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Abstract 

Supervised methods are increasingly used to identify cell populations in single-cell data and 

efforts are underway to generate comprehensive reference atlases which can be used to train 

these models. Yet, current supervised methods are limited in their ability to learn from multiple 

datasets simultaneously, are hampered by the annotation of the datasets at different 

resolutions, and do not preserve annotations when retrained on new datasets. The latter point 

is especially important as it deprives researchers from the ability to rely on downstream 

analysis performed using earlier versions of the dataset. Here, we present scHPL, a 

hierarchical progressive learning method which allows continuous learning from single-cell 

data by leveraging the different resolutions of annotations across multiple datasets to learn 

and continuously update a classification tree. We evaluate the classification and tree learning 

performance using simulated as well as real datasets and show that scHPL can successfully 

learn known cellular hierarchies from multiple datasets while preserving the original 

annotations. scHPL allows researchers to annotate continuously increasing amounts of single-

cell data, for example in consortia where datasets are collected at different times. scHPL is 

available at https://github.com/lcmmichielsen/hierarchicalprogressivelearning. 

Keywords: cell identity, classification, single-cell RNA-sequencing, progressive learning  
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Background 

Cell identification is an essential step in single-cell studies with profound effects on 

downstream analysis. For example, in order to compare cell-population-specific eQTL findings 

across studies, cell identities should be consistent [1]. Currently, cells in single-cell RNA-

sequencing (scRNA-seq) datasets are primarily annotated using clustering and visual 

exploration techniques, i.e. cells are first clustered into populations which are subsequently 

named based on the expression of marker genes. This is not only time-consuming, but also 

subjective [2]. The number of cell populations identified in a dataset, for example, is strongly 

correlated with the number of cells analyzed, which results in inconsistency across datasets 

[3–5].  

Recently, many supervised methods have been developed to replace unsupervised 

techniques. The underlying principles of these methods vary greatly. Some methods, for 

instance, rely on prior knowledge and assume that for each cell population marker genes can 

be defined (e.g. SCINA and Garnett), while others search for similar cells in a reference 

database (e.g. scmap and Cell-BLAST), or train a classifier using a reference atlas or a labeled 

dataset (e.g. scPred and CHETAH) [6–11]. 

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would use 

a reference atlas containing all possible cell populations to train a classifier. Such an atlas, 

however, does not exist yet and might never be fully complete. In particular, aberrant cell 

populations might be missing as a huge number of diseases exist and mutations could result 

in new cell populations. OnClass tries to overcome these shortcomings by mapping 

annotations to cell ontology classes and uses this to train a classifier [12]. These cell 

ontologies, however, were not developed for scRNA-seq data specifically. As a consequence, 

many new discovered smaller (sub)populations might be missing and relationships between 

cell populations might be inaccurate.  

Since no complete reference atlas is available, a classifier should ideally be able to combine 

the information of multiple annotated datasets and continue learning. Each time a new cell 

population is found in a dataset, it should be added to the knowledge of the classifier. We 
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advocate that this can be realized with progressive learning, a learning strategy inspired by 

humans. Human learning is a continuous process that never ends [13]. Using progressive 

learning, the task complexity is gradually increased, for instance, by adding more classes, but 

it is essential that the knowledge of the previous classes is preserved [14, 15]. This strategy 

allows combining information of multiple existing datasets and retaining the possibility to add 

more datasets afterwards. However, it cannot be simply applied to scRNA-seq datasets as a 

constant terminology to describe cell populations is missing, which eliminates straightforward 

identification of new cell populations based on their names. 

Moreover, the level of detail (resolution) at which datasets are annotated highly depends on 

the number of cells analyzed [3]. For instance, if a dataset is annotated at a low resolution, it 

might contain T-cells, while a dataset at a higher resolution can include subpopulations of T-

cells, such as CD4+ and CD8+ T-cells. We need to consider this hierarchy of cell populations 

in our representation, which can be done with a hierarchical classifier. This has the advantage 

that cell population definitions of multiple datasets can be combined, ensuring consistency. A 

hierarchical classifier has additional advantages in comparison to a classifier that does not 

exploit this hierarchy between classes (here denoted as ‘flat classifier’). One of these 

advantages is that a flat classifier needs to distinguish between many classes, while if we 

exploit the hierarchy, the classification problem is divided into smaller sub-problems. Another 

advantage is that if we are not sure about the annotation of an unlabeled cell at the highest 

resolution, we can always label it as an intermediate cell population (i.e. at a lower resolution).  

Currently, some classifiers, such as Garnett, CHETAH, and Moana, already exploit this 

hierarchy between classes [7, 10, 16]. Garnett and Moana both depend on prior knowledge in 

the form of marker genes for the different classes. Especially for deeper annotated datasets it 

can be difficult to define marker genes for each cell population that are robust across scRNA-

seq datasets [17, 18]. Moreover, we have previously shown that adding prior knowledge is not 

beneficial [19]. CHETAH, on the contrary, constructs a classification tree based on one dataset 

by hierarchically clustering the reference profiles of the cell populations and classifies new 

cells based on the similarity to the reference profile of that cell population. However, simple 
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flat classifiers outperform CHETAH [19], indicating that a successful strategy to exploit this 

hierarchy is still missing. Furthermore, these hierarchical classifiers cannot exploit the different 

resolutions of multiple datasets as this requires adaptation of the hierarchical representation.   

Even if multiple datasets are combined into a hierarchy, there might be unseen populations in 

an unlabeled dataset. Identifying these cells as a new population is a challenging problem. 

Although some classifiers have implemented an option to reject cells, they usually fail when 

being tested in a realistic scenario [19]. In most cases, the rejection option is implemented by 

setting a threshold on the posterior probability [7, 9, 19, 20]. If the highest posterior probability 

does not exceed a threshold, the cell is rejected. By looking at the posterior, the actual 

similarity between a cell and the cell population is ignored.  

Here, we propose a hierarchical progressive learning approach to overcome these challenges. 

To summarize our contributions: (i) we exploit the hierarchical relationships between cell 

populations to be able to classify data sets at different resolutions, (ii) we propose a 

progressive learning approach that updates the hierarchical relationships dynamically and 

consistently, and (iii) we adopt an advanced rejection procedure including a one-class 

classifier to be able to discover new cell (sub)populations.  

 

Results 

Hierarchical progressive learning of cell identities 

We developed scHPL, a hierarchical progressive learning approach to learn a classification 

tree using multiple labeled datasets (Figure 1A) and use this tree to predict the labels of a 

new, unlabeled dataset (Figure 1B). The tree is learned using multiple iterations (Methods). 

First, we match the labels of two datasets by training a flat classifier for each dataset and 

predicting the labels of the other dataset. Based on these predictions we create a matching 

matrix (X) and match the cell populations of the two datasets. In the matching process, we 

separate different biological scenarios, such as a perfect match, merging or splitting cell 

populations, as well as creating a new population (Figure 2, Table S1). In the following 

iterations, we add one labeled dataset at a time by training a flat classifier on this new dataset 
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and training the previously learned tree on all pre-existing datasets. Similar to the previous 

iteration, the tree is updated after cross-prediction and matching of the labels. 

Either during tree learning or prediction, there can be unseen populations. Therefore, an 

efficient rejection option is needed, which we do in  two steps. First, we reject cells by 

thresholding the reconstruction error of a cell when applying a PCA-based dimension 

reduction: a new, unknown, population is not used to learn the PCA transformation, and 

consequently will not be properly represented by the selected PCs, leading to a high 

reconstruction error (Methods). Secondly, to accommodate rejections when the new 

population is within the selected PCA domain, scHPL adopts two alternatives to classify cells: 

a linear and a one-class support vector machine (SVM). The linear SVM has shown a high 

performance in a benchmark of scRNA-seq classifiers [19], but has a limited rejection option. 

Whereas, the one-class SVM solves this as only positive training samples are used to fit a 

tight decision boundary around [21].  

 

Linear SVM has a higher classification accuracy than one-class SVM 

We tested our hierarchical classification scheme by measuring the classification performance 

of the one-class SVM and linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen 

Mouse Brain) data using 10-, 10-, and 5-fold cross-validation respectively (Methods). The 

simulated dataset was constructed using Splatter [22] and consists of 8,839 cells, 9,000 genes 

and 6 different cell populations (Figure 3). PBMC-FACS is the downsampled FACS-sorted 

PBMC dataset from [23] and consists of 20,000 cells and 10 cell populations. The Allen Mouse 

Brain (AMB) dataset is challenging as it has deep annotation levels [5], containing 92 different 

cell populations ranging in size from 11 to 1,348 cells. In these experiments, the classifiers 

were trained on predefined trees (Figure 3A, S1-2). 

On all datasets, the linear SVM performs better than the one-class SVM (Figure 4A-D). The 

simulated dataset is relatively easy since the cell populations are widely separated (Figure 

3C). The linear SVM shows an almost perfect performance: only 0.9% of the cells are rejected 

(based on the reconstruction error only), which is in line with the adopted threshold resulting 
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in 1% false negatives. The one-class SVM labels 92.9% of the cells correctly, the rest is 

labeled as an internal node (2.3%) or rejected (4.8%), which results in a median Hierarchical 

F1-score (HF1-score) of 0.973, where HF1 is an F1-score that considers class importance 

across the hierarchy (Methods).  

As expected, the performance of the classifiers on real data drops, but the HF1-scores remain 

higher than 0.9. On both the PBMC-FACS and AMB dataset, the performance of the linear 

SVM is higher than the one-class SVM (Figure 4B-D). For the AMB dataset, we used the same 

cross-validation folds as in [19], which enables us to compare our results. When comparing to 

CHETAH, which allows hierarchical classification, we notice that the linear SVM performs 

better based on the median F1-score (0.94 vs 0.83). The one-class SVM has a slightly lower 

median F1-score (0.80 vs 0.83), but it has more correctly predicted cells and less wrongly 

predicted cells (Figure 4D).  

The linear (hierarchical) SVM also shows a better performance compared to SVMrejection, which 

is a flat linear SVM with rejection option based on the posterior probability and was the best 

classifier for this data [19]. SVMrejection, however, has a slightly higher median F1-score (0.98 

vs 0.94). This is mainly because it makes almost no mistakes, only 1.7% of the cells are 

wrongly labeled (Figure 4D). The number of rejected cells, on the other hand, is not considered 

when calculating the median F1-score. This number is relatively high for SVMrejection (19.8%). 

The linear SVM, on the contrary, has almost no rejected cells, which is also reflected in a 

higher HF1-score (Figure 4C). Because of this large amount of rejections of SVMrejection, the 

one-class SVM also has a higher HF1-score. 

On the AMB dataset, we observe that the performance of all classifiers decreases when the 

number of cells per cell population becomes smaller. The performance of the one-class SVM 

is affected more than the others  (Figure 4F). The one-class SVM, for instance, never predicts 

the ‘Astro Aqp4’ cells correctly, while this population is relatively different from the rest as it is 

the only non-neuronal population. This cell population, however, only consists of eleven cells.  

 

One-class SVM detects new cells better than linear SVM 
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Besides a high accuracy, the classifiers should be able to reject unseen cell populations. First, 

we evaluated the rejection option on the simulated data. In this dataset, the cell populations 

are distinct, so we expect that this is a relatively easy task. We removed one cell population, 

‘Group 3’, from the training set and used this population as a test set. The one-class SVM 

outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects 

only 38.9% of them.  

Next, we tested the rejection option on the AMB dataset. Here, we did four experiments and 

each time removed a node, including all its subpopulations, from the predefined tree (Figure 

S2). We removed the ‘L6 IT’ and ‘Lamp5’ cell populations from the second layer of the tree, 

and the ‘L6 IT VISp Penk Col27a1’ and ‘Lamp5 Lsp1’ from the third layer. When a node is 

removed from the second layer of the tree, the linear SVM clearly rejects these cells better 

than the one-class SVM (Figure 4E). On the contrary, the one-class SVM rejects leaf node 

cells better.  

 

scHPL correctly learns cellular hierarchies 

Next, we tested if we could learn the classification trees for the simulated and PBMC-FACS 

data using scHPL. In both experiments, we performed a 10-fold cross-validation and splitted 

the training set in three different batches, Batch 1, Batch 2, and Batch 3, to simulate the idea 

of different datasets. To obtain different annotation levels in these batches, multiple cell 

populations were merged into one population in some batches, or cell populations were 

removed from certain batches (Tables S2-3). Batch 1 contains the lowest resolution and Batch 

3 the highest. When learning the trees, we try all (six) different orders of the batches to see 

whether this affects the tree learning. Combining this with the 10-fold cross-validation, 60 trees 

were learned in total by each classifier. To summarize the results, we constructed a final tree 

in which the thickness of an edge indicates how often it appeared in the 60 learned trees. 

The linear and one-class SVM showed stable results during both experiments; all 60 trees -

except for two trees learned by the one-class SVM on the PBMC data - look identical (Figure 

5A-D). The final tree for the simulated data looks as expected, but the tree for the PBMC data 
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looks slightly different from the predefined hematopoietic tree (Figure S1A). In the learned 

trees, CD4+ memory T-cells are a subpopulation of CD8+ instead of CD4+ T-cells. A t-SNE 

plot of the PBMC-FACS dataset confirms that CD4+ memory T-cells are more similar to CD8+ 

than CD4+ T-cells based on their transcriptomic profile (Figure S1B). Using the learned tree 

instead of the predefined hematopoietic tree also improves the classification performance of 

the linear SVM slightly (HF1-score = 0.990 vs 0.985). Moreover, when relying on the 

predefined hematopoietic tree, CD4+ memory T-cells, CD8+ T-cells, and CD8+ naive T-cells 

were also often confused, indicating that the learned PBMC tree might better reflect the data 

(Tables S4-5).  

 

Missing populations affect cellular hierarchy learning with linear SVM 

We tested whether new or missing cell populations in the training set could influence tree 

learning. We mimicked this scenario using the simulated dataset and the same batches as in 

the previous tree learning experiment. In the previous experiment, ‘Group5’ and ‘Group6’ were 

merged into ‘Group56’ in Batch 2, but now we removed ‘Group5’ completely from this batch 

(Table S6). In this setup, the linear SVM mis-constructs all trees (Figure 5E). If ‘Group5’ is 

present in one batch and absent in another, the ‘Group5’ cells are not rejected, but labeled as 

‘Group6’. Consequently, ‘Group6’ is added as a parent node to ‘Group5’ and ‘Group6’. On the 

other hand, the one-class SVM suffers less than the linear SVM from these missing 

populations and correctly learns the expected tree in 2/3 of the cases (Figure 5F). In the 

remaining third (20 trees), ‘Group5’ matched perfectly with ‘Group456’ and was thus not added 

to the tree. This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or 

Batch 3 - Batch 1 - Batch 2. Adding batches in increasing or decreasing resolution 

consequently resulted in the correct tree. 

 

Linear SVM can learn the classification tree during an inter-dataset experiment 

Finally, we tested scHPL in a realistic scenario by using three PBMC datasets (PBMC-eQTL, 

PBMC-Bench10Xv2, and PBMC-FACS) to learn a classification tree and using this tree to 
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predict the labels of a fourth PBMC dataset (PBMC-Bench10Xv3) (Table 1). We constructed 

an expected classification tree based on the names of the cell populations in the datasets 

(Figure 6A). Note that matching based on names might result in an erroneous tree since every 

dataset was labeled using different clustering techniques, marker genes, and their own naming 

conventions. 

When comparing the tree learned using the linear SVM to the expected tree, we notice five 

differences (Figure 6A-B). Some of these mistakes are minor. The megakaryocytes from the 

eQTL dataset are for instance seen as a subpopulation of the megakaryocytes of the 

Bench10Xv2 dataset. Different marker genes were used to identify these populations, so it 

could indeed be that one set of marker genes was more specific [24, 25]. Looking at a UMAP 

embedding of the aligned datasets, we also notice that the two populations do not completely 

overlap (Figure 6C-D). The same explanation could be used for the CD14+ monocytes of the 

FACS dataset that match the monocytes from the Bench10Xv2 dataset - a combination of 

CD14+ and CD16+ monocytes - instead of  the CD14+ monocytes of the eQTL dataset. 

Another minor mistake is that the myeloid dendritic cells (mDC) are seen as a subpopulation 

of monocytes, which can be explained by the fact that monocytes can differentiate into mDC 

[26]. 

There are two mistakes, however, that cannot be explained biologically. The NK cells from the 

FACS dataset do not match the NK cells from the eQTL and Bench10Xv2 dataset, but the 

CD8+ T-cells. The second mistake, also caused by the FACS dataset, is that the CD8+ naive 

T-cells are a subset of the CD4+ T-cells instead of CD8+ T-cells. Since a UMAP embedding 

of the aligned datasets supports the learned tree, it is unclear whether these mistakes are 

introduced by the alignment of the datasets or caused by the different annotation methods of 

the datasets (Figure 6C-D). That is, the eQTL and Bench10Xv2 were both annotated using 

clustering, while the FACS dataset was annotated based on the expression of cell surface 

markers.   

Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned 

classification tree (Figure 6E). Interestingly, we notice that the CD16+ monocytes are 
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predicted to be mDCs and vice versa, which could be explained by the aforementioned fact 

that monocytes can differentiate into dendritic cells.  

When using a one-class SVM instead of a linear SVM, nine mistakes are made (Figure S3). 

Some mistakes are similar to the linear SVM, such as imperfect matching of the 

megakaryocytes or the mismatch of the CD8+ naive cells, but some mistakes are specific to 

the one-class SVM. Since the one-class SVM shows a low performance on cell populations 

with few cells, it also makes more mistakes when trying to match them. For instance, the NK 

bright cells from the eQTL dataset are not matching any population of the other datasets. This 

is probably since there are very little NK bright cells in the eQTL dataset, so the one-class 

SVM cannot define the decision boundary for this population properly. Larger cell populations, 

such as B-cells, can be matched without mistake when using the one-class SVM.  

 

Discussion 

In this study, we showed that scHPL has great potential for automatic cell identification in 

scRNA-seq data. We showed that using our approach the labels of three different PBMC 

datasets can successfully be matched to learn a classification tree that largely mimics the 

known hematopoietic cellular hierarchy. In this experiment, mismatches, such as the 

megakaryocytes, confirm that matching purely based on the name is not possible and that a 

precise definition of most cell populations is missing. Two more serious mistakes were made 

when the PBMC-FACS dataset was added. This could be because of the alignment of the 

datasets or because of the different labeling procedures of the datasets. That is, the PBMC-

FACS data was labeled based on the expression of cell surface markers instead of clustering 

the cells, and it is known that protein and gene expression poorly correlated [27, 28], which 

might explain these results. 

Furthermore, we showed that using a hierarchical approach outperforms flat classification. On 

the AMB dataset, the linear SVM outperformed SVMrejection, which was the best performing 

classifier on this dataset [19]. In contrast to SVMrejection, the linear SVM did not reject any of the 

cells but labeled them as an intermediate cell population. During this experiment, there were 
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no cells of unknown populations. Correct intermediate predictions instead of rejection are 

therefore beneficial since it provides the user with at least some information. When comparing 

the linear SVM and one-class SVM, we noticed that the accuracy of the linear SVM is equal 

to or higher than the one-class SVM on all datasets. For both classifiers, we saw a decrease 

in performance on populations with a small number of cells, but for the one-class SVM this 

effect was more apparent.  

When testing the rejection option, the one-class SVM clearly outperforms the linear SVM by 

showing a perfect performance on the simulated dataset. Moreover, when cell populations are 

missing from the simulated data, the linear SVM  cannot learn the correct tree anymore, in 

contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell 

populations are missing, although on the AMB dataset, the rejection option of both classifiers 

was not perfect. 

 

Conclusion 

We present a hierarchical progressive learning approach to automatically identify cell identities 

based on multiple datasets with various levels of subpopulations. We show that we can 

accurately learn cell identities and learn hierarchical relations between cell populations. Our 

results indicate that choosing between a one-class and a linear SVM is a trade-off between 

achieving a higher accuracy and the ability to discover new cell populations. Our approach 

can be beneficial in single-cell studies where a comprehensive reference atlas is not present, 

for instance, to annotate datasets consistently during a cohort study. The first available 

annotated datasets can be used to build the hierarchical tree, which could subsequently can 

be used to annotate cells in the other datasets. 

 

Methods 

Hierarchical progressive learning 

Training the hierarchical classifier 
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The training procedure of the hierarchical classifier is the same for every tree: we train a local 

classifier for each node except the root. This local classifier is either a one-class SVM or a 

linear SVM. We used the one-class SVM (svm.OneClassSVM(nu = 0.05)) from the scikit-learn 

library in Python [29]. A one-class classifier only uses positive training samples, which in our 

case includes samples from the node itself and all its child nodes. To avoid overfitting, we first 

select the first 100 principal components (PCs) of the training data. Next, we select informative 

PCs for each node separately using a two-sided two-sample t-test between the positive and 

negative samples of a node (α < 0.05, Bonferonni corrected). In some rare cases, this 

correction was too strict and no PCs were selected. In those cases, the five PCs with the 

smallest p-values were selected. For the linear SVM, we used the svm.LinearSVC() function 

from the scikit-learn library. This classifier also uses negative samples. These are selected 

using the siblings policy [30], i.e. sibling nodes include all nodes that have the same ancestor, 

excluding the ancestor itself. The linear SVM applies L2-regularization by default, so no extra 

measures to prevent overtraining were necessary.  

 

The reconstruction error 

The reconstruction error is used to reject unknown cell populations. We use the training data 

to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold cross-

validation. A PCA (n_components = 100) is learned on the training data. The test data is then 

reconstructed by first mapping the data to the selected PCA domain, and then mapping the 

data back to the original space using the inverse transformation (hence the data lies within the 

plane spanned by the selected PCs). The reconstruction error is the difference between the 

original data and the reconstructed data (in other words, the distance of the original data to 

the PC plane). The median of the qth (default q = 0.99) percentile of the errors across the test 

data is used as threshold. By increasing or decreasing this parameter, the number of false 

negatives can be controlled. Finally, we apply a PCA (n_components = 100) to the whole 

dataset to learn the transformation that can be applied to new unlabeled data later. 
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Predicting the labels 

First, we look at the reconstruction error of a new cell to determine whether it should be 

rejected. If the reconstruction error is higher than the threshold determined on the training 

data, the cell is rejected. If not, we continue with predicting its label. We start at the root node, 

which we denote as parent node and use the local classifiers of its children to predict the label 

of the cell using the predict() function, and score it using the decision_function(), both from the 

scikit-learn package. These scores represent the signed distance of a cell to the decision 

boundary. When comparing the results of the local classifiers, we distinguish three scenarios: 

1.  All child nodes label the cell negative. If the parent node is the root, the new cell is 

rejected. Otherwise we have an internal node prediction and the new cell is labeled 

with the name of the parent node. 

2. One child node labels the cell positive. If this child node is a leaf node, the sample is 

labeled with the name of this node. Otherwise, this node becomes the new parent and 

we continue with its children.  

3. Multiple child nodes label the cell positive. We only consider the child node with the 

highest score and continue as in scenario two.  

 

Reciprocal matching labels and updating the tree 

Starting with two datasets, D1 and D2, and the two corresponding classification trees (which 

can be either hierarchical or flat), we would like to match the labels of the datasets and merge 

the classification trees accordingly into a new classification tree while being consistent with 

both input classification trees (Figure 1). We do this in two steps: first matching the labels 

between the two dataset and then updating the tree. 

Reciprocal matching labels: We first cross-predict the labels of the datasets: we use the 

classifier trained on D1 to predict the labels of D2 and vice versa. We construct confusion 

matrices, C1 and C2, for D1 and D2, respectively. Here, C1ij indicates how many cells of 

population i of D1 are predicted to be population j of D2. This prediction can be either a leaf 

node, internal node or a rejection. As the values in C1 and C2 are highly depended on the size 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/


of a cell population, we normalize the rows such that the sum of every row is one: 𝑁𝐶1𝑖𝑗 =

𝐶1𝑖𝑗

∑ 𝐶1𝑖𝑗∀𝑗
 , now indicating the fraction of cells of population i in D1 that have been assigned to 

population j in D2. Clearly, a high fraction is indicative of matching population i in D1 with 

population j in D2. Due to splitting, merging, or new populations between both datasets, 

multiple relatively high fractions can occur (e.g. if a population i is split in two populations j1 

and j2 due to D2 being of a higher resolution, both fractions NCij1 and NCij2 will be approximately 

0.5). To accommodate for these operations, we allow multiple matches per population.  

To convert these fractions into matches, NC1 and NC2 are converted into binary confusion 

matrices, BC1 and BC2, where a 1 indicates a match between a population in D1 with a 

population in D2, and vice versa. To determine a match, we take the value of the fraction as 

well as the difference with the other fractions into account. This is done for each row 

(population) of NC1 and NC2 separately. When considering row i from NC1, we first rank all 

fractions, then the highest fraction will be set to 1 in BC1, after which all fractions for which the 

difference with the preceding (higher) fraction is less than a predefined threshold (default = 

0.25) will also be set to 1 in BC1.  

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching 

matrix X (X = BC1^T + BC2) (Figure 2). The columns in X represent the cell populations of D1 

and the rows represent the cell populations of D2. If Xij = 2, this indicates a reciprocal match 

between cell population i from D2 and cell populations j from D1. Xij = 1 indicates a one-sided 

match, and Xij = 0  represents no match.  

Tree updating: Using the reciprocal matches between D1 and D2 represented in X, we update 

the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2. We do 

that by handling the correspondences in X elementwise. For a non-zero value in X, we check 

whether there are other non-zero values in the corresponding row and column to identify which 

tree operation we need to take (such as split/merge/create). As an example, if we encounter 

a split for population i in D1 into j1 and j2, we will create new nodes for j1 and j2 as child nodes 

of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the four most common 
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scenarios: a perfect match, splitting nodes, merging nodes, and a new population. All other 

scenarios are explained in Supplementary Note 1. After an update, the corresponding values 

in X are set to zero and we continue with the next non-zero element of X. If the matching is 

impossible, the corresponding values in X are thus not set to zero. If we have evaluated all 

elements of X, and there are still non-zero values, we will change X into a strict matrix, i.e. we 

further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’. We then again 

evaluate X element wise once more.  

 

Evaluation 

Hierarchical F1-score 

We use the hierarchical F1-score (HF1-score) to evaluate the performance of the classifiers 

[31]. We first calculate the hierarchical precision (hP) and recall (hR): ℎ𝑃 =  
∑ 𝑃𝑖 ∪ 𝑇𝑖 𝑖

∑ 𝑃𝑖𝑖
 

and ℎ𝑅 =  
∑ 𝑃𝑖 ∪ 𝑇𝑖 𝑖

∑ 𝑇𝑖𝑖
. Here, 𝑃𝑖  is a set that contains the predicted cell population for a cell i and 

all the ancestors of that node, 𝑇𝑖  contains the true cell population and all its ancestors, and 

𝑃𝑖 ∪  𝑇𝑖  is the overlap between these two sets. The HF1-score is the harmonic mean of hP 

and hR:  𝐻𝐹1 =  
2ℎ𝑃 ∗ ℎ𝑅

ℎ𝑃 + ℎ𝑅
. 

 

Median F1-score 

We use the median F1-score to compare the classification performance to other methods. The 

F1-score is calculated for each cell population in the dataset and afterwards the median of 

these scores is taken. Rejected cells and internal predictions are not considered when 

calculating this score. 

 

Datasets 

Simulated data 

We used the R-package Splatter version 1.6.1 to simulate a hierarchical scRNA-seq dataset 

that represents the tree shown in Figure 3A [22]. As Splatter is originally not developed to 
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simulate hierarchical data, we created such a dataset by simulating three datasets, each 

consisting of 9,000 cells and 3000 genes, and stacking them column wise. In these three 

datasets, we simulated different groups with different frequencies (Figure 3B). The final 

dataset consists of 8,839 cells and 9,000 genes. In total there are six different cell populations 

of approximately 1,500 cells each. As a preprocessing step, we log-transformed the count 

matrix (𝑙𝑜𝑔2(𝑐𝑜𝑢𝑛𝑡 +  1)). A UMAP embedding of the simulated dataset shows it indeed 

represents the desired hierarchy (Figure 3C). 

 

PBMC data 

We used four different PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-

Bench10Xv3, and PBMC-eQTL. All were preprocessed as described in [19]. 

The PBMC-FACS dataset is the downsampled FACS-sorted PBMC dataset from [23]. Cells 

were first FACS-sorted into ten different cell populations (CD14+ monocytes, CD19+ B cells, 

CD34+ cells, CD4+ helper T-cells, CD4+/CD25+ regulatory T-cells, CD4+/CD45RA+/CD25− 

naive T-cells, CD4+/CD45RO+ memory T-cells, CD56+ natural killer cells, CD8+ cytotoxic T-

cells, CD8+/CD45RA+ naive cytotoxic T-cells) and sequenced using 10X Chromium [23]. 

Each cell population consists of 2,000 cells. The total dataset consists of 20,000 cells and 

21,952 genes. 

The PBMC-Bench10Xv2 and PBMC-Bench10Xv3 datasets are the PbmcBench pbmc1.10Xv2 

and pbmc1.10Xv3 datasets from [25]. These datasets consist of 6,444 and 3,222 cells 

respectively, 22,280 genes, and nine different cell populations. Originally the PBMC-

Bench10Xv2 dataset contained CD14+ and CD16+ monocytes. We merged these into one 

population called monocytes to introduce a different annotation level compared to the other 

PBMC datasets. 

The PBMC-eQTL dataset was sequenced using 10X Chromium and consists of 24,439 cells, 

22,229 genes, and eleven different cell populations [24]. 

When combining all PBMC datasets for the inter-dataset experiment, we removed genes not 

present in all datasets (17,573 genes remained), and cell populations that consisted of less 
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than 100 cells from the datasets used for constructing and training the classification tree 

(PBMC-eQTL, FACS, Bench10Xv2). Next, we aligned the datasets using Seurat V3 [32].  

 

Allen Mouse Brain data 

We used the Allen Mouse Brain (AMB) data to look at different resolutions of cell populations 

in the primary mouse visual cortex. This dataset, which was sequenced using SMART-Seq 

V4 [5] and preprocessed as described in [19], consists of 12,771 cells and 42,625 genes.  
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Figure 1. Schematic overview of scHPL. (A) Overview of the training phase. In the first 

iteration, we start with two labeled datasets. The colored areas represent the different cell 

populations. For both datasets a flat classifier (FC1 & FC2) is constructed. Using this tree and 

the corresponding dataset, a classifier is trained for each node in the tree except for the root. 

We use the trained classification tree of one dataset to predict the labels of the other. The 

decision boundaries of the classifiers are indicated with the contour lines. We compare the 

predicted labels to the cluster labels to find matches between the labels of the two datasets. 

The tree belonging to the first dataset is updated according to these matches, which results in 

a hierarchical classifier (HC1). In dataset 2, for example, subpopulations of population ‘1’ of 

dataset 1 are found. Therefore, these cell populations, ‘A’ and ‘B’, are added as children to 

the ‘1’ population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3) 

is trained for this dataset and HC1 is trained on dataset 1 and 2, combined. After cross-

prediction and matching the labels, we update the tree which is then trained on all datasets 1-

3 (HC2). (B) The final classifier can be used to annotate a new unlabeled dataset. If this 

dataset contains unknown cell populations, these will be rejected. 
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Figure 2. Schematic examples of different matching scenarios. (A) Perfect match, (B) 

splitting, (C) merging, (D) new population. The first two columns represent a schematic 

representation of two datasets. After cross-predictions, the matching matrix (X) is constructed 

using the confusion matrices (Methods). We update the tree based on X.   
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Figure 3. Simulated dataset. (A) Classification tree for the simulated dataset. (B) We 

simulated three datasets separately and concatenated them in one dataset. The labels and 

their proportion are indicated in the simulated datasets. (C) UMAP of the final dataset.  
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Figure 4. Classification performance. (A-C) Boxplots showing the HF1-score of the one-

class and linear SVM on the (A) simulated (B) PBMC-FACS, and (C) AMB dataset. (D) Barplot 

showing the percentage of true positives (TP), false negatives (FN), and false positives (FP) 

per classifier on the AMB dataset. For the TPs a distinction is made between correctly 

predicted leaf nodes and internal nodes. (E) Heatmap showing the percentage of unlabeled 

cells per classifier during the different rejection experiments. (F) Heatmap showing the F1-

score per classifier per cell population on the AMB dataset. Grey indicates that a classifier 

never predicted a cell to be of that population.  
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Figure 5. Tree learning evaluation. Classification trees learned when using a (A,C,E) linear 

SVM or (B,D,F) one-class SVM during the (A-B) simulated, (C-D) PBMC-FACS, and (E-F) 

simulated rejection experiment. The line pattern of the links indicates how often that link was 

learned during the 60 training runs.  
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Figure 6. Inter-dataset evaluation. (A) Expected and (B) learned classification tree when 

using a linear SVM on the PBMC datasets. The color of a node represents the agreement 

between dataset(s) regarding that cell population. (C-D) UMAP of the aligned datasets colored 

by (C) dataset and (D) cell populations. The arrowhead points to the megakaryocytes, which 

are a clear example of why the learned tree is supported by the UMAP. (E) Confusion matrix 

when using the learned classification tree to predict the labels of PBMC-Bench10Xv3. 
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Table 1. Number of cells per cell population in the different training datasets (batches) and 

test dataset. Subpopulations are indicated using an indent. 

Cell population Batch 1 
eQTL 

Batch 2 
Bench 10Xv2 

Batch 3 
FACS 

Test dataset 
Bench 10Xv3 

CD19+ B 812 676 2,000 346 

CD34+   2,000  

Monocytes (MC)  1,194   

     CD14+ 2,081  2,000 354 

     CD16+ 274   98 

CD4+ T 13,523 1,458  960 

     Reg.   2,000  

     Naive   2,000  

     Memory   2,000  

CD8+ T 4,195 2,128  962 

     Naive   2,000  

Megakaryocyte (MK) 142 433  270 

NK cell  429 2,000 194 

     CD56+ bright 355    

     CD56+ dim 2,415    

Dendritic    35 

     Plasmacytoid (pDC) 101    

     Myeloid (mDC) 455    
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