
Hierarchical progressive learning of

cell identities in single-cell data

Lieke Michielsen1,2,3 (l.c.m.michielsen@tudelft.nl)

Marcel J.T. Reinders1,2,3 (m.j.t.reinders@tudelft.nl)

Ahmed Mahfouz1,2,3* (a.mahfouz@lumc.nl)

1 Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20,

2333ZC, Leiden, The Netherlands
2 Leiden Computational Biology Center, Leiden University Medical Center, Einthovenweg 20,

2333ZC, Leiden, The Netherlands
3 Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6,

2628XE, Delft, The Netherlands

* Corresponding author (a.mahfouz@lumc.nl)

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

mailto:l.c.m.michielsen@student.tudelft.nl
mailto:m.j.t.reinders@tudelft.nl
mailto:a.mahfouz@lumc.nl
mailto:a.mahfouz@lumc.nl
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Abstract

Supervised methods are increasingly used to identify cell populations in single-cell data and

efforts are underway to generate comprehensive reference atlases which can be used to train

these models. Yet, current supervised methods are limited in their ability to learn from multiple

datasets simultaneously, are hampered by the annotation of the datasets at different

resolutions, and do not preserve annotations when retrained on new datasets. The latter point

is especially important as it deprives researchers from the ability to rely on downstream

analysis performed using earlier versions of the dataset. Here, we present scHPL, a

hierarchical progressive learning method which allows continuous learning from single-cell

data by leveraging the different resolutions of annotations across multiple datasets to learn

and continuously update a classification tree. We evaluate the classification and tree learning

performance using simulated as well as real datasets and show that scHPL can successfully

learn known cellular hierarchies from multiple datasets while preserving the original

annotations. scHPL allows researchers to annotate continuously increasing amounts of single-

cell data, for example in consortia where datasets are collected at different times. scHPL is

available at https://github.com/lcmmichielsen/hierarchicalprogressivelearning.

Keywords: cell identity, classification, single-cell RNA-sequencing, progressive learning

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Background

Cell identification is an essential step in single-cell studies with profound effects on

downstream analysis. For example, in order to compare cell-population-specific eQTL findings

across studies, cell identities should be consistent [1]. Currently, cells in single-cell RNA-

sequencing (scRNA-seq) datasets are primarily annotated using clustering and visual

exploration techniques, i.e. cells are first clustered into populations which are subsequently

named based on the expression of marker genes. This is not only time-consuming, but also

subjective [2]. The number of cell populations identified in a dataset, for example, is strongly

correlated with the number of cells analyzed, which results in inconsistency across datasets

[3–5].

Recently, many supervised methods have been developed to replace unsupervised

techniques. The underlying principles of these methods vary greatly. Some methods, for

instance, rely on prior knowledge and assume that for each cell population marker genes can

be defined (e.g. SCINA and Garnett), while others search for similar cells in a reference

database (e.g. scmap and Cell-BLAST), or train a classifier using a reference atlas or a labeled

dataset (e.g. scPred and CHETAH) [6–11].

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would use

a reference atlas containing all possible cell populations to train a classifier. Such an atlas,

however, does not exist yet and might never be fully complete. In particular, aberrant cell

populations might be missing as a huge number of diseases exist and mutations could result

in new cell populations. OnClass tries to overcome these shortcomings by mapping

annotations to cell ontology classes and uses this to train a classifier [12]. These cell

ontologies, however, were not developed for scRNA-seq data specifically. As a consequence,

many new discovered smaller (sub)populations might be missing and relationships between

cell populations might be inaccurate.

Since no complete reference atlas is available, a classifier should ideally be able to combine

the information of multiple annotated datasets and continue learning. Each time a new cell

population is found in a dataset, it should be added to the knowledge of the classifier. We

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/zhNQ
https://paperpile.com/c/7xSHUZ/mHPC
https://paperpile.com/c/7xSHUZ/dNA1+mbe5+HkPU
https://paperpile.com/c/7xSHUZ/RQni+2ykf+TNrS+kni6+ZhoK+iNly
https://paperpile.com/c/7xSHUZ/Mhip
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

advocate that this can be realized with progressive learning, a learning strategy inspired by

humans. Human learning is a continuous process that never ends [13]. Using progressive

learning, the task complexity is gradually increased, for instance, by adding more classes, but

it is essential that the knowledge of the previous classes is preserved [14, 15]. This strategy

allows combining information of multiple existing datasets and retaining the possibility to add

more datasets afterwards. However, it cannot be simply applied to scRNA-seq datasets as a

constant terminology to describe cell populations is missing, which eliminates straightforward

identification of new cell populations based on their names.

Moreover, the level of detail (resolution) at which datasets are annotated highly depends on

the number of cells analyzed [3]. For instance, if a dataset is annotated at a low resolution, it

might contain T-cells, while a dataset at a higher resolution can include subpopulations of T-

cells, such as CD4+ and CD8+ T-cells. We need to consider this hierarchy of cell populations

in our representation, which can be done with a hierarchical classifier. This has the advantage

that cell population definitions of multiple datasets can be combined, ensuring consistency. A

hierarchical classifier has additional advantages in comparison to a classifier that does not

exploit this hierarchy between classes (here denoted as ‘flat classifier’). One of these

advantages is that a flat classifier needs to distinguish between many classes, while if we

exploit the hierarchy, the classification problem is divided into smaller sub-problems. Another

advantage is that if we are not sure about the annotation of an unlabeled cell at the highest

resolution, we can always label it as an intermediate cell population (i.e. at a lower resolution).

Currently, some classifiers, such as Garnett, CHETAH, and Moana, already exploit this

hierarchy between classes [7, 10, 16]. Garnett and Moana both depend on prior knowledge in

the form of marker genes for the different classes. Especially for deeper annotated datasets it

can be difficult to define marker genes for each cell population that are robust across scRNA-

seq datasets [17, 18]. Moreover, we have previously shown that adding prior knowledge is not

beneficial [19]. CHETAH, on the contrary, constructs a classification tree based on one dataset

by hierarchically clustering the reference profiles of the cell populations and classifies new

cells based on the similarity to the reference profile of that cell population. However, simple

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/BRxf
https://paperpile.com/c/7xSHUZ/t1QC+CR7a
https://paperpile.com/c/7xSHUZ/dNA1
https://paperpile.com/c/7xSHUZ/2ykf+ZhoK+kVFN
https://paperpile.com/c/7xSHUZ/0VwN+8Ioa
https://paperpile.com/c/7xSHUZ/vMeP
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

flat classifiers outperform CHETAH [19], indicating that a successful strategy to exploit this

hierarchy is still missing. Furthermore, these hierarchical classifiers cannot exploit the different

resolutions of multiple datasets as this requires adaptation of the hierarchical representation.

Even if multiple datasets are combined into a hierarchy, there might be unseen populations in

an unlabeled dataset. Identifying these cells as a new population is a challenging problem.

Although some classifiers have implemented an option to reject cells, they usually fail when

being tested in a realistic scenario [19]. In most cases, the rejection option is implemented by

setting a threshold on the posterior probability [7, 9, 19, 20]. If the highest posterior probability

does not exceed a threshold, the cell is rejected. By looking at the posterior, the actual

similarity between a cell and the cell population is ignored.

Here, we propose a hierarchical progressive learning approach to overcome these challenges.

To summarize our contributions: (i) we exploit the hierarchical relationships between cell

populations to be able to classify data sets at different resolutions, (ii) we propose a

progressive learning approach that updates the hierarchical relationships dynamically and

consistently, and (iii) we adopt an advanced rejection procedure including a one-class

classifier to be able to discover new cell (sub)populations.

Results

Hierarchical progressive learning of cell identities

We developed scHPL, a hierarchical progressive learning approach to learn a classification

tree using multiple labeled datasets (Figure 1A) and use this tree to predict the labels of a

new, unlabeled dataset (Figure 1B). The tree is learned using multiple iterations (Methods).

First, we match the labels of two datasets by training a flat classifier for each dataset and

predicting the labels of the other dataset. Based on these predictions we create a matching

matrix (X) and match the cell populations of the two datasets. In the matching process, we

separate different biological scenarios, such as a perfect match, merging or splitting cell

populations, as well as creating a new population (Figure 2, Table S1). In the following

iterations, we add one labeled dataset at a time by training a flat classifier on this new dataset

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/vMeP
https://paperpile.com/c/7xSHUZ/vMeP
https://paperpile.com/c/7xSHUZ/2ykf+vMeP+3iMM+kni6
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

and training the previously learned tree on all pre-existing datasets. Similar to the previous

iteration, the tree is updated after cross-prediction and matching of the labels.

Either during tree learning or prediction, there can be unseen populations. Therefore, an

efficient rejection option is needed, which we do in two steps. First, we reject cells by

thresholding the reconstruction error of a cell when applying a PCA-based dimension

reduction: a new, unknown, population is not used to learn the PCA transformation, and

consequently will not be properly represented by the selected PCs, leading to a high

reconstruction error (Methods). Secondly, to accommodate rejections when the new

population is within the selected PCA domain, scHPL adopts two alternatives to classify cells:

a linear and a one-class support vector machine (SVM). The linear SVM has shown a high

performance in a benchmark of scRNA-seq classifiers [19], but has a limited rejection option.

Whereas, the one-class SVM solves this as only positive training samples are used to fit a

tight decision boundary around [21].

Linear SVM has a higher classification accuracy than one-class SVM

We tested our hierarchical classification scheme by measuring the classification performance

of the one-class SVM and linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen

Mouse Brain) data using 10-, 10-, and 5-fold cross-validation respectively (Methods). The

simulated dataset was constructed using Splatter [22] and consists of 8,839 cells, 9,000 genes

and 6 different cell populations (Figure 3). PBMC-FACS is the downsampled FACS-sorted

PBMC dataset from [23] and consists of 20,000 cells and 10 cell populations. The Allen Mouse

Brain (AMB) dataset is challenging as it has deep annotation levels [5], containing 92 different

cell populations ranging in size from 11 to 1,348 cells. In these experiments, the classifiers

were trained on predefined trees (Figure 3A, S1-2).

On all datasets, the linear SVM performs better than the one-class SVM (Figure 4A-D). The

simulated dataset is relatively easy since the cell populations are widely separated (Figure

3C). The linear SVM shows an almost perfect performance: only 0.9% of the cells are rejected

(based on the reconstruction error only), which is in line with the adopted threshold resulting

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/vMeP
https://paperpile.com/c/7xSHUZ/jjdr
https://paperpile.com/c/7xSHUZ/NSSh
https://paperpile.com/c/7xSHUZ/LHhA
https://paperpile.com/c/7xSHUZ/HkPU
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

in 1% false negatives. The one-class SVM labels 92.9% of the cells correctly, the rest is

labeled as an internal node (2.3%) or rejected (4.8%), which results in a median Hierarchical

F1-score (HF1-score) of 0.973, where HF1 is an F1-score that considers class importance

across the hierarchy (Methods).

As expected, the performance of the classifiers on real data drops, but the HF1-scores remain

higher than 0.9. On both the PBMC-FACS and AMB dataset, the performance of the linear

SVM is higher than the one-class SVM (Figure 4B-D). For the AMB dataset, we used the same

cross-validation folds as in [19], which enables us to compare our results. When comparing to

CHETAH, which allows hierarchical classification, we notice that the linear SVM performs

better based on the median F1-score (0.94 vs 0.83). The one-class SVM has a slightly lower

median F1-score (0.80 vs 0.83), but it has more correctly predicted cells and less wrongly

predicted cells (Figure 4D).

The linear (hierarchical) SVM also shows a better performance compared to SVMrejection, which

is a flat linear SVM with rejection option based on the posterior probability and was the best

classifier for this data [19]. SVMrejection, however, has a slightly higher median F1-score (0.98

vs 0.94). This is mainly because it makes almost no mistakes, only 1.7% of the cells are

wrongly labeled (Figure 4D). The number of rejected cells, on the other hand, is not considered

when calculating the median F1-score. This number is relatively high for SVMrejection (19.8%).

The linear SVM, on the contrary, has almost no rejected cells, which is also reflected in a

higher HF1-score (Figure 4C). Because of this large amount of rejections of SVMrejection, the

one-class SVM also has a higher HF1-score.

On the AMB dataset, we observe that the performance of all classifiers decreases when the

number of cells per cell population becomes smaller. The performance of the one-class SVM

is affected more than the others (Figure 4F). The one-class SVM, for instance, never predicts

the ‘Astro Aqp4’ cells correctly, while this population is relatively different from the rest as it is

the only non-neuronal population. This cell population, however, only consists of eleven cells.

One-class SVM detects new cells better than linear SVM

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/vMeP
https://paperpile.com/c/7xSHUZ/vMeP
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Besides a high accuracy, the classifiers should be able to reject unseen cell populations. First,

we evaluated the rejection option on the simulated data. In this dataset, the cell populations

are distinct, so we expect that this is a relatively easy task. We removed one cell population,

‘Group 3’, from the training set and used this population as a test set. The one-class SVM

outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects

only 38.9% of them.

Next, we tested the rejection option on the AMB dataset. Here, we did four experiments and

each time removed a node, including all its subpopulations, from the predefined tree (Figure

S2). We removed the ‘L6 IT’ and ‘Lamp5’ cell populations from the second layer of the tree,

and the ‘L6 IT VISp Penk Col27a1’ and ‘Lamp5 Lsp1’ from the third layer. When a node is

removed from the second layer of the tree, the linear SVM clearly rejects these cells better

than the one-class SVM (Figure 4E). On the contrary, the one-class SVM rejects leaf node

cells better.

scHPL correctly learns cellular hierarchies

Next, we tested if we could learn the classification trees for the simulated and PBMC-FACS

data using scHPL. In both experiments, we performed a 10-fold cross-validation and splitted

the training set in three different batches, Batch 1, Batch 2, and Batch 3, to simulate the idea

of different datasets. To obtain different annotation levels in these batches, multiple cell

populations were merged into one population in some batches, or cell populations were

removed from certain batches (Tables S2-3). Batch 1 contains the lowest resolution and Batch

3 the highest. When learning the trees, we try all (six) different orders of the batches to see

whether this affects the tree learning. Combining this with the 10-fold cross-validation, 60 trees

were learned in total by each classifier. To summarize the results, we constructed a final tree

in which the thickness of an edge indicates how often it appeared in the 60 learned trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees -

except for two trees learned by the one-class SVM on the PBMC data - look identical (Figure

5A-D). The final tree for the simulated data looks as expected, but the tree for the PBMC data

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

looks slightly different from the predefined hematopoietic tree (Figure S1A). In the learned

trees, CD4+ memory T-cells are a subpopulation of CD8+ instead of CD4+ T-cells. A t-SNE

plot of the PBMC-FACS dataset confirms that CD4+ memory T-cells are more similar to CD8+

than CD4+ T-cells based on their transcriptomic profile (Figure S1B). Using the learned tree

instead of the predefined hematopoietic tree also improves the classification performance of

the linear SVM slightly (HF1-score = 0.990 vs 0.985). Moreover, when relying on the

predefined hematopoietic tree, CD4+ memory T-cells, CD8+ T-cells, and CD8+ naive T-cells

were also often confused, indicating that the learned PBMC tree might better reflect the data

(Tables S4-5).

Missing populations affect cellular hierarchy learning with linear SVM

We tested whether new or missing cell populations in the training set could influence tree

learning. We mimicked this scenario using the simulated dataset and the same batches as in

the previous tree learning experiment. In the previous experiment, ‘Group5’ and ‘Group6’ were

merged into ‘Group56’ in Batch 2, but now we removed ‘Group5’ completely from this batch

(Table S6). In this setup, the linear SVM mis-constructs all trees (Figure 5E). If ‘Group5’ is

present in one batch and absent in another, the ‘Group5’ cells are not rejected, but labeled as

‘Group6’. Consequently, ‘Group6’ is added as a parent node to ‘Group5’ and ‘Group6’. On the

other hand, the one-class SVM suffers less than the linear SVM from these missing

populations and correctly learns the expected tree in 2/3 of the cases (Figure 5F). In the

remaining third (20 trees), ‘Group5’ matched perfectly with ‘Group456’ and was thus not added

to the tree. This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or

Batch 3 - Batch 1 - Batch 2. Adding batches in increasing or decreasing resolution

consequently resulted in the correct tree.

Linear SVM can learn the classification tree during an inter-dataset experiment

Finally, we tested scHPL in a realistic scenario by using three PBMC datasets (PBMC-eQTL,

PBMC-Bench10Xv2, and PBMC-FACS) to learn a classification tree and using this tree to

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

predict the labels of a fourth PBMC dataset (PBMC-Bench10Xv3) (Table 1). We constructed

an expected classification tree based on the names of the cell populations in the datasets

(Figure 6A). Note that matching based on names might result in an erroneous tree since every

dataset was labeled using different clustering techniques, marker genes, and their own naming

conventions.

When comparing the tree learned using the linear SVM to the expected tree, we notice five

differences (Figure 6A-B). Some of these mistakes are minor. The megakaryocytes from the

eQTL dataset are for instance seen as a subpopulation of the megakaryocytes of the

Bench10Xv2 dataset. Different marker genes were used to identify these populations, so it

could indeed be that one set of marker genes was more specific [24, 25]. Looking at a UMAP

embedding of the aligned datasets, we also notice that the two populations do not completely

overlap (Figure 6C-D). The same explanation could be used for the CD14+ monocytes of the

FACS dataset that match the monocytes from the Bench10Xv2 dataset - a combination of

CD14+ and CD16+ monocytes - instead of the CD14+ monocytes of the eQTL dataset.

Another minor mistake is that the myeloid dendritic cells (mDC) are seen as a subpopulation

of monocytes, which can be explained by the fact that monocytes can differentiate into mDC

[26].

There are two mistakes, however, that cannot be explained biologically. The NK cells from the

FACS dataset do not match the NK cells from the eQTL and Bench10Xv2 dataset, but the

CD8+ T-cells. The second mistake, also caused by the FACS dataset, is that the CD8+ naive

T-cells are a subset of the CD4+ T-cells instead of CD8+ T-cells. Since a UMAP embedding

of the aligned datasets supports the learned tree, it is unclear whether these mistakes are

introduced by the alignment of the datasets or caused by the different annotation methods of

the datasets (Figure 6C-D). That is, the eQTL and Bench10Xv2 were both annotated using

clustering, while the FACS dataset was annotated based on the expression of cell surface

markers.

Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned

classification tree (Figure 6E). Interestingly, we notice that the CD16+ monocytes are

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/277g+v5xe
https://paperpile.com/c/7xSHUZ/yAEs
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

predicted to be mDCs and vice versa, which could be explained by the aforementioned fact

that monocytes can differentiate into dendritic cells.

When using a one-class SVM instead of a linear SVM, nine mistakes are made (Figure S3).

Some mistakes are similar to the linear SVM, such as imperfect matching of the

megakaryocytes or the mismatch of the CD8+ naive cells, but some mistakes are specific to

the one-class SVM. Since the one-class SVM shows a low performance on cell populations

with few cells, it also makes more mistakes when trying to match them. For instance, the NK

bright cells from the eQTL dataset are not matching any population of the other datasets. This

is probably since there are very little NK bright cells in the eQTL dataset, so the one-class

SVM cannot define the decision boundary for this population properly. Larger cell populations,

such as B-cells, can be matched without mistake when using the one-class SVM.

Discussion

In this study, we showed that scHPL has great potential for automatic cell identification in

scRNA-seq data. We showed that using our approach the labels of three different PBMC

datasets can successfully be matched to learn a classification tree that largely mimics the

known hematopoietic cellular hierarchy. In this experiment, mismatches, such as the

megakaryocytes, confirm that matching purely based on the name is not possible and that a

precise definition of most cell populations is missing. Two more serious mistakes were made

when the PBMC-FACS dataset was added. This could be because of the alignment of the

datasets or because of the different labeling procedures of the datasets. That is, the PBMC-

FACS data was labeled based on the expression of cell surface markers instead of clustering

the cells, and it is known that protein and gene expression poorly correlated [27, 28], which

might explain these results.

Furthermore, we showed that using a hierarchical approach outperforms flat classification. On

the AMB dataset, the linear SVM outperformed SVMrejection, which was the best performing

classifier on this dataset [19]. In contrast to SVMrejection, the linear SVM did not reject any of the

cells but labeled them as an intermediate cell population. During this experiment, there were

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/pUYG+UOB6
https://paperpile.com/c/7xSHUZ/vMeP
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

no cells of unknown populations. Correct intermediate predictions instead of rejection are

therefore beneficial since it provides the user with at least some information. When comparing

the linear SVM and one-class SVM, we noticed that the accuracy of the linear SVM is equal

to or higher than the one-class SVM on all datasets. For both classifiers, we saw a decrease

in performance on populations with a small number of cells, but for the one-class SVM this

effect was more apparent.

When testing the rejection option, the one-class SVM clearly outperforms the linear SVM by

showing a perfect performance on the simulated dataset. Moreover, when cell populations are

missing from the simulated data, the linear SVM cannot learn the correct tree anymore, in

contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell

populations are missing, although on the AMB dataset, the rejection option of both classifiers

was not perfect.

Conclusion

We present a hierarchical progressive learning approach to automatically identify cell identities

based on multiple datasets with various levels of subpopulations. We show that we can

accurately learn cell identities and learn hierarchical relations between cell populations. Our

results indicate that choosing between a one-class and a linear SVM is a trade-off between

achieving a higher accuracy and the ability to discover new cell populations. Our approach

can be beneficial in single-cell studies where a comprehensive reference atlas is not present,

for instance, to annotate datasets consistently during a cohort study. The first available

annotated datasets can be used to build the hierarchical tree, which could subsequently can

be used to annotate cells in the other datasets.

Methods

Hierarchical progressive learning

Training the hierarchical classifier

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

The training procedure of the hierarchical classifier is the same for every tree: we train a local

classifier for each node except the root. This local classifier is either a one-class SVM or a

linear SVM. We used the one-class SVM (svm.OneClassSVM(nu = 0.05)) from the scikit-learn

library in Python [29]. A one-class classifier only uses positive training samples, which in our

case includes samples from the node itself and all its child nodes. To avoid overfitting, we first

select the first 100 principal components (PCs) of the training data. Next, we select informative

PCs for each node separately using a two-sided two-sample t-test between the positive and

negative samples of a node (α < 0.05, Bonferonni corrected). In some rare cases, this

correction was too strict and no PCs were selected. In those cases, the five PCs with the

smallest p-values were selected. For the linear SVM, we used the svm.LinearSVC() function

from the scikit-learn library. This classifier also uses negative samples. These are selected

using the siblings policy [30], i.e. sibling nodes include all nodes that have the same ancestor,

excluding the ancestor itself. The linear SVM applies L2-regularization by default, so no extra

measures to prevent overtraining were necessary.

The reconstruction error

The reconstruction error is used to reject unknown cell populations. We use the training data

to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold cross-

validation. A PCA (n_components = 100) is learned on the training data. The test data is then

reconstructed by first mapping the data to the selected PCA domain, and then mapping the

data back to the original space using the inverse transformation (hence the data lies within the

plane spanned by the selected PCs). The reconstruction error is the difference between the

original data and the reconstructed data (in other words, the distance of the original data to

the PC plane). The median of the qth (default q = 0.99) percentile of the errors across the test

data is used as threshold. By increasing or decreasing this parameter, the number of false

negatives can be controlled. Finally, we apply a PCA (n_components = 100) to the whole

dataset to learn the transformation that can be applied to new unlabeled data later.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/lrVI
https://paperpile.com/c/7xSHUZ/addM
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Predicting the labels

First, we look at the reconstruction error of a new cell to determine whether it should be

rejected. If the reconstruction error is higher than the threshold determined on the training

data, the cell is rejected. If not, we continue with predicting its label. We start at the root node,

which we denote as parent node and use the local classifiers of its children to predict the label

of the cell using the predict() function, and score it using the decision_function(), both from the

scikit-learn package. These scores represent the signed distance of a cell to the decision

boundary. When comparing the results of the local classifiers, we distinguish three scenarios:

1. All child nodes label the cell negative. If the parent node is the root, the new cell is

rejected. Otherwise we have an internal node prediction and the new cell is labeled

with the name of the parent node.

2. One child node labels the cell positive. If this child node is a leaf node, the sample is

labeled with the name of this node. Otherwise, this node becomes the new parent and

we continue with its children.

3. Multiple child nodes label the cell positive. We only consider the child node with the

highest score and continue as in scenario two.

Reciprocal matching labels and updating the tree

Starting with two datasets, D1 and D2, and the two corresponding classification trees (which

can be either hierarchical or flat), we would like to match the labels of the datasets and merge

the classification trees accordingly into a new classification tree while being consistent with

both input classification trees (Figure 1). We do this in two steps: first matching the labels

between the two dataset and then updating the tree.

Reciprocal matching labels: We first cross-predict the labels of the datasets: we use the

classifier trained on D1 to predict the labels of D2 and vice versa. We construct confusion

matrices, C1 and C2, for D1 and D2, respectively. Here, C1ij indicates how many cells of

population i of D1 are predicted to be population j of D2. This prediction can be either a leaf

node, internal node or a rejection. As the values in C1 and C2 are highly depended on the size

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

of a cell population, we normalize the rows such that the sum of every row is one: 𝑁𝐶1𝑖𝑗 =

𝐶1𝑖𝑗

∑ 𝐶1𝑖𝑗∀𝑗
 , now indicating the fraction of cells of population i in D1 that have been assigned to

population j in D2. Clearly, a high fraction is indicative of matching population i in D1 with

population j in D2. Due to splitting, merging, or new populations between both datasets,

multiple relatively high fractions can occur (e.g. if a population i is split in two populations j1

and j2 due to D2 being of a higher resolution, both fractions NCij1 and NCij2 will be approximately

0.5). To accommodate for these operations, we allow multiple matches per population.

To convert these fractions into matches, NC1 and NC2 are converted into binary confusion

matrices, BC1 and BC2, where a 1 indicates a match between a population in D1 with a

population in D2, and vice versa. To determine a match, we take the value of the fraction as

well as the difference with the other fractions into account. This is done for each row

(population) of NC1 and NC2 separately. When considering row i from NC1, we first rank all

fractions, then the highest fraction will be set to 1 in BC1, after which all fractions for which the

difference with the preceding (higher) fraction is less than a predefined threshold (default =

0.25) will also be set to 1 in BC1.

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching

matrix X (X = BC1^T + BC2) (Figure 2). The columns in X represent the cell populations of D1

and the rows represent the cell populations of D2. If Xij = 2, this indicates a reciprocal match

between cell population i from D2 and cell populations j from D1. Xij = 1 indicates a one-sided

match, and Xij = 0 represents no match.

Tree updating: Using the reciprocal matches between D1 and D2 represented in X, we update

the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2. We do

that by handling the correspondences in X elementwise. For a non-zero value in X, we check

whether there are other non-zero values in the corresponding row and column to identify which

tree operation we need to take (such as split/merge/create). As an example, if we encounter

a split for population i in D1 into j1 and j2, we will create new nodes for j1 and j2 as child nodes

of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the four most common

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

scenarios: a perfect match, splitting nodes, merging nodes, and a new population. All other

scenarios are explained in Supplementary Note 1. After an update, the corresponding values

in X are set to zero and we continue with the next non-zero element of X. If the matching is

impossible, the corresponding values in X are thus not set to zero. If we have evaluated all

elements of X, and there are still non-zero values, we will change X into a strict matrix, i.e. we

further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’. We then again

evaluate X element wise once more.

Evaluation

Hierarchical F1-score

We use the hierarchical F1-score (HF1-score) to evaluate the performance of the classifiers

[31]. We first calculate the hierarchical precision (hP) and recall (hR): ℎ𝑃 =
∑ 𝑃𝑖 ∪ 𝑇𝑖 𝑖

∑ 𝑃𝑖𝑖

and ℎ𝑅 =
∑ 𝑃𝑖 ∪ 𝑇𝑖 𝑖

∑ 𝑇𝑖𝑖
. Here, 𝑃𝑖 is a set that contains the predicted cell population for a cell i and

all the ancestors of that node, 𝑇𝑖 contains the true cell population and all its ancestors, and

𝑃𝑖 ∪ 𝑇𝑖 is the overlap between these two sets. The HF1-score is the harmonic mean of hP

and hR: 𝐻𝐹1 =
2ℎ𝑃 ∗ ℎ𝑅

ℎ𝑃 + ℎ𝑅
.

Median F1-score

We use the median F1-score to compare the classification performance to other methods. The

F1-score is calculated for each cell population in the dataset and afterwards the median of

these scores is taken. Rejected cells and internal predictions are not considered when

calculating this score.

Datasets

Simulated data

We used the R-package Splatter version 1.6.1 to simulate a hierarchical scRNA-seq dataset

that represents the tree shown in Figure 3A [22]. As Splatter is originally not developed to

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/fCTJ
https://paperpile.com/c/7xSHUZ/NSSh
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

simulate hierarchical data, we created such a dataset by simulating three datasets, each

consisting of 9,000 cells and 3000 genes, and stacking them column wise. In these three

datasets, we simulated different groups with different frequencies (Figure 3B). The final

dataset consists of 8,839 cells and 9,000 genes. In total there are six different cell populations

of approximately 1,500 cells each. As a preprocessing step, we log-transformed the count

matrix (𝑙𝑜𝑔2(𝑐𝑜𝑢𝑛𝑡 + 1)). A UMAP embedding of the simulated dataset shows it indeed

represents the desired hierarchy (Figure 3C).

PBMC data

We used four different PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-

Bench10Xv3, and PBMC-eQTL. All were preprocessed as described in [19].

The PBMC-FACS dataset is the downsampled FACS-sorted PBMC dataset from [23]. Cells

were first FACS-sorted into ten different cell populations (CD14+ monocytes, CD19+ B cells,

CD34+ cells, CD4+ helper T-cells, CD4+/CD25+ regulatory T-cells, CD4+/CD45RA+/CD25−

naive T-cells, CD4+/CD45RO+ memory T-cells, CD56+ natural killer cells, CD8+ cytotoxic T-

cells, CD8+/CD45RA+ naive cytotoxic T-cells) and sequenced using 10X Chromium [23].

Each cell population consists of 2,000 cells. The total dataset consists of 20,000 cells and

21,952 genes.

The PBMC-Bench10Xv2 and PBMC-Bench10Xv3 datasets are the PbmcBench pbmc1.10Xv2

and pbmc1.10Xv3 datasets from [25]. These datasets consist of 6,444 and 3,222 cells

respectively, 22,280 genes, and nine different cell populations. Originally the PBMC-

Bench10Xv2 dataset contained CD14+ and CD16+ monocytes. We merged these into one

population called monocytes to introduce a different annotation level compared to the other

PBMC datasets.

The PBMC-eQTL dataset was sequenced using 10X Chromium and consists of 24,439 cells,

22,229 genes, and eleven different cell populations [24].

When combining all PBMC datasets for the inter-dataset experiment, we removed genes not

present in all datasets (17,573 genes remained), and cell populations that consisted of less

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/vMeP
https://paperpile.com/c/7xSHUZ/LHhA
https://paperpile.com/c/7xSHUZ/LHhA
https://paperpile.com/c/7xSHUZ/v5xe
https://paperpile.com/c/7xSHUZ/277g
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

than 100 cells from the datasets used for constructing and training the classification tree

(PBMC-eQTL, FACS, Bench10Xv2). Next, we aligned the datasets using Seurat V3 [32].

Allen Mouse Brain data

We used the Allen Mouse Brain (AMB) data to look at different resolutions of cell populations

in the primary mouse visual cortex. This dataset, which was sequenced using SMART-Seq

V4 [5] and preprocessed as described in [19], consists of 12,771 cells and 42,625 genes.

Declarations

Ethics approval and consent to participate. N/A

Consent for publication. N/A

Availability of data and materials

The aligned PBMC datasets used during the inter-dataset experiment can be downloaded

from Zenodo (http://doi.org/10.5281/zenodo.3736493). The source code is available at the

Github repository (https://github.com/lcmmichielsen/hierarchicalprogressivelearning).

Competing interests. The authors declare no competing interests.

Funding

This research was partially supported by an NWO Gravitation project: BRAINSCAPES: A

Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012) and the European

Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

grant agreement No 861190 (PAVE).

Authors' contributions

LM, MJTR, and AM conceived the study designed the experiments. LM performed all

experiments and drafted the manuscript. LM, MJTR, and AM reviewed and approved the

manuscript.

Acknowledgements. N/A

References

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://paperpile.com/c/7xSHUZ/5WG3
https://paperpile.com/c/7xSHUZ/HkPU
https://paperpile.com/c/7xSHUZ/vMeP
http://doi.org/10.5281/zenodo.3736493
https://github.com/lcmmichielsen/hierarchicalprogressivelearning
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

1. van der Wijst MG, de Vries DH, Groot HE, Trynka G, Hon C-C, Bonder M-J, et al. The
single-cell eQTLGen consortium. Elife. 2020;9. doi:10.7554/eLife.52155.

2. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al.
Molecular Architecture of the Mouse Nervous System. Cell. 2018;174:999–1014.e22.

3. Svensson V, Beltrame E da V. A curated database reveals trends in single cell
transcriptomics. bioRxiv. 2019;:742304.

4. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell
taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19:335–46.

5. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and
distinct transcriptomic cell types across neocortical areas. Nature. 2018;563:72–8.

6. Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, et al. SCINA: Semi-Supervised
Analysis of Single Cells in Silico. Genes . 2019;10:531.

7. Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of
cell atlases. Nat Methods. 2019;:1–4.

8. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data
sets. Nat Methods. 2018;15:359.

9. Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. ScPred: Accurate
supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol.
2019;20:264.

10. de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. CHETAH: a selective,
hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids
Res. 2019;47:e95–e95.

11. Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Searching large-scale scRNA-seq databases
via unbiased cell embedding with Cell BLAST. Nat Commun. 2020;11:3458.

12. Wang S, Pisco AO, McGeever A, Brbic M, Zitnik M, Darmanis S, et al. Unifying single-
cell annotations based on the Cell Ontology. bioRxiv. 2019;:810234.

13. Jarvis P. Towards a Comprehensive Theory of Human Learning. Taylor & Francis Ltd;
2006.

14. Yang BH, Asada H. Progressive learning and its application to robot impedance learning.
IEEE Trans Neural Netw. 1996;7:941–52.

15. Fayek HM. Continual Deep Learning via Progressive Learning. RMIT University; 2019.

16. Wagner F, Yanai I. Moana: A robust and scalable cell type classification framework for
single-cell RNA-Seq data. bioRxiv. 2018;:456129.

17. Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, et al. Single-
nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One.
2018;13:e0209648.

18. Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, et al.
Cell type discovery using single-cell transcriptomics: implications for ontological
representation. Hum Mol Genet. 2018;27:R40–7.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

http://paperpile.com/b/7xSHUZ/zhNQ
http://paperpile.com/b/7xSHUZ/zhNQ
http://dx.doi.org/10.7554/eLife.52155
http://paperpile.com/b/7xSHUZ/zhNQ
http://paperpile.com/b/7xSHUZ/mHPC
http://paperpile.com/b/7xSHUZ/mHPC
http://paperpile.com/b/7xSHUZ/dNA1
http://paperpile.com/b/7xSHUZ/dNA1
http://paperpile.com/b/7xSHUZ/mbe5
http://paperpile.com/b/7xSHUZ/mbe5
http://paperpile.com/b/7xSHUZ/HkPU
http://paperpile.com/b/7xSHUZ/HkPU
http://paperpile.com/b/7xSHUZ/RQni
http://paperpile.com/b/7xSHUZ/RQni
http://paperpile.com/b/7xSHUZ/2ykf
http://paperpile.com/b/7xSHUZ/2ykf
http://paperpile.com/b/7xSHUZ/TNrS
http://paperpile.com/b/7xSHUZ/TNrS
http://paperpile.com/b/7xSHUZ/kni6
http://paperpile.com/b/7xSHUZ/kni6
http://paperpile.com/b/7xSHUZ/kni6
http://paperpile.com/b/7xSHUZ/ZhoK
http://paperpile.com/b/7xSHUZ/ZhoK
http://paperpile.com/b/7xSHUZ/ZhoK
http://paperpile.com/b/7xSHUZ/iNly
http://paperpile.com/b/7xSHUZ/iNly
http://paperpile.com/b/7xSHUZ/Mhip
http://paperpile.com/b/7xSHUZ/Mhip
http://paperpile.com/b/7xSHUZ/BRxf
http://paperpile.com/b/7xSHUZ/BRxf
http://paperpile.com/b/7xSHUZ/t1QC
http://paperpile.com/b/7xSHUZ/t1QC
http://paperpile.com/b/7xSHUZ/CR7a
http://paperpile.com/b/7xSHUZ/kVFN
http://paperpile.com/b/7xSHUZ/kVFN
http://paperpile.com/b/7xSHUZ/0VwN
http://paperpile.com/b/7xSHUZ/0VwN
http://paperpile.com/b/7xSHUZ/0VwN
http://paperpile.com/b/7xSHUZ/8Ioa
http://paperpile.com/b/7xSHUZ/8Ioa
http://paperpile.com/b/7xSHUZ/8Ioa
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

19. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al. A
comparison of automatic cell identification methods for single-cell RNA sequencing data.
Genome Biol. 2019;20:194.

20. Boufea K, Seth S, Batada NN. scID Uses Discriminant Analysis to Identify
Transcriptionally Equivalent Cell Types across Single-Cell RNA-Seq Data with Batch Effect.
iScience. 2020;23:100914.

21. Tax D. One-class classification Concept-learning in the absence of counter-examples.
TU Delft; 2001.

22. Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data.
Genome Biol. 2017;18:174.

23. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively
parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

24. Van Der Wijst MGP, Brugge H, De Vries DH, Deelen P, Swertz MA, Franke L. Single-cell
RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat Genet.
2018;50:493–7.

25. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al.
Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat
Biotechnol. 2020;38:737–46.

26. León B, López-Bravo M, Ardavín C. Monocyte-derived dendritic cells. Semin Immunol.
2005;17:313–8.

27. van den Berg PR, Budnik B, Slavov N, Semrau S. Dynamic post-transcriptional
regulation during embryonic stem cell differentiation. bioRxiv. 2017;:123497.

28. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic
and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.

29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
Machine Learning in Python. 2011. http://scikit-learn.sourceforge.net.

30. Fagni T, Sebastiani F. On the Selection of Negative Examples for Hierarchical Text
Categorization. Proceedings of the 3rd language technology conference. 2007;:24–8.

31. Kiritchenko S, Famili F. Functional Annotation of Genes Using Hierarchical Text
Categorization. Proceedings of BioLink SIG, ISMB. 2005.

32. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al.
Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888–902.e21.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

http://paperpile.com/b/7xSHUZ/vMeP
http://paperpile.com/b/7xSHUZ/vMeP
http://paperpile.com/b/7xSHUZ/vMeP
http://paperpile.com/b/7xSHUZ/3iMM
http://paperpile.com/b/7xSHUZ/3iMM
http://paperpile.com/b/7xSHUZ/3iMM
http://paperpile.com/b/7xSHUZ/jjdr
http://paperpile.com/b/7xSHUZ/jjdr
http://paperpile.com/b/7xSHUZ/NSSh
http://paperpile.com/b/7xSHUZ/NSSh
http://paperpile.com/b/7xSHUZ/LHhA
http://paperpile.com/b/7xSHUZ/LHhA
http://paperpile.com/b/7xSHUZ/277g
http://paperpile.com/b/7xSHUZ/277g
http://paperpile.com/b/7xSHUZ/277g
http://paperpile.com/b/7xSHUZ/v5xe
http://paperpile.com/b/7xSHUZ/v5xe
http://paperpile.com/b/7xSHUZ/v5xe
http://paperpile.com/b/7xSHUZ/yAEs
http://paperpile.com/b/7xSHUZ/yAEs
http://paperpile.com/b/7xSHUZ/pUYG
http://paperpile.com/b/7xSHUZ/pUYG
http://paperpile.com/b/7xSHUZ/UOB6
http://paperpile.com/b/7xSHUZ/UOB6
http://paperpile.com/b/7xSHUZ/lrVI
http://paperpile.com/b/7xSHUZ/lrVI
http://scikit-learn.sourceforge.net./
http://paperpile.com/b/7xSHUZ/addM
http://paperpile.com/b/7xSHUZ/addM
http://paperpile.com/b/7xSHUZ/fCTJ
http://paperpile.com/b/7xSHUZ/fCTJ
http://paperpile.com/b/7xSHUZ/5WG3
http://paperpile.com/b/7xSHUZ/5WG3
https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1. Schematic overview of scHPL. (A) Overview of the training phase. In the first

iteration, we start with two labeled datasets. The colored areas represent the different cell

populations. For both datasets a flat classifier (FC1 & FC2) is constructed. Using this tree and

the corresponding dataset, a classifier is trained for each node in the tree except for the root.

We use the trained classification tree of one dataset to predict the labels of the other. The

decision boundaries of the classifiers are indicated with the contour lines. We compare the

predicted labels to the cluster labels to find matches between the labels of the two datasets.

The tree belonging to the first dataset is updated according to these matches, which results in

a hierarchical classifier (HC1). In dataset 2, for example, subpopulations of population ‘1’ of

dataset 1 are found. Therefore, these cell populations, ‘A’ and ‘B’, are added as children to

the ‘1’ population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3)

is trained for this dataset and HC1 is trained on dataset 1 and 2, combined. After cross-

prediction and matching the labels, we update the tree which is then trained on all datasets 1-

3 (HC2). (B) The final classifier can be used to annotate a new unlabeled dataset. If this

dataset contains unknown cell populations, these will be rejected.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. Schematic examples of different matching scenarios. (A) Perfect match, (B)

splitting, (C) merging, (D) new population. The first two columns represent a schematic

representation of two datasets. After cross-predictions, the matching matrix (X) is constructed

using the confusion matrices (Methods). We update the tree based on X.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3. Simulated dataset. (A) Classification tree for the simulated dataset. (B) We

simulated three datasets separately and concatenated them in one dataset. The labels and

their proportion are indicated in the simulated datasets. (C) UMAP of the final dataset.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4. Classification performance. (A-C) Boxplots showing the HF1-score of the one-

class and linear SVM on the (A) simulated (B) PBMC-FACS, and (C) AMB dataset. (D) Barplot

showing the percentage of true positives (TP), false negatives (FN), and false positives (FP)

per classifier on the AMB dataset. For the TPs a distinction is made between correctly

predicted leaf nodes and internal nodes. (E) Heatmap showing the percentage of unlabeled

cells per classifier during the different rejection experiments. (F) Heatmap showing the F1-

score per classifier per cell population on the AMB dataset. Grey indicates that a classifier

never predicted a cell to be of that population.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5. Tree learning evaluation. Classification trees learned when using a (A,C,E) linear

SVM or (B,D,F) one-class SVM during the (A-B) simulated, (C-D) PBMC-FACS, and (E-F)

simulated rejection experiment. The line pattern of the links indicates how often that link was

learned during the 60 training runs.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6. Inter-dataset evaluation. (A) Expected and (B) learned classification tree when

using a linear SVM on the PBMC datasets. The color of a node represents the agreement

between dataset(s) regarding that cell population. (C-D) UMAP of the aligned datasets colored

by (C) dataset and (D) cell populations. The arrowhead points to the megakaryocytes, which

are a clear example of why the learned tree is supported by the UMAP. (E) Confusion matrix

when using the learned classification tree to predict the labels of PBMC-Bench10Xv3.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

Table 1. Number of cells per cell population in the different training datasets (batches) and

test dataset. Subpopulations are indicated using an indent.

Cell population Batch 1
eQTL

Batch 2
Bench 10Xv2

Batch 3
FACS

Test dataset
Bench 10Xv3

CD19+ B 812 676 2,000 346

CD34+ 2,000

Monocytes (MC) 1,194

 CD14+ 2,081 2,000 354

 CD16+ 274 98

CD4+ T 13,523 1,458 960

 Reg. 2,000

 Naive 2,000

 Memory 2,000

CD8+ T 4,195 2,128 962

 Naive 2,000

Megakaryocyte (MK) 142 433 270

NK cell 429 2,000 194

 CD56+ bright 355

 CD56+ dim 2,415

Dendritic 35

 Plasmacytoid (pDC) 101

 Myeloid (mDC) 455

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.03.27.010124doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010124
http://creativecommons.org/licenses/by-nc/4.0/

