TCR,
together with the fact that a majority of the contact structure is preserved within a given MHC-
restricted set of TCRs, suggested that we assess RACER’s ability to accurately predict binding pep-
tides for other similarly restricted TCRs. Toward this end, we apply the energy model optimized
using binding data for one of the three TCRs to predict the TCR-peptide binding energies of the
remaining two holdout TCRs (Case II in Fig. 1B). To do this, we initially use a known structure for
each of the holdouts, and the interaction matrix learned on the training TCR to predict the binding
energies of the experimentally determined strong and weak binders for each of those holdout TCRs.
Although the z-scores measured for these alternate TCRs are lower than those found previously in
Sec 2.1, RACER still successfully distinguishes a majority of strong binders from weak binders,

with an average z-score of 1.8 (Fig. 5A). This demonstrates that, despite CDR3 primary sequence
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206 diversity, distinct TCR-p-MHC systems still share similar structural-sequence patterns, as long as

o

207 they are associated with the same MHC allele.

208 In order to test whether the incorporation of additional TCR structural information in the op-
200 timization step could improve RACER’s predictive accuracy, we next included crystal structures
210 for the remaining TCRs (5cc7 and 226) together with a single strong binder for each case into the
211 training set comprised of 2B4 peptide pairs (See Methods section for details). This procedure was
212 repeated three times by substituting for the training set TCR and peptide pairs. We find that the
213 new energy model demonstrates significant improvement in z-scores. These results suggest that fu-
214 ture incorporation of additional crystal structures of target TCRs may lead to improved resolution of
215 strong and weak binders via refinement of the optimized energy model.

216 To provide an additional test and to quantify our discrimination capability, we used an indepen-
217 dent dataset from [53]. Four independent TCRs (PDB ID: 3QIB, 3QIU, 4P2Q, 4P2R) from their
218 curated benchmark dataset are associated with the IEX allele; note that three of these overlap with
219 the TCRs in our current study. To test the performance of RACER for different TCR-peptide pairs,
220 we used the energy model trained based on 2B4 (3QIB) to predict the binding energies of both strong
221 and weak binders for the three remaining TCRs. This calculation again uses the structure found for
222 the one strong binding peptide for each of the 3 TCRs. Our calculation re-emphasizes that RACER
223 can successfully distinguish strong binders even when it is trained based on a different TCR (Fig.
224 5C), with an AUC of 0.89. Of note, when we tested data from the same study involving TCR-p-
225 MHCs with different MHC alleles, RACER cannot pick out strong binders, presumably due to the
226 markedly different TCR-peptide interacting patterns (Fig. S3).

227 Next we address the question of the extent to which it is necessary to have at hand at least one
228 TCR-p-MHC crystal structure in order to use RACER’s interaction matrix to identify other good
220 binders (Case III in Fig. 1B). Of course to evaluate the binding energy we must have a structure; the
230 alternative to having a measured structure for a new sequence is to thread that new CDR3 sequence
231 into the crystal structure used for the training data. For MHC 11, this introduces an uncertainty in
232 registration. For the cases at hand, this issue arises only for the o chain as the  chains for all
233 three TCRs are all of length 12 and there is no residual ambiguity. We tested the simplest possible
234 assumption, namely that we start at the same place where all three chains have the first two residues
235 AA and leave no gaps (See Methods for full details). Fig. S4 shows that this procedure again
23 leads to successful discrimination between good and poor binders, with an average z-score of 2.36.
237 Thus, we conclude that the structures are sufficiently similar that not only can we use the interaction
233 matrix derived from a single TCR training set for other TCRs but we can also use the same structure.
239 This then allows us to make estimates at the repertoire scale without the impossible task of creating

220 extremely large numbers of TCR-p-MHC structures.
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21 2.4 RACER-optimized T-cell repertoire binding assessment accurately rep-

242 resents thymic selection

23 Using RACER, we can determine general properties of TCR-p-MHC binding distributions and com-
244 pare to empirical observations. These results highlight the advantage of a method capable of high-
25 throughput analysis. The basic idea follows from the fact shown above that we can make reasonable
26 assessments of binding strength by using only one structure and its associated interaction matrix.
247 Our focus here is the process of negative selection and its effect on the surviving repertoire. Toward
245 this end, we utilized the crystal structure of the 2B4 TCR-peptide contact region to create 10° simu-
249 lated TCRs and 10* self-peptides by randomizing uniformly the CDR3 and peptide sequences over
250 amino acid space. To avoid registration issues, we always choose simulated TCRs to have exactly
251 the same number of a and /3 chain residues as does the 2B4 TCR. This was repeated using 10* self-
252 peptides and 2000 TCRs, this time weighting the CDR3-peptide interactions by each of the the three
253 contact maps in Fig. 4. The same approach was applied to a model that assumes a strictly diagonal
254 contact map motivated by previous analytical work [20], with randomization of the TCR sequence
255 taken over all possible positions in the contact map.

256 A given TCR survives only if it binds to all self-peptides below a fixed activation threshold. The
257 maximum binding energy over the set of self-peptides for each TCR defines a selection curve (Fig.
258 6A), which describes the percentage of negatively-selected T-cells as a function of the cutoff energy
259 threshold. Selection curves for the three TCR sets using the contact maps in Fig. 4 utilized the
260 RACER energy matrix and compare reasonably to the diagonal contact map motivated by previous
261 analytical work (Fig. 6A red curve). While the variance in each case is similar, mean-shifts in each
22 selection curve correlate directly with the number of contacts in the CDR3 « and /3 chains (Fig.
263 4). These findings further reinforce the relevance of TCR-p-MHC-specific structural interactions
264 encoded in the RACER-derived energy potential for binding prediction and T-cell repertoire gen-
265 eration. Although empirical estimates of the percentage of surviving TCRs during thymic negative
266 selection vary between 20% and 50% [54, 55, 56], we calculate relevant recognition behavior for all
267 selection rates, restricting our analysis to 50%, when applicable.

268 Most self-peptides present in thymic selection are expected to participate in the deletion of self-
269 reactive T-cells. Previous work has suggested that this desideratum can be used to determine if
270 a high-throughput model is behaving in a statistically sensible manner; specifically, a reasonable
271 model of thymic selection would feature a majority of self-peptides contributing to the selection of
272 immature T-cells. A rank order of these self-peptides based on their ability to recognize unique T-
273 cells, or potency, characterizes the extent to which each self-peptide is utilized in thymic selection.
27+ The RACER-derived rank order using the 2B4-optimized data generates reasonable behavior with
275 respect to this criterion (Fig. S5A).
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One key issue influencing adaptive immune recognition of tumor-associated neoantigens (TANSs)
is the recognition efficiency of peptides closely related to self (e.g. point mutants) relative to for-
eign peptide recognition. The fact that the immune system can in fact be enlisted to attack tumors
suggests that negative selection leaves intact the ability to bind strongly to tumor associated anti-
gens. Comparison of a post-selection TCR’s individual recognition potential shows relatively minor
differences between foreign and point-mutant self-peptides (Fig. 6B), with variances of these es-
timates overlapping with one another and in line with previous theoretical estimates (Fig. S5B).
While individual recognition probability measure a single TCR’s ability to recognize antigen, reper-
toire recognition probability estimates a particular MHC-restricted post-selection repertoire’s ability
to recognize antigen. An analogous comparison of the post-selection TCR repertoire recognition
probability of foreign and mutant peptides demonstrates that this minimal difference is maintained
at the aggregate immune system level (Fig. 6C). This then explains the observed ability of adaptive
immune targeting of tumors in a manner that depends on the mutational load of the malignant cells.

Lastly, our prior theoretical model posited thymic selection as an optimization problem with a
survival cutoff of 1/e resulting in the production of maximally efficient thymic selection [9, 20].
Calculating the product of survival and recognition probabilities yields a broad curve with large
values located at intermediate survival cutoffs, including the previously predicted optimal survival
cutoff (Fig. S5C). Taken together, these results agree with previous studies and reinforce the utility

of RACER for performing repertoire-level analyses.

10
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s 3 Discussion

206 We have introduced RACER, an optimized molecular energy model that can be utilized to quickly
207 assess TCR-peptide interactions and distinguish strong-binding pairs. RACER requires only ~0.02s
208 for evaluating one TCR-peptide pair, thousands of times faster than available alternative approaches,
209 while preserving reasonable prediction accuracy (Figs. 2, 5). Consequently, our method can be used
a0 to study large collections of MHC-restricted TCR-peptide pairs, enabling in silico studies of thymic

a1 selection and T-cell antigen recognition.

s 3.1 Specificity v.s. Generality of the optimized energy model

s0s The unique topology of the TCR-p-MHC structure encodes a system-specific residue-type dependent
s04 interaction matrix for TCR-peptide pairs. Significantly, the sequences and structures of TCR-peptide
35 systems were found experimentally to be relatively conserved among various peptides [27, 28, 26].
ss The preserved sequence and structural features could dramatically limit the physiochemical space
a7 explorable by TCR-peptide residue pairs. Moreover, since RACER is optimized on a TCR-peptide
a8 system, the arrangement of the contacts between TCR and its cognate peptide (Fig. 4) gives rise to a
309 post-optimization energy model (Fig. 3) rather distinct from the traditional hydrophobic-hydrophilic
a0 interaction patterns [58] used for protein folding, such as the MJ potential [52]. This hypothesis
a1 1s strongly supported by the observation that RACER is capable of identifying strong binders of
sz corresponding TCRs (Fig. 2) while previous methods fall short (Fig. S1).

313 The departure of RACER from a typical protein-folding force field also results from the opti-
s+ mization performed for TCR-peptide systems. Because we are interested in resolving strong binders
a5 from weak ones with a finite dataset, our optimization distinguishes between these two sets of binders
sie by enlarging their energetic gap in the training process. By maximizing the z-score between strong
317 and weak binders, RACER learns an effective binding energy which likely amplifies small differ-
a8 ence in thermo-stability among candidate binders. Such amplification, however, affects neither the
319 identification of the strong binders of a specific TCR nor the subsequent ensemble study of peptide
320 recognition, since only the order of binding affinities among individual TCR-p-MHC pairs matters

st for our results.

22 3.2 Structural information from available crystal structures improves the pre-
523 dictive power of RACER

a4 Our pairwise RACER model offers a novel avenue for developing models that incorporate infor-
325 mation contained in available protein structures. Prior investigations have applied artificial neural

a6 networks for predicting strong binders of TCR [37] and MHC [30] molecules based only on the
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primary sequences. Although deep learning can implicitly account for higher-order interactions,
such approaches may still be limited by the available sequences that can be identified from exper-
iments. RACER alleviates the high demands for primary sequences by including existing crystal
structures in a pairwise potential. The resulting prediction accuracy demonstrates that such a struc-
turally educated pairwise model is able to resolve the specificity of TCR-p-MHC interactions in a
biological environment, justifying the linear constitutive assumption which sums up the binding en-
ergies of individual TCR-peptide residue pairs for quantifying the interactions between TCRs and
peptides, utilized here and in prior theoretical analyses [20, 14]. Moreover, the predictive accuracy
of RACER can be further improved by including additional strong binders from crystal structures
that are deposited in the database (Fig. 5B), thus providing a mechanism for additional refinement
and improvements in predictive accuracy as more sequence and structural data become available.
RACER maintained predictive accuracy when substituting either or both of the TCR and peptide
used in training on a given MHC II allele. In cases with available crystal structures, contact map
analysis revealed a largely conserved interaction pattern reproduced across a variety of TCR-peptide
pairs associated with the IEX MHC 1I allele (Fig. 4), providing an explanation for the transferability
of RACER-derived interactions when trained on a particular crystal structure. Moreover, these re-
sults contributed to variety in the selection behavior of individual TCRs in that TCR-peptide systems
having more interactions in their corresponding contact map were correlated with systematic shifts
in their mean binding energies, which subsequently correspond to differences in their post-thymic
selection inclusion probability (Fig. 6). Previous investigations have characterized the probability
distribution for generating particular TCR sequences in VDJ recombination, and have even suggested
that the a posteriori observed post-selection TCRs had greater generation probabilities [15, 59], with
so-called “public” TCR sequences being observed in multiple individuals. Incorporation of contact
maps into our generative model contributes to variations in T-cell survival probability, and may offer
a physical interpretation of why public repertoires may survive thymic selection at higher rates[60],
in addition to providing an explicit means of estimating post-selection T-cell prevalence within a

given MHC-class restriction.

3.3 Recognition of foreign and point-mutated self-peptides

RACER, which leverages structural information to assess binding strength, can be used to simulate
the influence of selection on the resulting T-cell repertoire and, hence, on the recognition of tumor-
associated TANs across patients and cancer subtypes. Applying our model to CDR3 «, 3 chains
obtained from T-cell sequencing, together with possible TAN lists generated by deep sequencing
of cancer populations could provide a rapid method of generating clinically actionable information

for cancer specific TCRs in the form of putative TCR-TAN pairs, provided those TANs are similarly
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presented on the original MHC [48, 49]. While we focused our analysis on a single MHC restriction,
our approach could also be applied to the crystal structure of another TCR-p-MHC pair, together with
several known strong and weak binder candidates.

The relative efficacy of targeting TANs remains an important question with significant clinical
implications. We have shown that RACER can readily simulate full-scale thymic selection to pro-
duce an MHC-restricted T-cell repertoire. The overall agreement in post-selection behavior between
this study and our previous theoretical analysis is reassuring for both approaches. Taken together, our
findings suggest that thymic selection affords little to no recognition protection of peptides closely
related to self, thus supporting the notion that T-cells undergoing central tolerance to thymic self-
peptides are essentially memorizing a list of antigens to avoid. Given that a large class of TANs are
generated via point mutations in self-peptide, this result also provides a quantitative argument for the
efficacy of immunotherapies which target point-mutated neoantigens. Currently, we have focused
on predicting binding affinities of TCR-peptide pairs restricted to a particular MHC allele, offering
a proof-of-principle for epitope identification. This procedure can in general be repeated for other
MHC alleles. An immediate future goal will be to generalize RACER for predictions across MHC
alleles and gene classes.

While important, studying TCR-p-MHC pairwise interactions on the scale of an entire T-cell
repertoire is only one factor influencing adaptive immune system recognition. Signaling between
other adaptive immune system elements (including helper T-cells and natural killer cells) and intra-
cellular factors which influence antigen generation, abundance, and availability on the cell surface
also affect recognition rates. Encouraged by the RACER model’s reasonable selection and recogni-
tion behavior, we propose this optimized framework as the first of its kind tool for tackling general
questions regarding the interactions between the T-cell repertoire and relevant antigen landscape. Al-
though we calculate static antigen recognition probabilities, the temporal tumor-immune interaction
leads to dynamic co-evolution [24] reliant on the quality, abundance, and systems-level signaling of
antigens. In the setting of stem cell transplantation approaches, the availability of time series as-
sessments of immune cell repertoires, self-peptides, and tumor antigens promises to inform optimal

treatment strategies based on the donor immune system and host cancer population.
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« 4 Methods

w0 4.1 Details of the Hamiltonian used in our optimization

301 To evaluate the binding energies on the basis of a structurally motivated molecular energy model,
sz the framework of a coarse-grained protein energy model, AWSEM force field [46], was utilized for
a3 calculating the binding energies between the T-cell receptors (TCRs) and the peptide displayed on
s94 top of a MHC molecule. AWSEM is a coarse-grained model with each residue described by the
a5 positions of its 3 atoms — Car, C3 and O atoms (except for glycine, which does not have C3 atoms)
ass [46]. We used the C3 atom (except for glycine, where the Ca atom was used) of each residue to
a7 calculate inter-residue interactions. The original AWSEM Hamiltonian includes both bonded and

ses non-bonded interactions.
V:cotal - ‘/bonded + Vnonbonded (1)

a9 Since those residue pairs that contribute to the TCR-peptide binding energy, specifically those from
a0 the CDR loops and peptides, are in separate protein chains, only non-bonded interactions are con-

a0t sidered. Vionbondea 18 composed of three terms:

Vnobonded = V})airwise + %urial + ‘/Ziatabase (2)

a2  Among them, V}ia 1S @ one-body term describing the propensity of residues to be buried in or
a3 exposed on the surface of proteins. Vyatanase 1 @ protein sequence-specific term that uses information
s04 from existing protein database, such as secondary and tertiary interactions, to ensure locally accurate
a5 chemistry of protein structure. Since the TCR-p-MHC system features pairwise interactions between
ws a TCR and its corresponding peptide, only the term V,airwise 18 used for this study.

407 The pairwise Hamiltonian of AWSEM potential describes the interactions between any two non-

a8 bonded residues and can be further separated into two terms:

V})airwise - Vdirect + Vmediated (3)

a9 Vigirect Captures the direct protein-protein interaction of residues that are in between 4.5 and 6.5 A.

410 The functional form of Vi ect 1S

I
Vidirect = E Vij (az‘, aj)@ij 4
i€TCR
j€Epeptide

s in which ©]; = (1 + tanh[5.0 - (ryj; — 7};,)]) (1 4 tanh[5.0 - (rf ., — r;j)]) is a switching function

min

sz capturing the effective range of interactions between two residues (here taken between r. = 4.54

min
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and 7! = 6.54). Thus, two residues are defined to be “in contact” if their distance falls between
4.5 A and 6.5 A. 7ii(a;, a;) describes the residue-type dependent interaction strength, and is the
most important parameter that enters the optimization of RACER.

Vinediated 18 NOt used in this study, but we describe for completeness and because it will arise
in future extensions of our current model. Vi eqiateq describes the longer range interactions of two
residues separated between 6.5 and 9.5 A. Depending on the local density of residue environment,

Vinediatea can be further divided into a protein-mediated term and a water-mediated term.

1 ¢ _prot
Vinediated = — Z 0,7 (03" 75 (a5, a5) + oi " (aiy ag)) (35)

i€TCR
jEpeptide

where 012" = 1(1—tanh[7.0-(p;—2.6)])(1—tanh([7.0-(p;—2.6)]) and o7} * = 1—0o%** are switching
functions indicating the local environment based on the density of each residue (p; = Zjvzl @{f ,
where N is the total number of residues, i.e., p; depicts the number of residues in this “potential

well”). O = (1 + tanh([5.0 - (ryy — riE )])(1 + tanh[5.0 - (rLL, — ry)]) with [l = 6.5A and

min max min
7 _

max

a more accurate description of long-range interaction between two non-bonded residues, but such an

wat prot

r 9.5A. One can optimize Vi (i, aj), Vij (a;, a;j) together with 7;;(a;, a;). Vinediatea €DSUrES
approach will also increase computational expense when evaluating the binding energy in between
TCR and peptides by more than 5 folds, compared with only using Vji.ect. Since we show that
the use of Vgiect sufficiently separates strong binders from weak ones, only Vet is employed for
calculating the binding energies throughout our manuscript, for computational efficiency in studying
the TCR repertoire.

4.2 Optimization of RACER to maximize specificity of TCR-peptide recogni-
tion

For each interaction type, the 7;;(a;, a;) parameters constitute a 20-by-20 matrix of parameters that
describes the pairwise interaction between any two residues ¢, j, each with one of the 20 residue
types, a;, a;. Guided by the principle of minimum frustration [43], 7;;(a;, a;) was previously op-
timized self-consistently to best separate the folded states from the misfolded states of proteins.
Distilled into mathematical details, the energy model was optimized to maximize the functional
0E/AFE, where 0 E is the energy gap between folded and misfolded proteins, and A E' measures the
standard deviation of the energies of the misfolded states. An energy model was optimized based on
a pool of selected protein structures [61], where a series of decoy structures were generated by either
threading the sequences along the existing crystal structures, or by biasing the proteins into molten

globule structures using MD simulations [45]. The resultant v parameter thus determines an energy
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model that facilitates the folding of proteins with given sequences.

Motivated by this idea, RACER was parameterized to maximize the z-scores for fully separating
TCR strong binders from weak ones. Strong binders were chosen to be those top peptides that
survive and were enriched by more than 50 copies after four rounds of experimental deep sequencing
processes (details in Section Data used in our analyses) [27], together with the peptides present in
the deposited crystal structures [50]. The decoy sequences were generated by randomizing the non-
anchoring residues of each strong binder thereby generating a 1000 copies, and excludes the strong-
binder sequences. The « parameters were then optimized to maximize the stability gap between
strong and randomized set of decoy binders, ' = A-~, and the standard deviation of decoy energies,

AFE = vyB~, where the matrix A and B are defined as:

Ai = <¢i>wb - ¢sb

(6)
Bij = (0i0j)wb — (®i)wb{(®5)wb

In the above Eq. 6, ¢; is the functional form for each interaction type, either Viiect OF Vinediated- @i
also summaries the probability of contacts formation (interaction matrix) between pairs of amino
acids in a specific TCR-peptide system. The subscripts “wb” stands for “weak binders” and “sb”
stands for “strong binders”. The optimization of 6 E/AE = A~y /+/B~ can be performed effectively
by maximizing the functional objective R = Ay — A,/ B~, where the Lagarange multiplier \; sets
the energy scale. The solution of this optimization gives v o< B~!A. In the practice of protein
folding, this optimization was performed in an iterative way where the optimized parameters were
used for generating a new set of decoy protein structures. In this study, since different peptides
are structurally degenerate on top of MHC as observed from experiments [27], only one round
of optimization was performed. Since the optimization leaves a scaling factor as a free parameter,
throughout this manuscript, the binding energies are presented with reduced units. To obtain binding
energies that have physical units, the scaling factor can be further calibrated to fit the experimentally

determined binding affinities, such as the /Ky values measured by SPR experiments (Fig. 2C).

4.3 Data input used in our analyses

A deep-sequencing technique was developed to assess the binding affinity of a diverse repertoire of
MHC-II-presented peptides towards a certain type of TCR [27]. Specifically, 3 types of TCRs: 2B4,
SCC7 and 226, were used for selecting peptides upon four rounds of purification. The peptides that
survived and enriched with multiple copies bind strongly with the corresponding TCR. In contrast,
the peptides present initially but become extinct during purification represent experimentally deter-
mined weak binders. For each of the 3 TCRs, the peptides that end up with more than 50 copies

after the purification process, together with the peptides presented in the crystal structures, were
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selected as strong binders. 1000 decoy sequences were generated for each of the strong binders by
randomizing the non-anchoring residues. Both strong binders and decoys were included in the train-
ing set. In addition, to test the performance of RACER, peptides having at least 8 copies initially but
disappearing during purification were selected as experimentally determined weak binders and were
assigned to the test set for each TCR. To test the transferability of the model, we used weak-binding
peptides of two different TCRs (e.g., SCC7 and 226) as additional test sets distinct from the TCR
used in training (e.g., 2B4).

When structural data for a specific TCR-peptide pair of interest is unavailable, we built the struc-
ture by homology modeling [62], based on a known TCR-peptide crystal structure incorporating
the same TCR. Since potential steric clashes after switching peptide sequences may disfavor the
strong binders used in our training set, we used Modeller [62] to relax structures of strong binders
before including them in the training process. Likewise, the binding energies of the experimentally
determined weak binders were also evaluated after structural relaxation. The structural relaxation
adds several seconds of computational time for each TCR-peptide pair, and thus poses a challenge
for large scale repertoire analysis. However, the coarse-grained nature of RACER framework may
significantly reduce the probability of side-chain clashes after switching peptide sequences. To test
the accuracy of our model prediction without structural relaxation, we calculated the binding ener-
gies of strong and weak binders of TCR 2B4 by only switching the peptide sequences, omitting any
structural adjustment. Our result (Fig. S2) shows comparable accuracy in separating strong from
weak binders, similar to that reported in Fig. 2. In the same vein, the transferrability of RACER
was also maintained without structural relaxation (Fig. S4). Encouraged by the accuracy of our
coarse-grained model without relaxation, we modeled large pairwise collections of TCR-peptide
interactions by only altering their corresponding sequences.

For blind assessment of TCR transferability, we ask whether we can improve prediction accuracy
if there are available strong binders determined in crystal structures of the target TCRs. To test this,
we added interaction matrices calculated from the crystal structures of the other two TCRs as two
additional strong binders in the training set. For example, in the case of TCR 2B4, the interaction
matrices from the crystal structures of TCR 5CC7 and 226 were added into the training set of TCR
2B4, constituting a total of 46 strong binders. The test shows a significant improvement in predicting
the binding specificity of TCR 5CC7 and 226 (Fig. 5B).

For an additional independent test of the transferability of RACER under the same MHC allele,
we used the benchmark set reported in [53]. Four crystal structures are curated in their benchmark
set, including three TCRs: 3QIB (2B4), 3QIU (226), 4P2Q (5CC7) and 4P2R (5CC7). Each of them
have one strong-binding peptide presented in the crystal structure, and 4 weakly binding peptides.
All the TCR-peptide pairs are associated with MHC-II allele IE¥, and three of them overlap with

the main dataset reported in [27]. We therefore used the energy model previously trained from TCR
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2B4 to test its transferability for the other three TCR-peptide pairs. The calculated binding energies
were converted into a Z score by referencing to a set of 1000 randomized peptides of corresponding
TCRs: Z = %_idj“’ys with 0 (Egecoys) being the standard deviation of Egecoys. The ROC curve
and AUC score were calculated by scanning through different thresholds of the Z score.

4.4 Accuracy of RACER predictions omiting the crystal structure of target
TCR-peptide pairs

To test the transferability of RACER without requiring any measured structure for a new TCR, we
threaded the sequences of the CDR3 loops of the new TCR on the TCR structure used in our train-
ing. The length of CDR3/ chain is the same among three TCRs (2B4: ASSLNWSQDTQY; 5cc7:
ASSLNNANSDYT, 226: ASSLNNANSDYT), but the length of CDR3« chain is different (2B4:
AALRATGGNNKLT; 5cc7: AAEASNTNKVYV; 226: AAEPSSGQKLYV). In order to accommodate
such difference when threading the CDR3« sequences, we used a simple approach: aligning them
based on the first two AA residues, leaving two gaps for the TCR 5cc7 and 226. Modeller[62] was
used to build the new loop structure based on these aligned new sequence, using the single struc-
ture in the training set as the template. These homology-modeled structures were then used for
calculating the binding energies of the strong and weak binders of the new TCRs, using the trained
interaction matrix. We also omitted the step of structural relaxation when replacing a new peptide
sequence on the built structure. Such approach is unlikely to reduce RACER’s performance, as

demonstrated in Fig. S2.

4.5 The leave-one-out cross validation

The Leave-one-out cross validation (LOOCV) was used to test the predictive power of RACER on
its ability to identify strong binders. Specifically, one of the 44 strong binders of the TCR 2B4
was removed from the training set, and its predicted binding energy F.q was compared with the
experimentally determined weak binders. If the median of the weak binders is larger than E,..q (a
larger binding energy is associated with smaller affinity), the testing strong binder is successfully
identified. Similar tests were performed for TCR Scc7 and TCR 226. The performance of RACER
is compared with that from the clustering of peptide sequences using the algorithm from CD-Hit
[63] (See SI for details).
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4.6 Comparing the correlation of binding energies with the K from SPR

experiments

Surface plasmon resonance (SPR) was performed to assess the binding affinities of the three TCRs
towards 9 selected peptides [27]. The correlation between the predicted binding energies from
RACER and the dissociation constant Ky evaluated from the SPR experiments thus constitutes a
separate set of tests for the accuracy of RACER. The K4 values were obtained from fitting the SPR
titration curves (Fig. S4F of [27]) using equation [, = %‘f—%" with C, K4 and R, as free param-
eters. The Pearson correlation coefficient and the Spearman’s rank correlation coefficient between

kgT log(K4) and predicted binding energies were used to quantify this correlation.

4.7 Evaluation of contact residues of MHC-restricted TCR-peptide pairs

The contact map of a given TCR-peptide structure was constructed by measuring the proximity Wj ;
between each residue of peptide (residue i) and CDR loops (residue j) based on their mutual distance,

using a smoothed step function:

1 — tanh (d — dpax)
9 )

Only Cpz atoms were included in our calculation (except for glycine, where the Co atom was
used). The CDR3 loops were utilized as defined in the IEDB database [64]. The constructed contact

Wi = with dpex = 6.5A. (7)

map represents those residues that are spatially close to each other in the given crystal structure.

4.8 Evaluation of different TCR-p-MHC interactions used for statistical study

In order to assess the statistical behavior of the inferential model, we calculated the pairwise binding
interactions between a simulated T-cell population of size N; and collection of N,, = 10* thymic
self-peptides. For this proof-of-principle study, we used the TCR 2B4 as an example, uniformly
varying the 10 amino acids of the peptides, as well as those residues from the TCR that are in spatial
contact with the peptide. TCR-peptide pairwise energies were calculated for N, = 10° randomized
TCR sequences using the RACER energy matrix optimized for TCR 2B4, and /N; = 2000 for each
of the TCR-p-IE* systems given in Fig. 4 using energies weighted according to their contact maps,
along with a model using a contact map with diagonal interactions (Fig. 6A). Substitution of TCR-
peptide sequences with the newly generated ensemble yielded a total of N, N,, (10° in the 2B4 case;
2% 107 for each of the cases involving the TCR-p-IE* and diagonal contact maps) TCR-peptide pairs
representing interactions occurring during thymic selection. Given our previous results (Fig. S2),

we avoid the computationally expensive task of structural relaxation, and instead calculate pairwise
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interactions with the original structure, requiring 5,000 CPU hours on an Intel(R) Xeon(R) CPU
E5-2650 v2 for the large-scale 2B4-optimized simulation.

4.8.1 Thymic selection

Each T-cell survives if the maximal interaction over all self-peptides does not exceed some up-
per threshold. Selection thresholds were chosen to achieve 50% [11]. In all cases, the RACER-
optimized energy matrix was used for energy assignment. Thymic selection was performed for each
of the TCR-p-IE* examples and their corresponding contact maps given in Fig. 4 (Fig. 6A). For
each TCR-p-IE* example, N, = 2000 preselection TCRs were created by varying uniformly the
original TCR CDR3 « and 3 sequences over amino acid space, keeping the seugnece lengths un-
changed. A similar randomization yielded N,, = 10* randomized peptide sequences representing
self-peptides. For each of the 2000 randomized TCRs, binding energies were calculated against
the 10* self-peptides by selecting the corresponding entries in the RACER-optimized energy matrix
weighted by the original TCR-p-IE* contact maps, and the maximum energy was recorded. The
fraction of TCRs whose maximal binding energy exceeded the selection threshold F,, traces the
survival curves. This procedure, utilizing the RACER-optimized energy matrix, was repeated for a
simplified model that utilizes only adjacent contacts (i.e. a strictly diagonal contact map with each
entry having weight one) in the TCR-peptide interaction. The number of diagonal elements in the
diagonal contact model was taken to be 20 (10 for each of the CDR3«a-peptide and CDR33-peptide

pairs).

4.8.2 Self-peptide potency

Most self-peptides present in thymic selection are expected to participate in the deletion of self-
reactive T-cells. Thus, a reasonable model of thymic selection would feature a majority of self-
peptides contributing to the selection of immature T-cells. A rank order of these self-peptides based
on their ability to recognize unique T-cells, or potency, characterizes the extent to which each self-
peptide is utilized in thymic selection. The rank order of potency was created for the RACER model
utilizing the crystal structure of the 2B4 TCR (PDB ID: 3QIB) and its corresponding energy matrix
derived from the set of experimentally determined good-binders. The thymic selection process using
10* self-peptides and 10° TCRs for the 2B4-optimized RACER model described above generates a
total of 10? pairwise binding energies. The negative selection threshold E,, was selected to yield 50%
selection, resulting in ~ 5 - 10* deleted TCRs. The number of TCRs deleted by each self-peptide
was recorded. The peptide deleting the most TCRs defines the most potent self-peptide. TCRs
recognized by this peptide are removed from the list of total TCRs, and this peptide is similarly

removed from the list of self-peptides. This process is repeated on the smaller TCR and self-peptide
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so0 list to determine the second most potent peptide. Additional iteration until no TCRs remain provides
et the rank order of self-peptides in decreasing order of potency. The cumulative number of deleted

sz TCRs is plotted in decreasing order of peptide potency.

sz 4.8.3 Antigen recognition probabilities for individual T-cells and T-cell repertoires

s+ Utilizing the same post-selection T-cell repertoire from the previous section, post-selection T-cells
sos were quantified for their ability to recognize random non-self-antigens and tumor neoantigens that
sos differ from one of the NV, thymic self peptides by one residue. 50% selection of TCRs result in
s07 approximately 5 - 10* surviving, for which pairwise interactions are generated against 10 random
s0s and 10% point-mutated self-peptides, representing foreign and tumor-associated neoantigens, respec-
o9 tively (randomly generated peptides were checked to ensure non-membership in the set of thymic
st0 self-peptides). Estimates of individual TCR recognition probability were calculated by averaging
s11 the 5 - 10%-by-10? indicator matrix, having values of 1 (resp. 0) corresponding to recognition (resp.
s12 no recognition). The previous quantity estimates an individual TCR’s antigen recognition ability.
s13  Estimates of the corresponding recognition probability for the entire post-selection MHC-restricted
s1«  T-cell repertoire was calculated by assessing the 1-by-10? vector indicating the presence or absence
s15 Of at least 1 recognizing TCR. The post-selection individual and repertoire T-cell recognition prob-
16 abilities of random and point-mutant antigens were then compared with previously derived analytic

17 results for two random energy models [20].
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Figure 1: Summary of the modeling approach employed in this study. A. The optimization of RACER starts
from a series of TCR binders obtained from the deep-sequencing experiments [27], as well as the correspond-
ing TCR-p-MHC crystal structures deposited in the database [50]. The sequences of the strong binders, as
well as the generated decoy binders from randomizing the non-anchoring sequences of the strong binders, are
collected for parameterizing a pairwise energy model which maximizes the energetic gap between the strong
binders and a randomized set of decoys. The resulting energy model can be used to quickly evaluate the
binding affinities of an ensemble of TCR-peptide interactions at the population level. The calculated binding
affinities can be used for simulating the negative selection process in the thymus, as well as measuring the
recognition probability of the post-selection TCRs. Finally, this kind of ensemble study can be used for im-
munogenic applications that require input from an entire T-cell repertoire. B. Three tests were conducted to
evaluate the performance of RACER. Case I: the training set includes one TCR-p-MHC structure and multiple
peptide sequences. The test set includes the same TCR structure and a separate set of peptide sequences. Case
II: the training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes
two different TCR structures (restricted on the same MHC allele) and two separate sets of peptide sequences.
Structures for the two additional test TCRs are included in predictions. Case III: The training set includes
one TCR-p-MHC structure and multiple peptide sequences. The test set includes only the sequences of two
different TCRs (restricted on the same MHC allele) and two separate sets of peptides. Only the structure from
the original training TCR was used in prediction (The interactions of interest are indicated by double-sided
arrows between TCR and p-MHC). 28
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Figure 2: RACER can fully separate the strong binders of a specific TCR from its weak binders. A. For
three TCRs (2B4, SCC7 and 226) whose strong and weak binders have been experimentally determined [27],
the RACER-derived calculated binding energies can well separate the strong binders from the weak ones of
each individual TCR. B. In the leave-one-out-cross-validation exemplified using the TCR 2B4, RACER can
successfully recognize the withheld strong binders in 43 out of 44 tests, where the predicted binding energies
of the withheld test binder (green) is lower than the median (red bar) of the experimentally determined weak
binders. The only exception is marked as a black square. C. In a completely independent testing data measured
by surface plasmon resonance (SPR) [27], the calculated binding energies of testing peptides correlate well
with their experimentally determined dissociation constant K4. Best-fit linear regression is depicted for each
case. Corr: Pearson correlation coefficient. Sprman Corr: Spearman’s rank correlation coefficient.
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Figure 3: The specific contact pattern from the TCR-peptide structures dictates a optimized energy model
different from those of a typical protein-folding force field. A. The 3D crystal structure of the 2B4 TCR
bound to a specific peptide (PDBID: 3QIB). The parts of the structure that are in contact between the TCR and
peptide are color-highlighted as green (TCR) and orange (peptide). Also shown are residues alanine (blue),
threonine (magenta) and asparagine (tan) which are prevalent in this structure (CPK representation [57]). B.
The probability of contact formation between each two of the 20 amino acids in the set of strong binders (left)
and the set of randomized decoy binders (right) of the TCR 2B4. C. The residue-based interaction strength
determined by RACER for the TCR 2B4. A more negative value indicates a stronger attractive interaction
between the corresponding two residues.
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Figure 4: The contact maps of TCR-peptide pairs within the same MHCII allele share structural similarity.
Contact maps are calculated using distances from each pairwise TCR-peptide amino acid combination us-
ing Eq. 7 for the following MHC-II IEX-restricted TCR-peptide pairs: 3QIB - peptide ADLIAYLKQATK
with TCR 2B4 A. CDR3«a (AALRATGGNNKLT) and B. CDR38 (ASSLNWSQDTQY) chains; 3QIU - pep-
tide ADLIAYLKQATK with TCR 226 C. CDR3«a (AAEPSSGQKLYV) and D. CDR3/5 (ASSLNNANSDYT)
chains; 4P2R - peptide ADGVAFFLTPFKA with TCR 5cc7 E. CDR3a (AAEASNTNKVYV) and F. CDR34
(ASSLNNANSDYT) chains. Similarity in interaction topology across TCR-peptide pairs is observed by com-
paring the contact silhouette of interacting coordinates for the « (top row) and 3 (bottom row) TCR sequences.
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Figure 5: RACER shows transferability in terms of predicting TCR-p-MHC interactions across different
TCRs. A. The energy model trained based on one TCR (e.g. 2B4) is capable of resolving the experimen-
tally determined strong binders from weak binders of the other two TCRs (e.g., 5CC7 and 226). B. By adding
strong binders from crystal structures of the other two TCRs into training sets, RACER can be further im-
proved for identifying the experimentally determined strong binders. The title of each figures follows the
format of “target_training TCRs”, e.g., “2B4_5CC7” means using the energy model trained from the TCR
5CCT7 for predicting the peptide binding affinities of the TCR 2B4. “Xtals” means the strong binders from the
crystal structures of the other two TCRs were added into the training set. C. Upper panel: The energy model
trained on TCR 2B4 is used to predict the binding energies of sequences from other TCRs associated with the
IEk-associated TCRs [53]. Z-scores of known strong binders (grey) and weak binders (orange) provided by
[53] were calculated referenced to a set of 1000 decoy peptides with randomized sequences (blue violin plot),
with lower z-scores indicating better predictive performance. Lower panel: The calculated z-scores of each
TCR were used to depict Corresponding ROC curve and AU-ROC (0.89, lower panel).
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Figure 6: T-cell repertoire simulations of thymic selection and antigen recognition in the RACER model.
RACER-derived simulations of TCR recognition exhibit sensible thymic selection and similarity in the recog-
nition rates of foreign and point-mutated self antigens. A. Simulated thymic selection curves (T-cell recog-
nition probability as a function of negative selection binding energy cutoff) incorporating the effects of non-
adjacent contacts (given in Fig. 4) using N,, = 10* uniformly randomized self-peptides and N; = 2000
randomized IEF-restricted TCRs. 4P2Q and 4P2R (purple) use T-cells generated by randomizing the CDR3
region of TCR 5cc7, while 3QIB (blue) randomizes the CDR3 of TCR 2B4, and 3QIU (yellow) randomizes
the CDR3 TCR of 226 (in all cases, randomized CDR3 lengths were unchanged from the original TCR) (red
curve uses RACER energy using a diagonal contact map model whose study here is motivated by previous
work [20]). B. Utilizing RACER-derived energy assessments from the 2B4 crystal structure, the probability
of recognizing foreign and point-mutant antigens for individual post-selection T-cells is plotted as a function
of the percentage of TCRs surviving negative selection (ordinate of the graph in panel a, simulations averaged
over all post-selection TCRs with pairwise interactions amongst 10% random peptides and 10 point-mutant
peptides). C. The recognition probability of foreign (black) and mutant (red) peptides by the entirety of
the TCR repertoire is plotted as a function of pre-selection TCR repertoire diversity, with negative selection
thresholds giving 50% survival.
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