

1 **A Novel Multiplex qPCR Assay for Detection of *Plasmodium falciparum* with Histidine-rich
2 Protein 2 and 3 (*pfhrp2* and *pfhrp3*) Deletions in Polyclonal Infections**

3 Lynn Grignard¹, Debbie Nolder^{1,2}, Nuno Sepúlveda^{1,3}, Araia Berhane⁴, Selam Mihreteab⁴, Robert
4 Kaaya⁵, Jody Phelan¹, Kara Moser⁶, Donelly A. van Schalkwyk¹, Susana Campino¹, Jonathan B.
5 Parr⁶, Jonathan J. Juliano⁶, Peter Chiodini^{2,7}, Jane Cunningham⁸, Colin J. Sutherland¹, Chris
6 Drakeley¹ and Khalid B. Beshir^{1*}

7 1. Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
8 2. PHE Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, United
9 Kingdom
10 3. Centre of Statistics and Applications of University of Lisbon, Portugal
11 4. Communicable Diseases Control Division, Ministry of Health, Eritrea
12 5. Kilimanjaro Christian Medical University College, Tanzania
13 6. University of North Carolina at Chapel Hill, United States
14 7. UCL Hospital for Tropical Diseases, United Kingdom
15 8. World Health Organization, Geneva, Switzerland

16 **Abstract**

17 **Background:** Rapid diagnostic tests (RDTs) that detect the malaria antigen histidine-rich protein
18 2 (HRP2) are widely used in endemic areas globally to confirm *Plasmodium falciparum* infection
19 in febrile patients. The emergence of parasites lacking the gene encoding HRP2 and escaping
20 RDT detection threatens progress in malaria control and elimination. Many health facilities in
21 malaria endemic countries are dependent on RDTs for diagnosis and some National Health
22 Service hospitals without expert microscopists rely on them for diagnosis out of hours. It is vital to
23 study the emergence and the extent of such parasites globally to guide diagnostic policy.
24 Currently, verification of the presence of such parasites in a blood sample requires a series of
25 PCR assays to confirm the presence of *P. falciparum* and in the absence of amplicons from
26 *pfhrp2* and/or *pfhrp3*, which encodes a cross-reactive protein isoform. These tests have different
27 limits of detection and many laboratories have reported difficulty in confirming the absence of
28 *pfhrp2* and *pfhrp3* with certainty.

29 **Methods:** We developed and validated a novel and rapid multiplex real time quantitative (qPCR)
30 assay to detect *pfhrp2*, *pfhrp3*, confirmatory parasite and human reference genes
31 simultaneously. We also applied the assay to detect *pfhrp2* and *pfhrp3* deletion in 462 field
32 samples from different endemic countries and UK travellers.

33 **Results:** The qPCR assay showed limit of detection and quantification of 0.76-1.5 parasites per
34 μl . The amplification efficiency, coefficient of determination (R^2) and slope for the genes were 96-

35 1.07%, 0.96-0.98 and -3.375 2 to - 3.416 respectively. The assay demonstrated diagnostic
36 sensitivity of 100% (n=19, 95% CI= (82.3%; 100%)) and diagnostic specificity of 100% (n=31;
37 95% CI= (88.8%; 100%)) in detecting *pfhrp2* and *pfhrp3* in. In addition, the qPCR assay
38 estimates *P. falciparum* parasite density and can detect *pfhrp2* and *pfhrp3* deletions masked in
39 polyclonal infections. We report *pfhrp2* and *pfhrp3* deletions in parasite isolates from Kenya,
40 Tanzania and in UK travellers.

41 **Conclusion:** The new qPCR assay is simple to use and offers significant advantages in speed
42 and ease of interpretation. It is easily scalable to routine surveillance studies in countries where
43 *P. falciparum* parasites lacking *pfhrp2* and *pfhrp3* are a threat to malaria control.

44 **Key words:** *pfhrp2*, *pfhrp3*, *pfldh*, qPCR, RDT and malaria

45 *Corresponding author: Khalid.Beshir@lshtm.ac.uk

46 **Background**

47 Malaria is caused by infecting protozoan parasites of the genus *Plasmodium*. *P. falciparum*
48 continues to be the predominant species with an estimated global incidence of more than 2228
49 million cases and about 405,000 deaths reported in 2018 (1). Immunochromatographic rapid
50 diagnostic tests (RDTs), which use membrane-bound antibodies to detect parasite proteins in
51 finger-prick blood samples, play a crucial role in malaria control successes in disease endemic
52 countries. Early diagnosis is critical to malaria elimination and eradication programs and RDT
53 deployment is an important component of the strategy. As a result, the global availability and
54 scale of use of RDTs has increased dramatically over the last 10 years (2). Most RDTs used
55 worldwide detect *P. falciparum* histidine-rich protein 2 (pfHRP2) and/or *Plasmodium* lactate
56 dehydrogenase (pLDH) antigens. Some studies have shown that at least some pfHRP2-based
57 RDTs also detect *P. falciparum* histidine-rich protein 3 (pfHRP3) due to a shared antigenic
58 epitope (2-5). In sub-Saharan Africa, which bears 90% of the global malaria burden, RDTs
59 accounted for 74% of diagnostic testing among suspected malaria cases in 2015, and pfHRP2-
60 based tests were the most widely used (2).

61 Parasites with *pfhrp2* and/or *pfhrp3* genes (*pfhrp2/3*) deletions were first observed in South
62 America and increasing reports of false-negative RDT results due to these parasites have now
63 emerged from selected region of Africa and Asia (6-8). In some countries, a high proportion of

64 RDT false-negative results due to these gene deletions has led to the changes in national
65 diagnostic guidelines (9, 10). However, before undertaking any drastic changes in diagnostic
66 testing policies or deploying less sensitive, less heat stable RDTs that detect alternative antigens,
67 malaria programs need, robust epidemiological data about local *pfhrp2/3* deletion prevalence.
68 The World Health Organization has prioritized studies of these parasites and developed a
69 protocol for *pfhrp2/3* deletion surveillance (11). However, confirmation of *pfhrp2/3* deletions using
70 current techniques is challenging and time consuming. Most studies of *pfhrp2* and *pfhrp3*
71 deletions deploy conventional nested PCR (nPCR) amplification of several genes followed by
72 gel-electrophoresis (12). In this genotyping approach, at least three independent genes are used
73 to ascertain the quality of DNA and the presence of *P. falciparum* parasites to avoid unintentional
74 misclassification of *pfhrp2/3* deletions in samples with low-concentration or degraded DNA (13,
75 14). The nPCR approach requires several rounds of PCR for each gene and running the gel-
76 electrophoresis for each PCR product. The nested-PCR genotyping approach is labour-intensive,
77 time consuming and is prone to contamination, particularly when deployed in large-scale
78 surveillance studies. The various nPCR methods used differ in limit of detection, and this can
79 cause type I and type II errors. Further, performance of reported the *pfhrp2* and *pfhrp3* PCR is
80 variable, with wide ranging limits of detection and the risk cross-reactivity in some assays. In
81 addition, gel-electrophoresis approaches do not detect deletions masked in polyclonal infections
82 (6).
83 In this study, we report the development of a multiplex qPCR assay which simultaneously detects
84 DNA from the human host, a single-copy parasite house-keeping gene, and the *pfhrp2* and
85 *pfhrp3* genes, including in polyclonal *P. falciparum* infections, in a single reaction. We report the
86 validation and application of this novel method using DNA samples derived from DBS and whole
87 blood of field isolates and clinical samples. We also deploy the assay to estimate *P. falciparum*
88 parasite density to rule out low parasite density as a factor for false RDT negative results (5, 13)
89 when microscopic data is unavailable or if it is not reliable.

90

91

92

93 **Methods**

94 ***Plasmodium falciparum* laboratory strains**

95 Initial validation of the qPCR assay was performed using culture-adapted laboratory isolates with
96 different *pfhrp2* and *pfhrp3* status, 3D7 (wildtype, West Africa origin), Dd2 (*pfhrp2* deletion,
97 *Indochina* origin), HB3 (*pfhrp3* deletion, Honduras origin) were obtained from the Malaria
98 Research Reference Reagent Repository (<http://MR4.org>). A culture-adapted isolate lacking both
99 genes (3BD5, double deletion) was also obtained from Thomas Wellems (NIAID, US). Parasite
100 cultures of 3D7, Dd2, HB3 and 3BD5 were tightly synchronized as ring stage trophozoites *in vivo*
101 to simulate infected peripheral blood similar to previously used methods (15, 16). The WHO *P.*
102 *falciparum* International standard (Pf INT), a reagent comprising lyophilised whole blood from a
103 single hyperparasitaemic individual was obtained from NIBSC UK. Undiluted, this reagent
104 represents a parasitaemia of 9.8% which is equivalent to 4.9×10^5 parasites per μl (15, 17).

105 **Clinical and field DNA samples**

106 Clinical validation and application of the qPCR assay was performed using a convenience of 462
107 DNA samples derived from both DBS and whole-blood samples. Study site, sample collection
108 and other details including IRB approvals have already been published for the study in which
109 Eritrean samples were collected (9, 10). Parasite DNA was isolated from fifty dried bloodspot
110 (DBS) samples from suspected malaria patients in Eritrean; 299 samples from whole-blood
111 collected in EDTA from symptomatic Tanzanian and Kenyan patients and anonymised 113
112 samples from UK malaria patients. Whole blood collected in EDTA from UK travellers with
113 confirmed *P. falciparum* infections in 2018 was obtained from the Public Health England Malaria
114 Reference Laboratory (MRL), London, UK. Samples from Kenya (Ahero) and Tanzania
115 (Bagamoyo) were collected between Oct 2016 and Dec 2018 as part of a study of parasite
116 clearance after treatment with artemisinin combination therapy. These samples from Kenya and
117 Tanzania have aliquots of cryopreserved blood samples and were selected for *pfhrp2/3* deletion
118 study to identify *pfhrp2/3*-deleted parasites for culture-adaptation.

119 **DNA Extraction**

120 DNA was extracted from DBS from Eritrea and from whole blood from the MRL and from cultured
121 laboratory isolates using a robotic DNA extraction system (Qiasymphony, QIAGEN, Germany),

122 as previously described (17). For the clinical samples collected in Kenya and Tanzania, 200 μ l of
123 whole-blood was extracted using the QIAamp Blood Mini Kit (Qiagen) into 200 μ l of Buffer EB as
124 per the manufacturer's instructions.

125 **Multiplex qPCR development**

126 *Gene target selection and primer design*

127 To design highly specific amplification primers that are conserved across global *P. falciparum*
128 isolates we carried out multiple alignment of *pfhrp2* gene sequences from 1581 published *P.*
129 *falciparum* genomes (MalariaGEN) from Africa, SE Asia and South America, and a similar
130 alignment was also carried out for *pfhrp3* (Figure S1). The DNA sequence of the genes were
131 obtained from publicly available genomic data and the processing of the data has been described
132 in our previous report (6). We have also aligned the 3D7 DNA sequence of *pfhrp2*
133 (PF3D7_0831800) and *pfhrp3* (PF3D7_1372200) to ensure that the conserved primers of the two
134 genes do not cross-bind and are specific to *pfhrp2* and *pfhrp3* respectively (Figure S2). The DNA
135 sequences of *pfhrp2* and *pfhrp3* were aligned using Geneious v. 10 (Biomatters, USA)
136 We used *Plasmodium falciparum* lactate dehydrogenase (*pfldh*, PF3D7_1324900), coded by a
137 single-copy gene on chromosome 13, as a confirmatory gene for the presence and quality of
138 parasite DNA as well as a target for measuring parasite density. We used previously published
139 qPCR methods, with some modification of reaction conditions to amplify *pfldh* (13) and the
140 human beta tubulin gene (*HumTuBB*) (Table S1)(18). The latter was used both as an internal
141 control and as a normalizer for measurement of parasite density and for detection of *pfhrp2/3*
142 deletion in polyclonal infections. All primers and probes were ordered from Eurofins Scientific
143 (Germany).

144 *Modification of pfhrp2 primer at the 3' end*

145 Due to limited availability of suitable conserved target sequences region in *pfhrp2* and *pfhrp3* that
146 are dissimilar between the isoform genes and to prevent non-specific cross-binding of the *pfhrp2*
147 primers to *pfhrp3*, we used a strategy altering nucleotides located at the 3' end region (within the
148 last 5 nucleotides) of both *pfhrp2* primers (Table S1). In total, we designed six primers with
149 different modification at the 3' end of the forward and reverse *pfhrp2* primers, which were then

150 tested empirically to identify primer pairs that delivered the best specificity while maintaining
151 product yield (sensitivity).

152 *Assay optimization*

153 The multiplex qPCR assay designed in this study was optimized for primer and probe
154 hybridization temperature; different primer and probe concentrations and different MgCl₂
155 concentrations. All the optimization analyses were performed in triplicates in a RGQ rotor-gene
156 (Qiagen, Germany).

157 The optimized final reaction conditions were performed in a final volume of 25 μ l containing 1.6X
158 NH₄ buffer (Bioline); 4 mM MgCl₂ (Bioline); 800nM dNTPs (Bioline), 200nM of *pfhrp2* primers,
159 200nM *pfhrp3* primers, 120 nM of *pfldh*, 120 nM *HumTuBB* primers, 120 nM of *pfhrp2* probe, 120
160 nM *pfhrp3* probe, 80 nM of *pfldh* probe and 80 nM *HumTuBB* probe; 2 units of biotaq polymerase
161 and 5 μ l of extracted DNA. The optimal thermocycling conditions selected were 3 mins at 95⁰C,
162 followed by 45 cycles of 15 sec at 95⁰C; 30 sec at 54⁰C and 30 sec at 72⁰C.

163 *PCR efficiency, linear dynamic range and limit of detection*

164 We conducted assay performance analysis based on the MIQE guidelines(19). The efficiency of
165 primer and probe combinations for each gene and linear dynamics of the qPCR assays were
166 evaluated using seven 4-fold dilutions of Pf INT (from 12500 to 3 parasites per μ l). The last
167 dilution series (3 parasites per μ l) was then further diluted 2-fold (from 3 to 0.38 parasites per μ l)
168 to determine the measured limit of detection (LOD). The three laboratory strains (Dd2, HB3 and
169 3BD5) with known *pfhrp2/3* status were included in the evaluation linear dynamic of the linear
170 range to examine the effect of DNA concentration on the cross reactivity of the primers.

171 *Assay precision, analytical sensitivity and specificity*

172 Performance of the multiplex qPCR *pfhrp2/3* assay was evaluated by measuring coefficient of
173 variation across the seven four-fold dilution series of Pf INT. The specificity and sensitivity as well
174 as the robustness of the assay was evaluated by testing the lowest two concentrations of Pf INT
175 replicates of eight and 20 *P. falciparum*-negative whole blood samples in three different
176 experiments.

177 *Detection of parasites with *pfhrp2* and *pfhrp3* deletion hidden in polyclonal infections*

178 To investigate whether the qPCR assay could detect *pfhrp2/3*-deleted parasites hidden in
179 polyclonal infections robustly and accurately, we generated pairwise mixtures of known *P.*
180 *falciparum* genotypes (Dd2 and Pf INT, HB3 and Pf INT, and 3BD5 and Pf INT) at different ratios
181 i.e. 1:1, 5:1, 10:1, 100:1, 1000:1, 10,000:1, 1:100,000, 1:10,000, 1:1000, 1:100, 1:10, 1:5, 1:1.
182 We estimated the abundance of *pfhrp2/3* deletion genotypes in the mix relative to the whole
183 parasite biomass as measured by relative quantification normalized to *pfldh* (measures the DNA
184 of all strains) and *humTuBB* genes. The qPCR assay was also used to detect *pfhrp2/3* deletions
185 in patient samples with known polyclonal infection in patient samples, as determined by a
186 previously published high resolution melting qPCR assay (20).

187 *Relative quantification using the pfldh gene*

188 We used *pfldh* as a parasite target and *HumTuBB* as a normalizer to estimate relative parasite
189 density of each sample. The lowest parasite density (parasite per μ l) with a coefficient of
190 variation of less than 35% was considered limit of quantification for the assay(21). We
191 determined the performance of the *pfldh* qPCR in the multiplex assay by comparing parasite
192 densities determined by a published *pgmet* duplex qPCR assay using samples from Eritrea (18).

193 *Application to DNA from diverse field samples*

194 The validated qPCR assay was then applied to DNA extracted from diverse field samples.
195 Samples with Cq values lower than the Cq value of the limit of detection of individual gene are
196 determined to be negative for the gene. Samples with *HumTuBB* positive and *pfldh* positive but
197 negative for *pfhrp2* or *pfhrp3* are determined to be *pfhrp2*-deleted and *pfhrp3*-deleted
198 respectively. Samples with *HumTuBB* positive but *pfldh* negative are determined to be parasite
199 negative. Finally, samples with *HumTuBB* negative are considered to be invalid and DNA
200 extraction and/or PCR experiment should be repeated.

201 **Data Analysis**

202 For all amplification curve analyses, the quantification cycle (Cq) threshold was placed above the
203 amplification curve of No Template Control (NTC) and any crossing point between the Cq
204 threshold and the amplification curve was considered positive (Cq value) for the specific sample.
205 To evaluate assay precision, we calculated the coefficient of variation (CV) of parasite density
206 (parasite per μ l) as follows: $CV\% = (\text{standard deviation}/\text{mean}) \times 100$. To determine the limit of

207 detection (LOD), we calculated the percentage of positive samples and the lowest sample with
208 more than 3 parasites per PCR and with $\geq 95\%$ of replicate samples detected was considered
209 LOD (19). Similarly, to determine the lower limit of quantification (LOQ), we calculated the
210 parasite density using delta delta method and the sample with lowest parasite density (parasite
211 per μl) with a CV $\leq 35\%$ was considered LOQ for the assay (21). Throughout the manuscript CV
212 refers to variation in parasite density (parasite per μl).

213 For estimation of relative abundance of *pfhrp2/3* deletion in a mixed-strain infection we used
214 delta delta relative quantification method (18) as follows:

215
$$\Delta C_q = C_q \text{ of } pfhrp2/3 - C_q \text{ of human}$$

216
$$\Delta\Delta C_q = \Delta C_q \text{ samples} - \Delta C_q \text{ of calibrator (Pf INT)}$$

217
$$pfhrp2/3 \text{ positive clone abundance} = 2^{-\Delta\Delta C_q}$$

218
$$\Delta C_q = C_q \text{ of } pfldh - C_q \text{ of human}$$

219
$$\Delta\Delta C_q = \Delta C_q \text{ samples} - \Delta C_q \text{ of calibrator (Pf INT)}$$

220
$$\text{Total parasite abundance} = 2^{-\Delta\Delta C_q}$$

221
$$pfhrp2/3 \text{ deletion \%} = pfhrp2/3 \text{ clone abundance} / \text{total parasite abundance} \times 100$$

222 Before calculating the relative abundance of *pfhrp2/3* strains, the C_q threshold of the positive
223 control (calibrator, Pf INT, 0.98% parasitaemia) was adjusted in each channel in such a way
224 that the C_q value is similar in all parasite target genes.

225 For comparison of parasite density estimated by two different qPCR assays, we used STATA
226 (v 15, USA) software to perform linear regression.

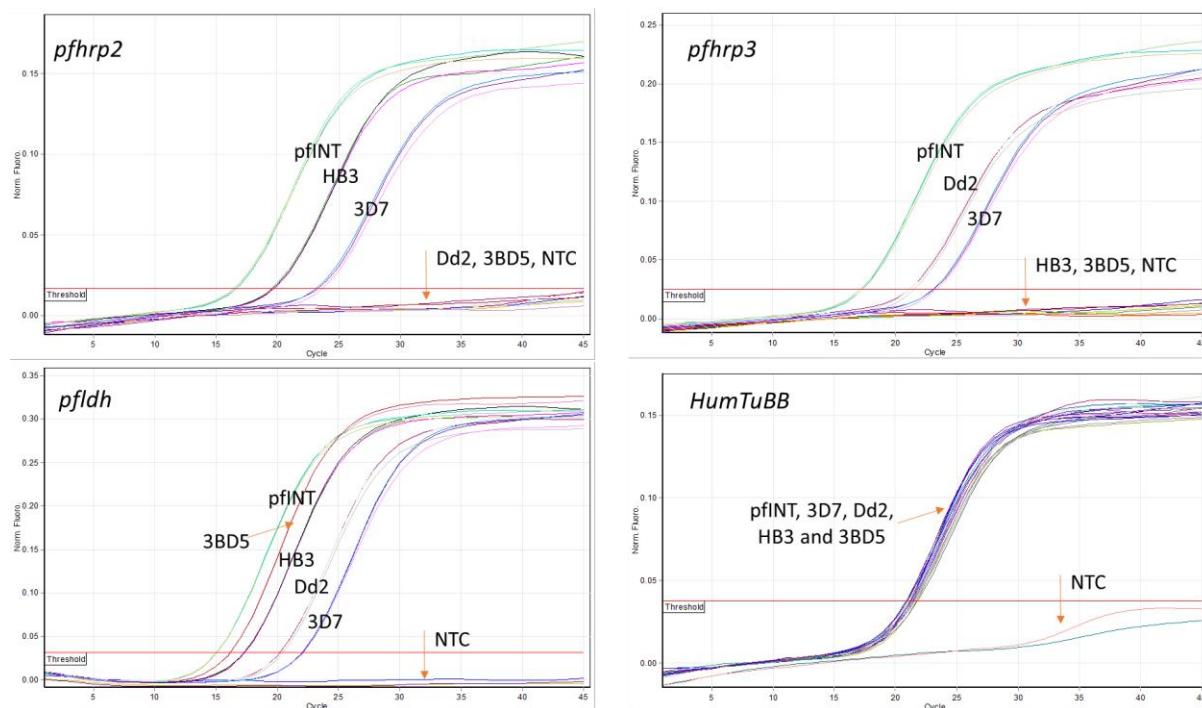
227 **Ethics approval and consent to participate**

228 Ethical approval for collection of samples was obtained from each local ethical committee in
229 Eritrea (Eritrean MOH Research and Ethical Committees), Kenya (KEMRI IRB, 3293) and
230 Tanzania (MUHAS IRB, DA.282/298/01). Ethical approval for the samples from MRL
231 patients was obtained from NHS England Research Ethics Committee (18/LO/0738). The
232 ethical approval for the laboratory work for the Eritrean and MRL samples was obtained from
233 LSHTM Ethical Review Committee (#11979 and #14710 respectively).

234

235

236 **Results**


237 **Primer and probe selection, and *in silico* analysis.**

238 Initial assessment of *pfhrp3* primers across exons 1 and 2 showed cross reactivity with
239 *pfhrp2* target (Figure S3) and a new set of primers within a specific conserved region of
240 exon2 of *pfhrp3* was designed. After initial assessment *pfhrp2* and *pfhrp3* primers for
241 specificity and length of the probe, two sets of *pfhrp3* primers and three sets of *pfhrp2*
242 primers, including primers with modifications at the 3' end, were selected for testing (Table
243 S1). For *pfhrp2* primers, of the nine combinations used, the lowest C_q value was obtained
244 when *pfhrp2_F1* and *pfhrp2_R2* (modification at 3' end) were combined and were selected
245 for further optimization (Table S2). Since one single mutation in *pfhrp2* forward primer was
246 found in one sample in The Gambia and three samples in Ghana we have nucleotide
247 redundancy in the synthesis of *pfhrp2_F1* primer to reflect these mutations (Table S2). The
248 other *pfhrp2* primer combinations either produced fluorescence signal in Dd2 (*pfhrp2*-deleted
249 laboratory strain) due to cross binding to *pfhrp3* or generated relatively higher (more
250 unfavourable) C_q values in *pfhrp2*-positive lab strains (HB3 and Pf INT) compared to the
251 selected primer combinations (Figure S4). Interestingly, a single nucleotide change (T to G)
252 decreased the C_q value by 7 (30 to 23) while two nucleotide changes (T to G and T to G)
253 decreased the C_q value by 2 (30 to 28) (Table S2).

254 **Detection of *pfhrp2* and *pfhrp3* in laboratory strains**

255 We followed the MIQE guidelines for optimization of the qPCR assay; for analysis and
256 reporting of the data (19). The analytical specificity and sensitivity of each newly designed
257 primer and probe combination was validated in monoplex and multiplex qPCR assays on
258 Dd2, HB3, 3BD5 and 3D7, laboratory strains and Pf INT. The assay correctly determined the
259 *pfhrp2* and *pfhrp3* status of the four laboratory strains and the Pf INT. No amplification of
260 either *pfhrp2* or *pfhrp3* was observed in Dd2 and HB3 respectively, while 3BD5 produced no
261 fluorescence signal in either the *pfhrp2* or *pfhrp3* channels (Figure 1). 3D7 and Pf INT were
262 *pfhrp2* and *pfhrp3* positive.

263 **Figure 1. Amplification of four laboratory clones (3D7, Dd2, HB3 and 3BD5) and Pf INT**
264 **in three parasite targets (*pfhrp2*, *pfhrp3* and *pfldh*) and a human beta tubulin gene**
265 **(HumTuBB). Laboratory clones 3D7 (wild type), Dd2 (*pfhrp2* deletion), HB3 (*hrp3***
266 **deletion), 3BD5 (both *pfhrp2/3* deletion) and Pf INT (*Plasmodium falciparum* WHO**
267 **International Standard, both *pfhrp2/3* present) were amplified in triplicate targeting**
268 **four different genes; *pfhrp2*, *pfhrp3*, *pfldh* and *HumTuBB*. The red horizontal line**
269 **marks the threshold, the normalised fluorescence is measured on the y-axis and the**
270 **number of cycles on the x-axis. Orange arrows point to different clones and the**
271 **negative no template control (NTC).**

272
273 **Analytical sensitivity of the qPCR assay**
274 The *pfhrp2*, *pfhrp3* and *pfldh* qPCR assays allowed detection of three parasites per μ l with a
275 C_q standard deviation (SD) of 0.58, 0.47, 0.41 respectively (Table 1A), which corresponds to
276 parasite density CVs of 9.4%, 9.3% and 8.9% respectively (Table 1B). The sample with
277 dilution of the 1.5 parasite per μ l showed a C_q SD of 0.80, 0.71 and 0.74, which corresponds
278 to parasite density CVs of 32.6%, 26.1% and 28.1% respectively (Table S4). Though the
279 assay also detected as low as 0.76 parasites per μ l the SD value was very high (1.49, 1.37

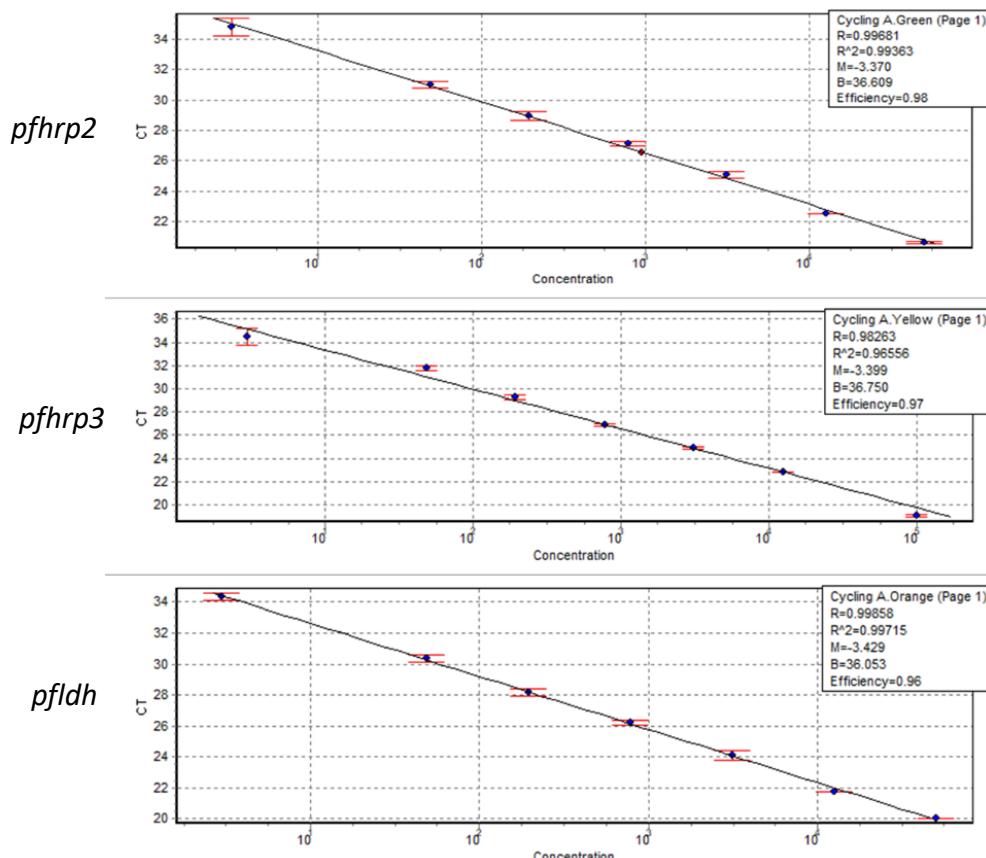
280 and 1.48 respectively), and this corresponds to parasite density of CVs of 109%, 99% and
281 108% (Table S4). Therefore, the lowest parasite density that can be quantified with CV of
282 35% lies between 1.5 and 0.76 parasites per μl .

283 **Table 1A: Precision of the parasite target genes: Mean, standard deviation (SD) of**
284 **quantification cycle (C_q) were calculated from amplifications of seven Pf INT 4-fold**
285 **dilutions (in triplicate) with *pfhrp2*, *pfhrp3* and *pfldh* assays.**

Mean C_q values						
Parasite density ($\text{p}/\mu\text{l}$)	<i>pfhrp2</i>		<i>pfhrp3</i>		<i>pfldh</i>	
	Mean	SD	Mean	SD	Mean	SD
12500	23.18	0.06	23.46	0.02	22.44	0.04
3125	25.49	0.02	25.82	0.19	24.77	0.06
781	27.11	0.07	27.55	0.07	26.48	0.08
195	29.02	0.07	29.54	0.12	28.33	0.16
49	31.28	0.59	32.16	0.73	30.81	0.77
12	33.17	0.66	33.73	0.54	32.40	0.57
3	35.36	0.58	34.76	0.47	35.12	0.41
Total variance	28.95	0.15	29.31	0.18	28.32	0.17

286 **Table 1B: Precision of the parasite target genes: Mean, standard deviation (SD) of**
287 **coefficient of variation (CV) parasite density were calculated from amplifications of**
288 **seven Pf INT 4-fold dilutions (in triplicate) with *pfhrp2*, *pfhrp3* and *pfldh* assays.**

Estimated parasite density (parasite per μl)									
Parasite density ($\text{p}/\mu\text{l}$)	<i>pfhrp2</i>			<i>pfhrp3</i>			<i>pfldh</i>		
	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV
12500	11220.33	544.65	4.85	12137.31	776.08	6.39	13405.10	658.97	4.92
3125	2965.02	215.30	7.26	3098.08	196.15	6.33	3493.59	315.34	9.03
781	902.11	71.29	7.90	879.47	68.65	7.81	1003.27	80.72	8.05
195	197.70	16.65	8.42	181.92	13.88	7.63	229.74	22.57	9.82
49	47.96	5.81	8.43	34.23	2.81	8.20	47.41	3.52	7.42
12	14.23	1.28	8.99	12.76	0.93	7.29	17.35	1.30	7.48
3	2.24	0.21	9.40	4.49	0.42	9.29	1.90	0.17	8.88
Total variance	190.40	15.53	7.74	197.70	14.83	7.50	208.08	16.19	7.78


289

290

291 **PCR efficiency and dynamic range**

292 In order to measure abundance of *pfhrp2* and *pfhrp3* clones relative to *pfldh* and estimate
293 parasite density relative to human DNA, the four targets should have similar amplification
294 efficiency. The efficiency of each qPCR was evaluated on 4-fold serial dilutions of Pf INT
295 (from 12500 to 3 parasite per μ l) and each primer and probe combination resulted in similar
296 PCR efficiency (Figure 2) and this was evident by the C_q value generated by each
297 combination. A 4-fold dilution of the Pf INT produced linear standard plots with 98%, 96%,
298 98% and 1.07% PCR amplification efficiency for *pfhrp2*, *pfhrp3*, *pfldh* and *HumTub* primer
299 pairs respectively (Figure 2). The coefficient of determination (R^2) of the standard curve was
300 0.96-0.98 with a slope value of -3.375 to -3.416 for each assay.

301 **Figure 2. Standard curve of 7 Pf INT samples diluted 4-fold starting from 12500**
302 **parasites per μ l. The three parasite assays (*pfhrp2*, *pfhrp3* and *pfldh*) detected as low**
303 **as 3 parasites per microliter with amplification efficiency of 98%, 97% and 96% and**
304 **coefficient of determination (R^2) -3.37, -3.39 and -3.43 respectively.**

305

306

307 **Performance of the qPCR assays**

308 We assessed the precision of the assay by testing seven 4-fold dilution series of the Pf INT
309 (starting concentration, 12500 parasites per μ l) in triplicate on three separate occasions. The
310 mean SD for cycle quantification across the seven samples was 0.15, 0.18 and 0.17 for
311 *pfhrp2*, *pfhrp3* and *pfldh* target genes respectively (Table 1A), which corresponds to a
312 calculated parasite density of CVs of 7.4%, 7.5% and 7.8% respectively (Table 1B). The
313 sensitivity and specificity as well as the robustness of the assay was assessed using *P.*
314 *falciparum*-negative blood samples and Pf INT (3 and 1.5 parasites per μ l) in eight replicates
315 on three different occasions. All the control samples were negative, while the Pf INT was
316 positive indicating the absence of amplification inhibition and non-specific amplification
317 (Table S4).

318 **Detecting parasites with *pfhrp2/3* deletions hidden in polyclonal infections**

319 The ability of the qPCR assay to detect minor or major laboratory clones with *pfhrp2/3*
320 deletion was assessed using artificially mixed laboratory strains Dd2, HB3, 3BD5 and Pf INT.
321 Both *pfhrp2* and *pfhrp3* qPCR assays showed good performance in detecting minor (as low
322 as 20%; CI, 7.94-27.05) and major (as high as 99.99%; CI, 99.99-100) *pfhrp2/3*-deleted
323 clones in the artificially mixed laboratory clones (Table S4). The *pfhrp2/3* assays can also
324 detect as low as 10% *pfhrp2/3* deleted clones but the value lies within the confidence interval
325 of replicate experiment of a single clone sample and therefore lacks confidence.

326 **Workflow and throughput time**

327 Performing the multiplex qPCR requires three steps: approximately 20 minutes for reaction
328 setup takes ~ 20 minutes, two hours for runtime 30 minutes for analysis. Over all the
329 estimated time was three hours for 72 reactions on the Rotorgene Q platform. In
330 comparison, the estimated time for the conventional method, deploying several nested PCR
331 assays in a 96-well plate format followed by electrophoresis is approximately 30 hours. Time
332 for DNA extraction is the same for both.

333

334 **Validation and application of the qPCR assay on field samples**

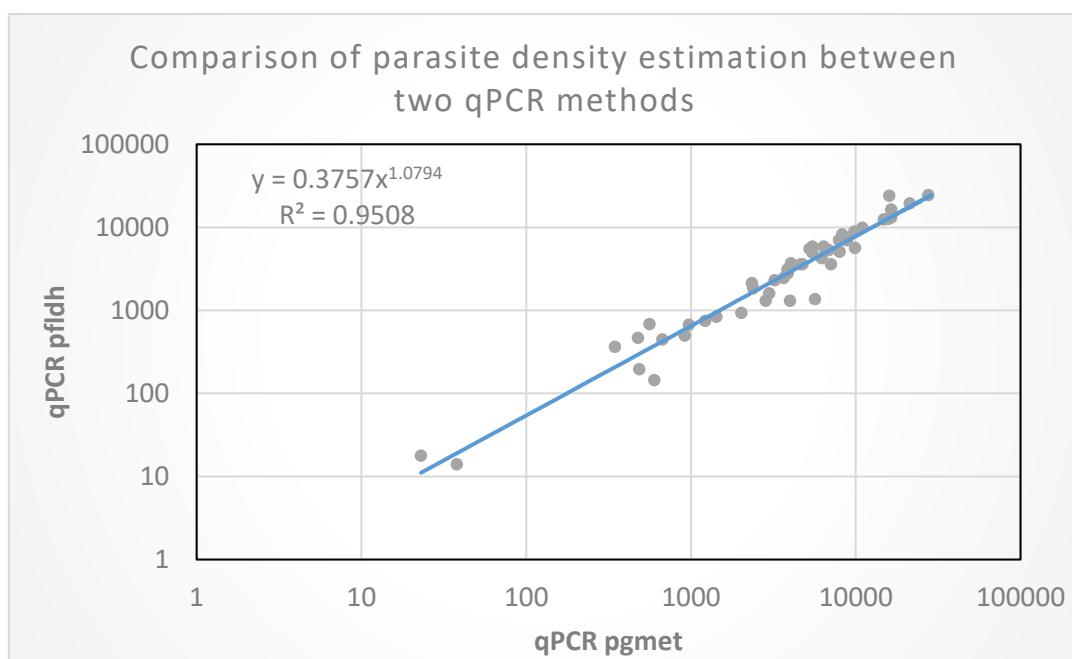
335 To determine the diagnostic sensitivity and specificity of the qPCR assay for detecting
336 *pfhrp2/3* deletions in field samples and to provide population estimates of deletion
337 prevalence, we first investigated 50 DNA samples obtained from confirmed *P. falciparum*
338 patients from Eritrea whose *pfhrp2/3* deletions were previously determined using the
339 conventional nPCR method (10). Results obtained from the qPCR assay were fully
340 concordant with previously reported results from the same samples using the conventional
341 nPCR method (10). The qPCR assay correctly detected all the *pfhrp2/3* positives (100%
342 sensitivity for *pfhrp2*, n=19, 95% CI = (82.4%, 100%); 100% sensitivity for *pfhrp3*, 95% CI=
343 (66.4%; 100%), n=9) and accurately determined the absence of *pfhrp2/3* in the remaining
344 samples (100% specificity for *pfhrp2*, n=31, 95% CI=(88.8%,100%); 100% specificity for
345 *pfhrp3*, n=41, 95% CI=(91.4%,100%)) (Table 2). We then assessed samples obtained from
346 clinical malaria patients from the MRL (n=113), Kenya (n=150) and Tanzania (n=149). For
347 the MRL samples, we selected 113 samples from countries with reported *pfhrp2/3* deletion
348 or high risk of emergence of *pfhrp2/3* deletion (22). The countries include Eritrea (n=1),
349 Ethiopia (n=2), Kenya (n=20), Tanzania (n=16), Uganda (n=27), Sudan (n=29), South Sudan
350 (n=10), Djibouti (n=1), Somalia (3) and east Africa (unknown country, n=2). Analysis of the
351 *pfhrp2/3* status of the MRL samples by qPCR showed 1.8%, 1.8% and 6.3% *pfhrp2-3+*,
352 *pfhrp2+/3-* and *pfhrp2-/3-* deletions respectively. One *pfhrp2* deletion occurred in a UK
353 traveller from Sudan and five *pfhrp3* deletions occurred in UK travellers from Ethiopia (1),
354 Sudan (1), South Sudan (2) and Uganda (1). There was evidence of *pfhrp2/3* deletions in
355 polyclonal infections in 3.5% of MRL samples in total (Table 4). Of the 149 whole blood
356 samples collected from Tanzania, 1 sample (0.7%) carried a *pfhrp2* deletions and another
357 sample (0.7%) carried a *pfhrp3* deletion while no deletions were observed in the 150 Kenyan
358 samples. However, there were 5 samples (3.4%) carrying *pfhrp2*-deleted strains hidden in
359 polyclonal infections in the Kenyan samples and one (0.7%) in the Tanzanian samples.
360 Details of the deletions in each country are shown in Table 2.

361 **Table 2: Prevalence of *pfhrp2* and *pfhrp3* deletions including in polyclonal infections**
362 **in clinical samples.**

DNA source	Country	<i>pfhrp2</i> and/or <i>pfhrp3</i> deletions in samples			<i>pfhrp2/3</i> deletions in polyclonal infections		
		<i>pfhrp2</i> n(%)	<i>pfhrp3</i> n(%)	<i>pfhp2/3</i> n(%)	<i>pfhrp2</i> n(%)	<i>pfhrp3</i> n(%)	<i>pfhp2/3</i> n(%)
Eritrea	Eritrea (n=50)	0	7 (14)	32 (64)	3(0.5)	4 (8)	0
HTD	Djibouti (n=1)	0	0	0	0	0	0
	Kenya (n=20)	0	0	0	1 (5)	1 (5)	0
	Eritrea (n=1)	0	0	0	0	0	1 (100)
	Ethiopia (n=2)	0	1 (50)	0	0	0	0
	Somalia (n=3)	0	0	0	0	(2)66.7	0
	South Sudan (n=10)	0	3(30)	0	1 (10)	0	0
	Sudan (n=29)	1 (3.5)	1 (3.5)	1 (3.5)	0	3 (10.3)	0
	Tanzania (n=16)	0	0	0	0	1 (6.3)	0
	Uganda (n=27)	0	1 (3.7)	0	2 (7.4)	3 (11.2)	0
Kenya/Tanzania	Kenya (n=150)	0	0	0	5 (3.4)	0	0
	Tanzania (n=149)	1 (0.7)	1 (0.7)	0	1 (0.7)	0	0

363

364 **Estimation of parasite density using *pfldh***


365 As well as a positive control for parasite DNA quality, the *pfldh* gene was simultaneously
366 used as a parasite target for estimation of parasite density using relative quantification. After
367 assessing its sensitivity, specificity and amplification efficiency the usefulness of the qPCR
368 as an estimator of parasite density was evaluated by comparison to the previously published
369 duplex *pgmet* qPCR assay (18). We performed this comparison using 50 DNA samples from
370 Eritrea and the *pfldh* qPCR showed high degree of correlation ($R^2=0.95$) with the duplex
371 *pgmet* qPCR (Figure 3). The *pgmet* qPCR generated relatively higher parasite density
372 compared to the *pfldh* qPCR and this is expected as the former targets multi-copy genes in
373 the apicoplast genome, whereas the latter targets is a single-copy gene.

374

375

376

377 **Figure 3: Comparing parasite density estimates produced by *pfldh* and *pgmet* qPCR**
378 **methods using 50 Eritrean samples. The estimation was done using delta delta**
379 **relative quantification methods in the presence of *HumTuBB* gene as a normalizer and**
380 **Pf INT as a calibrator. The two qPCR methods showed strong agreement ($R^2 = 0.95$)**

395 warning signs of emergence of *P. falciparum* with *pfhrp2/3* deletions. This would allow
396 appropriate measures to be taken to identify, respond and contain the spread of such
397 parasites before they become sufficiently abundant to impact on case management and
398 malaria control programs as has already occurred independently in South America and
399 Eritrea (12, 23).

400 The design of the multiplex qPCR assay provides several advantages over existing detection
401 methods (5, 14, 24). Firstly, the qPCR assay uses only one parasite target to confirm the
402 presence of DNA and to assess its quality while the gel-electrophoresis based nested PCR
403 (nPCR) methods use three target genes (5, 25, 26). This reduces the cost and throughput
404 time and simplifies the algorithm for interpreting results. Secondly, the parasite target gene
405 (*pfldh*) used for DNA confirmation in the qPCR assay has a single copy, generating
406 equivalent sensitivity to the *pfhrp2/3* targets. When multi-copy genes (e.g., 18SrDNA and
407 *cytb*) are used in the nPCR and other qPCR assays there is increased risk of false-*pfhrp2/3*
408 deletion calls due to sensitivity differences with the single copy *pfhrp2/3* genes (14, 27). It is
409 difficult to evaluate the accuracy of *pfhrp2/3* deletion calls in the literature, as most
410 laboratories do not report the limit of detection of the nPCR methods used. Thirdly, the
411 qPCR assay uses a human house-keeping gene as internal control. Variability in DNA yield,
412 or loss, introduced during sample collection or parasite DNA extraction or qPCR
413 amplification can thus be corrected for, reducing the risk of false-*pfhrp2/3* deletion calls.

414 Using conventional methods, those samples negative by 18SrDNA may be excluded from
415 further *pfhrp2/3* deletion analysis as they are presumed parasite negatives, potentially
416 underestimating the prevalence of *pfhrp2/3* deletions by missing those samples where
417 technical failure has caused this outcome. Fourthly, the multiplex qPCR assay accurately
418 detects laboratory *P. falciparum* strains and clinical samples with *pfhrp2/3* deletions when
419 mixed as minor or major clones. The ability of the multiplex qPCR assay to detect *pfhrp2/3*
420 deletions in samples with low parasitaemia and in polyclonal infections is made possible due
421 to three unique features: the choice of a single copy parasite gene (*pfldh*) for DNA quality
422 confirmation; the inclusion of a human gene for normalisation and the modification of the

423 primers. Finally, the qPCR assay can also estimate relative parasite density using the
424 human gene as a normalizer and Pf INT as a calibrator. This characteristic of the assay is
425 useful because one of the criteria for confirming deletion of *pfhrp2/3* is estimation of parasite
426 density using microscopy to rule out low parasite density as a factor for lack of parasite
427 target amplification (14). However, microscopy is not always performed during community
428 surveys, and quantification of parasite density using qPCR is required (5, 13). The qPCR
429 assay not only detects *P. falciparum* parasites with *pfhrp2/3* deletions but also
430 simultaneously estimates parasite density in the same experiments, hence reducing time
431 and cost.

432 Our study shows the presence of *pfhrp2/3* deletions in infected UK travellers for the first
433 time. While *pfhrp2/3* deletions were previously reported in Eritrea (10), Ethiopia (28) and
434 Uganda (29) this is the first time such deletions are reported in Sudan and South Sudan,
435 though a negative *pfhrp2* result was reported in Sudan (30). Interestingly, *pfhrp2* and *pfhrp3*
436 deletions were also detected in polyclonal infections in Kenya, Eritrea, Somalia, South
437 Sudan, Sudan and Uganda. This suggests the circulation of low frequency *pfhrp2*-deleted
438 parasites in Somalia as minor strains in mixed infections. WHO recommends surveillance to
439 determine the prevalence of *pfhrp2/3* deletions occur and in neighbouring areas if the
440 prevalence of *pfhrp2* gene deletions that cause false-negative HRP2-based RDT results in a
441 representative sample is higher than 5%, HRP2-based RDTs should be replaced with
442 alternative *P. falciparum* diagnostic tool that is not exclusively reliant on detection of HRP2
443 (11). If the prevalence is below 5% a repeat of the survey is recommended in 1-2 years and
444 the detection of *pfhrp2/3* deletions in polyclonal infections by the qPCR assay could be used
445 to inform decisions about how soon to repeat the survey. For example, if the *pfhrp2/3*
446 deletions in polyclonal infections occur in medium to high transmission endemic settings, it
447 may be preferable to survey during the dry season when the multiplicity of infection is lower
448 and would allow accurate estimation of the *pfhrp2/3* deletions.

449

450

451 **Limitations**

452 The challenges of confirming the absence of a gene target require careful attention to lab
453 workflow and DNA quality. First, the sensitivity of the qPCR assay demands careful
454 laboratory workflows that prevent contamination. This is true of all qPCR assays but
455 particularly important for discrimination of low-concentration deleted strains in polyclonal
456 infections. Second, while the qPCR assay was carefully designed and optimized to avoid
457 cross-binding, use of appropriate DNA controls is needed to monitor for unintentional
458 amplification of *pfhrp3* by *pfhrp2* primers and vice versa. We recommend including at least
459 two parasite negative controls (preferably Dd2 and HB3) for *pfhrp2* and *pfhrp3*, respectively,
460 in each experiment. The use of only a double-deleted strain (such as 3BD5) is not
461 recommended. In addition, the qPCR assay targets only one additional single-copy parasite
462 gene while the conventional methods for *pfhrp2* and *pfhrp3* genotyping have employed three
463 independent parasite genes to ensure DNA quality and rule out DNA degradation (14).
464 Because the *pfhrp2* and *pfhrp3* qPCR amplicon lengths are shorter (98bp and 84bp
465 respectively) than typical amplicons generated by the conventional method (~ 300 - 800bp),
466 detection of these targets is expected to be more reliable. If the frequency of deletions is
467 observed to be markedly increased near the limits of detection of the assay in a particular
468 study, then confirmatory testing using a second gene target could be considered. Finally,
469 due to limited conserved regions, the *pfhrp2*-specific primer covered known variant positions
470 present in minority of field samples in the MalariaGEN genome data. The qPCR assay was
471 optimized taking into account the known sequence variants, and the use of nucleotide
472 redundancies in the primer synthesis did not affect the yield in fluorescence signal (Cq value).
473 The variants within our primer sequence are relatively fewer compared to the primer and
474 probe sequences of other recently published qPCR assays (27, 31), which we predict may
475 be challenged by sequence variation (mutations, insertions and deletion) in the primer and
476 probe sequences of *pfhrp2* and *pfhrp3* found in field samples from seven and nine countries
477 respectively (Table S6).

478

479 **Conclusion**

480 Our qPCR method for detection of *pfhrp2/3* deletions is a robust alternative with several
481 advantages over existing approaches. The qPCR assay has superior performance to
482 existing methods in speed, cost and ease of interpretation in detecting *pfhrp2/3*-deleted *P.*
483 *falciparum* parasites from DNA derived from whole blood or filter-paper bloodspots. Data
484 from screening endemic country samples in returning travellers to the United Kingdom
485 suggest systematic surveillance of *pfhrp2/3* deletions in Ethiopia, Sudan and South Sudan is
486 warranted. Careful monitoring of *pfhrp2/3* deletions in Somalia will also be required as the
487 emergence of *pfhrp2/pfhrp3*-deleted parasites as a single-clone infection may soon occur.
488 Based on the findings in this report and elsewhere in the literature, *pfhrp2/3* deletions are
489 present in 31 countries but the scale and scope is still not well elucidated and efforts to
490 dramatically scale up surveillance are needed (32, 33). This qPCR assay can accurately and
491 efficiently support surveillance efforts so that endemic countries have the data required to
492 guide policy on RDT procurement and avert a serious public health threat.

493 **Declarations**

494 **Author contributions**

495 LG, NS and KBB conceived/designed the study. DN, AB, SM, KM, JJJ, JBP, PC, JC and
496 CJS conceived/designed the individual studies. DAS performed the parasite culturing. JP
497 and SC carried out the genome analysis. LG and RK conducted the initial experiments of the
498 study. KBB conducted the final primer and probe design and analysis, wrote the study
499 protocol and established the assay. LG and KBB conducted the experiments, analysed the
500 results and wrote the first draft. LG, DN, NS, DAS, JBP, PC, JC, CJS, CD and KBB
501 contributed to the reviewing of the manuscript. LG and KB wrote the final manuscript. All
502 authors read and approved the manuscript.

503 **Ethical approval and consent to participate**

504 All data included in this analysis were obtained in accordance with ethical approvals from
505 country of origin. The data are fully anonymised and cannot be traced back to identifiable
506 individuals. A separate ethical approval was given by London School of Hygiene & Tropical
507 Medicine ethical review committee to conduct this study on the Eritrean samples.

508

509

510 **Acknowledgement**

511 We thank all the patients and staff who participated in this study. We thank Helena Stone for
512 her support with the Malaria Reference Laboratory samples. We also thank Oksana
513 Kharabora for assistance in the lab with the Kenyan and Tanzanian samples. We thank Qin
514 Cheng (ADFMIDI/QIMR Berghofer) sharing with us the *pfhrp2/3* data generated by
515 conventional PCR to validate our qPCR assay.

516 **Funding**

517 This study was partly supported by Department of Infection Biology Rosemary Weir
518 Research Prize to LG, NS and KBB. KBB is funded by LSHTM ISSF3 Pump-Priming. DN is
519 funded by the PHE Malaria Reference Laboratory. RDK is supported by the DELTAS Africa
520 Initiative grant # DEL-15-011 to THRiVE-2. Collection of samples from Kenya and Tanzania
521 was supported by the National Institutes of Health (R01AI121558) to JJJ. The Malaria
522 Reference Laboratory is funded by Public Health England.

523 **Availability of data and materials**

524 Data are available from the corresponding author with reasonable request.

525 **Consent for publication**

526 Not applicable

527 **Competing interest**

528 JBP reports non-financial support in the form of in-kind donation of laboratory testing and
529 reagents from Abbott Laboratories for studies of viral hepatitis and financial support from the
530 World Health Organization. Other authors declare no conflict of interest.

531 **Contributor information**

532 Khalid B Beshir, email: khalid.beshir@lshtm.ac.uk

533

534

535

536

537

538

539

540

541 **References**

- 542 1. WHO. *World Malaria Report 2019*. Geneva: World Health Organization. 2019.
- 543 2. WHO. Malaria rapid diagnostic test performance. Results of WHO product testing of
544 malaria RDTs: round 8 (2016-2018). 2018.
- 545 3. Baker J, Gatton ML, Peters J, Ho MF, McCarthy JS, Cheng Q. Transcription and
546 expression of *Plasmodium falciparum* histidine-rich proteins in different stages and strains:
547 implications for rapid diagnostic tests. *PLoS One*. 2011;6(7):e22593.
- 548 4. Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, et al. Effect of sequence
549 variation in *Plasmodium falciparum* histidine-rich protein 2 on binding of specific monoclonal
550 antibodies: Implications for rapid diagnostic tests for malaria. *J Clin Microbiol*.
551 2006;44(8):2773-8.
- 552 5. Beshir KB, Sepulveda N, Bharmal J, Robinson A, Mwanguzi J, Busula AO, et al.
553 *Plasmodium falciparum* parasites with histidine-rich protein 2 (pfhrp2) and pfhrp3 gene
554 deletions in two endemic regions of Kenya. *Sci Rep*. 2017;7(1):14718.
- 555 6. Sepulveda N, Phelan J, Diez-Benavente E, Campino S, Clark TG, Hopkins H, et al.
556 Global analysis of *Plasmodium falciparum* histidine-rich protein-2 (pfhrp2) and pfhrp3 gene
557 deletions using whole-genome sequencing data and meta-analysis. *Infect Genet Evol*.
558 2018;62:211-9.
- 559 7. Thomson R, Beshir KB, Cunningham J, Baiden F, Bharmal J, Bruxvoort KJ, et al.
560 pfhrp2 and pfhrp3 Gene Deletions That Affect Malaria Rapid Diagnostic Tests for
561 *Plasmodium falciparum*: Analysis of Archived Blood Samples From 3 African Countries. *J*
562 *Infect Dis*. 2019;220(9):1444-52.
- 563 8. Dorado EJ, Okoth SA, Montenegro LM, Diaz G, Barnwell JW, Udhayakumar V, et al.
564 Genetic Characterisation of *Plasmodium falciparum* Isolates with Deletion of the pfhrp2
565 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis
566 and Control. *PLoS One*. 2016;11(9):e0163137.
- 567 9. Berhane A, Russom M, Bahta I, Hagos F, Ghirmai M, Uqubay S. Rapid diagnostic
568 tests failing to detect *Plasmodium falciparum* infections in Eritrea: an investigation of
569 reported false negative RDT results. *Malar J*. 2017;16(1):105.
- 570 10. Berhane A, Anderson K, Mihreteab S, Gresty K, Rogier E, Mohamed S, et al. Major
571 Threat to Malaria Control Programs by *Plasmodium falciparum* Lacking Histidine-Rich
572 Protein 2, Eritrea. *Emerg Infect Dis*. 2018;24(3):462-70.
- 573 11. WHO. Protocol for estimating the prevalence of pfhrp2/pfhrp3 gene deletions among
574 symptomatic falciparum patients with false-negative RDT results.
575 <https://www.who.int/malaria/publications/atoz/hrp2-deletion-protocol/en/> Accessed 21
576 January 2020. 2018(WHO/CDS/GMP/2018.03).
- 577 12. Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large
578 proportion of *P. falciparum* isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3:
579 implications for malaria rapid diagnostic tests. *PLoS One*. 2010;5(1):e8091.
- 580 13. Parr JB, Verity R, Doctor SM, Janko M, Carey-Ewend K, Turman BJ, et al. Pfhrp2-
581 Deleted *Plasmodium falciparum* Parasites in the Democratic Republic of the Congo: A
582 National Cross-sectional Survey. *J Infect Dis*. 2017;216(1):36-44.
- 583 14. Cheng Q, Gatton ML, Barnwell J, Chiodini P, McCarthy J, Bell D, et al. *Plasmodium*
584 *falciparum* parasites lacking histidine-rich protein 2 and 3: a review and recommendations
585 for accurate reporting. *Malar J*. 2014;13:283.
- 586 15. Beshir KB, Diallo N, Sutherland CJ. Identifying Recrudescence *Plasmodium falciparum*
587 in Treated Malaria Patients by Real-time PCR and High Resolution Melt Analysis of Genetic
588 Diversity. *Sci Rep*. 2018;8(1):10097.
- 589 16. van Schalkwyk DA, Burrow R, Henriques G, Gadalla NB, Beshir KB, Hasford C, et al.
590 Culture-adapted *Plasmodium falciparum* isolates from UK travellers: in vitro drug sensitivity,
591 clonality and drug resistance markers. *Malar J*. 2013;12:320.

592 17. Robinson A, Busula AO, Muwanguzi JK, Powers SJ, Masiga DK, Bousema T, et al.
593 Molecular quantification of Plasmodium parasite density from the blood retained in used
594 RDTs. *Sci Rep.* 2019;9(1):5107.

595 18. Beshir KB, Hallett RL, Eziefula AC, Bailey R, Watson J, Wright SG, et al. Measuring
596 the efficacy of anti-malarial drugs in vivo: quantitative PCR measurement of parasite
597 clearance. *Malar J.* 2010;9:312.

598 19. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE
599 guidelines: minimum information for publication of quantitative real-time PCR experiments.
600 *Clin Chem.* 2009;55(4):611-22.

601 20. Beshir KB, Diallo N, Sutherland CJ. Identifying Recrudescence Plasmodium falciparum
602 in Treated Malaria Patients by Real-time PCR and High Resolution Melt Analysis of Genetic
603 Diversity. *Scientific Reports.* 2018;8(1):10097.

604 21. Forootan A, Sjoberg R, Bjorkman J, Sjogreen B, Linz L, Kubista M. Methods to
605 determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR).
606 *Biomol Detect Quantif.* 2017;12:1-6.

607 22. Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Use of
608 PfHRP2-only RDTs rapidly select for PfHRP2-negative parasites with serious implications for
609 malaria case management and control. *J Infect Dis.* 2017.

610 23. Berhane A MS, Mohammed S, Embaye G HF, Zehaie A, Chinorumba A CJ. Pfhrp2
611 detecting malaria rdt: Alarming false negative results in eritrea. In: Program and Absracts
612 of the 65th Conference on American Soceity for Tropical Medicine and Hygiene, Atlanta.
613 2016;879.

614 24. Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for
615 pfhrp2- and pfhrp3-negative Plasmodium falciparum. *Malar J.* 2018;17(1):137.

616 25. Parr JB, Verity R, Doctor SM, Janko M, Carey-Ewend K, Turman BJ, et al. Pfhrp2-
617 Deleted Plasmodium falciparum Parasites in the Democratic Republic of the Congo: A
618 National Cross-sectional Survey. *J Infect Dis.* 2016.

619 26. Kumar N, Pande V, Bhatt RM, Shah NK, Mishra N, Srivastava B, et al. Genetic
620 deletion of HRP2 and HRP3 in Indian Plasmodium falciparum population and false negative
621 malaria rapid diagnostic test. *Acta Trop.* 2013;125(1):119-21.

622 27. Kreidenweiss A, Trauner F, Rodi M, Koehne E, Held J, Wyndorps L, et al. Monitoring
623 the threatened utility of malaria rapid diagnostic tests by novel high-throughput detection of
624 Plasmodium falciparum hrp2 and hrp3 deletions: A cross-sectional, diagnostic accuracy
625 study. *EBioMedicine.* 2019;50:14-22.

626 28. Girma S, Cheaveau J, Mohon AN, Marasinghe D, Legese R, Balasingam N, et al.
627 Prevalence and Epidemiological Characteristics of Asymptomatic Malaria Based on
628 Ultrasensitive Diagnostics: A Cross-sectional Study. *Clin Infect Dis.* 2019;69(6):1003-10.

629 29. Thomson R, Beshir KB, Cunningham J, Baiden F, Bharmal J, Bruxvoort KJ, et al.
630 pfhrp2 and pfhrp3 gene deletions that affect malaria rapid diagnostic tests for Plasmodium
631 falciparum: analysis of archived blood samples from three African countries. *J Infect Dis.*
632 2019.

633 30. Mussa A, Talib M, Mohamed Z, Hajissa K. Genetic diversity of Plasmodium
634 falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-
635 based rapid diagnostic tests. *BMC Res Notes.* 2019;12(1):334.

636 31. Schindler T, Deal AC, Fink M, Guirou E, Moser KA, Mwakasungula SM, et al. A
637 multiplex qPCR approach for detection of pfhrp2 and pfhrp3 gene deletions in multiple strain
638 infections of Plasmodium falciparum. *Sci Rep.* 2019;9(1):13107.

639 32. WHO. Malaria Threats Map: visualizing biological challenges to malaria control and
640 elimination <https://www.who.int/malaria/maps/threats-about/en/> Accessed on 31 January
641 2020. 2020.

642 33. WHO. Response plan to pfhrp2 gene deletions.
643 <https://apps.who.int/iris/bitstream/handle/10665/325528/WHO-CDS-GMP-2019.02-eng.pdf>.
644 Accessed on 31 January, 2019. 2019.