

1 Transient intestinal colonization by a live-attenuated oral cholera vaccine induces
2 protective immune responses in streptomycin-treated mice

3

4 Bolutife Fakoya,^{a,b}, Brandon Sit,^{a,b} Matthew K. Waldor^{a,b,c,#}

5

6 ^aDivision of Infectious Diseases, Brigham & Women's Hospital, Boston, USA

7 ^bDepartment of Microbiology, Harvard Medical School, Boston, USA

8 ^cHoward Hughes Medical Institute, Bethesda, USA

9 #Address correspondence to Matthew K Waldor, mwaldor@research.bwh.harvard.edu

10

11

12

13

14

15 **Abstract**

16 Current mouse models for evaluating the efficacy of live oral cholera vaccines
17 (OCVs) have important limitations. Conventionally raised adult mice are resistant to
18 intestinal colonization by *Vibrio cholerae*, but germ-free mice can be colonized and have
19 been used to study OCV immunogenicity. However, germ free animals have impaired
20 immune systems and intestinal physiology; also, live OCVs colonize germ free mice for
21 many months, which does not mimic the clearance kinetics of live OCVs in humans.
22 Here, we leverage antibiotic-treated, conventionally raised adult mice to study the
23 effects of transient intestinal colonization by a live OCV *V. cholerae* strain. In a single
24 dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was
25 cleared by streptomycin treated adult mice within a week after oral inoculation. This
26 transient colonization elicited far stronger adaptive immune correlates of protection
27 against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV
28 vaccinated dams were also significantly protected from choleric disease than pups from
29 inactivated-HaitiV dams. Our findings establish the benefits of antibiotic treated mice for
30 live OCV studies as well as its limitations and underscore the immunogenicity of HaitiV.

31

32 **Importance**

33 Oral cholera vaccines (OCVs) are being deployed to combat cholera but current
34 killed OCVs require multiple doses and show little efficacy in young children. Live OCVs
35 have the potential to overcome these limitations but small animal models for testing
36 OCVs have shortcomings. We used an antibiotic treatment protocol for conventional
37 adult mice to study the effects of short-term colonization by a single dose of HaitiV, a
38 live OCV candidate. Vaccinated mice developed vibriocidal antibodies against *V.*
39 *cholerae* and delivered pups that were resistant to cholera, whereas mice vaccinated
40 with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and
41 suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of
42 live OCVs.

43 **Introduction**

44 *Vibrio cholerae* is the cause of cholera and, following ingestion of water or food
45 contaminated with this Gram-negative rod, humans can develop the severe and
46 sometimes lethal dehydrating diarrhea that characterizes cholera. Cholera remains a
47 major threat to global public health, with approximately 2.9 million cases and 95,000
48 deaths reported annually (1). Serologic classification of *V. cholerae* is based on the
49 structure and chemistry of the abundant LPS O-antigen and the O1 serogroup of *V.*
50 *cholerae* has given rise to all cholera pandemics. The O1 serogroup is further
51 subdivided into Ogawa and Inaba serotypes that differ by the presence or absence of
52 methylation of the terminal perosamine on their respective O-antigens (2). Current
53 pandemic cholera is predominantly caused by an O1 'variant' El Tor biotype strain, such
54 as the strain responsible for the Haitian epidemic in 2010 (3).

55 Prior exposure to *V. cholerae* can elicit long-lived protective O-antigen-specific
56 responses against *V. cholerae* (4, 5), suggesting that vaccination has the potential to
57 elicit protective immunity if vaccines can safely mimic elements of natural infection. As
58 such, several vaccination strategies for cholera have been developed over the decades.
59 Among these, oral cholera vaccines (OCV) are attractive options as they stimulate
60 immunity at the intestinal mucosal surface, the site of infection, and because of their
61 ease of administration. Killed whole-cell OCVs, such as Shancol, are being increasingly
62 adopted as frontline public health tools both in endemic regions (6) as well as to limit
63 outbreaks (7).Live-attenuated OCVs have also been developed and have theoretical
64 advantages over killed OCVs including *in vivo* replication which enables continuous
65 presentation of *in vivo*-induced antigens at the intestinal mucosal surface (8). In contrast

66 to killed OCVs, live vaccines will likely offer single dose efficacy, a particularly important
67 feature for reactive vaccination campaigns during epidemics. Furthermore, live OCVs
68 appear to be more effective in children less than 5 years of age (9, 10), a group that is
69 highly susceptible to death from cholera and that is not adequately protected by killed
70 OCVs. In volunteer studies, these vaccines have shown great promise (11, 12), but
71 none are approved for use in cholera endemic regions.

72 The development of both inactivated and live OCVs has been hampered by the
73 lack of a small animal model that closely recapitulates cholera pathogenesis in the
74 setting of normal immune reactivity. *V. cholerae* readily colonizes the intestines of infant
75 mice and infant rabbits, reviewed in (13), where cholera-like disease can be observed,
76 but these models lack mature immune systems. Conventionally raised adult mice
77 cannot be orally colonized by *V. cholerae*, likely due to their resident gut microbiota
78 (14). Germ free (GF) adult mice, which lack a microbiota, can be colonized by *V.*
79 *cholerae* and have been used to profile OCV immunogenicity, but immune and intestinal
80 physiological development is aberrant in these animals (15). Nonetheless, vaccinated
81 GF mice develop immune correlates of clinical protection against toxigenic *V. cholerae*,
82 including circulating vibriocidal antibodies and antigen specific antibody responses (14,
83 16, 17). Another limitation of the GF adult mouse model is that following oral
84 administration of a live OCV, they remain consistently colonized by *V. cholerae* for
85 periods exceeding 3 months (14, 17), making single-dose live OCV regimens difficult to
86 interpret; moreover, the prolonged colonization in this model precludes challenging
87 vaccinated animals with virulent *V. cholerae*. The consequence and significance of long-
88 term monocolonization with a live OCV in GF mice also remains unknown.

89 Many studies have shown that oral administration of broad-spectrum antibiotics
90 to mice depletes the gut microbiota and enables intestinal colonization by diverse
91 bacteria (18). This is beneficial as antibiotic treated mice are conventionally raised and
92 do not display the immunological and developmental defects that characterize GF mice.
93 Antibiotic treatments can enable wild-type *V. cholerae* intestinal colonization for similar
94 durations, typically 5-7 days, that humans are colonized by live OCVs (19, 20). We
95 sought to leverage this model to profile HaitiV, a live-attenuated OCV derived from
96 HaitiWT, a virulent *V. cholerae* O1 Ogawa clinical strain isolated during the Haitian
97 cholera outbreak (21). HaitiV is non-toxigenic and highly engineered for biosafety and in
98 infant rabbits HaitiV provides unprecedented rapid protection against virulent *V.*
99 *cholerae* within 24 hours of administration (21); furthermore, we showed that this
100 vaccine is immunogenic in GF mice (17).

101 Here, we adopted a streptomycin treated adult mouse model of *V. cholerae* (22)
102 to profile HaitiV's immunogenicity. Furthermore, we modified this model to assess the
103 protective efficacy of immune responses in immunized female mice, by challenging their
104 pups with HaitiWT. Our findings demonstrate the ease and utility of this approach for
105 studies of live-attenuated OCVs.

106

107

108

109

110

111 **Results**

112 **Vaccine inoculation protocol and colonization kinetics.**

113 We modified the protocol presented in Bueno et al (22) and orally treated 4-
114 week-old C57BL/6 female mice with streptomycin (Sm) to deplete their intestinal
115 microbiota to enable a longitudinal study of HaitiV intestinal colonization and
116 immunogenicity (Fig. 1A). Three days after initiating Sm treatment, mice were orally
117 gavaged with either a single dose of 10^9 CFU of HaitiV, an equivalent dose of formalin-
118 inactivated HaitiV (FI-HaitiV) to mimic oral vaccination with an inactivated OCV, or
119 sodium bicarbonate as a vehicle control. There were no apparent untoward effects of
120 any of these regimens and over the course of the experiment, all mice gained weight
121 (Fig. 1B).

122 Plating of fresh fecal pellets (FP) from all animals inoculated with HaitiV revealed
123 $\sim 10^8$ CFU/g FP for 5-7 days post inoculation (dpi), suggesting that initially the vaccine
124 robustly colonized the intestines of Sm treated adult mice. However, HaitiV was no
125 longer detectable in FPs by 8-12 dpi (Fig. 1C, Fig. S1B), indicating clearance of the
126 vaccine strain. No CFUs of HaitiV were recovered from Sm treated mice that had been
127 orally inoculated with FI-HaitiV or buffer control. The clearance kinetics of HaitiV from
128 these mice resembles that previously charted by Nygren et al (19) for wild type cholera
129 toxin-producing *V. cholerae* isolates, suggesting that cholera toxin does not play a
130 substantial role in intestinal colonization in this model.

131

132

133 **Transient HaitiV colonization elicits antibodies targeting multiple *V. cholerae***
134 **serotypes.**

135

136 Sera from all mice were individually assayed to quantify the circulating vibriocidal
137 antibody titers (VATs) targeting Ogawa and Inaba *V. cholerae* strains. By 7dpi most
138 mice did not have detectable VATs but by 14dpi when HaitiV was no longer detectable
139 in FPs, most (3/5 mice) seroconverted and developed high circulating VATs against
140 both serotyped matched (Ogawa) and serotype mismatched (Inaba) *V. cholerae* (Fig.
141 2A, Fig. S1C, Fig. S1D), though highest geometric mean VATs were directed against
142 serotype matched (Ogawa) isolates (Fig. 2A, Fig. S1C). Only one mouse in the FI-
143 HaitiV group developed circulating VATs against Ogawa serotype *V. cholerae*, and no
144 mice in this group developed vibriocidal antibodies against Inaba *V. cholerae* in this
145 group (Fig. 2B). None of the Sm treated mice that received sodium bicarbonate
146 developed detectable vibriocidal antibodies. Thus, transient colonization by HaitiV is
147 sufficient to elicit the generation of *V. cholerae* specific circulating markers of immunity.

148

149 **Streptomycin treated adult mice resist recolonization by *V. cholerae*.**

150

151 Administration of live-OCVs to GF mice leads to long term intestinal colonization
152 (14, 17), precluding the possibility of challenge studies with wild-type *V. cholerae*. Since
153 the Sm-treated mice cleared HaitiV, we investigated whether animals immunized with
154 this OCV could be successfully challenged with HaitiWT. At 28dpi, when all mice had
155 stopped shedding HaitiV, they (live HaitiV, FI-HaitiV, and vehicle control) were orally

156 treated with sulfamethoxazole and trimethoprim (SXT) to reduce the intestinal
157 microbiota (Fig. 3A); unlike HaitiV, HaitiWT is resistant to SXT. All three groups of mice
158 from above and another group, specific pathogen free (SPF) mice that had not been
159 Sm-treated or exposed to HaitiV was also included in this experiment, to test whether
160 SXT treatments modify susceptibility to HaitiWT colonization. All 4 groups of mice were
161 then orally gavaged with 10^9 CFU of HaitiWT, and their FPs monitored for HaitiWT
162 colonization. Unexpectedly, the three groups of mice (HaitiV, FI-HaitiV, and sodium
163 bicarbonate) that had been previously treated with Sm failed to be colonized by HaitiWT
164 (Fig. 3B). In contrast, the SXT-treated SPF mice were robustly colonized by HaitiWT
165 ($\sim 10^8$ CFU/g FP) (Fig. 3B), indicating that although SXT treatment does susceptibilize
166 mice to *V. cholerae* colonization, the prior Sm treatment of the vaccinated animals
167 rendered them resistant to recolonization with *V. cholerae*.

168 Although the FPs of the previously Sm treated and HaitiWT challenged mice
169 lacked detectable HaitiWT on the Sm agar plates used to detect *V. cholerae*, these
170 plates contained high numbers of colonies of non-*V. cholerae* bacteria. 16s rRNA
171 sequencing of Sm resistant small colonies showed that these colonies corresponded to
172 either *Escherichia coli* or SXT resistant *Lactobacillus murinus*, which together were
173 present at $\sim 10^8$ CFU/g FP. These observations suggest that a bloom of Sm-resistant
174 organisms and other changes in the gut microbiota associated with prior oral Sm
175 treatment render mice resistant to *V. cholerae* colonization.

176

177

178

179 **Offspring of vaccinated dams are protected from virulent *V. cholerae*.**

180

181 As challenge studies could not be performed in Sm treated adult mice, we turned
182 to the suckling mouse model of cholera to assess the protective efficacy of the immune
183 response that was elicited by the transient HaitiV intestinal colonization. We recently
184 found that the survival of suckling mice in this lethal challenge model can be used to
185 gauge OCV efficacy (17). As such, animals from HaitiV, FI-HaitiV, and sodium
186 bicarbonate groups were mated with SPF males and their neonatal pups infected with a
187 lethal dose of HaitiWT (Fig. 4A).

188 Pups from HaitiV immunized dams survived significantly longer (median 30hpi)
189 than pups from dams treated with FI-HaitiV or sodium bicarbonate control (median
190 ~25hpi) (Fig. 4B). Despite the increased survival in the offspring of HaitiV immunized
191 dams, at time of death, there were no differences in the burden of HaitiWT CFU
192 recovered from the small intestines of the 3 groups (Fig. 4C). Thus, oral immunization
193 and transient colonization of Sm-treated mice with HaitiV induces immune responses
194 that significantly protect against choleric disease in mice.

195

196 **Discussion**

197 The wide availability of diverse mutant mice and reagents for their study make
198 mice a preferred model mammal for studies of human disease and therapeutics.
199 However, adult mice are not susceptible to intestinal colonization with *V. cholerae*,
200 confounding evaluation of OCVs. Here, we found that Sm-treated adult mice can be
201 used to investigate the immunogenicity as well as the protective efficacy of live-

202 attenuated OCVs. Sm-treated adult mice orally inoculated with HaitiV were colonized by
203 this live-attenuated vaccine for 5-7days and this transient colonization was sufficient to
204 elicit vibriocidal antibodies against both *V. cholerae* serotypes. Furthermore, pups born
205 to HaitiV immunized Sm-treated mice exhibited prolonged survival following lethal
206 challenge with HaitiWT compared to pups born to dams immunized with FI-HaitiV or
207 dams treated with vehicle control. Together, these findings suggest that this model
208 should be valuable for further studies of the efficacy and protective mechanisms of live
209 OCVs.

210 Antibiotic treatment of adult mice limits the roles that the intestinal microbiota
211 plays in inhibiting live OCV colonization. Unexpectedly, we found that oral Sm treatment
212 enables the expansion of Sm and SXT-resistant microbes that also inhibit *V. cholerae*
213 colonization (Fig. 3). Detailed analyses of the composition of the microbiota that are
214 initially killed by oral Sm administration, and those that bloom after the antibiotic is
215 withdrawn would offer valuable clues into which bacteria inhibit *V. cholerae* colonization.
216 Though SXT treatment did not enable HaitiWT colonization of previously Sm treated
217 animals (Fig. 3), it is possible that different antibiotic cocktails would facilitate re-
218 challenge studies; for example, clindamycin was recently found to enable *V. cholerae*
219 intestinal colonization of adult mice (23). Establishing conditions for re-challenge studies
220 would simplify the model, bypassing the requirement for challenge studies in the
221 offspring of immunized mice; however, only intestinal colonization resistance could be
222 assayed in adult re-challenge studies since unlike suckling mice, adult mice are
223 resistant to choleric diarrhea.

224 Although pups from HaitiV immunized Sm-treated dams survived longer than
225 control animals, there was no difference in the CFU burden of HaitiWT in pups from
226 immunized or control dams at the time they became moribund (Fig. 4). It is possible that
227 vaccination partially delayed the replication of HaitiWT or, in addition, vaccination may
228 elicit antibodies that antagonize toxic factors, such as cholera toxin, that promote
229 disease, but do not directly modulate bacterial colonization. HaitiV ectopically expresses
230 the GM1-binding B subunit of cholera toxin and immune responses to this non-toxic
231 component of cholera toxin are linked to short term protection against cholera and
232 enterotoxigenic *E. coli* (24).

233 In contrast to GF mice, which were colonized HaitiV for many months in our
234 previous study (17), Sm-treated mice were only colonized by HaitiV for several days
235 (Fig. 1). This is similar to the duration that live OCVs colonize the human intestine (20,
236 25, 26) meaning that Sm treated mice may provide a more physiologically relevant
237 model to gauge OCV immunogenicity. However, it is important to note that although
238 Sm-treated mice display HaitiV clearance kinetics that mimic human OCV clearance,
239 mice are not natural hosts for *V. cholerae*. *V. cholerae* intestinal colonization in
240 susceptible adult mice occurs primarily in the colon and does not rely on TCP, a critical
241 factor for colonization of the small intestine in humans as well in infant mice and rabbits
242 (13, 19). Nonetheless, since adaptive protective immune responses are stimulated by
243 HaitiV in both Sm treated and GF mice, these models have value for testing vaccine
244 immunogenicity.

245 We adopted the strategy that Sit et al (17) used for studying the protective
246 efficacy of OCVs in immunized GF mice and coupled the suckling mouse model of

247 cholera with the Sm-treated adult model of OCV immunogenicity. However, in contrast
248 to the GF model, when the offspring of HaitiV immunized Sm-treated mice were
249 inoculated with HaitiWT, their dams had undetectable HaitiV CFUs in their feces and
250 VATs in their sera (Fig. 1, Fig. 4); these conditions more closely mimic those that will be
251 present when immunized humans are exposed to *V. cholerae*. Despite the absence of
252 circulating VATs, which are known to be relatively short-lived (27) , the offspring of
253 HaitiV-immunized dams exhibited significantly delayed death due to cholera-like
254 disease, but all succumbed (Fig. 4). In contrast, the offspring of HaitiV-immunized GF
255 dams were completely protected from challenge with HaitiWT (17), demonstrating the
256 increased potency of HaitiV immunization in GF mice. The greater effectiveness of
257 HaitiV vaccination in GF mice is likely attributable to the constant stimulation of the
258 intestinal mucosa by HaitiV in the persistently mono-colonized GF animals and could be
259 consistent with multiple-dose live OCV regimens. Thus, even though GF mice have
260 immune defects, they may overestimate the potency of HaitiV and other live OCVs.

261 Killed whole cell vaccines like Shancol have ~50% efficacy in single dose trials
262 (29). Notably, in marked contrast to HaitiV, we found in the Sm-treated mice model that
263 a single dose of FI-HaitiV, which is similar to current killed whole cell vaccines, did not
264 elicit protective immunity, consistent with the idea that live-attenuated HaitiV is far more
265 immunogenic than killed vaccines, at least when administered as a single dose.

266 In summary, we have described an adult mouse model for the investigation of the
267 protective efficacy of live OCVs. Using this model, we found that a single oral dose of
268 HaitiV and transient colonization by the vaccine can elicit vibriocidal antibody titers and
269 protective immune responses. Future work should enable refinement of this model to

270 allow re-challenge of immunized animals and further characterization of these protective
271 immune responses. Furthermore, given the availability of genetically defined mutant
272 C57BL/6 mice, the model described here should be a valuable approach for unraveling
273 the molecular determinants of live vaccine-mediated protection against cholera and
274 other mucosal pathogens.

275

276 **Materials and Methods**

277

278 **Bacterial Strains and culture conditions**

279 *Vibrio cholerae* strains were grown in Luria-Bertani (LB) broth supplemented with
280 relevant antibiotics: streptomycin (Sm) at 200 μ g/ml and sulfamethoxazole trimethoprim
281 (SXT) at 80 μ g/mL and 16 μ g/mL respectively at 37°C with continuous shaking at
282 220rpm. For LB agar plates 1.5% agar was used and was supplemented with 5-bromo-
283 4-chloro-3-indolyl- β -d-galactopyranoside (X-Gal) at 60 μ g/mL. Bacteria were kept as -
284 80°C stocks in LB with 40% glycerol.

285 **Oral immunization scheme**

286 4-week-old C57BL/6 female mice were purchased (Charles River) and housed in a BL-2
287 facility under conventional rearing conditions for the duration of the studies. On day 0,
288 all mice were briefly anesthetized with isoflurane and orally gavaged with 20mg of
289 streptomycin in 100 μ L of sterilized water. Mice were then provided drinking water
290 supplemented with 5mg/mL Sm for 72 hours (22). After this, mice were then gavaged
291 with 10⁹ CFU of an overnight culture of either HaitiV, or HaitiV inactivated by 10%
292 formalin (FI-HaitiV) for 15 minutes, and then resuspended in 2.5% Na₂CO₃. Control

293 mice were also gavaged with 100uL of 2.5% Na₂CO₃ alone. Mice were then provided
294 drinking water supplemented with 200 μ g/ml Sm for 14 days before being returned to
295 unsupplemented water. All mice were weighed weekly and blood samples were
296 retrieved from each mouse by tail vein incision at each weighing. Blood samples were
297 clotted for 45 minutes at room temperature, centrifuged at 20000xg for 10 minutes, and
298 the serum stored at -20°C for future analysis.

299 Fresh fecal pellets were collected daily from each mouse, weighed, and plated in serial
300 dilutions on LB+Sm+X-Gal agar to determine the colonization of each mouse by HaitiV.
301 HaitiV colonizes are white due to a disrupted *lacZ*. The limit of detection of this assay
302 represents the lowest CFU count that could be detected for a fecal pellet of that weight.

303 **Quantification of vibriocidal antibody titers**

304 Circulating titers of vibriocidal antibodies were quantified by determining the minimal
305 serum dilution required to lyse PIC158 (Ogawa) or PIC018 (Inaba) *V. cholerae* as
306 described previously (30, 31) with minor modifications. Briefly, serial dilutions of serum
307 were incubated with guinea-pig complement (Sigma) and the target strain, and then
308 allowed to grow in BHI media. Reported titers are the dilution of serum that caused
309 more than 50% reduction in target strain optical density when compared to normal
310 saline control wells. A mouse monoclonal antibody 432A.1G8.G1.H12 targeting *V.*
311 *cholerae* O1 OSP was a positive control for the assay. The limit of detection of this
312 assay represents the lowest serum dilution at which no inhibition of growth could be
313 detected.

314

315 **Colonization of immunized mice with toxigenic *V. cholerae***

316 Mice from all three groups (HaitiV, FI-HaitiV, and vehicle control) as well as 6 week old
317 female SPF mice (Charles River) were anesthetized with isoflurane and gavaged with
318 16mg of sulfamethoxazole and 3.2mg trimethoprim (SXT) in 100uL of water and
319 provided drinking water supplemented with 4mg/mL SX and 0.8mg/mL T for 72 hours.
320 All mice were then gavaged with 10⁹ CFU of an overnight culture of HaitiWT and
321 switched to 0.16mg/mL SX and 0.032mg/mL T in their drinking water. Fecal pellets were
322 collected daily and plated on both SXT agar and Sm agar. Non-*V. cholerae* colonies
323 were isolated by streaking on fresh Sm plates, and 16s V1/V2 DNA sequences were
324 amplified by colony PCR using primers F341 (TCG TCG GCA GCG TCA GAT GTG
325 TAT AAG AGA CAG CCT ACG GGN GGC WGC AG) and R805 (GTC TCG TGG GCT
326 CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C) and
327 sequenced. Identification of the bacteria was performed using BLAST (NCBI)

328 **Infant mouse survival assay**

329 The infant mouse survival assay was adapted from a previous report (17). Female mice
330 were mated with age matched SPF male mice (Charles River) and singly housed at E18
331 for delivery. At the third day of life (P3) pups were orally gavaged with 10⁷ CFU of
332 HaitiWT and returned to their dams. Pups were monitored every 6 hours until the first
333 signs, typically including diarrhea and dehydration, were evident. At this point,
334 monitoring was performed every 30 minutes until pups were moribund. Pups were then
335 removed from the nest, euthanized with isoflurane, and decapitated and dissected. The
336 small intestines of each pup were excised, homogenized, and plated on LB agar with
337 Sm and X-Gal.

338 **Statistical analysis**

339 All statistical analyses were performed with Prism 8 (Graphpad). Infant mouse survival
340 curves were analyzed with a log rank (Mantel Cox) test and CFU data were analyzed
341 with a Mann Whitney U test.

342 **Animal use statement**

343 All experiments in this study were performed was approved by the Brigham and
344 Women's Hospital IACUC (protocol 2016N000416) and in compliance with the NIH
345 Guide for Use and Care of Laboratory animals.

346 **Acknowledgements:**

347 This work was supported by NIH grant (R01-AI-042347-24). BS was supported by an
348 NSERC PGS-D fellowship (PGSD3-487259-2016). B.F., B.S., and M.K.W. designed the
349 experiments. B.F. and B.S. performed the experiments. B.F. and M.K.W. analyzed the
350 data. B.F., B.S, and M.K.W. wrote the manuscript. All authors reviewed and approved
351 the manuscript.

352 We are grateful to Edward Ryan for providing the monoclonal antibody used for the
353 serum assays. We thank the MKW laboratory members for helpful discussions.

354 M.K.W. receives funding from the HHMI and the NIH.

355

356

357

358 **References:**

359

360 1. Ali M, Nelson AR, Lopez AL, Sack DA. 2015. Updated global burden of cholera in

361 endemic countries. *PLoS Negl Trop Dis* 9:e0003832.

362 2. Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Haishima Y. 1993. Occurrence of 2-O-

363 Methyl-N-(3-Deoxy-L-glycero-tetronyl)-D-perosamine (4-amino-4,6-dideoxy-D-

364 manno-pyranose) in Lipopolysaccharide from Ogawa but Not from Inaba O Forms

365 of O1 *Vibrio cholerae*. *Biochem Biophys Res Commun* 190:302–307.

366 3. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR,

367 Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y,

368 Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. 2011. The origin of the

369 Haitian cholera outbreak strain. *N Engl J Med* 364:33–42.

370 4. Levine MM, Black RE, Clements ML, Cisneros L, Nalin DR, Young CR. 1981.

371 Duration Of Infection-Derived Immunity To Cholera. *J Infect Dis* 143:818–820.

372 5. Albert MJ, Alam K, Ansaruzzaman M, Qadri F, Sack RB. 1994. Lack of cross-

373 protection against diarrhea due to vibrio cholerae o139 (bengal strain) after oral

374 immunization of rabbits with v. cholerae o1 vaccine strain cvd103-hgr. *J Infect Dis*

375 169:230–231.

376 6. Bi Q, Ferreras E, Pezzoli L, Legros D, Ivers LC, Date K, Qadri F, Digilio L, Sack

377 DA, Ali M, Lessler J, Luquero FJ, Azman AS, Cavailler P, Date K, Sreenivasan N,

378 Matzger H, Luquero F, Grais R, Wiesner L, Ko M, Rouzier V, Peak C, Qadri F,

379 Landegger J, Lynch J, Azman A, Sack D, Henkens M, Ciglenecki I, Ivers L, Diggle

380 E, Weiss M, Hinman A, Maina K, Mirza I, Gimeno G, Levine M. 2017. Protection

against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. *Lancet Infect Dis* 17:1080–1088.

7. Parker LA, Rumunu J, Jamet C, Kenyi Y, Lino RL, Wamala JF, Mpairwe AM, Muller V, Llosa AE, Uzzeni F, Luquero FJ, Ciglenecki I, Azman AS. 2017. Neighborhood-targeted and case-triggered use of a single dose of oral cholera vaccine in an urban setting: Feasibility and vaccine coverage. *PLoS Negl Trop Dis* 11:e0005652.

8. Lycke N. 2012. Recent progress in mucosal vaccine development: Potential and limitations. *Nat Rev Immunol*.

9. Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA, Saha A, Al Tarique A, Seidlein L V., Park E, Killeen KP, Mekalanos JJ, Clemens JD, Sack DA. 2007. Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. *Vaccine* 25:231–238.

10. Sur D, Lopez AL, Kanungo S, Paisley A, Manna B, Ali M, Niyogi SK, Park JK, Sarkar B, Puri MK, Kim DR, Deen JL, Holmgren J, Carbis R, Rao R, Van NT, Donner A, Ganguly NK, Nair GB, Bhattacharya SK, Clemens JD. 2009. Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. *Lancet* 374:1694–1702.

11. Islam K, Hossain M, Kelly M, Mayo Smith LM, Charles RC, Bhuiyan TR, Kováč P, Xu P, LaRocque RC, Calderwood SB, Simon JK, Chen WH, Haney D, Lock M, Lyon CE, Kirkpatrick BD, Cohen M, Levine MM, Gurwith M, Harris JB, Qadri F,

403 Ryan ET. 2018. Anti-O-specific polysaccharide (OSP) immune responses
404 following vaccination with oral cholera vaccine CVD 103-HgR correlate with
405 protection against cholera after infection with wild-type *Vibrio cholerae* O1 El Tor
406 Inaba in North American volunteers. *PLoS Negl Trop Dis* 12:e0006376.

407 12. Chen WH, Garza J, Choquette M, Hawkins J, Hoeper A, Bernstein DI, Cohenb
408 MB. 2015. Safety and immunogenicity of escalating dosages of a single oral
409 administration of peru-15 pCTB, a candidate live, attenuated vaccine against
410 enterotoxigenic *Escherichia coli* and *Vibrio cholerae*. *Clin Vaccine Immunol*
411 22:129–135.

412 13. Ritchie JM, Waldor MK. 2009. *Vibrio cholerae* Interactions with the
413 Gastrointestinal Tract: Lessons from Animal Studies, p. 37–59. *In* Current Topics
414 in Microbiology and Immunology.

415 14. Butterton JR, Ryan ET, Shahin RA, Calderwood SB. 1996. Development of a
416 germfree mouse model of *Vibrio cholerae* infection. *Infect Immun* 64:4373–4377.

417 15. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune
418 responses during health and disease. *Nat Rev Immunol*.

419 16. Crean TI, John M, Calderwood SB, Ryan ET. 2000. Optimizing the germfree
420 mouse model for *in vivo* evaluation of oral *Vibrio cholerae* vaccine and vector
421 strains. *Infect Immun* 68:977–981.

422 17. 2019. Oral immunization with a probiotic cholera vaccine induces broad
423 protective immunity against *Vibrio cholerae* colonization and disease in mice.
424 *PLoS Negl Trop Dis* 13:e0007417.

425 18. Kennedy EA, King KY, Baldrige MT. 2018. Mouse microbiota models:
426 Comparing germ-free mice and antibiotics treatment as tools for modifying gut
427 bacteria. *Front Physiol* 9.

428 19. Nygren E, Li BL, Holmgren J, Attridge SR. 2009. Establishment of an adult mouse
429 model for direct evaluation of the efficacy of vaccines against *Vibrio cholerae*.
430 *Infect Immun* 77:3475–3484.

431 20. Gotuzzo E, Butron B, Seas C, Penny M, Ruiz R, Losonsky G, Lanata CF,
432 Wasserman SS, Salazar E, Kaper JB, Cryz S, Levine MM. 1993. Safety,
433 immunogenicity, and excretion pattern of single-dose live oral cholera vaccine
434 CVD 103-HgR in Peruvian adults of high and low socioeconomic levels. *Infect*
435 *Immun*.

436 21. Hubbard TP, Billings G, Dörr T, Sit B, Warr AR, Kuehl CJ, Kim M, Delgado F,
437 Mekalanos JJ, Lewnard JA, Waldor MK. 2018. A live vaccine rapidly protects
438 against cholera in an infant rabbit model. *Sci Transl Med* 10:eaap8423.

439 22. Bueno E, Sit B, Waldor MK, Cava F. 2018. Anaerobic nitrate reduction divergently
440 governs population expansion of the enteropathogen *Vibrio cholerae*. *Nat*
441 *Microbiol*.

442 23. You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, Yoon MY, Yoon SS. 2019.
443 Commensal-derived metabolites govern *Vibrio cholerae* pathogenesis in host
444 intestine. *Microbiome* 7:132.

445 24. Kauffman RC, Bhuiyan TR, Nakajima R, Mayo-Smith LM, Rashu R, Hoq MR,
446 Chowdhury F, Khan AI, Rahman A, Bhaumik SK, Harris L, O’Neal JT, Trost JF,

447 Alam NH, Jasinskas A, Dotsey E, Kelly M, Charles RC, Xu P, Kováč P,

448 Calderwood SB, Ryan ET, Felgner PL, Qadri F, Wrammert J, Harris JB. 2016.

449 Single-cell analysis of the plasmablast response to *Vibrio cholerae* demonstrates

450 expansion of cross-reactive memory B cells. *MBio* 7.

451 25. Lagos R, San Martin O, Wasserman SS, Prado V, Losonsky GA, Bustamante C,

452 Levine MM. 1999. Palatability, reactogenicity and immunogenicity of engineered

453 live oral cholera vaccine CVD 103-HgR in Chilean infants and toddlers. *Pediatr*

454 *Infect Dis J* 18:624–630.

455 26. Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, Hall

456 RH, Kessler RA, Lock M, Haney D, Lyon CE, Pasetti MF, Simon JK, Szabo F,

457 Tennant S, Levine MM. 2016. Single-dose live oral cholera vaccine CVD 103-HgR

458 protects against human experimental infection with *vibrio cholerae* O1 El Tor. *Clin*

459 *Infect Dis* 62:1329–1335.

460 27. Mosley WH, Ahmad S, Benenson AS, Ahmed A. 1968. The relationship of

461 vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera

462 patients. *Bull World Health Organ* 38:777.

463 28. Sit B, Zhang T, Fakoya B, Akter A, Biswas R, Ryan ET, Waldor MK. 2019. Oral

464 immunization with a probiotic cholera vaccine induces broad protective immunity

465 against *vibrio cholerae* colonization and disease in mice. *PLoS Negl Trop Dis*

466 13:e0007417.

467 29. Qadri F, Ali M, Lynch J, Chowdhury F, Khan AI, Wierzba TF, Excler JL, Saha A,

468 Islam MT, Begum YA, Bhuiyan TR, Khanam F, Chowdhury MI, Khan IA, Kabir A,

469 Riaz BK, Akter A, Khan A, Asaduzzaman M, Kim DR, Siddik AU, Saha NC,

470 Cravioto A, Singh AP, Clemens JD. 2018. Efficacy of a single-dose regimen of

471 inactivated whole-cell oral cholera vaccine: results from 2 years of follow-up of a

472 randomised trial. *Lancet Infect Dis* 18:666–674.

473 30. Son MS, Taylor RK. 2011. Vibriocidal assays to determine the antibody titer of

474 patient sera samples. *Curr Protoc Microbiol* CHAPTER:Unit6A.3.

475 31. Sayeed MA, Bufano MK, Xu P, Eckhoff G, Charles RC, Alam MM, Sultana T,

476 Rashu MR, Berger A, Escobedo GG, Mandlik A, Bhuiyan TR, Leung DT,

477 LaRocque RC, Harris JB, Calderwood SB, Qadri F, Vann WF, Kováč P, Ryan ET.

478 2015. A cholera conjugate vaccine containing ospecific polysaccharide (OSP) of

479 *V. cholera* o1 inaba and recombinant fragment of tetanus toxin heavy chain

480 (OSP:rTTHC) induces serum, memory and lamina proprial responses against

481 OSP and is protective in mice. *PLoS Negl Trop Dis* 9:e0003881.

482

483

484

485

486

487

488

489

490 **Figure legends:**

491 **Figure 1. Transient intestinal colonization of HaitiV in Sm-treated adult mice**
492 **following treatment with streptomycin.** A) Schematic of streptomycin treatment and
493 single oral inoculation with HaitiV. Black arrowheads indicate peroral treatment with
494 either streptomycin in sodium bicarbonate, or oral gavage with bacteria. B) Bodyweight
495 of all mice over the course of this study. C) Fecal shedding of HaitiV from mice
496 inoculated with HaitiV; open symbols depict CFU levels below the limit of detection.

497

498 **Figure 2. Serum vibriocidal antibody titers in Sm-treated mice immunized with**
499 **HaitiV.** Circles indicate the lowest dilutions at which specific vibriocidal activity was
500 detected, and the height of the bars represent geometric mean titers in each group.
501 Ogawa *V. cholerae* PIC158 was used to measure Ogawa serotype-specific antibodies
502 (black) and Inaba *V. cholerae* PIC018 was used to measure Inaba serotype-specific
503 antibodies (red). Titers below the limit of detection are indicated by open symbols.

504

505 **Figure 3. SXT treatment and re-colonization of Sm-treated adult mice by *V.***
506 ***cholerae.*** A) All mice were treated with sulfamethoxazole and trimethoprim (SXT) and
507 dosed with 10^9 CFU of HaitiWT on day 0. B) Fecal shedding of HaitiWT from all mice;
508 open symbols represent fecal pellets from which no CFUs of HaitiWT could be detected.
509 An asterisk denotes differences with a P value of <0.05 as determined by a Mann
510 Whitney U test.

511

512 **Figure 4. Transient colonization by HaitiV is protective in an infant mouse model**

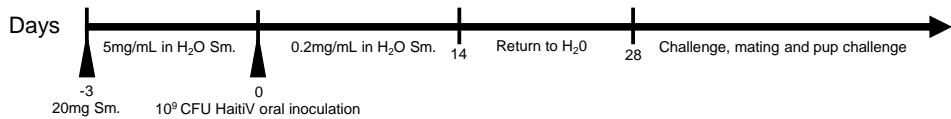
513 **of cholera. A)** Survival curves of pups born to dams inoculated with HaitiV (n=15),

514 formalin inactivated-HaitiV (n=24) or vehicle buffer (n=16) after HaitiWT challenge.

515 Differences in the survival curves were determined by a log rank (Mantel Cox) test

516 (p=0.0013 for HaitiV vs FI-HaitiV). **B)** HaitiWT CFUs recovered from the small intestines

517 of the neonatal mice at the time they were moribund. Differences in CFU burdens were


518 determined by a Mann Whitney U test.

519 .

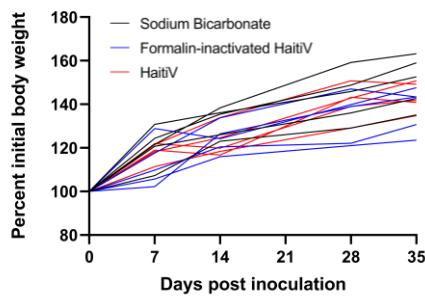
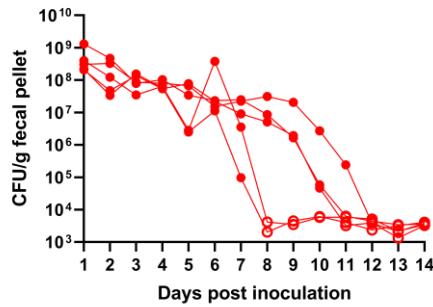
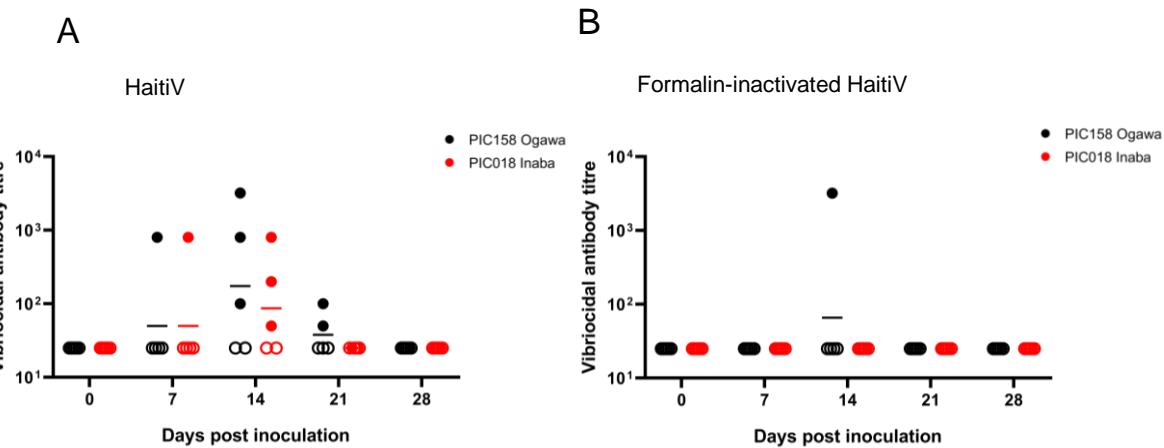

520

Figure 1


A

B



C

Figure 1. Transient intestinal colonization of HaitiV in Sm-treated adult mice following treatment with streptomycin. A) Schematic of streptomycin treatment and single oral inoculation with HaitiV. Black arrowheads indicate peroral treatment with either streptomycin in sodium bicarbonate, or oral gavage with bacteria. B) Bodyweight of all mice over the course of this study. C) Fecal shedding of HaitiV from mice inoculated with HaitiV; open symbols depict CFU levels below the limit of detection.

Figure 2

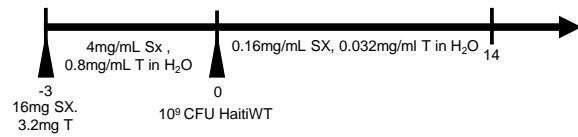


Figure 2. Serum vibriocidal antibody titers in Sm-treated mice immunized with HaitiV.

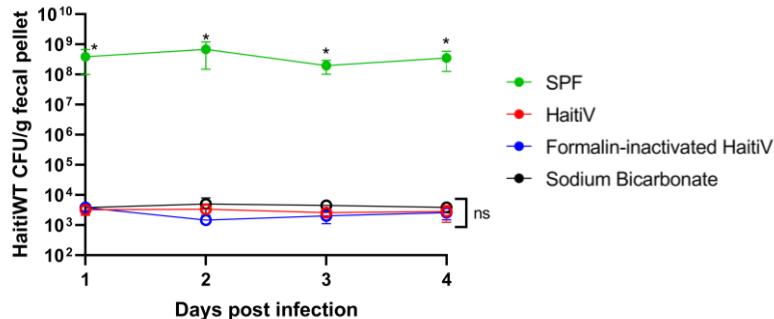
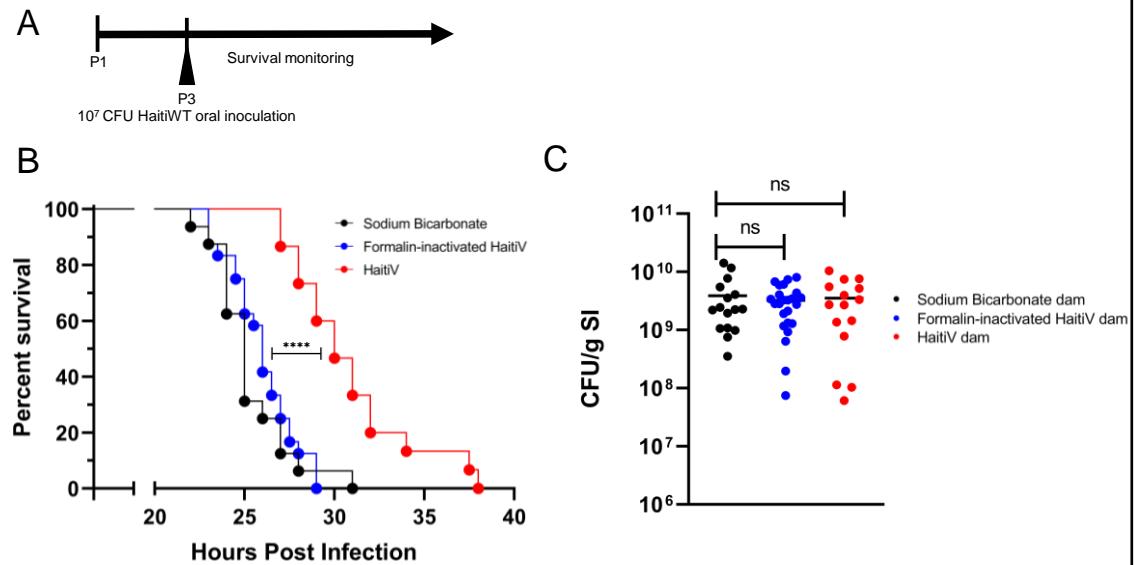

Circles indicate the lowest dilutions at which specific vibriocidal activity was detected, and the height of the bars represent geometric mean titers in each group. Ogawa *V. cholerae* PIC158 was used to measure Ogawa serotype-specific antibodies (black) and Inaba *V. cholerae* PIC018 was used to measure Inaba serotype-specific antibodies (red). Titers below the limit of detection are indicated by open symbols.

Figure 3

A



B

Figure 3. SXT treatment and re-colonization of Sm-treated adult mice by *V. cholerae*. A) All mice were treated with sulfamethoxazole and trimethoprim (SXT) and dosed with 10⁹ CFU of HaitiWT on day 0. B) Fecal shedding of HaitiWT from all mice; open symbols represent fecal pellets from which no CFUs of HaitiWT could be detected. An asterisk denotes differences with a P value of <0.05 as determined by a Mann Whitney U test.

Figure 4

Figure 4. Transient colonization by HaitiV is protective in an infant mouse model of cholera. A) Survival curves of pups born to dams inoculated with HaitiV (n=15), formalin inactivated-HaitiV (n=24) or vehicle buffer (n=16) after HaitiWT challenge. Differences in the survival curves were determined by a log rank (Mantel Cox) test ($p = 0.0013$ for HaitiV vs FI-HaitiV). B) HaitiWT CFUs recovered from the small intestines of the neonatal mice at the time they were moribund. Differences in CFU burdens were determined by a Mann Whitney U test.