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Abstract

Background: Single cell technologies are transforming biomedical research, including the recent
demonstration that unspliced pre-mRNA present in single cell RNA-Seq permits prediction of
future expression states. Here we applied this ‘RNA velocity concept’ to an extended timecourse
dataset covering mouse gastrulation and early organogenesis. Results: Intriguingly, RNA velocity
correctly identified epiblast cells as the starting point, but several trajectory predictions at later
stages were inconsistent with both real time ordering and existing knowledge. The most striking
discrepancy concerned red blood cell maturation, with velocity-inferred trajectories opposing the
true differentiation path. Investigating the underlying causes revealed a group of genes with a
coordinated step-change in transcription, thus violating the assumptions behind current velocity
analysis suites, which do not accommodate time-dependent changes in expression dynamics.
Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator
Gatal, we show that genes with the step-changes in expression dynamics during erythroid
differentiation fail to be up-regulated in the mutant cells, thus underscoring the coordination of
modulating transcription rate along a differentiation trajectory. In addition to the expected block
in erythroid maturation, the Gatal™ chimera dataset revealed induction of PU.1 and expansion of
megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly
characterized by a coordinated step-change in gene expression. Conclusions: By identifying a
limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we
reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely

implications for many other differentiation processes.

(247 words)
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Background

Cellular differentiation into diverse cell types underpins all metazoan development. Moreover,
cellular differentiation processes are also crucial for stem cell-mediated tissue maintenance, and
their perturbation has been implicated in ageing-associated regenerative failure as well as
malignant transformation (1, 2). Since cellular differentiation decisions are made at the level of
individual cells, elucidation of the underlying molecular mechanisms requires the use of single
cell approaches. It is no surprise therefore that recent innovations in single cell molecular
profiling technologies have been embraced rapidly by developmental and stem cell biologists,
with complete single cell gene expression maps now available for developing embryos of several
model organisms (3-5, reviewed in 6), as well as large-scale datasets covering adult tissue

homeostasis (7-9).

Comprehensive molecular profiling necessarily entails the generation of snapshot data, because
cells need to be fixed to examine their molecular content. This in turn represents a major
drawback for the study of differentiation processes, which commonly occur over extended
timeframes via complex trajectories underpinned by intricate decision-making processes. Much

excitement was therefore generated by a recent seminal study (10), which demonstrated that
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unspliced pre-mRNA present in scRNA-Seq datasets can be exploited to predict likely future
expression states. This so-called RNA velocity concept is based on the notion that the ratio
between unspliced and spliced RNA differs depending on whether a gene is in the process of
being up- or downregulated. During upregulation, there is a relative increase in newly transcribed
unspliced RNA, with the converse occurring during downregulation. The RNA velocity framework
has rapidly gained traction across the wider single cell community, being applied across multiple
experimental systems (11-13), and also extended as part of the scVelo analysis suite (14), which

allows inclusion of genes whose transcript levels are not in steady state.

One system where the RNA velocity concept has particular potential is erythropoiesis, the
process whereby oxygen-transporting red blood cells are generated from multipotent
haematopoietic progenitors. Research into the transcriptional control processes of
erythropoiesis led to several paradigmatic discoveries, including the dissection of distal
transcriptional control elements (15-17), as well as antagonistic transcription factor pairings as
executors of lineage choice in multipotent progenitors (18). During embryogenesis, a first so-
called primitive wave of erythropoiesis occurs in the yolk sac, followed by a second definitive
wave, initiated also in the yolk sac, then predominantly in the fetal liver and later in the adult
bone marrow (19). The zinc finger protein Gatal represents the archetypal erythroid
transcription factor, and is required for the maturation of both primitive and definitive erythroid
cells (20-23), as well as megakaryocyte maturation (24). However, the precise molecular
processes affected by Gatal deletion in early embryonic erythropoiesis have remained obscure,
principally because conventional biochemical methods are unsuitable for the very small number

of cells present at these early developmental stages.
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87  Here, we have applied RNA velocity to a recently published scRNA-Seq dataset of nine sequential
88  timepoints, spaced 6 hours apart, which encompass mouse gastrulation and early organogenesis
89  (25). We observed that some of the inferred trajectories are incompatible with the existing
90 biological knowledge, as well as with the real time ordering derived from the sequential sampling
91 timepoints. For erythroid differentiation in particular, we show that failure of the velocity
92  framework is due to a concerted increase in transcription rate of a subset of erythroid genes,
93  midway through the red blood cell maturation trajectory. Analysis of Gatal chimeric embryos
94  underscores the concerted nature of this expression boost, consistent with the notion that such

95  concerted upregulation events may be a feature of stabilizing a given differentiated cellular state.

96

97

98  Results

99 Limitations of RNA velocity trajectory inference at organismal scale

100 To evaluate RNA velocity-based trajectory inference with a complex dataset, we applied the
101  scVelo analysis pipeline (14) to a recently reported timecourse scRNA-Seq dataset covering
102 mouse gastrulation and early organogenesis. This mouse gastrulation atlas contains
103  approximately 120,000 single cell transcriptomes across nine sequential timepoints covering 37
104  major cell types (25). Prior to scVelo analysis, we removed extraembryonic ectoderm and
105  extraembryonic endoderm cells, as they derive from early lineage branching events that are not
106  covered in this dataset. We first applied scVelo to the normalised and batch corrected count

107  matrix across all embryonic stages (Figure 1A). We observed that scVelo correctly identifies the
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108  epiblast population as the origin of the global differentiation processes that occur during
109  gastrulation and early organogenesis. In relation to the more differentiated cell types however,
110  there were several instances where scVelo had difficulty in capturing some of the highly complex
111 differentiation events that occur across the entire embryo. For instance, scVelo predicted that
112  E8.0 allantois and mesenchyme cell-types give rise to mesodermal cells from earlier timepoints
113 ratherthanthe E8.25/E8.5 allantoic and mesenchymal cells. Another inconsistency occurred with
114  E8.0-E8.25 endoderm cells, which were predicted to give rise to E6.5-E7 visceral endoderm,
115 rather than the other way round. Most noteworthy, scVelo failed to recapitulate the
116  erythropoiesis branch, where it predicts a backwards differentiation from later to earlier
117  populations. We next repeated this analysis using data from each individual time-point (Figure
118  1B;shown are E7.5 and E8.5). We saw that the pipeline accurately recapitulates known biological
119  trajectories up to E7.5, but observed the same inconsistency from E7.75 to E8.5, with scVelo

120  arrows pointing backwards.

121  Taken together therefore, we have identified that for erythroid development, the output of
122 scVelois inconsistent with the timecourse information gathered from the experimental design of

123 the gastrulation atlas.

124

125  Unspliced sequence reads help to discriminate between cell types

126  We next asked whether this issue is due to a general lack of biologically meaningful information

127  captured in the unspliced reads.
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128 To this end, we exploited two variance-based dimensionality reduction methods, Principal
129  Component Analysis (PCA) and Multi-Omics Factor Analysis (MOFA; 26), to interrogate how much
130 inter-population variability is explained by the spliced and unspliced information layers, whether
131  considered separately or together. Upon comparing PC1 and PC2 (or MOFA Factors 1 and 2), in
132  addition to the expected lineage separation obtained using the spliced reads (Figure 2A, left
133 panel), we could also observe a degree of lineage separation when using the unspliced reads
134  alone (Figure 2A, middle panel). In addition, we saw a qualitatively improved separation of the
135  different lineages when spliced and unspliced information is used in combination (Figure 2A, right
136  panel; see Supplementary Figure 1 for further components/factors). Moreover, the MOFA factors
137  account for 16% of variation in the spliced data and 4% of the of variation in unspliced data
138  (Figure 2Bi). Interestingly, a closer look at the MOFA pre-processing and final outcome showed a
139  minor overlap of genes that are highly variable with respect to spliced or unspliced counts (Figure

140  2Bii) and a different weight contributed by the two layers to the final factors (Figure 2Biii).

141  Multiomics factor analysis therefore not only demonstrates that the unspliced reads in the
142  gastrulation atlas dataset contain biologically relevant information, but also suggests that
143  integrated analysis of spliced and unspliced reads may more broadly facilitate the interpretation

144  of complex scRNA-Seq datasets.

145

146  Analysis of unspliced reads reveals complex expression kinetics

147  Having confirmed the utility of unspliced reads, we next explored whether the inability to recover

148  real-time progression in whole embryo trajectory inference using scVelo might be related to the
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149  assumptions made by the current RNA velocity analysis tools. The derivation of gene-specific
150  expression kinetics underpins the scVelo analysis pipeline, as illustrated by so-called phase plots
151  that depict the amounts of spliced versus unspliced reads within a population of cells (14). If a
152  gene is upregulated during a differentiation timecourse, cells will be placed above the diagonal
153  between no expression and maximum expression due to the relatively larger amount of newly
154  produced pre-mRNA during the gene induction process, while the converse is true for
155  downregulated genes (Figure 3A). Both of these scenarios are readily captured by scVelo, with
156  the predicted vectors of differentiation agreeing with the actual temporal progression. If a given
157  gene however experiences an increase in transcription rate midway through a differentiation
158  timecourse, the sudden increase in unspliced pre-mRNA will result in a phase plot that may be
159  wrongly classified by scVelo, with predicted vectors of differentiation diametrically opposed to
160  thetrue direction of differentiation (Figure 3A). This is indeed what we observed when inspecting
161  the phase plots of the scVelo driver genes (top-likelyhood genes, Supplementary Table 1), which
162  display a steep increase of unspliced counts in the Erythroid 3 population, leading to a reverse
163  velocity prediction, progressing from Erythroid 3 to earlier populations (Supplementary Figure

164 2A).

165 We next set out to identify all genes exhibiting this rapid increase in expression levels in the
166  Erythroid 3 population (Figure 3B). After fitting a linear regression through each population and
167 each gene and testing whether the inferred slopes reflected the expected order based on
168  biological knowledge, we found 89 such genes, which we termed Multiple Rate Kinetics or MURK
169  genes. These genes included Smim1, coding for the Vel Blood Group Antigen (27), and Hba-x,

170  where we could confirm an increase in expression kinetics using phase plots (Figure 3C).
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171  Having identified a set of genes with a coordinated increase in expression rate midway through
172  erythropoiesis, we next asked what function these genes might play in the broader
173  transcriptional program of red blood cell maturation. Visual inspection of the gene list revealed
174 it to contain archetypal red blood cell genes including the globin genes Hba-x, Hbb-al, Hba-a2,
175  Hbb-bt, Hbb-bhl, Hbb-y (Supplementary table 2). Unsupervised gene ontology analysis
176  confirmed that biological functions essential for red blood cells were highly enriched, including

177  “gastransport” and “heme biosynthetic process” (Figure 3D).

178  We next removed this set of MURK genes and recalculated the RNA velocity inferred trajectories.
179  As can be seen in Figure 3E, inferred vectors of differentiation are now in good agreement with

180  the real time progression of erythropoiesis

181 The scVelo suite also calculates a so-called latent time, which represents the pseudotime
182  ordering hidden in the spliced and unspliced dynamics, and is more powerful than previously
183  described pseudotime inferring approaches since it incorporates both the gene dynamics and the
184  spliced and unspliced information (14). Using the full gene set, the latent time calculation for the
185  erythroid lineage is contrary to the know progression of erythroid differentiation (Figure 3E left
186  panels, Supplementary Figure 2B, left panels). By contrast, removing the MURK genes results in
187  alatent time prediction that is not only consistent with the major axis of erythropoiesis, but also
188 identifies the two sequential inputs described previously (25), namely an early wave directly from
189  posterior mesoderm as well as a second wave coming from yolk sac hemogenic endothelium (see

190  Figure 3E, Supplementary Figure 2B, right panels).
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191  Taken together therefore, this analysis shows that inconsistent RNA velocity-inferred trajectories

192  can be remedied by the removal of genes with complex expression kinetics.

193

194  Erythroid Multiple Rate Kinetics genes are essential for red blood cell function

195 To corroborate upregulation of our identified MURK genes during erythropoiesis, we
196  interrogated a previously published dataset with transcriptomic analysis of a loss of function
197  model for the erythropoiesis master-regulator Gatal (28). In vitro differentiation of Gatal knock-
198  out embryonic stem cells over-expressing human BCL2 can produce permanently self-renewing
199  immature erythroid progenitor cell lines. One such model, G1ER, contains a tamoxifen-inducible
200 Gatal transgene, the activation of which triggers erythroid maturation (29, 30; Figure 4A).
201  Microarray-based differential gene expression was performed, comparing the uninduced and
202  induced conditions (28). 76 of our 89 MURK genes overlapped with the genes identified by this
203  microarray-based comparison. Of those, 64 were upregulated, of which 55 showed strong
204  upregulation, 4 were downregulated, and 8 showed no change in expression following induction
205 of Gatal in the G1ER system, demonstrating a highly significant overlap of our identified MURK

206  genes with the G1ER-induced genes (p < 10'2%; see Figure 4B).

207  Our newly identified erythropoietic MURK genes therefore perform key roles in red blood cell
208  function, and their upregulation was validated in an independent model of red blood cell

209 maturation.

210

10
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211  scRNA-Seq of mouse chimeras reveals the early cellular defects in Gatal loss of function

212 The GI1ER cell line represents an in vitro model, and the published differential gene expression
213  data were from bulk microarray profiling, thus precluding any analysis of single-cell gene
214  expression kinetics. We therefore turned to our recently reported Chimaera-Seq approach,
215  whereby scRNA-Seq is coupled with mouse chimeric embryo technology, to define both cellular
216  and molecular consequences of gene knock-outs in vivo (25, 31). We used our standard
217  embryonic stem cells (ESCs) expressing a constitutive tdTomato (tdTom) fluorescent marker gene
218  to generate a Gatal knock-out line (see Methods). Gatal tdTom* cells were injected into tdTom"
219  wild-type blastocyst and transferred into pseudo-pregnant females, resulting in chimeric
220 embryos that we harvested at E8.5. Six chimeric embryos were pooled, dissociated into a single-
221 cell suspension, and tdTom* and tdTom™ cell fractions were sorted for scRNA sequencing. We
222  obtained 8420 tdTom™ and 7944 tdTom* cells passing quality control and assigned to a cell type,

223 with an average of 4354 genes being detected per cell.

224  We then concatenated the chimera data with the Pijuan-Sala et al. (2019) reference dataset and
225 mapped nearest neighbors (see Methods). We observed an overall homogeneous distribution of
226  both mutant and wild-type fractions throughout the later time-points of the landscape, except
227  forthe erythroid branch. Indeed, we observed a block in the erythroid lineage of the mutant cells,
228  which were over-represented in the start of the erythroid differentiation branch, while their wild-
229  type counterparts were present throughout erythroid differentiation (Supplementary Figure 3).
230 Identification of the nearest neighbours of chimeric cells within the reference dataset allowed
231 their quick cell-type annotation, which we used to quantify the differences in the hemato-

232 endothelial cell-type representation within the chimera fractions. This analysis confirmed a

11
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233 severe erythroid differentiation defect of the mutant cells (Figure 4C-E). When examining the
234  reference dataset sampled-time point of the chimera nearest neighbours we also observed a
235  temporal shift within the erythroid lineage, with tdTom* mutant cells mapping to earlier time-
236  points than their wildtype tdTom™ counterparts, further confirming a developmental block of the
237  mutant cells (Figure 4D, E). In addition, we observed that this erythroid defect was coupled with

238  an over-representation of cells with a megakaryocyte signature (Figure 4C).

239  The newly generated Gatal Chimaera-Seq data therefore not only recapitulated the expected
240  block in erythroid maturation, but also revealed an expansion of the megakaryocytic lineage in

241  the E8.5 yolk sac.

242

243  The molecular program affected by Gatal loss in early embryos

244  Although the role of Gatal is well documented in developmental erythropoiesis (21, 23), the early
245  molecular defects of Gatal loss of function in vivo had not been reported. The Gatal Chimaera-
246 Seq dataset therefore presented an opportunity to dissect the early molecular program
247  controlled by Gatal in vivo. Having registered a defect in erythroid differentiation and an increase
248 in the megakaryocytic lineage population, we performed differential gene expression testing

249  between the chimera mutant and wild-type cells in these clusters (Supplementary Table 3).

250 Regarding the megakaryocytic subset, we observed upregulation of progenitor markers Kit,
251  Gata2 and Myb in the Gatal cells as well as lower expression of maturation genes for the
252  megakaryocyte lineage Gp5, Pf4, Mpl and Plek (Figure 5A). Hyper-proliferative megakaryocyte
253  progenitors, detected previously in Gatal E12.5 fetal livers, led to compromised platelet

12
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254  function, and were suggested to originate in the yolk sac (32). Our results showing over-
255  production of megakaryocytic cells with impaired maturation characteristics in E8.5 Gatal
256  chimera yolk sacs support this notion, and importantly place the megakaryocytic defect within

257  the very early phase of megakaryocyte formation.

258 Interestingly, all hemato-endothelial cell subsets displayed up-regulation of Spil (coding for the
259  PU.1 transcription factor) in the Gatal cell fraction compared to wild-type counterpart (FDR <
260  0.01; Figure 5A). Given the previously reported Gatal-PU.1 cross-repression in adult bone
261  marrow (18) and in zebrafish embryonic hematopoiesis (33), we systematically assessed the
262  effect of Gatal knockout in the mouse chimera lineages and observed that in Gatal cells, Spil
263 was specifically up-regulated in all hematopoietic sub-clusters, with a stronger effect on Mk and

264  Eryl subsets. (Supplementary Figure 3).

265 In the early erythroid subset, Eryl, we again noted that the mutant cells displayed increased
266  expression of genes characteristic of a progenitor signature. Conversely, erythroid maturation
267  hallmark genes such as Hbb-bs and Gypa were downregulated, along with the erythroid Gatal
268  target MIIt3 (34; Figure 5A). GO-term enrichment analysis of genes downregulated in Gatal Eryl
269  cells revealed biological processes essential to red blood cell function (Figure 5B). Furthermore,
270  we also observed that 48% of the MURK genes identified in Figure 3 overlapped with these genes

271  that fail to up-regulate in Gatal erythroid cells (Figure 5C; p < 1024).

272 In addition to the failure of inducing genes associated with erythroid maturation, single cell
273 resolution molecular analysis also revealed a striking failure to downregulate genes associated

274  with alternative lineage programs such as Pu.1, consistent with the notion that the earliest wave

13
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275  of primitive hematopoiesis produces erythroid cells, megakaryocytes and macrophages, with

276  evidence for at least bipotential progenitor cells (35).

277

278  The late erythroid increase in expression rate is downstream of Gatal function

279  Having generated the Chimaera-Seq single cell data for both wildtype and Gatal knock-out cells,
280  we next used the ratio of spliced/unspliced reads to explore differences in expression kinetics
281  between the wildtype and mutant cells. As can be seen in Figure 5D, the previously defined MURK
282  genes failed to display the increased rate of expression characteristic for the later stages of
283  erythropoiesis in the mutant cells. The examples shown include the embryonic globin gene Hbb-
284  y, as well as the Fam210b gene, coding for a putative mitochondrial protein recently implicated
285 in erythroid differentiation (36; Figure 5D). This result confirms that the erythroid boost in
286  expression forms part of the transcriptional program downstream of Gatal function, although it

287  does not demonstrate a direct regulatory role for Gatal.

288  However, preliminary modelling analysis suggests that the change observed in MURK gene
289  dynamics is due to altered transcription rates (see Supplementary Note), indicating a close
290  association of the coordinated late erythroid increase in transcription rate with the molecular

291  program downstream of Gatal.

292

293 A coordinated increase of expression rate during human fetal liver erythropoiesis

14


https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423773; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

294  Having identified a coordinated increase in transcription rate during mouse vyolk sac
295  erythropoiesis, we next wanted to ascertain whether the same phenomenon could also be seen
296  in human cells. Moreover, we were keen to explore an scRNA-Seq dataset generated by a
297  different laboratory, to exclude any potential technical bias caused by our own experimental
298  protocols. We therefore turned to a recently published comprehensive dataset of human fetal
299 liver erythropoiesis (37), and extracted the 49,388 cells annotated to the four clusters
300 encompassing human fetal liver erythropoiesis. When calculating scVelo-based differentiation
301 vectors as well as latent time using the full gene set (see methods), both were reversed (Figure
302 6A, left plots), consistent with the mouse yolk sac results. We therefore again ran our pipeline to
303 discover genes with a potential increase in expression rate along the differentiation pathway.
304 The resulting 97 genes again contained archetypal erythroid genes such as the haemoglobin
305 genes (Figure 6B), with overall gene ontologies demonstrating a functional role in erythropoiesis
306  (Figure 6C, see also Supplementary Table 4). We then recalculated both the scVelo differentiation
307 vectors as well as latent time after removing the fetal liver MURK genes. This revealed scVelo
308 vectors that were consistent with the expected developmental progression (see Figure 6A, right
309 plots). This analysis therefore demonstrates that complex expression kinetics apply broadly to
310  erythropoiesis, and their identification can be used to amend the RNA velocity framework to

311  prevent erroneous predictions.

312

313

314 Discussion
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315 There is no doubt that single cell molecular profiling constitutes a transformative technology. It
316  suffers however from the major drawback that cells need to be fixed in order to profile them,
317  with the consequence that measurements are by necessity static snapshots. To decipher complex
318  biological processes, however, temporal information is commonly required. The single cell RNA
319  velocity concept raised the prospect of overcoming some of the limitations associated with static
320 measurements, by providing a strategy that can infer future cellular states. The RNA velocity
321  framework is based on an explicit model of transcriptional processes (transcription, splicing,
322  degradation). The notion that physical parameters of gene expression can be deduced from single
323  cell gene expression data had been explored before the single cell RNA velocity concept was
324  introduced (38, 39). However, the scVelo implementation provided an attractive framework for
325 estimating gene-specific expression parameters by taking advantage of the spliced versus
326  unspliced read counts across large cell populations (14). Using erythropoiesis as an example, we
327 show here that this current framework needs to be adapted to accommodate more complex
328  expression kinetics. Importantly, our analysis revealed that sets of genes can show a coordinated
329 increase in transcription rate along a differentiation pathway. Moreover, deletion of the key
330 erythroid regulator Gatal abrogated this coordinated change in expression dynamics, thus
331 revealing this increase in transcription rate as an important feature of erythropoiesis. Of note,
332  current RNA velocity frameworks consider only a single reason for the presence of introns,
333  namely that a pre mRNA has not been fully processed. However, it is known that other processes
334  such as intron retention can result in the presence of intronic sequences in otherwise fully

335  processed cytoplasmic mRNA molecules (40, 41), thus suggesting that a more granular approach
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336 towards both the modelling and experimental analysis of spliced versus unspliced reads

337 represents a promising avenue for future research.

338  Application of the single cell RNA velocity concept has commonly been “confirmatory”, whereby
339  a differentiation path proposed by other means was shown to be consistent with RNA velocity
340 inference. When we applied the RNA velocity framework to the entire mouse gastrulation atlas,
341 some inferred vectors of differentiation agreed with our current understanding of developmental
342  biology, but others disagreed. Deeper interrogation of predictions that conflicted with our
343  current understanding of erythropoiesis showed that the RNA velocity predictions could not be
344  correct, not only because they ran counter to the known expression changes that accompany red
345 blood cell differentiation, but also because they contradicted the real-time sampling of the data.
346  Ourresults thus highlight certain limitations of the current implementation of this framework for
347 identification of novel trajectories. Importantly however, it is through our observation of the
348 inconsistent predictions that we were led to identify the previously unrecognized dynamic nature
349  of the transcriptional control of erythropoiesis. Moreover, it is plausible that coordinated
350 increases in transcription rate midway through a differentiation process may operate more
351  widely, as a powerful mechanism for stabilising a cell state. Our extension to the scVelo
352  implementation reveals the presence of such time-dependent changes of gene expression

353  parameters and retrieves the concerned MURK genes in developmental trajectories of interest.

354  Astothe precise mechanisms, at this stage we can only confidently assert that this process occurs
355 downstream of Gatal during erythropoiesis. Of note, comprehensive analysis of the G1ER
356  erythroid differentiation model has shown that Gatal-induced maturation triggers increased

357 enhancer/promoter interactions for upregulated genes, and that the most highly enriched motif
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358 inthe promoters of these genes are GATA sites (42). These observations are therefore consistent
359  with the lineage-determining function of Gatal involving a coordinated increase in expression

360  kinetics of a set of genes important for red blood cell function.

361  Our observations regarding the Gatal knock-out phenotype also warrant some discussion. With
362  embryonically lethal phenotypes such as Gatal knock-out, conventional analysis tends to be
363 somewhat limited, since the embryos are dead because they have no red blood cells. By contrast,
364 the Chimaera-Seq assay enables both quantification of cell numbers as well as characterisation
365 of their molecular profiles. Moreover, there are no secondary effects caused by the dying
366 embryo, because the wildtype host cells rescue overall fetal development, thus allowing a
367 focussed analysis of cell-intrinsic molecular defects. One noteworthy observation from our data
368 isthat erythroid differentiation proceeds substantially beyond the stage where Gatal expression
369 itself is first initiated, but fails to proceed to the late erythroid phase where expression of
370  canonical red blood cell genes is greatly upregulated. However, gene expression prior to the
371  differentiation block is not normal. In particular, we observed increased Spil/Pu.l in the Gatal
372  knock-out cells, consistent with the previously reported (18) but also disputed (43) antagonistic

373  relationship between Gatal and Pu.1.

374  Within haematopoiesis, Pu.l is recognised as a key regulator of myeloid and T-cell lineages, but
375 noterythroid cells, even though a role in the proliferation of immature erythroid progenitors has
376  been reported (44, reviewed in 45). Upregulation of Pu.1 in our immature Gatal knock-out cells
377 therefore suggests that these cells of the primitive haematopoietic lineage represent progenitors
378  with multilineage potential, rather than being restricted to just the red cell lineage. Further

379  evidence for this notion is provided by our observation that the reduction in erythroid cells in the
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380 @Gatal knock-out is accompanied by an increase in megakaryocyte progenitors, consistent with a
381 model whereby Gatal levels influence the lineage choice decisions of a multipotent progenitor
382  cell. Live cell tracking studies have suggested that the primary role of Gatal and Pu.1 may be fate
383  stabilization rather than fate choice (43). The increase in transcription rate of erythroid genes
384  downstream of Gatal would cohere with stabilizing the erythroid fate, thus suggesting that our

385 results are consistent with roles in both fate choice and fate stabilization.

386  Our observation of an expanded pool of megakaryocyte progenitors may also be of direct
387 relevance to our understanding of the pre-leukaemic transient myeloproliferative disease (TMD)
388 thatis prevalent in newborns with trisomy 21 (46). TMD is thought to arise when a fetal specific
389  haematopoietic progenitor cell with trisomy 21 acquires a partial loss of function mutation in
390 GATAI, resulting in a short form of GATA1 (GATA1s). TMD is characterized by expansion of
391  immature megakaryocyte progenitors, and in 10 to 20% of cases transforms into malignant acute
392 megakaryoblastic leukaemia (reviewed in 47). Over-expression of GATAls in mouse models
393  resulted in the identification of mid-gestation fetal liver megakaryocyte progenitors as uniquely
394  sensitive to this mutant GATAls form compared to their adult bone marrow counterparts (48).
395 The over-represented population of immature megakaryocytic progenitors in our E8.5 Gatal
396  chimeras may correspond to the developmental emergence of this transient precursor, TMD-

397 initiating cell, in the yolk sac.

398

399

400 Conclusions
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401 Taken together, this study reports how the RNA velocity framework can be extended to delve
402 into the transcriptional mechanisms of tissue differentiation, complemented with single cell
403  resolution and in vivo analysis of Gatal function, which revealed a number of previously unknown

404  facets of this canonical regulator of red blood cell development.

405

406

407 Methods

408 scVelo implementation

409 Mouse atlas dataset. To obtain separated count matrices for spliced and unspliced mRNAs, we
410 ran velocyto 0.17.17 (10) on the .bam files from the mouse atlas in Pijuan-Sala et al. 2019 (25;
411  GEO accession number: GSE87038). We kept all cells that passed the QC as described in the
412  original publication, but filtered out from downstream analysis the extraembryonic tissues: ExE
413  endoderm, ExE ectoderm and Parietal endoderm as well as samples with no timepoint allocation
414  (labelled as ‘mixed gastrulation’). To select highly variable genes (HVGs) we applied both the
415  scanpy v1.5.1 and the scVelo v0.2.1 (14) pipelines. That is, we removed genes with less than 20
416  shared counts between spliced and unspliced counts, before normalising and log transforming
417  the remaining genes. Then, we selected the top 2500 HVGs from each approach (resulting in a
418  total of 4000, with 1000 overlapping genes) for further calculation of moments; while performing
419  imputation using the top 30 nearest neighbours from the graph connectivities generated with
420 the original UMAP coordinates from Pijuan-Sala et al. 2019. The velocity vectors were computed
421  in dynamical mode rather than steady state.

20


https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423773; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

422  Human dataset. We first downloaded raw reads from Popescu et al., 2019 (37; GEO accession
423  number: GSE127980), and aligned them against the human genome hg19-3.0.0 with CellRanger
424 v3.0.2 to generate the .bam files and obtain separated count matrices for spliced and unspliced
425  mRNAs as described above. We filtered out cells with less than 3,550 counts, less than 900 genes
426  and more than 6% mitochondrial counts. Again, we combined scapy and scVelo’s pipelines to
427  select 1,500 HVGs to compute PCA coordinates and applied batch correction using the function
428  reducedMNN from the batchelor package v1.4.0 (49), followed by the estimation of velocity

429  vectors in the same way it was done for the mouse dataset.

430

431  MOFA+ implementation

432  We ran MOFA+ v1.4.0 (26) using as input the two single cell experiment objects obtained from
433  the spliced and unspliced counts independently. Each object was created in R using the scran
434  v1.16.0(50) library as follows: we started from the raw counts, normalized them with factor sizes
435  obtained after pre-clustering, log transformed and reduced to 5000 HVG. We then switched to
436  Python v3.7.4, where we regressed out the sample effect and scaled the object to generate a
437  MOFA+ model with standard parameters. Finally, we used reducedMNN to correct the MOFA
438  Factors for batch effects. The same objects used as MOFA input were used for PCA calculation in

439  Figure 2A.

440

441  MURK genes identification
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442  To identify MURK genes, we considered the imputed counts resulting from the scVelo standard
443  pipeline. Then, for each gene and each population among the Erythroid lineage, we calculated
444  the unspliced versus spliced slope with a linear regression, as well as the standard error on the
445  slope. In the mouse dataset we selected all genes for which the slope in Erythroid3 is significantly
446  higher than the slope in Erythoid2 (according to a one-sided t-test p-value < 0.05), the average
447  spliced counts in Erythroid3 is higher than the average spliced counts in every other population,

448  and the slope in Erythroid3 positive. We found 89 genes that respect all these criteria.

449 In the human dataset, in order to obtain erythroid populations more comparable to our mouse
450 data, we re-clustered the erythroid clusters (Figure 6A). We retained the population annotations
451  from the original paper except for the Late Erythroid population, which we defined after
452  performing Leiden clustering on the Umap coordinates. Specifically, we re-allocated a subset of
453  the previously annotated Mid Erythroid population to Late Erythroid, in such a way that they
454  have a similar numbers of cells. We then calculated the unspliced versus spliced slope with linear
455  regression and identified MURK genes where the slope in Late Erythroid is significantly higher

456  than the slope in Mid Erythroid. We found 97 genes respecting these criteria.

457

458  Gene ontology enrichment analysis

459  We performed gene ontology enrichment analysis using the http://geneontology.org website
460 comparing the MURK genes against all biological processes, with the default all Mus musculus

461  genes in database as background set (51, 52). We ranked the processes by FDR.

462

22


https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423773; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

463  Overlap testing

464  Overlap was tested with Fisher exact test. We calculated the probability of having m = 55 genes
465  of our n =89 MURK genes mapping to the A = 1022 high response genes (out of N = 4195 genes)
466 in the Wu et al.,, 2011 publication (GEO accession number: GSE30142) as the probability of
467  randomly picking m elements of a specific type when randomly choosing n elements out of N,

468  where the frequency of the special type is A/N.

469

470  Gatal chimera dataset generation and analysis

471  Embryo collection. All procedures were performed in strict accordance to the UK Home Office
472  regulations for animal research under the project license number PPL 70/8406. Chimaera
473  generation. TdTomato-expressing mouse embryonic stem cells (ESC) were derived as previously
474  described (25). Briefly, ESC lines were derived from E3.5 blastocysts obtained by crossing a male
475 ROSA26tdTomato (Jax Labs — 007905) with a wildtype C57BL/6 female, expanded under the
476  2i+LIF conditions (53) and transiently transfected with a Cre-IRES-GFP plasmid (54) using
477  Lipofectamine 3000 Transfection Reagent (ThermoFisher Scientific, #.3000008) according to
478  manufacturer’s instructions. A tdTomato-positive, male, karyotypically normal line, competent
479  for chimaera generation as assessed using morula aggregation assay, was selected for targeting
480 Gatal. Two guides were designed using the http://crispr.mit.edu tool (guide 1:
481 CGGCTACTCCACTGTGGCGG; guide 2: CGCTTCTTGGGCCGGATGAG) and were cloned into the
482  pX458 plasmid (Addgene, #48138) as previously described (55). The obtained plasmids were then

483  used to transfect the cells and single transfected clones were expanded and assessed for Cas9-
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484  induced mutations. Genomic DNA was isolated by incubating cell pellets in 0.1 mg/ml of
485  Proteinase K (Sigma, #03115828001) in TE buffer at 50°C for 2 hours, followed by 5 min at 99°C.
486  The sequence flanking the guide-targeted sites was amplified from the genomic DNA by
487  polymerase chain reaction (PCR) in a Biometra T3000 Thermocycler (30 sec at 98°C ; 30 cycles of
488 10secat98°C, 20 sec at 58°C, 20 sec at 72°C; and elongation for 7 min at 72°C) using the Phusion
489  High-Fidelity DNA Polymerase (NEB, #M0530S) according to the manufacturer’s instructions.
490  Primers including Nextera overhangs were used (F-
491 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTACCCTGCCTCAACTGTG; R-
492  GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTTGTCTTGGGCAGGAACA), allowing library
493  preparation with the Nextera XT Kit (lllumina, #15052163), and sequencing was performed using
494  the lllumina MiSeq system according to manufacturer’s instructions. An ESC clone showing a 38
495  base-pair frameshift mutation in exon 4 resulting in the functional inactivation of Gatal were
496  selected for injection into C57BL/6 E3.5 blastocysts. A total of 6 chimaeric embryos were
497  harvested at E8.5, dissected, and single-cell suspensions were generated by TrypLE Express
498  dissociation reagent (Thermo Fisher Scientific) incubation for 7-10 minutes at 37°C under
499  agitation. Single-cell suspensions were sorted into tdTom+ and tdTom- samples using a BD Influx
500 sorter with DAPI at 1ug/ml (Sigma) as a viability stain for subsequent 10X scRNA-seq library
501 preparation (version 3 chemistry), and sequencing using an S1 flow cell in the lllumina Novaseq
502  platform, which resulted in 8420 tdTom™ and 7944 tdTom* cells that passed quality control (see

503  “Single-cell RNA sequencing analysis” below).

504  Single-cell RNA sequencing analysis. Raw files were processed with Cell Ranger 3.0.2 using

505 default mapping arguments. Reads were mapped to the mm10 genome and counted with

24


https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423773; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

506 GRCm38.92 annotation, including tdTomato sequence for chimera cells. Cell barcodes with
507 expression profiles significantly different to the ambient mRNA expression profile were identified
508 using emptyDrops (56), and cell barcodes with low complexity, i.e. low total mRNA counts and/or
509  high mitochondrial proportion, were identified by fitting four-component bivariate mixture
510 models to the logio-transformed total mMRNA counts and percentage of mitochondrial counts, and
511  selecting the components with high total mRNA and low mitochondrial percentage. Gene
512  expression normalization and doublet cell barcodes were identified using the approach taken by
513  Pijuan-Sala et al. (2019). Both spliced and unspliced count matrices were extracted using velocyto

514  0.17.17 (10).

515 Mapping to the reference dataset. We mapped the chimaera cells to the mouse atlas following
516  almost exactly the procedure used in the original publication article to map the Tall chimaera.
517  First, we concatenated the mouse atlas and chimaera counts (both previously controlled for
518 quality of the cells), normalized the resulting counts matrix with scran, computed HVGs and then
519  applied multiBatchPCA, and reducedMNN with cosine normalization from batchelor (49) for
520 batch effect correction within samples (where sample refers to a single lane of a 10x Chromium
521  chip) as well as between datasets in order to extract a number of nearest neighbours between

522  the mouse atlas and the chimaera using queryKNN from BiocNeighbors package v1.6.0.

523  Differential Gene Expression Analysis. For differential gene expression analysis, we took samples
524  that included at least 7 cells per tdTom status per cell population (eg. Erythroid3). We ran the
525  analysis in scanpy v1.5.1 (57) with Wilcoxon test and choosing 2 as fold change and 0.1 as false

526  discovery rate thresholds.
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704

705  Figure Legends

706  Figure 1. Inferring Differentiation Trajectories at organismal scale

707 A. Pijuan-Sala et al. (2019) layout containing single-cell transcriptomes belonging from E6.5
708 to E8.5, colored by sampled time-point (left) and by cell-type (right). The overlaying
709 arrows result from applying the scVelo pipeline to the whole embryonic dataset and
710 represent inferred developmental trajectories. Arrowheads highlight the erythroid
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711 branch, displaying scVelo trajectory predictions that are inconsistent with real-time
712 sampling.

713 B. Pijuan-Sala et al. (2019) layout highlighting single-cell transcriptomes belonging to E7.5
714 (left) and E8.5 (right) and colored by cell-type (see legend in A). The overlaying arrows
715 result from applying the scVelo pipeline to these individual time-points and represent
716 inferred developmental trajectories. Arrowheads highlight the erythroid branch.

717  Figure 2. Unspliced counts contribute to explaining the variability among cell types

718 A. Dimensionality reduction with the first two principal components/MOFA factors using
719 spliced reads alone (left), unspliced reads alone (middle) and both spliced and unspliced
720 (right). Single-cell transcriptomes are colored by cell-type annotation; see Figure 1 for full
721 legend.

722 B. MOFA characterization of spliced and unspliced reads assessing proportion of variance
723 explained (i), overlap in highly variable genes calculating using either spliced or unspliced
724 reads (ii), and factor weight distributions (iii).

725  Figure 3. A set of genes with complex expression kinetics confounds velocity estimation in

726  erythropoiesis

727 A. lllustration of phase plot representation in datasets of differentiating cell populations,
728 and associated scVelo predictions

729 B. [lllustration of strategy for MURK gene identification

730 C. Phase plots of representative MURK genes. X-axis: normalized imputed counts of spliced
731 transcript; y-axis: normalized imputed counts of unspliced transcript.
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732 D. GO-term enrichment of MURK genes identified in mouse yolk sac erythropoiesis

733 E. Zoomed-in UMAP of the erythroid branch (see Figure 1 for full UMAP) with scVelo
734 calculations, before and after removing MURK genes identified in B. Distinct waves of
735 embryonic erythropoiesis are visible upon MURK gene removal, highlighted with
736 arrowheads.

737  Figure 4. In vivo analysis of Gatal function using a chimaera assay coupled with scRNA-Seq

738 A. Schematic of the G1ER system (29, 30)

739 B. Behaviour of the 89 MURK genes identified in Figure 3 upon Gatal induction in the G1ER
740 system (28). Wu et al. report that upon Gatal induction they obtained a total of 2769
741 upregulated genes, 6079 mildly upregulated, 3566 downregulated, and 3445 with no
742 response.

743 C. UMAPS of Gatal chimera cells allocated a hemato-endothelial identity colored by cell-
744 type (sub-clusters defined in Pijuan-Sala et al. (2019) - BP: Blood Progenitors, EC:
745 Endothelial Cells, Haem: Hemato-endothelial Progenitors, Mk: Megakaryocytes, My:
746 Myeloid cells, Ery: Erythroid cells) and split by genotype. Orange arrowheads highlight
747 increased population with megakaryocytic signature in Gatal fraction.

748 D. UMAPS of Gatal chimera cells allocated a hemato-endothelial identity colored by
749 sampling timepoint and split by genotype.

750 E. Barplots with the quantification of chimera cells mapping to each hemato-endothelial
751 lineage of the reference dataset (left) and to sampled time-points of the reference dataset
752 (right).
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Figure 5. Gatal chimaera assay reveals disruption of MURK genes and perturbed yolk sac

hematopoiesis

A. Violin plots of representative genes differentially regulated in Gatal- hematopoietic
lineages.

B. GO-term enrichment of genes downregulated in Gatal Eryl cells compared to their WT
counterparts in chimeras.

C. Venndiagram showing overlap between MURK genes and genes downregulated in Gatal
Eryl cells

D. Phase plots of MURK genes identified along erythroid differentiation, in E8.5 Gatal

chimera datasets, colored by tdTom status.

Figure 6. Concept of dual kinetics of gene expression is also revealed in human foetal liver

hematopoiesis

A. UMAP representation of human fetal liver erythroid cell populations. The overlaying
arrows result from applying the scVelo pipeline using all genes (left) or after MURK gene
exclusion (right). Bottom UMAPs are colored by corresponding scVelo-inferred latent
time. In order to facilitate comparison with the mouse data, a new clustering was
performed on the erythroid cells, see Methods. MEMP: megakaryocyte-erythroid-mast
cell progenitor.

B. Phase plots of representative MURK genes identified in human fetal liver erythropoiesis

single-cell RNAseq dataset.
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774 C. GO-term enrichment of MURK genes identified in human fetal liver erythropoiesis.

775

776  Supplementary Figures

777 1. Dimensionality reduction with the first three principal components/MOFA factors using
778 spliced reads alone (left), unspliced reads alone (middle) and both spliced and unspliced
779 (right). Single-cell transcriptomes are colored by cell-type annotation; see Figure 1 for full
780 legend.

781 2. Identification of MURK genes along yolk sac erythropoiesis. A. Phase plots of
782 representative scVelo driver genes, with scVelo model prediction overlayed (see also
783 Supplementary Table 1). B. Distribution of annotated cell type (top) and sampling time-
784 point (bottom) along scVelo calculated latent time, using all genes (left panels) and after
785 removing the MURK genes identified in Figure 3B-C.

786 3. Pijuan-Sala et al. (2019) layout highlighting nearest neighbours of Gatal chimeras. In red
787 are nearest neighbours of tdTom+ mutant cells, in black those of tdTom- wildtype cells.
788 To compare with Figure 1A.

789 4. Impact of Gatal knockout on Spi1/PU.1 expression on the hematoendothelial cell types.
790 X-axis: Spil log(fold-change) in Gatal vs WT chimera cells and Atlas nearest neighbours.
791 Y-axis: logio(FDR).

792

793  Supplementary Tables
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1. Driver genes of the scVelo perdictions along erythroid differentiation, ranked by
likelihood in the dynamic model.

2. List of mouse MURK genes identified in Figure 3B-C, ranked by calculated increase in slope
value.

3. Differential Expression Analysis of Gatal tdTom* vs WT tdTom™ chimera cells. For the Mk
subset, given the low numbers of WT chimera cells present, the nearest neighbors from
the reference Atlas dataset were included in the comparison. LFC: log fold change.

4. List of human MURK genes identified in Figure 6, ranked by calculated increase in slope

value.
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