
Predicting Gene Expression from DNA Sequence
using Residual Neural Network
Yilun Zhang, Xin Zhou, and Xiaodong Cai*

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida 33146,
United States
*x.cai@miami.edu

Abstract
It is known that cis-acting DNA motifs play an important role in regulating gene expres-
sion. The genome in a cell thus contains the information that not only encodes for the
synthesis of proteins but also is necessary for regulating expression of genes. Therefore,
the mRNA level of a gene may be predictable from the DNA sequence. Indeed, three
deep neural network models were developed recently to predict the mRNA level of a
gene directly or indirectly from the DNA sequence around the transcription start side of
the gene. In this work, we develop a deep residual network model, named ExpResNet, to
predict gene expression directly from DNA sequence. Applying ExpResNet to the GTEx
data, we demonstrate that ExpResNet outperforms the three existing models across
four tissues tested. Our model may be useful in the investigation of gene regulation.
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Introduction
For a cell in a living organism to function properly, necessary proteins must be synthesized at
the proper time. All cells regulate the synthesis of proteins from information encoded in their
DNA through transcription of genes into mRNAs and their subsequent translation into proteins.
Gene expression is thus controlled first and foremost at the level of transcription. Much of this
control is achieved through the interplay between proteins that bind to specific DNA sequences
and their DNA-binding sites or DNA motifs. Transcription factors can bind to their DNA motifs
in the promoter region of a gene to enhance or suppress the transcription of the gene. Epigenetic
mechanisms such as DNA methylation can also regulate gene expression [1]. Studies have shown
that DNA-binding factors and cis-acting DNA motifs play an important role in shapping DNA
methylation [2, 3], which may in turn affect the expression of certain genes. The steady-state mRNA
level of a gene is also affected by the degradation rate of the mRNA. The regulation of mRNA
degradation is mediated by mRNA-binding proteins and non-coding RNAs such as microRNAs
[4]. These mRNA-binding proteins and microRNAs bind to mRNA at specific binding sites. These
mechanisms of regulating gene expression all allude that the information in DNA sequence upstream
and downstream of the transcription start site (TSS) of a gene may determine the expression level
of the gene. Such information may be exploited to build a computational model to predict gene
expression levels.

Recently, three deep neural network models have been developed to predicted gene expression
levels from DNA sequences [5, 6, 7]. The ExPecto framework employs a convolutional neural
network, consisting of 7 convolution layers, 2 linear layers, and other layers such as pooling and

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.21.163956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163956
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Table 1. Encoding scheme for nucleotides

A T C G - . N R Y S W K M B D H V
1 0 0 0 0 0 1/4 1/2 0 0 1/2 0 1/2 0 1/3 1/3 1/3
0 1 0 0 0 0 1/4 0 1/2 0 1/2 1/2 0 1/3 1/3 1/3 0
0 0 1 0 0 0 1/4 0 1/2 1/2 0 0 1/2 1/3 0 1/3 1/3
0 0 0 1 0 0 1/4 1/2 0 1/2 0 1/2 0 1/3 1/3 0 1/3

ReLU layers, to predict 2,002 epigenomic features, including genome-wide histone marks, TF-
binding and chromatin accessibility profiles, from a DNA sequence of 40 kbps centered at the TSS
of a gene. Then, these 2,002 features are used by a linear model to predict the mRAN level of the
gene. The Basenji architecture [6] consists of 12 convolution layers and other layers such as pooling
and ReLU layers, and it predicts mRNA level of a gene directly from the DNA sequence of 131
kbps long. The Xpresso model [7] is composed of two convolution layers, two fully connected
layers, and other layers such as pooling layers, and it predicts the expression level of gene from a
DNA sequence of 10.5 kbps (7 kbps upstream and 3.5 kbps downstream of the TSS) and several
mRNA features.

It is known that deep neural networks are difficult to train and adding more layers may not
necessarily improve performance. To overcome these problems, deep residual network (ResNet)
was introduced [8]. In image recognition, ResNet can significantly improve prediction accuracy
comparing traditional convolutional neural networks (CNNs) [8]. In this work, we develop a method
of predicting gene expression using residual network (ExpResNet) directly from DNA sequence.
Our results show that ExpResNet outperforms ExPecto, Basenji, and Xpresso.

Methods
2.1 Data processing
The gene expression and single nucleotide polymorphism (SNP) data from the Genotype-Tissue
Expression (GTEx) Project [9] and the genome sequence of HG19(GRCh37) [10] were used to
train the residual network to predict gene expression. The RNA-seq data containing the expression
values of 20,805 genes in 218 tissues of 450 individuals were downloaded from the GTEx Portal
using the GTEx Analysis V6p release (dbGaP accession phs000424.v6.p1). For each gene, we
used the nucleotide sequence, starting from 70,000 base pairs (bps) upstream of the transcription
start site (TSS) to 25,000 bps downstream of the TSS, to predict the expression level of the gene.
We extracted the 95,000 pb long sequence of each gene from the GRCh37 genome. We used the
4-channel one-hot encoding scheme to encode the DNA sequence. Each sequence were represented
by a 4×L matrix, where L is the length of the sequence. Each channel encoded one of the four
bases adenine (A), thymine (T), cytosine (C), and guanine (D). There are other letters in the DNA
sequence; for example, “R” and “Y” represent a purine and a pyrimidine, respectively. The encoding
scheme for all possible letters is shown in Table 1. We used the average expression value of each
gene in a tissue, as also used in [5], to train a tissue-specific ResNet for expression prediction. More
specifically, let xi j be the RPKM value of the ith gene in a tissue, then the average expression value
for the ith gene is x̃i =

1
n ∑

n
i= j log(xi j +0.0001), where n is the number of individuals.
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2.2 ExpResNet structure
ExpResNet is a deep residual network [8], and its structure is depicted in Figure 1. The model
consists of five residual units, each followed by an adaptive average pooling layer, and two fully
connected layers with a batch normalization a layer and a ReLU layer in between the two layers.
Each residual unit have 4 input parameters: in is the number of input channels, out is the number
of output channels, k and d are the kernel size and the dilation rate, respectively, used by the
convolution layer inside the residual unit. Of note, the model structure described in Figure 1 was
obtained after searching over a set of hyperparameters including the number of residual units, the
number of layers in each residual unit, the number of kernels at each convolution layer, etc, as will
be described later in the Training section. For illustration purpose, we present the final network
structure here in the Methods section.

The structure of the residual unit is shown in Figure 1b. To increase the parameter efficiency,
we adopted the design of the bottleneck residual unit [8], and used small convolutional kernel sizes
suggested by the inception module [11]. The residual unit consists of an convolution layer followed
by three submodules, each of which is composed of a batch normalization layer [12], an ReLU
activation layer [13], and a convolution layer. The residual unit in [14] does not have the first
convolution or weight layer; for ease of presentation, we here include the first convolution layer in
the residual unit, although we can leave it outside of the residual unit. The stride of all convolution
layers was set to 1. The first convolution raises the number of feature maps so that the number of
the output channels of the residual unit is eventually larger than the number of input channels. At
the convolution layer of the first submodule, the number of output channel is half of the number
of input channels, and the kernel size is equal to 1. Therefore, this convolution layer essentially
performs dimension reduction. At the convolution layer of the second submodule, the kernel size
is 3. The number of input channels is equal to the number of the output channels for the second
submodule. The last submodule uses 1×1 convolution with the number of output channel being
twice the number of the input channel, which raises the dimensions back to be the same as the one
at the input of the first submodule. Eventually, the residual unit does not change the number of
channels and lengths of feature maps. Finally, the output of the final submodule is added to the
input feature map of the residual unit as the output of the residual unit.

As described earlier, each of the five residual units starts with a convolution layer. The numbers
of kernels of the first convolution layer in five residual units are 160, 320, 480, 640, and 960, with
the kernel size equal to 5, 3, 3, 3 and 3, respectively. Following each residual unit, an adaptive
average pooling operation is applied to down-sample the feature map. The parameter output for each
pooling layer in Figure 1a specifies the dimension of the output features. The pooling window size
was changed adaptively in different residual blocks so that the output dimension is equal to the value
of parameter output. If the stride is smaller than the window size, there will be overlap between
neighboring windows. For a given window size, we tested different strides, and found that when the
stride was set equal to the window size to avoid the overlap between neighboring windows, better
performance was achieved than the case where there was overlap between neighboring windows.
Therefore, we chose the stride equal to the window size. The feature maps at the output of the last
residual unit were flattened and fed into a fully connected layer that had 3 output nodes, connected
to a batch normalization layer followed by a ReLU layer. Finally, the output of the final fully
connected layer is a scalar, which gives the predicted expression value.

Of note, to increase the receptive field of the neural network to learn nonlocal representation of
features in relatively long DNA sequence, we employed the dilated neural network structure [15].

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.21.163956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163956
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

(a) (b)

Figure 1. Block diagrams for the residual network (a) and the residual unit (b).
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In our residual network, we first increased the dilation rate and then decreased it to adapt to the
“degridding” problem [16]. The dilation rates are hyperparameters, and the set of optimal values
was found to be 1, 2, 4, 2, and 2, respectively, for five residual units.

2.3 Training
We split the whole dataset into a training set, a validation set and a test set. Genes on X or Y
chromosomes were excluded from training and testing. The 1,017 genes on chromosome 8 were
set as the test set. The 966 genes on chromosome 10 were used as the validation set, and the
genes the remaining chromosomes serves as the training set. The mini-batch stochastic gradient
descent (SGD) method was used for training the model. The batch size was chosen to be 8, and the
initial learning rate was 0.00005, and an efficient SGD method Adam [17] was employed.The loss
function is the mean square error at the output of the model. Early stopping [18] was used to avoid
over-fitting the neural network. After every 100 iterations of the training, Pearson’s correlation
coefficient (PCC) between the predicted and true gene expression values was evaluated on the
validation dataset. The training would be terminated, if the PCC was lower than the minimum PCC
in previous 3 consecutive iterations. We also used data augmentation to increase the data instances
by shifting the DNA sequence by a size within 0-30 bps during each epoch of the training. The
PyTorch platform [19] was used to train the neural network.

There are a number of hyperparameters that need to be chosen properly so the the model can
offer good prediction power. The ExpResNet model described in Figure 1 was obtained after a set
of hyperparameter values were tried. The core hyperparameters include: the number of layers, the
kernel size and the number of kernels at each convolution layer, down-sampling configuration at each
layer, the dilation rate, and the dimension of each convolution layer. The number of hyperparameters
increases exponentially with the number of layers, which may incur a huge computational burden in
searching for the set of optimal values for the hyperparameters.

The first convolution layer of the residual network will learn basic spatial features in the DNA
sequence, while the later layers will learn more abstract spatial features. Therefore, the kernel size
of the first convolution layer was chosen to be 5, and the kernel size of later convolutinal layers
was smaller, equal to 3. We roughly divided the hyperparameters into two subsets: one contains
the number of layers and the number of kernels that determine the learning capacity of the model,
and the other mainly contains the down-sampling rate that controls the resolution of the model
[8, 20]. The higher the level of abstraction of the features, the lower the resolution. During the
hyperparameter searching process, we fixed the relationship among the number of kernels at the
different layers and the relationship among the down-sampling rates at different pooling layers.
Specifically, the number of kernels per layer was increased by a factor between 1.5-2. For example,
in the ExpResNet model in Figure 1, the number of filters at five residual units are 160, 320,
480, 640, and 960, respectively. In this way, we could control the learning capacity of the neural
network by only setting the number of kernels in the first layer and the total number of layers. The
down-sampling rate per layer was increased by a factor close to 2 [8], and thus, the resolution at the
first pooling layer will control the resolutions at all subsequent layers. We gradually increased the
number of kernels at the first layer and the number of layers until the PCC on the validation dataset
reached a plateau. For the hyperparameters in the second subset, they were tuned using random
search [21] by trying a set values of the down-sample rates at the first pooling layer.
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Results

We used the GTEx data to compare the performance of Expecto [5], Expresso [7], Basenji [6], and
our ExpResNet. The Expecto neural network trained with genomic sequences and epigenomic
data from ENCODE [22] and Roadmap Epigenomics [23] projects was available. Following the
steps in [5], we used the pretrained Expecto neural network to predict 400,400 epigenomic features
from the DNA sequence of 40,000 bps, 20,000 bps upstream and 20,000 bps downstream of the
TSS of a gene. The 400,400 epigenomic features were input to a spatial transform and reduced
to 20,02 features. These spatially transformed features were then used to predict gene expression
levels for each tissue with an L2-regularized linear regression model fitted by a gradient-boosting
algorithm XGBoost [24]. Since we used the newest version of XGBoost which was different from
the one used by Expecto in [5], the value for the hyperparameter of L2-regularization suggested by
Expecto might not work well. Therefore, we used cross validation to search over a set of 81 values
{10−4+0.1k,k = 0,1, · · · ,80}, and found the optimal value for the hyperparameter, which was then
used to estimate the linear model for predicting gene expression levels from the 20,02 spatial features.
Another widely used regularized regression is the elastic net [25], which uses the regularization
term λ (α‖β‖1 +

1
2(1−α)‖β‖2

2, where λ > 0 and 0 ≤ α ≤ 1 are two hyperparameters, β is a
vector containing regression coefficients, and ‖·‖q, q = 1,2, stands for q-norm. Software package
glmnet [26] was used to estimate elastic net models. Ten-fold cross-validation was employed to
search over a set of 30 values that were automatically generated by glmnet for the optimal value
of λ and over the set {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,0.95,0.99,1} for the optimal value of α .
The final model parameters in β were obtained from the training data with the optimal values of
λ and α , and then were used to predict gene expression values in the test dataset. We reported
the results obtained with XGBoost and glmnet as Expecto(xg) and Expecto(gl), respectively. For
Expresso, we followed the specifications of the final model architecture [7], implemented the model
using PyTorch [19], and predicted the expression value of a gene with the model from the DNA
sequence of 10,5000 bps, 7,000 bps upstream and 3,500 bps downstream of the TSS of the gene.
For Basenji, we used model architecture and the hyperparameters specified at the authors’ website
(https://github.com/calico/basenji), and replaced the loss function with the mean square error loss
for prediction of gene expression, and connected the second last layer to the output with a linear
layer. The Basenji model predicts gene expression from a DNA sequence of 131,000 bps, 65,500
bps upstream and 65,5000 bps downstream of the TSS of the gene. We predicted gene expression
values in four tissues: breast mammary tissue, muscle skeletal tissue, ovary tissue, and whole
blood. After expression values of genes in the test dataset were predicted, Pearson’s correlation
and Spearman’s correlation between the predicted values and true values were calculated as the
performance measure.

The performance of the four neural network models in prediction of gene expressions in four
tissues is given in Table 2. It is seen that our ExpResNet offers the best performance across all four
tissues. For fair comparison, we also applied ExpResNet to the same DNA sequences that were used
by Expecto and Xpresso. Our ExpResNet again outperforms Expecto and Xpresso. These results
clearly show that the residual network improves the prediction accuracy over other convolutional
neural networks.
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Conclusion
In this work, we developed a residual network model for predicting gene expression form DNA
sequence. Using the genomic and gene expression data of four tissues in the GTEx database, we
demonstrated that our deep neural network model outperformed three existing convolutional neural
network models.
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