

1 Rapid Assessment of T-Cell Receptor Specificity of the 2 Immune Repertoire

3 Xingcheng Lin^{1,2,3,*}, Jason T. George^{1,4,*}, Nicholas P. Schafer^{1,5}, Kevin Ng Chau⁶,
4 Cecilia Clementi^{1,5,7}, José N. Onuchic^{1,2,†}, and Herbert Levine^{1,6,†}

5 ¹Center for Theoretical Biological Physics, Rice University, Houston, TX

6 ²Department of Physics and Astronomy, Rice University, Houston, TX

7 ³Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
8 MA

9 ⁴Medical Scientist Training Program, Baylor College of Medicine, Houston, TX

10 ⁵Departments of Chemistry, Rice University, Houston, TX

11 ⁶Department of Physics, Northeastern University, Boston, MA

12 ⁷Department of Physics, Freie Universität, Berlin, Germany

13 *Equal contribution

14 [†]To whom correspondence should be addressed: jonuchic@rice.edu,

15 h.levine@northeastern.edu

16

Abstract

17 Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at
18 the heart of improved cancer immunotherapy, but predictive models capable of high-throughput
19 assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystal-
20 lography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce
21 a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune
22 repertoire level. RACER applies supervised machine learning to efficiently and accurately re-
23 solve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable
24 a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system.
25 When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER ac-
26 curately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus
27 demonstrating its utility in helping address the large computational challenge of reliably identify-
28 ing the properties of tumor antigen-specific T-cells at the level of an individual patient's immune
29 repertoire.

30

Significance Statement

31 Effective TCR-epitope prediction for optimized cancer immunotherapy requires an accurate assess-
32 ment of billions of TCR-antigen interacting pairs. We introduce RACER, a supervised, physics-
33 based machine learning algorithm trained on deposited TCR-p-MHCs sequences and structures.
34 RACER is capable of estimating TCR-peptide binding affinity at a rate of 0.02 seconds per pair, thus
35 enabling large-scale evaluations of TCR epitope recognition. When restricted to the same MHC al-
36 lele, RACER accurately estimates TCR binding specificities by determining their associated strong
37 binders. We apply RACER to simulate thymic negative selection, demonstrating that this technique
38 can accurately quantify the recognition rate of tumor-associated neoantigens and foreign peptides.
39 Taken together, our approach demonstrates RACER's potential as a high-throughput tool for inves-
40 tigating TCR-peptide interactions between the TCR repertoire cancer peptidome.

41 1 Introduction

42 The advent of new strategies that unleash the host immune system to battle malignant cells represents
43 one of the largest paradigm shifts in treating cancer and has ushered in a new frontier of cancer
44 immunotherapy [1]. Various treatments have emerged, including checkpoint blockade therapy [2,
45 3, 4], tumor antigen vaccine development [5, 6], and the infusion of a donor-derived admixtures of
46 immune cells [7]. A majority of successful treatments to-date rely on the anti-tumor potential of the
47 CD8+ T-cell repertoire, a collection of immune cells capable of differentiating between malignant
48 cells and normal tissue by recognizing tumor-associated neoantigens (TANs) detectable on the cell
49 surface [8]. Therefore, accurately assessing a T-cell repertoire's ability to identify cancer cells by
50 recognizing their tumor antigens lies at the heart of optimizing cancer immunotherapy.

51 A complete understanding of adaptive immune recognition and the tumor-immune interaction
52 has remained a formidable task, owing in part to the daunting complexity of the system. For example,
53 antigens and self-peptides contained in an epitope (i.e. recognizable peptide sequences) space of
54 size $\sim 20^9$ are presented to $\sim 10^7$ unique T-cell clones in each individual [9], a small fraction of
55 the upper limit of TCR diversity ($\sim 10^{20}$) [10, 11]. Moreover, their behavior is tempered via an
56 elaborate thymic negative selection process in order to avoid auto-recognition [12, 13]. Here, T-cell
57 clones, each with uniquely generated T-cell receptors (TCRs), interface with numerous ($\sim 10^4$) self-
58 peptides presented on the major histocompatibility complex (p-MHC) of thymic medullary epithelial
59 cells via TCR CDR3 α and β chains, and survive only if they do not bind too strongly [14, 15, 16].
60 This process, together with systems-level peripheral tolerance [17, 18], imparts T-cells with durable
61 tolerance to major self-peptides and influences many of the recognition properties of the resultant
62 repertoire. The complexity of the adaptive immune system has attracted numerous mathematical
63 modeling efforts quantifying the mechanisms underlying T-cell immune response. Collectively, the
64 field has made significant progress in understanding at a population level the effects of tolerance on
65 T-cell recognition and self vs. non-self discrimination [14, 19], including the effectiveness of the
66 repertoire at discerning tumor from self-antigens [20], the repertoire's ability to impart immunity
67 against current and future threats [21, 22], and the extent of selection pressure that the repertoire
68 exerts on an evolving cancer population [23, 24].

69 Any approach to furthering the understanding of these system-scale properties must start with
70 an ability to evaluate the interaction between specific TCR-p-MHC pairs. Despite this, a compreh-
71 ensive, biophysical model capable of learning the energy contributions of each contact pair in a
72 TCR-p-MHC system and applying them to new predictions remains elusive. To-date, experimental
73 research has integrated solved crystal structures [25, 26] with peptide sequencing [27, 28, 29] to
74 probe the physiochemical hallmarks of epitope-specific TCRs. Publicly available crystal structures
75 have enabled researchers to identify detailed structural features that influence the binding specificity

76 of TCR-p-MHC pairs, and machine learning algorithms have made progress on the complementary
77 task of accurately predicting peptide-MHC binding [30, 31, 32, 33, 34, 35, 36] as well as TCR-
78 peptide binding [37, 38]. However, the limited number of available structures relative to the diver-
79 sity in MHC alleles and TCR-peptide combinations complicates extrapolation to unsolved systems.
80 Alternate template-based structural modeling [39] and docking [40] approaches are limited by cal-
81 culation speeds (at best one structure per minute), thus it is unlikely in the foreseeable future that
82 such strategies can be used to investigate the number of TCR-peptide interactions necessary to study
83 the problem at the immune-repertoire level, as this task easily requires the assessment of more than
84 10^9 pairs simultaneously [16]. Prior attempts have approximated binding affinity by implementing
85 statistical scores calculated from docking algorithms [40]. These scores are trained using examples
86 of generic protein binding and thus lose the unique aspects of the TCR-peptide interactions.

87 To deal with this challenge, we develop a systematic TCR-p-MHC prediction strategy for rapid
88 and accurate assessment of TCR specificity. Our strategy, which we refer to as the Rapid Coarse-
89 grained Epitope TCR (RACER) model, is capable of differentiating between self and foreign anti-
90 gens and can evaluate 10^9 TCR-peptide pairs in the setting of TCR-peptide combinations restricted
91 to a single MHC allele. This method we develop employs supervised machine learning on known
92 TCR-peptide structures and experimental data to derive a coarse-grained, chemically-accurate en-
93 ergy model governing TCR-p-MHC interactions, a strategy adapted from earlier efforts to predict
94 protein folding [41, 42, 43, 44, 45, 46]. The MHC loci, while polymorphic, bind comparable num-
95 bers of peptides across various alleles [47]. Our calculations are restricted to a fixed MHC allele,
96 but could be generalized with the use of additional training data. Confining our predictions to TCRs
97 with a given MHC restriction enables the transferability of the method to TCRs that are not included
98 in the training set. The approach provides a tractable means to extract pertinent TCR-peptide inter-
99 actions so that affinity may be predicted based on similarly restricted TCR-peptide primary sequence
100 data. RACER accurately distinguishes binding peptides across various TCRs and validation tests.
101 Lastly, as a preliminary test of the usefulness of our approach, we simulate a thymic selection and
102 show agreement with previously established estimates of T-cell binding energy distributions, tumor
103 neoantigen and foreign peptide recognition rates for a given class of MHC-restricted TCRs [48, 49].
104 Taken together, our results demonstrate RACER's utility in learning the interactions relevant for
105 high-throughput TCR-epitope binding predictions.

106 2 Results

107 2.1 RACER can distinguish peptides that bind strongly to a given TCR from 108 those that bind weakly

109 The RACER's optimization protocol (Fig. 1A) utilizes high-throughput deep sequencing data on
110 TCR-peptide interactions across a large peptide library [27], together with known physical contacts
111 between TCRs and peptides obtained from deposited crystal structures [50]. The training data comes
112 from cases where the peptide is displayed by the same allele of a mouse MHC class II molecule.
113 Adapting an approach previously implemented for studying folding of proteins [51, 45], the RACER
114 optimization strategy trains a pairwise energy model which maximizes TCR-peptide binding speci-
115 ficity. The energy model was optimized by maximizing the z-score defined to separate the affinities
116 of experimentally determined strong-binding peptides, called "strong binders" hereafter, from com-
117 putationally generated, randomized decoys¹. The optimized residue type-dependent energy model
118 can then be used to calculate the binding energies of an ensemble of new TCR-peptide systems. As
119 will be shown below, we performed three different levels of test (Fig. 1B), and find the predicted
120 binding energies can differentiate strongly binding peptides from weak ones, provided they are dis-
121 played by the same MHC allele as that of the training set. Crucially, accurate predictions can be
122 made even without knowledge of the actual crystal structure, although the predictions are improved
123 when this additional information is available.

124 Fig. 2 summarizes RACER's predictive performance for a specific TCR (Case I in Fig. 1B).
125 For this fixed TCR, pre-identified strong binding peptides and decoy peptides with randomized se-
126 quences were used to train the energy model (See Methods section for details). Another set of pep-
127 tides independently verified experimentally as weak binders constitutes the testing set. The resulting
128 energy model was then applied to calculate binding energies for the strong binders in the training
129 set as well as the peptides in the testing set. This approach was repeated on three independent TCRs
130 that are associated with the IE^k MHC-II allele: 2B4, 5CC7 and 226. Although the experimentally
131 identified weak binders were omitted from the training set, RACER effectively resolves binding en-
132 ergy differences between experimentally determined strong and weak binders, with z-scores larger
133 than 3.5 in all cases (Fig. 2A), highlighting the predictive power of this approach.

134 Despite their relative sparsity in antigen space, strong binders play a central role in T-cell epi-
135 tope recognition. It is obviously more difficult to predict strong binders than weak binders. To
136 test RACER's ability to identify strong binders, we performed a leave-one-out cross-validation
137 (LOOCV) test, using data from TCR 2B4 as an example. For each test iteration, one known strong

¹The z-score is defined as the difference between the average binding energies of strong binders versus decoys, divided by the standard deviation of the decoy energies. Throughout this manuscript, we report the absolute value of the calculated z-score, except for Fig. 5C.

138 binder was withheld from the training set of 44 strong binders. Our optimization protocol was ap-
139 plied to train the energy model by using the remaining 43 peptides and then predicting the binding
140 energy of the withheld peptide. This prediction was then compared to predicted binding energies of
141 known weak binders, and the procedure was repeated for each of the 44 peptides. Our model is able
142 to accurately distinguish the withheld strong binder in 43 cases (Fig. 2B). This is in stark contrast
143 to a cluster-based attempt at strong binder identification based on peptide sequences alone, which at
144 best correctly identifies 19 out of 44 strong binders (See SI for details). The same LOOCV test was
145 performed for TCR 5cc7 and 226, which correctly identified 120 out of 126 strong binders of 5cc7,
146 and 267 out of 274 strong binders of 226.

147 In order to further characterize RACER's predictive power, an independent set of K_d values mea-
148 sured by surface plasmon resonance (SPR) [27] were compared with predicted affinities. The SPR
149 experiments were performed over 9 independent peptides for each of the aforementioned three TCRs.
150 The free energies, $k_B T \log(K_d)$, were compared with calculated binding energies from RACER as
151 a quantitative test of binding affinity prediction accuracy. Lower binding energies indicate stronger
152 binding affinity so that a positive correlation between the $k_B T \log(K_d)$ values and calculated binding
153 energies implies a successful prediction. As shown in Fig. 2C, RACER was able to correctly predict
154 the order of binding affinities of these 9 peptides for all TCRs, with an average Pearson correlation
155 coefficient of 0.74, and an average Spearman's rank correlation coefficient of 0.65.

156 **2.2 RACER's residue type-dependent interactions are optimized specifically 157 for TCR-peptide recognition**

158 The data utilized by RACER includes strong binders and an input crystal structure, as well as TCR
159 and peptide primary sequences, which determine an interaction pattern that was then used to con-
160 struct a system-specific force field. To illustrate this, we focus on the 2B4 TCR as an example (Fig.
161 3). The crystal structure of TCR 2B4 (Fig. 3A) reveals that there can be many threonine (T) and
162 asparagine (N) residues on the CDR loops region of the TCR. In the strong binder set, these residues
163 tend to interact with specific peptide residues such as alanine (A), as seen for the specific peptide
164 given in the figure. This notion can be formalized by showing the matrix of observed probabilities
165 of close proximity of specific residue pairs. Thus, we see that certain pairs such as A-T and A-N
166 are significantly enriched in the set of strong binders, while much less so in the decoy set (Fig. 3B).
167 This then will mean that the optimized energy model shows the strongest attractions between the
168 A-T, A-N residue pairs (Fig. 3C). This relative enrichment contrasts with the TCR tryptophan (W)
169 residue which frequently interacts with alanine (A) in both strong binders and decoy peptides. As a
170 result, the optimized energy model does not favor the A-W interaction.

171 This energy model is rather distinct from ones typically used for studying protein folding. In

172 order to compare the RACER-derived interaction matrix to well-established force fields described in
173 the protein folding literature, we substitute our interaction matrix with the standard AWSEM force
174 field [46] (optimized on deposited folded proteins) and the Miyazawa-Jernigan (MJ) force field [52]
175 (constructed using the probability distribution of contacting residues from deposited proteins) and
176 calculate the corresponding binding energy predictions for the TCR 2B4 peptides. We find that
177 neither force field fully resolves these groups, with z-scores of 0.69 and 1.28, respectively (Fig.
178 S1). Similar trends were observed utilizing the peptides corresponding to the 5CC7 and 226 TCRs,
179 effectively demonstrating the necessity of RACER's *de novo* identification of pertinent structural
180 information for studying the TCR-peptide system.

181 **2.3 RACER's interactions generalize across TCRs associated with a given
182 MHC allele**

183 Given RACER's accuracy in resolving test peptides presented to the specific TCR used for training,
184 we next explored the feasibility of extending predictions to additional TCR-peptide pairs albeit with
185 the same MHC restriction. Toward this end, we assessed whether the physical contacts implicitly
186 encoded in RACER's optimized force field were conserved within IE^k -restricted TCR-peptide pairs.
187 The three IE^k -restricted TCRs considered in our analysis all have been tested with peptides bound to
188 the IE^k mouse MHC molecule. The available crystal structures have a significant degree of structural
189 similarity at the TCR CDR3-peptide binding interface (see Fig. 5 of [27]). We further quantified
190 the TCR CDR3-peptide contacts for each pair, constructing a contact map based on their crystal
191 structures (see Methods section for full details). Our results shown in Fig. 4 suggest that despite
192 differences in TCR and peptide sequences, this set of TCRs share common structural features which
193 should aid in imparting transferability to the trained interaction matrix. We find however that these
194 features are not preserved across different MHC class II genes (Fig. S3).

195 RACER's ability to accurately identify strong binders based on training with a fixed TCR,
196 together with the fact that a majority of the contact structure is preserved within a given MHC-
197 restricted set of TCRs, suggested that we assess RACER's ability to accurately predict binding pep-
198 tides for other similarly restricted TCRs. Toward this end, we apply the energy model optimized
199 using binding data for one of the three TCRs to predict the TCR-peptide binding energies of the
200 remaining two holdout TCRs (Case II in Fig. 1B). To do this, we initially use a known structure for
201 each of the holdouts, and the interaction matrix learned on the training TCR to predict the binding
202 energies of the experimentally determined strong and weak binders for each of those holdout TCRs.
203 Although the z-scores measured for these alternate TCRs are lower than those found previously in
204 Sec 2.1, RACER still successfully distinguishes a majority of strong binders from weak binders,
205 with an average z-score of 1.8 (Fig. 5A). This demonstrates that, despite CDR3 primary sequence

206 diversity, distinct TCR-p-MHC systems still share similar structural-sequence patterns, as long as
207 they are associated with the same MHC allele.

208 In order to test whether the incorporation of additional TCR structural information in the op-
209 timization step could improve RACER's predictive accuracy, we next included crystal structures
210 for the remaining TCRs (5cc7 and 226) together with a single strong binder for each case into the
211 training set comprised of 2B4 peptide pairs (See Methods section for details). This procedure was
212 repeated three times by substituting for the training set TCR and peptide pairs. We find that the
213 new energy model demonstrates significant improvement in z-scores. These results suggest that fu-
214 ture incorporation of additional crystal structures of target TCRs may lead to improved resolution of
215 strong and weak binders via refinement of the optimized energy model.

216 To provide an additional test and to quantify our discrimination capability, we used an indepen-
217 dent dataset from [53]. Four independent TCRs (PDB ID: 3QIB, 3QIU, 4P2Q, 4P2R) from their
218 curated benchmark dataset are associated with the IE^k allele; note that three of these overlap with
219 the TCRs in our current study. To test the performance of RACER for different TCR-peptide pairs,
220 we used the energy model trained based on 2B4 (3QIB) to predict the binding energies of both strong
221 and weak binders for the three remaining TCRs. This calculation again uses the structure found for
222 the one strong binding peptide for each of the 3 TCRs. Our calculation re-emphasizes that RACER
223 can successfully distinguish strong binders even when it is trained based on a different TCR (Fig.
224 5C), with an AUC of 0.89. Of note, when we tested data from the same study involving TCR-p-
225 MHCs with different MHC alleles, RACER cannot pick out strong binders, presumably due to the
226 markedly different TCR-peptide interacting patterns (Fig. S3).

227 Next we address the question of the extent to which it is necessary to have at hand at least one
228 TCR-p-MHC crystal structure in order to use RACER's interaction matrix to identify other good
229 binders (Case III in Fig. 1B). Of course to evaluate the binding energy we must have a structure; the
230 alternative to having a measured structure for a new sequence is to thread that new CDR3 sequence
231 into the crystal structure used for the training data. For MHC II, this introduces an uncertainty in
232 registration. For the cases at hand, this issue arises only for the α chain as the β chains for all
233 three TCRs are all of length 12 and there is no residual ambiguity. We tested the simplest possible
234 assumption, namely that we start at the same place where all three chains have the first two residues
235 AA and leave no gaps (See Methods for full details). Fig. S4 shows that this procedure again
236 leads to successful discrimination between good and poor binders, with an average z-score of 2.36.
237 Thus, we conclude that the structures are sufficiently similar that not only can we use the interaction
238 matrix derived from a single TCR training set for other TCRs but we can also use the same structure.
239 This then allows us to make estimates at the repertoire scale without the impossible task of creating
240 extremely large numbers of TCR-p-MHC structures.

241 2.4 RACER-optimized T-cell repertoire binding assessment accurately rep- 242 presents thymic selection

243 Using RACER, we can determine general properties of TCR-p-MHC binding distributions and com-
244 pare to empirical observations. These results highlight the advantage of a method capable of high-
245 throughput analysis. The basic idea follows from the fact shown above that we can make reasonable
246 assessments of binding strength by using only one structure and its associated interaction matrix.
247 Our focus here is the process of negative selection and its effect on the surviving repertoire. Toward
248 this end, we utilized the crystal structure of the 2B4 TCR-peptide contact region to create 10^5 simu-
249 lated TCRs and 10^4 self-peptides by randomizing uniformly the CDR3 and peptide sequences over
250 amino acid space. To avoid registration issues, we always choose simulated TCRs to have exactly
251 the same number of α and β chain residues as does the 2B4 TCR. This was repeated using 10^4 self-
252 peptides and 2000 TCRs, this time weighting the CDR3-peptide interactions by each of the the three
253 contact maps in Fig. 4. The same approach was applied to a model that assumes a strictly diagonal
254 contact map motivated by previous analytical work [20], with randomization of the TCR sequence
255 taken over all possible positions in the contact map.

256 A given TCR survives only if it binds to all self-peptides below a fixed activation threshold. The
257 maximum binding energy over the set of self-peptides for each TCR defines a selection curve (Fig.
258 6A), which describes the percentage of negatively-selected T-cells as a function of the cutoff energy
259 threshold. Selection curves for the three TCR sets using the contact maps in Fig. 4 utilized the
260 RACER energy matrix and compare reasonably to the diagonal contact map motivated by previous
261 analytical work (Fig. 6A red curve). While the variance in each case is similar, mean-shifts in each
262 selection curve correlate directly with the number of contacts in the CDR3 α and β chains (Fig.
263 4). These findings further reinforce the relevance of TCR-p-MHC-specific structural interactions
264 encoded in the RACER-derived energy potential for binding prediction and T-cell repertoire gen-
265 eration. Although empirical estimates of the percentage of surviving TCRs during thymic negative
266 selection vary between 20% and 50% [54, 55, 56], we calculate relevant recognition behavior for all
267 selection rates, restricting our analysis to 50%, when applicable.

268 Most self-peptides present in thymic selection are expected to participate in the deletion of self-
269 reactive T-cells. Previous work has suggested that this desideratum can be used to determine if
270 a high-throughput model is behaving in a statistically sensible manner; specifically, a reasonable
271 model of thymic selection would feature a majority of self-peptides contributing to the selection of
272 immature T-cells. A rank order of these self-peptides based on their ability to recognize unique T-
273 cells, or potency, characterizes the extent to which each self-peptide is utilized in thymic selection.
274 The RACER-derived rank order using the 2B4-optimized data generates reasonable behavior with
275 respect to this criterion (Fig. S5A).

276 One key issue influencing adaptive immune recognition of tumor-associated neoantigens (TANs)
277 is the recognition efficiency of peptides closely related to self (e.g. point mutants) relative to for-
278 eign peptide recognition. The fact that the immune system can in fact be enlisted to attack tumors
279 suggests that negative selection leaves intact the ability to bind strongly to tumor associated anti-
280 gens. Comparison of a post-selection TCR's individual recognition potential shows relatively minor
281 differences between foreign and point-mutant self-peptides (Fig. 6B), with variances of these es-
282 timates overlapping with one another and in line with previous theoretical estimates (Fig. S5B).
283 While individual recognition probability measure a single TCR's ability to recognize antigen, reper-
284toire recognition probability estimates a particular MHC-restricted post-selection repertoire's ability
285 to recognize antigen. An analogous comparison of the post-selection TCR repertoire recognition
286 probability of foreign and mutant peptides demonstrates that this minimal difference is maintained
287 at the aggregate immune system level (Fig. 6C). This then explains the observed ability of adaptive
288 immune targeting of tumors in a manner that depends on the mutational load of the malignant cells.

289 Lastly, our prior theoretical model posited thymic selection as an optimization problem with a
290 survival cutoff of $1/e$ resulting in the production of maximally efficient thymic selection [9, 20].
291 Calculating the product of survival and recognition probabilities yields a broad curve with large
292 values located at intermediate survival cutoffs, including the previously predicted optimal survival
293 cutoff (Fig. S5C). Taken together, these results agree with previous studies and reinforce the utility
294 of RACER for performing repertoire-level analyses.

295 3 Discussion

296 We have introduced RACER, an optimized molecular energy model that can be utilized to quickly
297 assess TCR-peptide interactions and distinguish strong-binding pairs. RACER requires only \sim 0.02s
298 for evaluating one TCR-peptide pair, thousands of times faster than available alternative approaches,
299 while preserving reasonable prediction accuracy (Figs. 2, 5). Consequently, our method can be used
300 to study large collections of MHC-restricted TCR-peptide pairs, enabling *in silico* studies of thymic
301 selection and T-cell antigen recognition.

302 3.1 Specificity v.s. Generality of the optimized energy model

303 The unique topology of the TCR-p-MHC structure encodes a system-specific residue-type dependent
304 interaction matrix for TCR-peptide pairs. Significantly, the sequences and structures of TCR-peptide
305 systems were found experimentally to be relatively conserved among various peptides [27, 28, 26].
306 The preserved sequence and structural features could dramatically limit the physiochemical space
307 explorable by TCR-peptide residue pairs. Moreover, since RACER is optimized on a TCR-peptide
308 system, the arrangement of the contacts between TCR and its cognate peptide (Fig. 4) gives rise to a
309 post-optimization energy model (Fig. 3) rather distinct from the traditional hydrophobic-hydrophilic
310 interaction patterns [58] used for protein folding, such as the MJ potential [52]. This hypothesis
311 is strongly supported by the observation that RACER is capable of identifying strong binders of
312 corresponding TCRs (Fig. 2) while previous methods fall short (Fig. S1).

313 The departure of RACER from a typical protein-folding force field also results from the opti-
314 mization performed for TCR-peptide systems. Because we are interested in resolving strong binders
315 from weak ones with a finite dataset, our optimization distinguishes between these two sets of binders
316 by enlarging their energetic gap in the training process. By maximizing the z-score between strong
317 and weak binders, RACER learns an effective binding energy which likely amplifies small differ-
318 ence in thermo-stability among candidate binders. Such amplification, however, affects neither the
319 identification of the strong binders of a specific TCR nor the subsequent ensemble study of peptide
320 recognition, since only the order of binding affinities among individual TCR-p-MHC pairs matters
321 for our results.

322 3.2 Structural information from available crystal structures improves the pre- 323 dictive power of RACER

324 Our pairwise RACER model offers a novel avenue for developing models that incorporate infor-
325 mation contained in available protein structures. Prior investigations have applied artificial neural
326 networks for predicting strong binders of TCR [37] and MHC [30] molecules based only on the

327 primary sequences. Although deep learning can implicitly account for higher-order interactions,
328 such approaches may still be limited by the available sequences that can be identified from exper-
329 iments. RACER alleviates the high demands for primary sequences by including existing crystal
330 structures in a pairwise potential. The resulting prediction accuracy demonstrates that such a struc-
331 turally educated pairwise model is able to resolve the specificity of TCR-p-MHC interactions in a
332 biological environment, justifying the linear constitutive assumption which sums up the binding en-
333 ergies of individual TCR-peptide residue pairs for quantifying the interactions between TCRs and
334 peptides, utilized here and in prior theoretical analyses [20, 14]. Moreover, the predictive accuracy
335 of RACER can be further improved by including additional strong binders from crystal structures
336 that are deposited in the database (Fig. 5B), thus providing a mechanism for additional refinement
337 and improvements in predictive accuracy as more sequence and structural data become available.

338 RACER maintained predictive accuracy when substituting either or both of the TCR and peptide
339 used in training on a given MHC II allele. In cases with available crystal structures, contact map
340 analysis revealed a largely conserved interaction pattern reproduced across a variety of TCR-peptide
341 pairs associated with the IE^k MHC II allele (Fig. 4), providing an explanation for the transferability
342 of RACER-derived interactions when trained on a particular crystal structure. Moreover, these re-
343 sults contributed to variety in the selection behavior of individual TCRs in that TCR-peptide systems
344 having more interactions in their corresponding contact map were correlated with systematic shifts
345 in their mean binding energies, which subsequently correspond to differences in their post-thymic
346 selection inclusion probability (Fig. 6). Previous investigations have characterized the probability
347 distribution for generating particular TCR sequences in VDJ recombination, and have even suggested
348 that the *a posteriori* observed post-selection TCRs had greater generation probabilities [15, 59], with
349 so-called “public” TCR sequences being observed in multiple individuals. Incorporation of contact
350 maps into our generative model contributes to variations in T-cell survival probability, and may offer
351 a physical interpretation of why public repertoires may survive thymic selection at higher rates[60],
352 in addition to providing an explicit means of estimating post-selection T-cell prevalence within a
353 given MHC-class restriction.

354 3.3 Recognition of foreign and point-mutated self-peptides

355 RACER, which leverages structural information to assess binding strength, can be used to simulate
356 the influence of selection on the resulting T-cell repertoire and, hence, on the recognition of tumor-
357 associated TANs across patients and cancer subtypes. Applying our model to CDR₃ α , β chains
358 obtained from T-cell sequencing, together with possible TAN lists generated by deep sequencing
359 of cancer populations could provide a rapid method of generating clinically actionable information
360 for cancer specific TCRs in the form of putative TCR-TAN pairs, provided those TANs are similarly

361 presented on the original MHC [48, 49]. While we focused our analysis on a single MHC restriction,
362 our approach could also be applied to the crystal structure of another TCR-p-MHC pair, together with
363 several known strong and weak binder candidates.

364 The relative efficacy of targeting TANs remains an important question with significant clinical
365 implications. We have shown that RACER can readily simulate full-scale thymic selection to pro-
366 duce an MHC-restricted T-cell repertoire. The overall agreement in post-selection behavior between
367 this study and our previous theoretical analysis is reassuring for both approaches. Taken together, our
368 findings suggest that thymic selection affords little to no recognition protection of peptides closely
369 related to self, thus supporting the notion that T-cells undergoing central tolerance to thymic self-
370 peptides are essentially memorizing a list of antigens to avoid. Given that a large class of TANs are
371 generated via point mutations in self-peptide, this result also provides a quantitative argument for the
372 efficacy of immunotherapies which target point-mutated neoantigens. Currently, we have focused
373 on predicting binding affinities of TCR-peptide pairs restricted to a particular MHC allele, offering
374 a proof-of-principle for epitope identification. This procedure can in general be repeated for other
375 MHC alleles. An immediate future goal will be to generalize RACER for predictions across MHC
376 alleles and gene classes.

377 While important, studying TCR-p-MHC pairwise interactions on the scale of an entire T-cell
378 repertoire is only one factor influencing adaptive immune system recognition. Signaling between
379 other adaptive immune system elements (including helper T-cells and natural killer cells) and intra-
380 cellular factors which influence antigen generation, abundance, and availability on the cell surface
381 also affect recognition rates. Encouraged by the RACER model's reasonable selection and recogni-
382 tion behavior, we propose this optimized framework as the first of its kind tool for tackling general
383 questions regarding the interactions between the T-cell repertoire and relevant antigen landscape. Al-
384 though we calculate static antigen recognition probabilities, the temporal tumor-immune interaction
385 leads to dynamic co-evolution [24] reliant on the quality, abundance, and systems-level signaling of
386 antigens. In the setting of stem cell transplantation approaches, the availability of time series as-
387 sessments of immune cell repertoires, self-peptides, and tumor antigens promises to inform optimal
388 treatment strategies based on the donor immune system and host cancer population.

389 4 Methods

390 4.1 Details of the Hamiltonian used in our optimization

391 To evaluate the binding energies on the basis of a structurally motivated molecular energy model,
392 the framework of a coarse-grained protein energy model, AWSEM force field [46], was utilized for
393 calculating the binding energies between the T-cell receptors (TCRs) and the peptide displayed on
394 top of a MHC molecule. AWSEM is a coarse-grained model with each residue described by the
395 positions of its 3 atoms – C α , C β and O atoms (except for glycine, which does not have C β atoms)
396 [46]. We used the C β atom (except for glycine, where the C α atom was used) of each residue to
397 calculate inter-residue interactions. The original AWSEM Hamiltonian includes both bonded and
398 non-bonded interactions.

$$V_{\text{total}} = V_{\text{bonded}} + V_{\text{nonbonded}} \quad (1)$$

399 Since those residue pairs that contribute to the TCR-peptide binding energy, specifically those from
400 the CDR loops and peptides, are in separate protein chains, only non-bonded interactions are con-
401 sidered. $V_{\text{nonbonded}}$ is composed of three terms:

$$V_{\text{nonbonded}} = V_{\text{pairwise}} + V_{\text{burial}} + V_{\text{database}} \quad (2)$$

402 Among them, V_{burial} is a one-body term describing the propensity of residues to be buried in or
403 exposed on the surface of proteins. V_{database} is a protein sequence-specific term that uses information
404 from existing protein database, such as secondary and tertiary interactions, to ensure locally accurate
405 chemistry of protein structure. Since the TCR-p-MHC system features pairwise interactions between
406 a TCR and its corresponding peptide, only the term V_{pairwise} is used for this study.

407 The pairwise Hamiltonian of AWSEM potential describes the interactions between any two non-
408 bonded residues and can be further separated into two terms:

$$V_{\text{pairwise}} = V_{\text{direct}} + V_{\text{mediated}} \quad (3)$$

409 V_{direct} captures the direct protein-protein interaction of residues that are in between 4.5 and 6.5 Å.
410 The functional form of V_{direct} is

$$V_{\text{direct}} = \sum_{\substack{i \in \text{TCR} \\ j \in \text{peptide}}} \gamma_{ij}(a_i, a_j) \Theta_{ij}^I \quad (4)$$

411 in which $\Theta_{ij}^I = \frac{1}{4}(1 + \tanh[5.0 \cdot (r_{ij} - r_{\min}^I)])(1 + \tanh[5.0 \cdot (r_{\max}^I - r_{ij})])$ is a switching function
412 capturing the effective range of interactions between two residues (here taken between $r_{\min}^I = 4.5 \text{ \AA}$

413 and $r_{\max}^I = 6.5\text{\AA}$). Thus, two residues are defined to be “in contact” if their distance falls between
414 4.5 \text{\AA} and 6.5 \text{\AA}. $\gamma_{ij}(a_i, a_j)$ describes the residue-type dependent interaction strength, and is the
415 most important parameter that enters the optimization of RACER.

416 V_{mediated} is not used in this study, but we describe for completeness and because it will arise
417 in future extensions of our current model. V_{mediated} describes the longer range interactions of two
418 residues separated between 6.5 and 9.5 \text{\AA}. Depending on the local density of residue environment,
419 V_{mediated} can be further divided into a protein-mediated term and a water-mediated term.

$$V_{\text{mediated}} = - \sum_{\substack{i \in \text{TCR} \\ j \in \text{peptide}}} \Theta_{ij}^{II} (\sigma_{ij}^{\text{wat}} \gamma_{ij}^{\text{wat}}(a_i, a_j) + \sigma_{ij}^{\text{prot}} \gamma_{ij}^{\text{prot}}(a_i, a_j)) \quad (5)$$

420 where $\sigma_{ij}^{\text{wat}} = \frac{1}{4}(1 - \tanh[7.0 \cdot (\rho_i - 2.6)])(1 - \tanh[7.0 \cdot (\rho_j - 2.6)])$ and $\sigma_{ij}^{\text{prot}} = 1 - \sigma_{ij}^{\text{wat}}$ are switching
421 functions indicating the local environment based on the density of each residue ($\rho_j = \sum_{j=1}^N \Theta_{ij}^{II}$,
422 where N is the total number of residues, i.e., ρ_j depicts the number of residues in this “potential
423 well”). $\Theta_{ij}^{II} = \frac{1}{4}(1 + \tanh[5.0 \cdot (r_{ij} - r_{\min}^{II})])(1 + \tanh[5.0 \cdot (r_{\max}^{II} - r_{ij})])$ with $r_{\min}^{II} = 6.5\text{\AA}$ and
424 $r_{\max}^{II} = 9.5\text{\AA}$. One can optimize $\gamma_{ij}^{\text{wat}}(a_i, a_j)$, $\gamma_{ij}^{\text{prot}}(a_i, a_j)$ together with $\gamma_{ij}(a_i, a_j)$. V_{mediated} ensures
425 a more accurate description of long-range interaction between two non-bonded residues, but such an
426 approach will also increase computational expense when evaluating the binding energy in between
427 TCR and peptides by more than 5 folds, compared with only using V_{direct} . Since we show that
428 the use of V_{direct} sufficiently separates strong binders from weak ones, only V_{direct} is employed for
429 calculating the binding energies throughout our manuscript, for computational efficiency in studying
430 the TCR repertoire.

431 4.2 Optimization of RACER to maximize specificity of TCR-peptide recognition

432 For each interaction type, the $\gamma_{ij}(a_i, a_j)$ parameters constitute a 20-by-20 matrix of parameters that
433 describes the pairwise interaction between any two residues i, j , each with one of the 20 residue
434 types, a_i, a_j . Guided by the principle of minimum frustration [43], $\gamma_{ij}(a_i, a_j)$ was previously op-
435 timized self-consistently to best separate the folded states from the misfolded states of proteins.
436 Distilled into mathematical details, the energy model was optimized to maximize the functional
437 $\delta E / \Delta E$, where δE is the energy gap between folded and misfolded proteins, and ΔE measures the
438 standard deviation of the energies of the misfolded states. An energy model was optimized based on
439 a pool of selected protein structures [61], where a series of decoy structures were generated by either
440 threading the sequences along the existing crystal structures, or by biasing the proteins into molten
441 globule structures using MD simulations [45]. The resultant γ parameter thus determines an energy

443 model that facilitates the folding of proteins with given sequences.

444 Motivated by this idea, RACER was parameterized to maximize the z-scores for fully separating
445 TCR strong binders from weak ones. Strong binders were chosen to be those top peptides that
446 survive and were enriched by more than 50 copies after four rounds of experimental deep sequencing
447 processes (details in Section Data used in our analyses) [27], together with the peptides present in
448 the deposited crystal structures [50]. The decoy sequences were generated by randomizing the non-
449 anchoring residues of each strong binder thereby generating a 1000 copies, and excludes the strong-
450 binder sequences. The γ parameters were then optimized to maximize the stability gap between
451 strong and randomized set of decoy binders, $\delta E = A\gamma$, and the standard deviation of decoy energies,
452 $\Delta E = \gamma B\gamma$, where the matrix A and B are defined as:

$$A_i = \langle \phi_i \rangle_{\text{wb}} - \phi_{\text{sb}} \quad (6)$$
$$B_{i,j} = \langle \phi_i \phi_j \rangle_{\text{wb}} - \langle \phi_i \rangle_{\text{wb}} \langle \phi_j \rangle_{\text{wb}}$$

453 In the above Eq. 6, ϕ_i is the functional form for each interaction type, either V_{direct} or V_{mediated} . ϕ_i
454 also summarizes the probability of contacts formation (interaction matrix) between pairs of amino
455 acids in a specific TCR-peptide system. The subscripts “wb” stands for “weak binders” and “sb”
456 stands for “strong binders”. The optimization of $\delta E / \Delta E = A\gamma / \sqrt{\gamma B\gamma}$ can be performed effectively
457 by maximizing the functional objective $R = A\gamma - \lambda_1 \sqrt{\gamma B\gamma}$, where the Lagrange multiplier λ_1 sets
458 the energy scale. The solution of this optimization gives $\gamma \propto B^{-1}A$. In the practice of protein
459 folding, this optimization was performed in an iterative way where the optimized parameters were
460 used for generating a new set of decoy protein structures. In this study, since different peptides
461 are structurally degenerate on top of MHC as observed from experiments [27], only one round
462 of optimization was performed. Since the optimization leaves a scaling factor as a free parameter,
463 throughout this manuscript, the binding energies are presented with reduced units. To obtain binding
464 energies that have physical units, the scaling factor can be further calibrated to fit the experimentally
465 determined binding affinities, such as the K_d values measured by SPR experiments (Fig. 2C).

466 4.3 Data input used in our analyses

467 A deep-sequencing technique was developed to assess the binding affinity of a diverse repertoire of
468 MHC-II-presented peptides towards a certain type of TCR [27]. Specifically, 3 types of TCRs: 2B4,
469 5CC7 and 226, were used for selecting peptides upon four rounds of purification. The peptides that
470 survived and enriched with multiple copies bind strongly with the corresponding TCR. In contrast,
471 the peptides present initially but become extinct during purification represent experimentally deter-
472 mined weak binders. For each of the 3 TCRs, the peptides that end up with more than 50 copies
473 after the purification process, together with the peptides presented in the crystal structures, were

474 selected as strong binders. 1000 decoy sequences were generated for each of the strong binders by
475 randomizing the non-anchoring residues. Both strong binders and decoys were included in the training
476 set. In addition, to test the performance of RACER, peptides having at least 8 copies initially but
477 disappearing during purification were selected as experimentally determined weak binders and were
478 assigned to the test set for each TCR. To test the transferability of the model, we used weak-binding
479 peptides of two different TCRs (e.g., 5CC7 and 226) as additional test sets distinct from the TCR
480 used in training (e.g., 2B4).

481 When structural data for a specific TCR-peptide pair of interest is unavailable, we built the structure
482 by homology modeling [62], based on a known TCR-peptide crystal structure incorporating
483 the same TCR. Since potential steric clashes after switching peptide sequences may disfavor the
484 strong binders used in our training set, we used Modeller [62] to relax structures of strong binders
485 before including them in the training process. Likewise, the binding energies of the experimentally
486 determined weak binders were also evaluated after structural relaxation. The structural relaxation
487 adds several seconds of computational time for each TCR-peptide pair, and thus poses a challenge
488 for large scale repertoire analysis. However, the coarse-grained nature of RACER framework may
489 significantly reduce the probability of side-chain clashes after switching peptide sequences. To test
490 the accuracy of our model prediction without structural relaxation, we calculated the binding ener-
491 gies of strong and weak binders of TCR 2B4 by only switching the peptide sequences, omitting any
492 structural adjustment. Our result (Fig. S2) shows comparable accuracy in separating strong from
493 weak binders, similar to that reported in Fig. 2. In the same vein, the transferrability of RACER
494 was also maintained without structural relaxation (Fig. S4). Encouraged by the accuracy of our
495 coarse-grained model without relaxation, we modeled large pairwise collections of TCR-peptide
496 interactions by only altering their corresponding sequences.

497 For blind assessment of TCR transferability, we ask whether we can improve prediction accuracy
498 if there are available strong binders determined in crystal structures of the target TCRs. To test this,
499 we added interaction matrices calculated from the crystal structures of the other two TCRs as two
500 additional strong binders in the training set. For example, in the case of TCR 2B4, the interaction
501 matrices from the crystal structures of TCR 5CC7 and 226 were added into the training set of TCR
502 2B4, constituting a total of 46 strong binders. The test shows a significant improvement in predicting
503 the binding specificity of TCR 5CC7 and 226 (Fig. 5B).

504 For an additional independent test of the transferability of RACER under the same MHC allele,
505 we used the benchmark set reported in [53]. Four crystal structures are curated in their benchmark
506 set, including three TCRs: 3QIB (2B4), 3QIU (226), 4P2Q (5CC7) and 4P2R (5CC7). Each of them
507 have one strong-binding peptide presented in the crystal structure, and 4 weakly binding peptides.
508 All the TCR-peptide pairs are associated with MHC-II allele IE^k, and three of them overlap with
509 the main dataset reported in [27]. We therefore used the energy model previously trained from TCR

510 2B4 to test its transferability for the other three TCR-peptide pairs. The calculated binding energies
511 were converted into a Z score by referencing to a set of 1000 randomized peptides of corresponding
512 TCRs: $Z = \frac{E_{\text{binding}} - E_{\text{decoys}}}{\sigma(E_{\text{decoys}})}$, with $\sigma(E_{\text{decoys}})$ being the standard deviation of E_{decoys} . The ROC curve
513 and AUC score were calculated by scanning through different thresholds of the Z score.

514 **4.4 Accuracy of RACER predictions omitting the crystal structure of target 515 TCR-peptide pairs**

516 To test the transferability of RACER without requiring any measured structure for a new TCR, we
517 threaded the sequences of the CDR3 loops of the new TCR on the TCR structure used in our train-
518 ing. The length of CDR3 β chain is the same among three TCRs (2B4: ASSLNWSQDTQY; 5cc7:
519 ASSLNNANSQDT, 226: ASSLNNANSQDT), but the length of CDR3 α chain is different (2B4:
520 AALRATGGNNKLT; 5cc7: AAEASNTNKVV; 226: AAEPPSGQKLV). In order to accommodate
521 such difference when threading the CDR3 α sequences, we used a simple approach: aligning them
522 based on the first two AA residues, leaving two gaps for the TCR 5cc7 and 226. Modeller[62] was
523 used to build the new loop structure based on these aligned new sequence, using the single struc-
524 ture in the training set as the template. These homology-modeled structures were then used for
525 calculating the binding energies of the strong and weak binders of the new TCRs, using the trained
526 interaction matrix. We also omitted the step of structural relaxation when replacing a new peptide
527 sequence on the built structure. Such approach is unlikely to reduce RACER's performance, as
528 demonstrated in Fig. S2.

529 **4.5 The leave-one-out cross validation**

530 The Leave-one-out cross validation (LOOCV) was used to test the predictive power of RACER on
531 its ability to identify strong binders. Specifically, one of the 44 strong binders of the TCR 2B4
532 was removed from the training set, and its predicted binding energy E_{pred} was compared with the
533 experimentally determined weak binders. If the median of the weak binders is larger than E_{pred} (a
534 larger binding energy is associated with smaller affinity), the testing strong binder is successfully
535 identified. Similar tests were performed for TCR 5cc7 and TCR 226. The performance of RACER
536 is compared with that from the clustering of peptide sequences using the algorithm from CD-Hit
537 [63] (See SI for details).

538 4.6 Comparing the correlation of binding energies with the K_d from SPR 539 experiments

540 Surface plasmon resonance (SPR) was performed to assess the binding affinities of the three TCRs
541 towards 9 selected peptides [27]. The correlation between the predicted binding energies from
542 RACER and the dissociation constant K_d evaluated from the SPR experiments thus constitutes a
543 separate set of tests for the accuracy of RACER. The K_d values were obtained from fitting the SPR
544 titration curves (Fig. S4F of [27]) using equation $R_{eq} = \frac{C \cdot R_{max}}{C + K_d}$ with C, K_d and R_{max} as free param-
545 eters. The Pearson correlation coefficient and the Spearman's rank correlation coefficient between
546 $k_B T \log(K_d)$ and predicted binding energies were used to quantify this correlation.

547 4.7 Evaluation of contact residues of MHC-restricted TCR-peptide pairs

548 The contact map of a given TCR-peptide structure was constructed by measuring the proximity $W_{i,j}$
549 between each residue of peptide (residue i) and CDR loops (residue j) based on their mutual distance,
550 using a smoothed step function:

$$W_{ij} = \frac{1 - \tanh(d - d_{max})}{2}, \quad \text{with } d_{max} = 6.5\text{\AA}. \quad (7)$$

551 Only C_β atoms were included in our calculation (except for glycine, where the $C\alpha$ atom was
552 used). The CDR3 loops were utilized as defined in the IEDB database [64]. The constructed contact
553 map represents those residues that are spatially close to each other in the given crystal structure.

554 4.8 Evaluation of different TCR-p-MHC interactions used for statistical study

555 In order to assess the statistical behavior of the inferential model, we calculated the pairwise binding
556 interactions between a simulated T-cell population of size N_t and collection of $N_n = 10^4$ thymic
557 self-peptides. For this proof-of-principle study, we used the TCR 2B4 as an example, uniformly
558 varying the 10^4 amino acids of the peptides, as well as those residues from the TCR that are in spatial
559 contact with the peptide. TCR-peptide pairwise energies were calculated for $N_t = 10^5$ randomized
560 TCR sequences using the RACER energy matrix optimized for TCR 2B4, and $N_t = 2000$ for each
561 of the TCR-p-IE^k systems given in Fig. 4 using energies weighted according to their contact maps,
562 along with a model using a contact map with diagonal interactions (Fig. 6A). Substitution of TCR-
563 peptide sequences with the newly generated ensemble yielded a total of $N_t * N_n$ (10^9 in the 2B4 case;
564 $2 * 10^7$ for each of the cases involving the TCR-p-IE^k and diagonal contact maps) TCR-peptide pairs
565 representing interactions occurring during thymic selection. Given our previous results (Fig. S2),
566 we avoid the computationally expensive task of structural relaxation, and instead calculate pairwise

567 interactions with the original structure, requiring 5,000 CPU hours on an Intel(R) Xeon(R) CPU
568 E5-2650 v2 for the large-scale 2B4-optimized simulation.

569 **4.8.1 Thymic selection**

570 Each T-cell survives if the maximal interaction over all self-peptides does not exceed some up-
571 per threshold. Selection thresholds were chosen to achieve 50% [11]. In all cases, the RACER-
572 optimized energy matrix was used for energy assignment. Thymic selection was performed for each
573 of the TCR-p-IE^k examples and their corresponding contact maps given in Fig. 4 (Fig. 6A). For
574 each TCR-p-IE^k example, $N_t = 2000$ preselection TCRs were created by varying uniformly the
575 original TCR CDR3 α and β sequences over amino acid space, keeping the sequence lengths un-
576 changed. A similar randomization yielded $N_n = 10^4$ randomized peptide sequences representing
577 self-peptides. For each of the 2000 randomized TCRs, binding energies were calculated against
578 the 10^4 self-peptides by selecting the corresponding entries in the RACER-optimized energy matrix
579 weighted by the original TCR-p-IE^k contact maps, and the maximum energy was recorded. The
580 fraction of TCRs whose maximal binding energy exceeded the selection threshold E_n traces the
581 survival curves. This procedure, utilizing the RACER-optimized energy matrix, was repeated for a
582 simplified model that utilizes only adjacent contacts (i.e. a strictly diagonal contact map with each
583 entry having weight one) in the TCR-peptide interaction. The number of diagonal elements in the
584 diagonal contact model was taken to be 20 (10 for each of the CDR3 α -peptide and CDR3 β -peptide
585 pairs).

586 **4.8.2 Self-peptide potency**

587 Most self-peptides present in thymic selection are expected to participate in the deletion of self-
588 reactive T-cells. Thus, a reasonable model of thymic selection would feature a majority of self-
589 peptides contributing to the selection of immature T-cells. A rank order of these self-peptides based
590 on their ability to recognize unique T-cells, or potency, characterizes the extent to which each self-
591 peptide is utilized in thymic selection. The rank order of potency was created for the RACER model
592 utilizing the crystal structure of the 2B4 TCR (PDB ID: 3QIB) and its corresponding energy matrix
593 derived from the set of experimentally determined good-binders. The thymic selection process using
594 10^4 self-peptides and 10^5 TCRs for the 2B4-optimized RACER model described above generates a
595 total of 10^9 pairwise binding energies. The negative selection threshold E_n was selected to yield 50%
596 selection, resulting in $\sim 5 \cdot 10^4$ deleted TCRs. The number of TCRs deleted by each self-peptide
597 was recorded. The peptide deleting the most TCRs defines the most potent self-peptide. TCRs
598 recognized by this peptide are removed from the list of total TCRs, and this peptide is similarly
599 removed from the list of self-peptides. This process is repeated on the smaller TCR and self-peptide

600 list to determine the second most potent peptide. Additional iteration until no TCRs remain provides
601 the rank order of self-peptides in decreasing order of potency. The cumulative number of deleted
602 TCRs is plotted in decreasing order of peptide potency.

603 **4.8.3 Antigen recognition probabilities for individual T-cells and T-cell repertoires**

604 Utilizing the same post-selection T-cell repertoire from the previous section, post-selection T-cells
605 were quantified for their ability to recognize random non-self-antigens and tumor neoantigens that
606 differ from one of the N_n thymic self peptides by one residue. 50% selection of TCRs result in
607 approximately $5 \cdot 10^4$ surviving, for which pairwise interactions are generated against 10^3 random
608 and 10^3 point-mutated self-peptides, representing foreign and tumor-associated neoantigens, respec-
609 tively (randomly generated peptides were checked to ensure non-membership in the set of thymic
610 self-peptides). Estimates of individual TCR recognition probability were calculated by averaging
611 the $5 \cdot 10^4$ -by- 10^3 indicator matrix, having values of 1 (resp. 0) corresponding to recognition (resp.
612 no recognition). The previous quantity estimates an individual TCR's antigen recognition ability.
613 Estimates of the corresponding recognition probability for the entire post-selection MHC-restricted
614 T-cell repertoire was calculated by assessing the 1-by- 10^3 vector indicating the presence or absence
615 of at least 1 recognizing TCR. The post-selection individual and repertoire T-cell recognition prob-
616 abilities of random and point-mutant antigens were then compared with previously derived analytic
617 results for two random energy models [20].

618 **5 Acknowledgments**

619 The authors would like to thank Dr. Michael E. Birnbaum for fruitful discussion on systems-level
620 TCR-antigen specificity. HL was supported by National Science Foundation (NSF) grants PHY-
621 1427654 (Center for Theoretical Biological Physics) and PHY-1935762. JTG was supported by
622 National Cancer Institute of NIH (F30CA213878).

623 **References**

624 [1] J. Couzin-Frankel, "Cancer Immunotherapy," *Science*, vol. 342, pp. 1432–1433, Dec. 2013.

625 [2] D. R. Leach, M. F. Krummel, and J. P. Allison, "Enhancement of antitumor immunity by
626 CTLA-4 blockade," *Science (New York, N.Y.)*, vol. 271, pp. 1734–1736, Mar. 1996.

627 [3] H. O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S. K. Kashaw, and A. K. Iyer,
628 “PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism,
629 Combinations, and Clinical Outcome,” *Frontiers in Pharmacology*, vol. 8, p. 561, 2017.

630 [4] M. Sadelain, I. Rivière, and S. Riddell, “Therapeutic T cell engineering,” *Nature*, vol. 545,
631 no. 7655, pp. 423–431, 2017.

632 [5] P. A. Ott, Z. Hu, D. B. Keskin, S. A. Shukla, J. Sun, D. J. Bozym, W. Zhang, A. Luoma,
633 A. Giobbie-Hurder, L. Peter, C. Chen, O. Olive, T. A. Carter, S. Li, D. J. Lieb, T. Eisenhaure,
634 E. Gjini, J. Stevens, W. J. Lane, I. Javeri, K. Nellaappan, A. M. Salazar, H. Daley, M. Seaman,
635 E. I. Buchbinder, C. H. Yoon, M. Harden, N. Lennon, S. Gabriel, S. J. Rodig, D. H. Barouch,
636 J. C. Aster, G. Getz, K. Wucherpfennig, D. Neuberg, J. Ritz, E. S. Lander, E. F. Fritsch, N. Hacohen, and C. J. Wu, “An immunogenic personal neoantigen vaccine for patients
637 with melanoma,” *Nature*, vol. 547, no. 7662, pp. 217–221, 2017.

639 [6] P. Johansen, T. Storni, L. Rettig, Z. Qiu, A. Der-Sarkissian, K. A. Smith, V. Manolova, K. S.
640 Lang, G. Senti, B. Müllhaupt, T. Gerlach, R. F. Speck, A. Bot, and T. M. Kündig, “Antigen
641 kinetics determines immune reactivity,” *Proceedings of the National Academy of Sciences*,
642 vol. 105, pp. 5189–5194, Apr. 2008.

643 [7] J. J. Molldrem, K. Komanduri, and E. Wieder, “Overexpressed differentiation antigens as tar-
644 gets of graft-versus-leukemia reactions,” *Current Opinion in Hematology*, vol. 9, pp. 503–508,
645 Nov. 2002.

646 [8] A. K. Abbas, A. K. Abbas, A. H. Lichtman, and S. Pillai, *Cellular and molecular immunology*.
647 2018.

648 [9] R. J. De Boer and A. S. Perelson, “How diverse should the immune system be?,” *Proceedings.*
649 *Biological Sciences*, vol. 252, pp. 171–175, June 1993.

650 [10] V. I. Zarnitsyna, B. D. Evavold, L. N. Schoettle, J. N. Blattman, and R. Antia, “Estimating the
651 diversity, completeness, and cross-reactivity of the T cell repertoire,” *Frontiers in Immunology*,
652 vol. 4, p. 485, Dec. 2013.

653 [11] A. J. Yates, “Theories and Quantification of Thymic Selection,” *Frontiers in Immunology*,
654 vol. 5, 2014.

655 [12] H. von Boehmer, “Thymic selection: a matter of life and death,” *Immunology Today*, vol. 13,
656 pp. 454–458, Nov. 1992.

657 [13] G. J. Nossal, “Negative selection of lymphocytes,” *Cell*, vol. 76, pp. 229–239, Jan. 1994.

658 [14] A. Kosmrlj, A. K. Jha, E. S. Huseby, M. Kardar, and A. K. Chakraborty, “How the thymus de-
659 signs antigen-specific and self-tolerant T cell receptor sequences,” *Proceedings of the National*
660 *Academy of Sciences*, vol. 105, pp. 16671–16676, Oct. 2008.

661 [15] Y. Elhanati, A. Murugan, C. G. Callan, T. Mora, and A. M. Walczak, “Quantifying selection in
662 immune receptor repertoires,” *Proceedings of the National Academy of Sciences of the United*
663 *States of America*, vol. 111, pp. 9875–9880, July 2014.

664 [16] J. Ishizuka, K. Grebe, E. Shenderov, B. Peters, Q. Chen, Y. Peng, L. Wang, T. Dong, V. Pas-
665 quetto, C. Oseroff, and others, “Quantitating T cell cross-reactivity for unrelated peptide anti-
666 gens,” *The Journal of Immunology*, vol. 183, no. 7, pp. 4337–4345, 2009. Publisher: Am
667 Assoc Immnol.

668 [17] M. M. Davis, “Not-So-Negative Selection,” *Immunity*, vol. 43, pp. 833–835, Nov. 2015.

669 [18] C. F. Arias, M. A. Herrero, J. A. Cuesta, F. J. Acosta, and C. Fernández-Arias, “The growth
670 threshold conjecture: a theoretical framework for understanding T-cell tolerance,” *Royal*
671 *Society Open Science*, vol. 2, p. 150016, July 2015.

672 [19] V. Detours, R. Mehr, and A. S. Perelson, “A quantitative theory of affinity-driven t cell reper-
673toire selection,” *Journal of theoretical biology*, vol. 200, no. 4, pp. 389–403, 1999.

674 [20] J. T. George, D. A. Kessler, and H. Levine, “Effects of thymic selection on T cell recognition
675 of foreign and tumor antigenic peptides,” *Proceedings of the National Academy of Sciences of*
676 *the United States of America*, vol. 114, no. 38, pp. E7875–E7881, 2017.

677 [21] A. Mayer, V. Balasubramanian, A. M. Walczak, and T. Mora, “How a well-adapting immune
678 system remembers,” *Proceedings of the National Academy of Sciences*, vol. 116, pp. 8815–
679 8823, Apr. 2019.

680 [22] G. Altan-Bonnet, T. Mora, and A. M. Walczak, “Quantitative immunology for physicists,”
681 *Physics Reports*, 2020. Publisher: Elsevier.

682 [23] J. T. George and H. Levine, “Stochastic modeling of tumor progression and immune evasion,”
683 *Journal of Theoretical Biology*, vol. 458, pp. 148–155, 2018.

684 [24] J. T. George and H. Levine, “Sustained coevolution in a stochastic model of cancer–immune
685 interaction,” *Cancer Research*, vol. 80, no. 4, pp. 811–819, 2020.

686 [25] T. P. Riley, L. M. Hellman, M. H. Gee, J. L. Mendoza, J. A. Alonso, K. C. Foley, M. I.
687 Nishimura, C. W. Vander Kooi, K. C. Garcia, and B. M. Baker, “T cell receptor cross-reactivity

688 expanded by dramatic peptide–MHC adaptability,” *Nature Chemical Biology*, vol. 14, pp. 934–
689 942, Oct. 2018.

690 [26] N. K. Singh, T. P. Riley, S. C. B. Baker, T. Borrman, Z. Weng, and B. M. Baker, “Emerging
691 Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes,” *Journal of*
692 *Immunology* (Baltimore, Md.: 1950), vol. 199, no. 7, pp. 2203–2213, 2017.

693 [27] M. E. Birnbaum, J. L. Mendoza, D. K. Sethi, S. Dong, J. Glanville, J. Dobbins, E. Özkan, M. M.
694 Davis, K. W. Wucherpfennig, and K. C. Garcia, “Deconstructing the Peptide-MHC Specificity
695 of T Cell Recognition,” *Cell*, vol. 157, pp. 1073–1087, May 2014.

696 [28] P. Dash, A. J. Fiore-Gartland, T. Hertz, G. C. Wang, S. Sharma, A. Souquette, J. C. Crawford,
697 E. B. Clemens, T. H. O. Nguyen, K. Kedzierska, N. L. La Gruta, P. Bradley, and P. G. Thomas,
698 “Quantifiable predictive features define epitope-specific T cell receptor repertoires,” *Nature*,
699 vol. 547, no. 7661, pp. 89–93, 2017.

700 [29] T. Kula, M. H. Dezfulian, C. I. Wang, N. S. Abdelfattah, Z. C. Hartman, K. W. Wucherpfennig,
701 H. K. Lyerly, and S. J. Elledge, “T-scan: a genome-wide method for the systematic discovery
702 of t cell epitopes,” *Cell*, vol. 178, no. 4, pp. 1016–1028, 2019.

703 [30] M. Nielsen, C. Lundegaard, P. Worming, S. L. Lauemøller, K. Lamberth, S. Buus, S. Brunak,
704 and O. Lund, “Reliable prediction of T-cell epitopes using neural networks with novel sequence
705 representations,” *Protein Science*, vol. 12, pp. 1007–1017, May 2003.

706 [31] M. Andreatta and M. Nielsen, “Gapped sequence alignment using artificial neural networks:
707 application to the MHC class I system,” *Bioinformatics*, vol. 32, pp. 511–517, Feb. 2016.

708 [32] V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, and M. Nielsen, “NetMHCpan-4.0:
709 Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide
710 Binding Affinity Data,” *The Journal of Immunology*, vol. 199, pp. 3360–3368, Nov. 2017.

711 [33] B. Reynisson, B. Alvarez, S. Paul, B. Peters, and M. Nielsen, “NetMHCpan-4.1 and
712 NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif
713 deconvolution and integration of MS MHC eluted ligand data,” *Nucleic Acids Res.*, vol. 48,
714 pp. W449–W454, July 2020.

715 [34] J. R. Abella, D. A. Antunes, C. Clementi, and L. E. Kavraki, “Ape-gen: A fast method for
716 generating ensembles of bound peptide-mhc conformations,” *Molecules*, vol. 24, no. 5, p. 881,
717 2019.

718 [35] J. R. Abella, D. A. Antunes, C. Clementi, and L. E. Kavraki, “Large-scale structure-based pre-
719 diction of stable peptide binding to class I HLA using random forests,” *Frontiers in Immunology*,
720 vol. 11, p. 1583, 2020.

721 [36] B. Chen, M. S. Khodadoust, N. Olsson, L. E. Wagar, E. Fast, C. L. Liu, Y. Muftuoglu,
722 B. J. Sworder, M. Diehn, R. Levy, M. M. Davis, J. E. Elias, R. B. Altman, and A. A. Al-
723 izadeh, “Predicting HLA class II antigen presentation through integrated deep learning,” *Nature*
724 *Biotechnology*, vol. 37, pp. 1332–1343, Nov. 2019.

725 [37] V. I. Jurtz, L. E. Jessen, A. K. Bentzen, M. C. Jespersen, S. Mahajan, R. Vita, K. K. Jensen,
726 P. Marcatili, S. R. Hadrup, B. Peters, and M. Nielsen, “NetTCR: sequence-based prediction of
727 TCR binding to peptide-MHC complexes using convolutional neural networks,” *bioRxiv*, Oct.
728 2018.

729 [38] I. Springer, H. Besser, N. Tickotsky-Moskovitz, S. Dvorkin, and Y. Louzoun, “Prediction of
730 Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs,” *Frontiers in*
731 *Immunology*, vol. 11, Aug. 2020.

732 [39] R. Gowthaman and B. G. Pierce, “TCRmodel: high resolution modeling of T cell receptors
733 from sequence,” *Nucleic Acids Research*, vol. 46, pp. W396–W401, July 2018.

734 [40] B. G. Pierce and Z. Weng, “A flexible docking approach for prediction of T cell receptor-
735 peptide-MHC complexes,” *Protein Science: A Publication of the Protein Society*, vol. 22,
736 pp. 35–46, Jan. 2013.

737 [41] C. Clementi, H. Nymeyer, and J. N. Onuchic, “Topological and energetic factors: what deter-
738 mines the structural details of the transition state ensemble and “en-route” intermediates for
739 protein folding? an investigation for small globular proteins,” *Journal of Molecular Biology*,
740 vol. 298, pp. 937–953, May 2000.

741 [42] J. Wang and G. M. Verkhrivker, “Energy Landscape Theory, Funnels, Specificity, and Optimal
742 Criterion of Biomolecular Binding,” *Physical Review Letters*, vol. 90, May 2003.

743 [43] J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein
744 folding,” *Proceedings of the National Academy of Sciences*, vol. 84, pp. 7524–7528, Nov.
745 1987.

746 [44] V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich, “Improved design of stable and fast-folding
747 model proteins,” *Folding and Design*, vol. 1, no. 3, pp. 221–230, 1996.

748 [45] N. P. Schafer, B. L. Kim, W. Zheng, and P. G. Wolynes, “Learning To Fold Proteins Using
749 Energy Landscape Theory,” *Israel Journal of Chemistry*, vol. 54, pp. 1311–1337, Aug. 2014.

750 [46] A. Davtyan, N. P. Schafer, W. Zheng, C. Clementi, P. G. Wolynes, and G. A. Papoian,
751 “AWSEM-MD: Protein Structure Prediction Using Coarse-Grained Physical Potentials and
752 Bioinformatically Based Local Structure Biasing,” *The Journal of Physical Chemistry B*,
753 vol. 116, pp. 8494–8503, July 2012.

754 [47] X. Rao, R. J. De Boer, D. van Baarle, M. Maiers, and C. Kesmir, “Complementarity of bind-
755 ing motifs is a general property of hla-a and hla-b molecules and does not seem to effect hla
756 haplotype composition,” *Frontiers in immunology*, vol. 4, p. 374, 2013.

757 [48] E. Alspach, D. M. Lussier, A. P. Miceli, I. Kizhvatov, M. DuPage, A. M. Luoma, W. Meng,
758 C. F. Lichti, E. Esaulova, A. N. Vomund, *et al.*, “Mhc-ii neoantigens shape tumour immunity
759 and response to immunotherapy,” *Nature*, vol. 574, no. 7780, pp. 696–701, 2019.

760 [49] J. C. Castle, S. Kreiter, J. Diekmann, M. Löwer, N. Van de Roemer, J. de Graaf, A. Selmi,
761 M. Diken, S. Boegel, C. Paret, *et al.*, “Exploiting the mutanome for tumor vaccination,” *Cancer
762 research*, vol. 72, no. 5, pp. 1081–1091, 2012.

763 [50] E. W. Newell, L. K. Ely, A. C. Kruse, P. A. Reay, S. N. Rodriguez, A. E. Lin, M. S. Kuhns,
764 K. C. Garcia, and M. M. Davis, “Structural Basis of Specificity and Cross-Reactivity in T
765 Cell Receptors Specific for Cytochrome c –I-E ^{k\$},” *The Journal of Immunology*, vol. 186,
766 pp. 5823–5832, May 2011.

767 [51] R. A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolynes, “Protein tertiary structure recog-
768 nition using optimized Hamiltonians with local interactions.,” *Proceedings of the National
769 Academy of Sciences*, vol. 89, pp. 9029–9033, Oct. 1992.

770 [52] S. Miyazawa and R. L. Jernigan, “Estimation of effective interresidue contact energies from
771 protein crystal structures: quasi-chemical approximation,” *Macromolecules*, vol. 18, pp. 534–
772 552, May 1985.

773 [53] E. Lanzarotti, P. Marcatili, and M. Nielsen, “Identification of the cognate peptide-mhc target
774 of t cell receptors using molecular modeling and force field scoring,” *Molecular immunology*,
775 vol. 94, pp. 91–97, 2018.

776 [54] C. Sinclair, I. Bains, A. J. Yates, and B. Seddon, “Asymmetric thymocyte death underlies the
777 CD4:CD8 T-cell ratio in the adaptive immune system,” *Proceedings of the National Academy
778 of Sciences*, vol. 110, pp. E2905–E2914, July 2013.

779 [55] L. Ignatowicz, W. Rees, R. Pacholczyk, H. Ignatowicz, E. Kushnir, J. Kappler, and P. Marrack,
780 “T cells can be activated by peptides that are unrelated in sequence to their selecting peptide,”
781 *Immunity*, vol. 7, pp. 179–186, Aug. 1997.

782 [56] J. Zerrahn, W. Held, and D. H. Raulet, “The MHC reactivity of the T cell repertoire prior to
783 positive and negative selection,” *Cell*, vol. 88, pp. 627–636, Mar. 1997.

784 [57] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” *Journal of*
785 *Molecular Graphics*, vol. 14, pp. 33–38, Feb. 1996.

786 [58] L. H. Kapcha and P. J. Rossky, “A Simple Atomic-Level Hydrophobicity Scale Reveals Protein
787 Interfacial Structure,” *Journal of Molecular Biology*, vol. 426, pp. 484–498, Jan. 2014.

788 [59] P. G. Thomas and J. C. Crawford, “Selected before selection: a case for inherent antigen bias in
789 the t-cell receptor repertoire,” *Current Opinion in Systems Biology*, vol. 18, pp. 36–43, 2019.

790 [60] A. Madi, E. Shifrut, S. Reich-Zeliger, H. Gal, K. Best, W. Ndifon, B. Chain, I. R. Cohen, and
791 N. Friedman, “T-cell receptor repertoires share a restricted set of public and abundant cdr3
792 sequences that are associated with self-related immunity,” *Genome research*, vol. 24, no. 10,
793 pp. 1603–1612, 2014.

794 [61] G. A. Papoian, J. Ulander, M. P. Eastwood, Z. Luthey-Schulten, and P. G. Wolynes, “From
795 The Cover: Water in protein structure prediction,” *Proceedings of the National Academy of*
796 *Sciences*, vol. 101, pp. 3352–3357, Mar. 2004.

797 [62] B. Webb and A. Sali, “Comparative Protein Structure Modeling Using MODELLER,” *Current*
798 *Protocols in Bioinformatics*, vol. 54, June 2016.

799 [63] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “CD-HIT: accelerated for clustering the next-
800 generation sequencing data,” *Bioinformatics*, vol. 28, pp. 3150–3152, Dec. 2012.

801 [64] R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark, J. R. Cantrell, D. K.
802 Wheeler, J. L. Gabbard, D. Hix, A. Sette, and B. Peters, “The immune epitope database (IEDB)
803 3.0,” *Nucleic Acids Res.*, vol. 43, pp. D405–412, Jan. 2015.

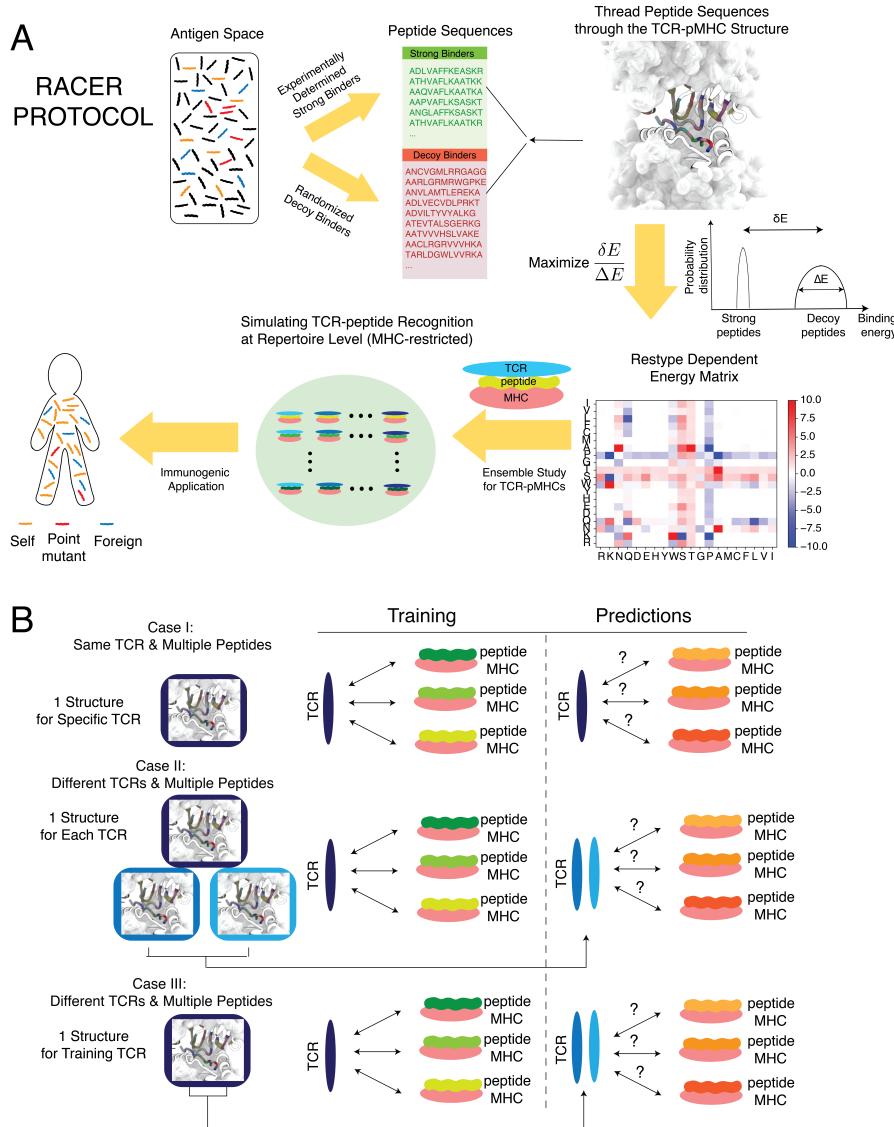


Figure 1: Summary of the modeling approach employed in this study. **A.** The optimization of RACER starts from a series of TCR binders obtained from the deep-sequencing experiments [27], as well as the corresponding TCR-p-MHC crystal structures deposited in the database [50]. The sequences of the strong binders, as well as the generated decoy binders from randomizing the non-anchoring sequences of the strong binders, are collected for parameterizing a pairwise energy model which maximizes the energetic gap between the strong binders and a randomized set of decoys. The resulting energy model can be used to quickly evaluate the binding affinities of an ensemble of TCR-peptide interactions at the population level. The calculated binding affinities can be used for simulating the negative selection process in the thymus, as well as measuring the recognition probability of the post-selection TCRs. Finally, this kind of ensemble study can be used for immunogenic applications that require input from an entire T-cell repertoire. **B.** Three tests were conducted to evaluate the performance of RACER. Case I: the training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes the same TCR structure and a separate set of peptide sequences. Case II: the training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes two different TCR structures (restricted on the same MHC allele) and two separate sets of peptide sequences. Structures for the two additional test TCRs are included in predictions. Case III: The training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes only the sequences of two different TCRs (restricted on the same MHC allele) and two separate sets of peptides. Only the structure from the original training TCR was used in prediction (The interactions of interest are indicated by double-sided arrows between TCR and p-MHC).

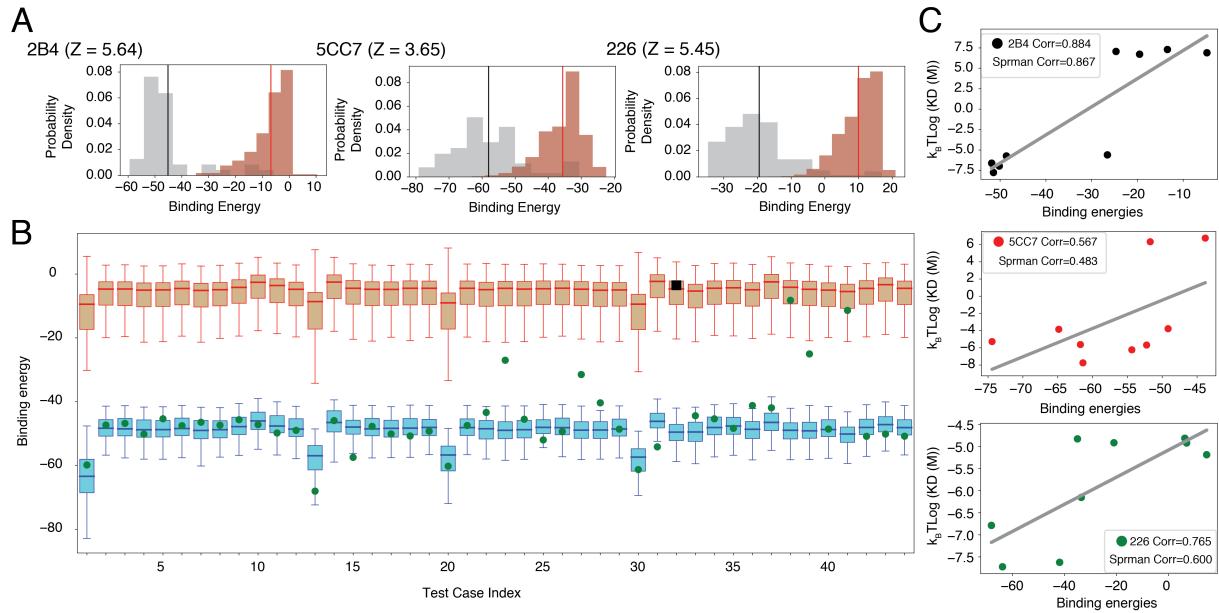


Figure 2: RACER can fully separate the strong binders of a specific TCR from its weak binders. **A.** For three TCRs (2B4, 5CC7 and 226) whose strong and weak binders have been experimentally determined [27], the RACER-derived calculated binding energies can well separate the strong binders from the weak ones of each individual TCR. **B.** In the leave-one-out-cross-validation exemplified using the TCR 2B4, RACER can successfully recognize the withheld strong binders in 43 out of 44 tests, where the predicted binding energies of the withheld test binder (green) is lower than the median (red bar) of the experimentally determined weak binders. The only exception is marked as a black square. **C.** In a completely independent testing data measured by surface plasmon resonance (SPR) [27], the calculated binding energies of testing peptides correlate well with their experimentally determined dissociation constant K_d . Best-fit linear regression is depicted for each case. Corr: Pearson correlation coefficient. Spearman Corr: Spearman's rank correlation coefficient.

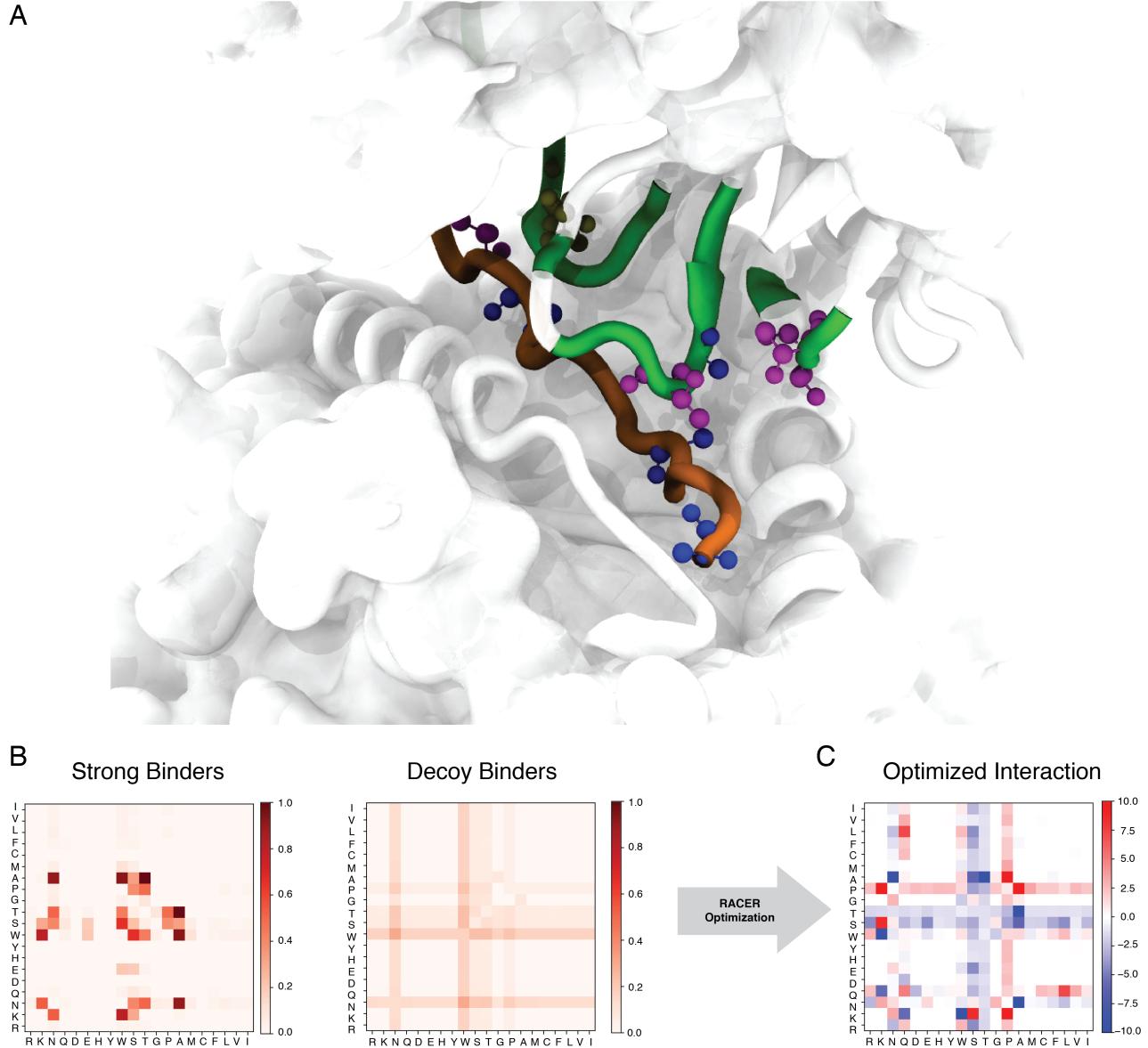


Figure 3: The specific contact pattern from the TCR-peptide structures dictates an optimized energy model different from those of a typical protein-folding force field. **A.** The 3D crystal structure of the 2B4 TCR bound to a specific peptide (PDBID: 3QIB). The parts of the structure that are in contact between the TCR and peptide are color-highlighted as green (TCR) and orange (peptide). Also shown are residues alanine (blue), threonine (magenta) and asparagine (tan) which are prevalent in this structure (CPK representation [57]). **B.** The probability of contact formation between each two of the 20 amino acids in the set of strong binders (left) and the set of randomized decoy binders (right) of the TCR 2B4. **C.** The residue-based interaction strength determined by RACER for the TCR 2B4. A more negative value indicates a stronger attractive interaction between the corresponding two residues.

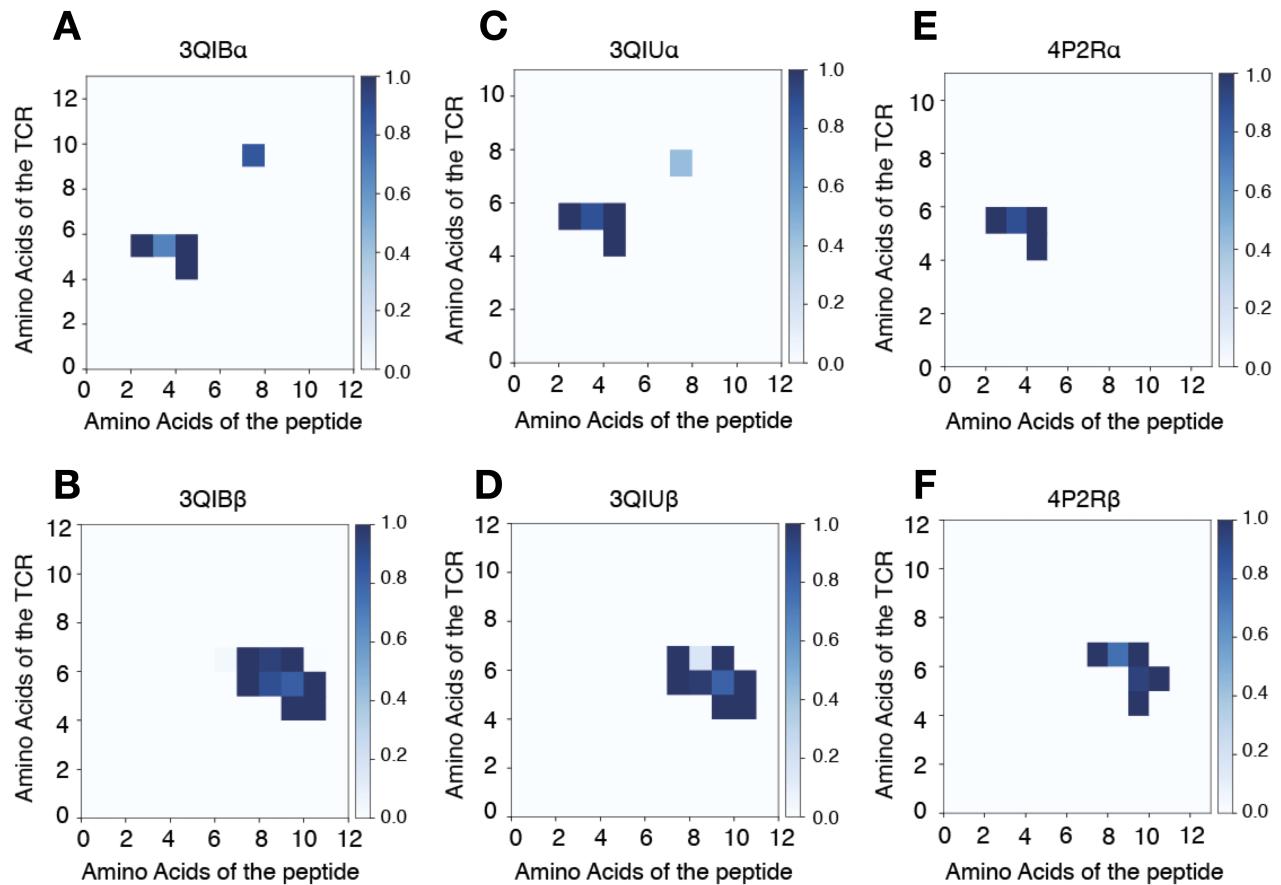


Figure 4: The contact maps of TCR-peptide pairs within the same MHCII allele share structural similarity. Contact maps are calculated using distances from each pairwise TCR-peptide amino acid combination using Eq. 7 for the following MHC-II IE^k-restricted TCR-peptide pairs: 3QIB - peptide ADLIAYLKQATK with TCR 2B4 **A.** CDR3 α (AALRATGGNNKLT) and **B.** CDR3 β (ASSLNWSQDTQY) chains; 3QIU - peptide ADLIAYLKQATK with TCR 226 **C.** CDR3 α (AAEPSSGQKLV) and **D.** CDR3 β (ASSLNNANSODYT) chains; 4P2R - peptide ADGVAFFLTPFKKA with TCR 5cc7 **E.** CDR3 α (AAEASNTNKVV) and **F.** CDR3 β (ASSLNNANSODYT) chains. Similarity in interaction topology across TCR-peptide pairs is observed by comparing the contact silhouette of interacting coordinates for the α (top row) and β (bottom row) TCR sequences.

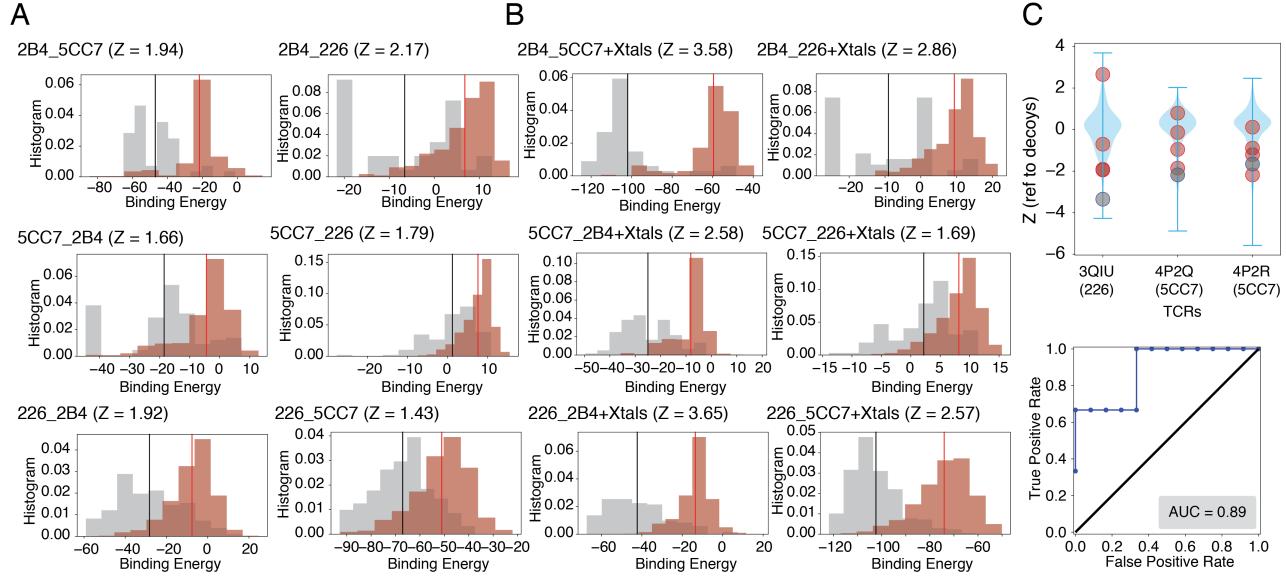


Figure 5: RACER shows transferability in terms of predicting TCR-p-MHC interactions across different TCRs. **A.** The energy model trained based on one TCR (e.g. 2B4) is capable of resolving the experimentally determined strong binders from weak binders of the other two TCRs (e.g., 5CC7 and 226). **B.** By adding strong binders from crystal structures of the other two TCRs into training sets, RACER can be further improved for identifying the experimentally determined strong binders. The title of each figures follows the format of “target_training TCRs”, e.g., “2B4_5CC7” means using the energy model trained from the TCR 5CC7 for predicting the peptide binding affinities of the TCR 2B4. “Xtals” means the strong binders from the crystal structures of the other two TCRs were added into the training set. **C.** Upper panel: The energy model trained on TCR 2B4 is used to predict the binding energies of sequences from other TCRs associated with the IEk-associated TCRs [53]. Z-scores of known strong binders (grey) and weak binders (orange) provided by [53] were calculated referenced to a set of 1000 decoy peptides with randomized sequences (blue violin plot), with lower z-scores indicating better predictive performance. Lower panel: The calculated z-scores of each TCR were used to depict Corresponding ROC curve and AU-ROC (0.89, lower panel).

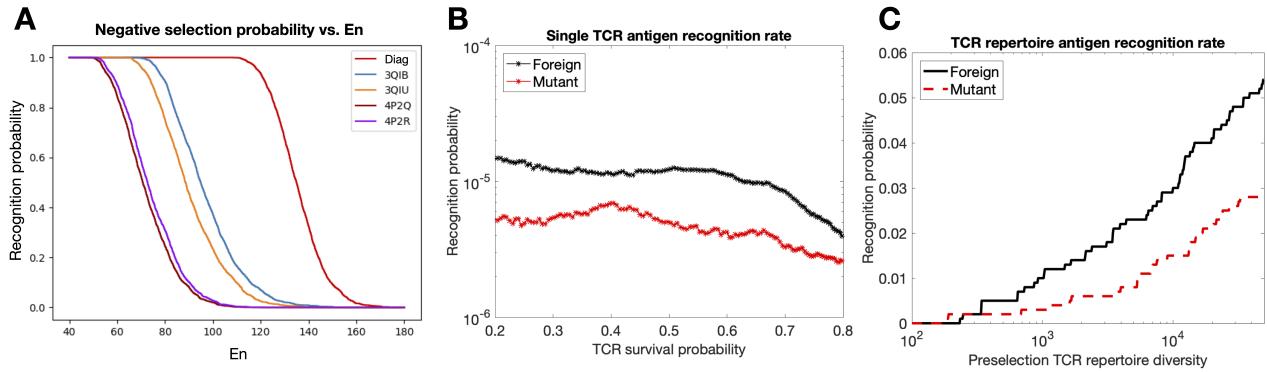


Figure 6: T-cell repertoire simulations of thymic selection and antigen recognition in the RACER model. RACER-derived simulations of TCR recognition exhibit sensible thymic selection and similarity in the recognition rates of foreign and point-mutated self antigens. **A.** Simulated thymic selection curves (T-cell recognition probability as a function of negative selection binding energy cutoff) incorporating the effects of non-adjacent contacts (given in Fig. 4) using $N_n = 10^4$ uniformly randomized self-peptides and $N_t = 2000$ randomized IE^k -restricted TCRs. 4P2Q and 4P2R (purple) use T-cells generated by randomizing the CDR3 region of TCR 5cc7, while 3QIB (blue) randomizes the CDR3 of TCR 2B4, and 3QIU (yellow) randomizes the CDR3 TCR of 226 (in all cases, randomized CDR3 lengths were unchanged from the original TCR) (red curve uses RACER energy using a diagonal contact map model whose study here is motivated by previous work [20]). **B.** Utilizing RACER-derived energy assessments from the 2B4 crystal structure, the probability of recognizing foreign and point-mutant antigens for individual post-selection T-cells is plotted as a function of the percentage of TCRs surviving negative selection (ordinate of the graph in panel a, simulations averaged over all post-selection TCRs with pairwise interactions amongst 10^3 random peptides and 10^3 point-mutant peptides). **C.** The recognition probability of foreign (black) and mutant (red) peptides by the entirety of the TCR repertoire is plotted as a function of pre-selection TCR repertoire diversity, with negative selection thresholds giving 50% survival.