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Abstract 23 

Background: Single cell technologies are transforming biomedical research, including the recent 24 

demonstration  that unspliced pre‐mRNA present  in  single  cell  RNA‐Seq permits prediction of 25 

future expression states. Here we applied this ‘RNA velocity concept’ to an extended timecourse 26 

dataset covering mouse gastrulation and early organogenesis. Results: Intriguingly, RNA velocity 27 

correctly identified epiblast cells as the starting point, but several trajectory predictions at later 28 

stages were inconsistent with both real time ordering and existing knowledge. The most striking 29 

discrepancy concerned red blood cell maturation, with velocity‐inferred trajectories opposing the 30 

true differentiation path. Investigating the underlying causes revealed a group of genes with a 31 

coordinated step‐change in transcription, thus violating the assumptions behind current velocity 32 

analysis  suites, which do not accommodate  time‐dependent  changes  in expression dynamics. 33 

Using  scRNA‐Seq  analysis  of  chimeric  mouse  embryos  lacking  the  major  erythroid  regulator 34 

Gata1,  we  show  that  genes  with  the  step‐changes  in  expression  dynamics  during  erythroid 35 

differentiation fail to be up‐regulated in the mutant cells, thus underscoring the coordination of 36 

modulating transcription rate along a differentiation trajectory. In addition to the expected block 37 

in erythroid maturation, the Gata1‐ chimera dataset revealed induction of PU.1 and expansion of 38 

megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly 39 

characterized by a  coordinated  step‐change  in gene expression. Conclusions: By  identifying a 40 

limitation of  the current velocity  framework coupled with  in vivo analysis of mutant cells, we 41 

reveal a coordinated step‐change in gene expression kinetics during erythropoiesis, with likely 42 

implications for many other differentiation processes.  43 

(247 words) 44 
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 48 

Background 49 

Cellular differentiation into diverse cell types underpins all metazoan development. Moreover, 50 

cellular differentiation processes are also crucial for stem cell‐mediated tissue maintenance, and 51 

their  perturbation  has  been  implicated  in  ageing‐associated  regenerative  failure  as  well  as 52 

malignant transformation (1, 2). Since cellular differentiation decisions are made at the level of 53 

individual cells, elucidation of the underlying molecular mechanisms requires the use of single 54 

cell  approaches.  It  is  no  surprise  therefore  that  recent  innovations  in  single  cell  molecular 55 

profiling technologies have been embraced rapidly by developmental and stem cell biologists, 56 

with complete single cell gene expression maps now available for developing embryos of several 57 

model  organisms  (3‐5,  reviewed  in  6),  as  well  as  large‐scale  datasets  covering  adult  tissue 58 

homeostasis (7‐9).  59 

Comprehensive molecular profiling necessarily entails the generation of snapshot data, because 60 

cells  need  to  be  fixed  to  examine  their  molecular  content.  This  in  turn  represents  a  major 61 

drawback  for  the  study  of  differentiation  processes,  which  commonly  occur  over  extended 62 

timeframes via complex trajectories underpinned by intricate decision‐making processes. Much 63 

excitement was therefore generated by a recent seminal study (10), which demonstrated that 64 
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unspliced  pre‐mRNA  present  in  scRNA‐Seq  datasets  can  be  exploited  to  predict  likely  future 65 

expression  states.  This  so‐called  RNA  velocity  concept  is  based  on  the  notion  that  the  ratio 66 

between unspliced and spliced RNA differs depending on whether a gene  is  in  the process of 67 

being up‐ or downregulated. During upregulation, there is a relative increase in newly transcribed 68 

unspliced RNA, with the converse occurring during downregulation. The RNA velocity framework 69 

has rapidly gained traction across the wider single cell community, being applied across multiple 70 

experimental systems (11‐13), and also extended as part of the scVelo analysis suite (14), which 71 

allows inclusion of genes whose transcript levels are not in steady state. 72 

One  system  where  the  RNA  velocity  concept  has  particular  potential  is  erythropoiesis,  the 73 

process  whereby  oxygen‐transporting  red  blood  cells  are  generated  from  multipotent 74 

haematopoietic  progenitors.  Research  into  the  transcriptional  control  processes  of 75 

erythropoiesis  led  to  several  paradigmatic  discoveries,  including  the  dissection  of  distal 76 

transcriptional control elements (15‐17), as well as antagonistic transcription factor pairings as 77 

executors of  lineage choice  in multipotent progenitors  (18). During embryogenesis, a  first  so‐78 

called primitive wave of erythropoiesis occurs  in the yolk sac,  followed by a second definitive 79 

wave, initiated also in the yolk sac, then predominantly in the fetal liver and later in the adult 80 

bone  marrow  (19).  The  zinc  finger  protein  Gata1  represents  the  archetypal  erythroid 81 

transcription factor, and is required for the maturation of both primitive and definitive erythroid 82 

cells  (20‐23),  as  well  as  megakaryocyte  maturation  (24).  However,  the  precise  molecular 83 

processes affected by Gata1 deletion in early embryonic erythropoiesis have remained obscure, 84 

principally because conventional biochemical methods are unsuitable for the very small number 85 

of cells present at these early developmental stages.  86 
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Here, we have applied RNA velocity to a recently published scRNA‐Seq dataset of nine sequential 87 

timepoints, spaced 6 hours apart, which encompass mouse gastrulation and early organogenesis 88 

(25). We  observed  that  some  of  the  inferred  trajectories  are  incompatible  with  the  existing 89 

biological knowledge, as well as with the real time ordering derived from the sequential sampling 90 

timepoints.  For  erythroid  differentiation  in  particular,  we  show  that  failure  of  the  velocity 91 

framework is due to a concerted increase in transcription rate of a subset of erythroid genes, 92 

midway through the red blood cell maturation trajectory. Analysis of Gata1‐ chimeric embryos 93 

underscores the concerted nature of this expression boost, consistent with the notion that such 94 

concerted upregulation events may be a feature of stabilizing a given differentiated cellular state.  95 

 96 

 97 

Results 98 

Limitations of RNA velocity trajectory inference at organismal scale 99 

To  evaluate  RNA  velocity‐based  trajectory  inference with  a  complex  dataset, we  applied  the 100 

scVelo  analysis  pipeline  (14)  to  a  recently  reported  timecourse  scRNA‐Seq  dataset  covering 101 

mouse  gastrulation  and  early  organogenesis.  This  mouse  gastrulation  atlas  contains 102 

approximately 120,000 single cell transcriptomes across nine sequential timepoints covering 37 103 

major  cell  types  (25).  Prior  to  scVelo  analysis,  we  removed  extraembryonic  ectoderm  and 104 

extraembryonic endoderm cells, as they derive from early lineage branching events that are not 105 

covered  in  this dataset. We  first applied scVelo  to  the normalised and batch corrected count 106 

matrix across all embryonic stages (Figure 1A). We observed that scVelo correctly identifies the 107 
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epiblast  population  as  the  origin  of  the  global  differentiation  processes  that  occur  during 108 

gastrulation and early organogenesis. In relation to the more differentiated cell types however, 109 

there were several instances where scVelo had difficulty in capturing some of the highly complex 110 

differentiation events that occur across the entire embryo. For instance, scVelo predicted that 111 

E8.0 allantois and mesenchyme cell‐types give rise to mesodermal cells from earlier timepoints 112 

rather than the E8.25/E8.5 allantoic and mesenchymal cells. Another inconsistency occurred with 113 

E8.0‐E8.25  endoderm  cells,  which were  predicted  to  give  rise  to  E6.5‐E7  visceral  endoderm, 114 

rather  than  the  other  way  round.  Most  noteworthy,  scVelo  failed  to  recapitulate  the 115 

erythropoiesis  branch,  where  it  predicts  a  backwards  differentiation  from  later  to  earlier 116 

populations. We next repeated this analysis using data from each individual time‐point (Figure 117 

1B; shown are E7.5 and E8.5). We saw that the pipeline accurately recapitulates known biological 118 

trajectories up  to E7.5, but observed  the same  inconsistency  from E7.75  to E8.5, with  scVelo 119 

arrows pointing backwards. 120 

Taken  together  therefore,  we  have  identified  that  for  erythroid  development,  the  output  of 121 

scVelo is inconsistent with the timecourse information gathered from the experimental design of 122 

the gastrulation atlas.  123 

 124 

Unspliced sequence reads help to discriminate between cell types 125 

We next asked whether this issue is due to a general lack of biologically meaningful information 126 

captured in the unspliced reads.  127 
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To  this  end,  we  exploited  two  variance‐based  dimensionality  reduction  methods,  Principal 128 

Component Analysis (PCA) and Multi‐Omics Factor Analysis (MOFA; 26), to interrogate how much 129 

inter‐population variability is explained by the spliced and unspliced information layers, whether 130 

considered separately or together. Upon comparing PC1 and PC2 (or MOFA Factors 1 and 2), in 131 

addition  to  the  expected  lineage  separation obtained using  the  spliced  reads  (Figure  2A,  left 132 

panel), we could also observe a degree of  lineage separation when using the unspliced reads 133 

alone (Figure 2A, middle panel). In addition, we saw a qualitatively improved separation of the 134 

different lineages when spliced and unspliced information is used in combination (Figure 2A, right 135 

panel; see Supplementary Figure 1 for further components/factors). Moreover, the MOFA factors 136 

account  for 16% of  variation  in  the  spliced data and 4% of  the of  variation  in unspliced data 137 

(Figure 2Bi). Interestingly, a closer look at the MOFA pre‐processing and final outcome showed a 138 

minor overlap of genes that are highly variable with respect to spliced or unspliced counts (Figure 139 

2Bii) and a different weight contributed by the two layers to the final factors (Figure 2Biii). 140 

Multiomics  factor  analysis  therefore  not  only  demonstrates  that  the  unspliced  reads  in  the 141 

gastrulation  atlas  dataset  contain  biologically  relevant  information,  but  also  suggests  that 142 

integrated analysis of spliced and unspliced reads may more broadly facilitate the interpretation 143 

of complex scRNA‐Seq datasets.  144 

 145 

Analysis of unspliced reads reveals complex expression kinetics 146 

Having confirmed the utility of unspliced reads, we next explored whether the inability to recover 147 

real‐time progression in whole embryo trajectory inference using scVelo might be related to the 148 
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assumptions made by  the current RNA velocity analysis  tools.  The derivation of gene‐specific 149 

expression kinetics underpins the scVelo analysis pipeline, as illustrated by so‐called phase plots 150 

that depict the amounts of spliced versus unspliced reads within a population of cells (14). If a 151 

gene is upregulated during a differentiation timecourse, cells will be placed above the diagonal 152 

between no expression and maximum expression due to the relatively larger amount of newly 153 

produced  pre‐mRNA  during  the  gene  induction  process,  while  the  converse  is  true  for 154 

downregulated genes (Figure 3A). Both of these scenarios are readily captured by scVelo, with 155 

the predicted vectors of differentiation agreeing with the actual temporal progression. If a given 156 

gene however experiences an  increase  in  transcription  rate midway  through a differentiation 157 

timecourse, the sudden increase in unspliced pre‐mRNA will result in a phase plot that may be 158 

wrongly classified by scVelo, with predicted vectors of differentiation diametrically opposed to 159 

the true direction of differentiation (Figure 3A). This is indeed what we observed when inspecting 160 

the phase plots of the scVelo driver genes (top‐likelyhood genes, Supplementary Table 1), which 161 

display a steep increase of unspliced counts in the Erythroid 3 population, leading to a reverse 162 

velocity prediction, progressing from Erythroid 3 to earlier populations (Supplementary Figure 163 

2A). 164 

We next  set out  to  identify all  genes exhibiting  this  rapid  increase  in expression  levels  in  the 165 

Erythroid 3 population (Figure 3B). After fitting a linear regression through each population and 166 

each  gene  and  testing  whether  the  inferred  slopes  reflected  the  expected  order  based  on 167 

biological knowledge, we found 89 such genes, which we termed Multiple Rate Kinetics or MURK 168 

genes. These genes  included Smim1, coding for the Vel Blood Group Antigen (27), and Hba‐x, 169 

where we could confirm an increase in expression kinetics using phase plots (Figure 3C).  170 
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Having identified a set of genes with a coordinated increase in expression rate midway through 171 

erythropoiesis,  we  next  asked  what  function  these  genes  might  play  in  the  broader 172 

transcriptional program of red blood cell maturation. Visual inspection of the gene list revealed 173 

it to contain archetypal red blood cell genes including the globin genes Hba‐x, Hbb‐a1, Hba‐a2, 174 

Hbb‐bt,  Hbb‐bh1,  Hbb‐y  (Supplementary  table  2).  Unsupervised  gene  ontology  analysis 175 

confirmed that biological functions essential for red blood cells were highly enriched, including 176 

“gas transport” and “heme biosynthetic process” (Figure 3D). 177 

We next removed this set of MURK genes and recalculated the RNA velocity inferred trajectories. 178 

As can be seen in Figure 3E, inferred vectors of differentiation are now in good agreement with 179 

the real time progression of erythropoiesis  180 

The  scVelo  suite  also  calculates  a  so‐called  latent  time,  which  represents  the  pseudotime 181 

ordering hidden  in  the spliced and unspliced dynamics, and  is more powerful  than previously 182 

described pseudotime inferring approaches since it incorporates both the gene dynamics and the 183 

spliced and unspliced information (14). Using the full gene set, the latent time calculation for the 184 

erythroid lineage is contrary to the know progression of erythroid differentiation (Figure 3E left 185 

panels, Supplementary Figure 2B, left panels). By contrast, removing the MURK genes results in 186 

a latent time prediction that is not only consistent with the major axis of erythropoiesis, but also 187 

identifies the two sequential inputs described previously (25), namely an early wave directly from 188 

posterior mesoderm as well as a second wave coming from yolk sac hemogenic endothelium (see 189 

Figure 3E, Supplementary Figure 2B, right panels).  190 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.12.21.423773doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 
 

Taken together therefore, this analysis shows that inconsistent RNA velocity‐inferred trajectories 191 

can be remedied by the removal of genes with complex expression kinetics.  192 

 193 

Erythroid Multiple Rate Kinetics genes are essential for red blood cell function 194 

To  corroborate  upregulation  of  our  identified  MURK  genes  during  erythropoiesis,  we 195 

interrogated a previously published dataset with  transcriptomic  analysis  of  a  loss of  function 196 

model for the erythropoiesis master‐regulator Gata1 (28). In vitro differentiation of Gata1 knock‐197 

out embryonic stem cells over‐expressing human BCL2 can produce permanently self‐renewing 198 

immature erythroid progenitor cell lines. One such model, G1ER, contains a tamoxifen‐inducible 199 

Gata1  transgene,  the  activation  of  which  triggers  erythroid  maturation  (29,  30;  Figure  4A). 200 

Microarray‐based differential  gene expression was performed,  comparing  the uninduced  and 201 

induced conditions (28). 76 of our 89 MURK genes overlapped with the genes identified by this 202 

microarray‐based  comparison.  Of  those,  64  were  upregulated,  of  which  55  showed  strong 203 

upregulation, 4 were downregulated, and 8 showed no change in expression following induction 204 

of Gata1 in the G1ER system, demonstrating a highly significant overlap of our identified MURK 205 

genes with the G1ER‐induced genes (p < 10‐24 ; see Figure 4B).   206 

Our newly identified erythropoietic MURK genes therefore perform key roles in red blood cell 207 

function,  and  their  upregulation  was  validated  in  an  independent  model  of  red  blood  cell 208 

maturation. 209 

 210 
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scRNA‐Seq of mouse chimeras reveals the early cellular defects in Gata1 loss of function 211 

The G1ER cell line represents an in vitro model, and the published differential gene expression 212 

data  were  from  bulk  microarray  profiling,  thus  precluding  any  analysis  of  single‐cell  gene 213 

expression  kinetics.  We  therefore  turned  to  our  recently  reported  Chimaera‐Seq  approach, 214 

whereby scRNA‐Seq is coupled with mouse chimeric embryo technology, to define both cellular 215 

and  molecular  consequences  of  gene  knock‐outs  in  vivo  (25,  31).  We  used  our  standard 216 

embryonic stem cells (ESCs) expressing a constitutive tdTomato (tdTom) fluorescent marker gene 217 

to generate a Gata1 knock‐out line (see Methods). Gata1‐ tdTom+ cells were injected into tdTom‐ 218 

wild‐type  blastocyst  and  transferred  into  pseudo‐pregnant  females,  resulting  in  chimeric 219 

embryos that we harvested at E8.5. Six chimeric embryos were pooled, dissociated into a single‐220 

cell  suspension, and tdTom+ and tdTom‐ cell  fractions were sorted  for scRNA sequencing. We 221 

obtained 8420 tdTom‐ and 7944 tdTom+ cells passing quality control and assigned to a cell type, 222 

with an average of 4354 genes being detected per cell.  223 

We then concatenated the chimera data with the Pijuan‐Sala et al. (2019) reference dataset and 224 

mapped nearest neighbors (see Methods). We observed an overall homogeneous distribution of 225 

both mutant and wild‐type fractions throughout the later time‐points of the landscape, except 226 

for the erythroid branch. Indeed, we observed a block in the erythroid lineage of the mutant cells, 227 

which were over‐represented in the start of the erythroid differentiation branch, while their wild‐228 

type counterparts were present throughout erythroid differentiation (Supplementary Figure 3). 229 

Identification of the nearest neighbours of chimeric cells within the reference dataset allowed 230 

their  quick  cell‐type  annotation,  which  we  used  to  quantify  the  differences  in  the  hemato‐231 

endothelial  cell‐type  representation  within  the  chimera  fractions.  This  analysis  confirmed  a 232 
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severe erythroid differentiation defect of  the mutant cells  (Figure 4C‐E). When examining the 233 

reference dataset  sampled‐time point of  the chimera nearest neighbours we also observed a 234 

temporal shift within the erythroid lineage, with tdTom+ mutant cells mapping to earlier time‐235 

points than their wildtype tdTom‐ counterparts, further confirming a developmental block of the 236 

mutant cells (Figure 4D, E). In addition, we observed that this erythroid defect was coupled with 237 

an over‐representation of cells with a megakaryocyte signature (Figure 4C). 238 

The newly generated Gata1‐ Chimaera‐Seq data therefore not only recapitulated the expected 239 

block in erythroid maturation, but also revealed an expansion of the megakaryocytic lineage in 240 

the E8.5 yolk sac. 241 

 242 

The molecular program affected by Gata1 loss in early embryos 243 

Although the role of Gata1 is well documented in developmental erythropoiesis (21, 23), the early 244 

molecular defects of Gata1 loss of function in vivo had not been reported. The Gata1 Chimaera‐245 

Seq  dataset  therefore  presented  an  opportunity  to  dissect  the  early  molecular  program 246 

controlled by Gata1 in vivo. Having registered a defect in erythroid differentiation and an increase 247 

in  the megakaryocytic  lineage  population, we  performed  differential  gene  expression  testing 248 

between the chimera mutant and wild‐type cells in these clusters (Supplementary Table 3).  249 

Regarding  the  megakaryocytic  subset,  we  observed  upregulation  of  progenitor  markers  Kit, 250 

Gata2  and Myb  in  the Gata1‐  cells  as  well  as  lower  expression  of maturation  genes  for  the 251 

megakaryocyte lineage Gp5, Pf4, Mpl and Plek (Figure 5A). Hyper‐proliferative megakaryocyte 252 

progenitors,  detected  previously  in  Gata1‐  E12.5  fetal  livers,  led  to  compromised  platelet 253 
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function,  and  were  suggested  to  originate  in  the  yolk  sac  (32).  Our  results  showing  over‐254 

production  of  megakaryocytic  cells  with  impaired  maturation  characteristics  in  E8.5  Gata1‐ 255 

chimera yolk sacs support this notion, and importantly place the megakaryocytic defect within 256 

the very early phase of megakaryocyte formation.  257 

Interestingly, all hemato‐endothelial cell subsets displayed up‐regulation of Spi1 (coding for the 258 

PU.1 transcription factor) in the Gata1‐ cell fraction compared to wild‐type counterpart (FDR < 259 

0.01;  Figure  5A).  Given  the  previously  reported  Gata1‐PU.1  cross‐repression  in  adult  bone 260 

marrow  (18)  and  in  zebrafish  embryonic  hematopoiesis  (33),  we  systematically  assessed  the 261 

effect of Gata1 knockout in the mouse chimera lineages and observed that in Gata1‐ cells, Spi1 262 

was specifically up‐regulated in all hematopoietic sub‐clusters, with a stronger effect on Mk and 263 

Ery1 subsets. (Supplementary Figure 3).  264 

In  the early erythroid  subset, Ery1, we again noted  that  the mutant cells displayed  increased 265 

expression of genes characteristic of a progenitor signature. Conversely, erythroid maturation 266 

hallmark genes such as Hbb‐bs and Gypa were downregulated, along with the erythroid Gata1 267 

target Mllt3 (34; Figure 5A). GO‐term enrichment analysis of genes downregulated in Gata1‐ Ery1 268 

cells revealed biological processes essential to red blood cell function (Figure 5B). Furthermore, 269 

we also observed that 48% of the MURK genes identified in Figure 3 overlapped with these genes 270 

that fail to up‐regulate in Gata1‐ erythroid cells (Figure 5C; p < 10‐24). 271 

In  addition  to  the  failure  of  inducing  genes  associated with  erythroid maturation,  single  cell 272 

resolution molecular analysis also revealed a striking failure to downregulate genes associated 273 

with alternative lineage programs such as Pu.1, consistent with the notion that the earliest wave 274 
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of  primitive  hematopoiesis  produces  erythroid  cells, megakaryocytes  and macrophages, with 275 

evidence for at least bipotential progenitor cells (35).  276 

 277 

The late erythroid increase in expression rate is downstream of Gata1 function 278 

Having generated the Chimaera‐Seq single cell data for both wildtype and Gata1 knock‐out cells, 279 

we next used the ratio of spliced/unspliced reads to explore differences in expression kinetics 280 

between the wildtype and mutant cells. As can be seen in Figure 5D, the previously defined MURK 281 

genes  failed  to  display  the  increased  rate  of  expression  characteristic  for  the  later  stages  of 282 

erythropoiesis in the mutant cells. The examples shown include the embryonic globin gene Hbb‐283 

y, as well as the Fam210b gene, coding for a putative mitochondrial protein recently implicated 284 

in  erythroid  differentiation  (36;  Figure  5D).  This  result  confirms  that  the  erythroid  boost  in 285 

expression forms part of the transcriptional program downstream of Gata1 function, although it 286 

does not demonstrate a direct regulatory role for Gata1.  287 

However,  preliminary  modelling  analysis  suggests  that  the  change  observed  in  MURK  gene 288 

dynamics  is  due  to  altered  transcription  rates  (see  Supplementary  Note),  indicating  a  close 289 

association of the coordinated late erythroid increase in transcription rate with the molecular 290 

program downstream of Gata1. 291 

 292 

A coordinated increase of expression rate during human fetal liver erythropoiesis 293 
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Having  identified  a  coordinated  increase  in  transcription  rate  during  mouse  yolk  sac 294 

erythropoiesis, we next wanted to ascertain whether the same phenomenon could also be seen 295 

in  human  cells.  Moreover,  we  were  keen  to  explore  an  scRNA‐Seq  dataset  generated  by  a 296 

different  laboratory,  to exclude any potential  technical bias  caused by our own experimental 297 

protocols. We therefore turned to a recently published comprehensive dataset of human fetal 298 

liver  erythropoiesis  (37),  and  extracted  the  49,388  cells  annotated  to  the  four  clusters 299 

encompassing human  fetal  liver erythropoiesis. When calculating scVelo‐based differentiation 300 

vectors as well as latent time using the full gene set (see methods), both were reversed (Figure 301 

6A, left plots), consistent with the mouse yolk sac results. We therefore again ran our pipeline to 302 

discover genes with a potential  increase  in expression rate along the differentiation pathway. 303 

The  resulting  97  genes  again  contained  archetypal  erythroid  genes  such  as  the  haemoglobin 304 

genes (Figure 6B), with overall gene ontologies demonstrating a functional role in erythropoiesis 305 

(Figure 6C, see also Supplementary Table 4). We then recalculated both the scVelo differentiation 306 

vectors as well as latent time after removing the fetal  liver MURK genes. This revealed scVelo 307 

vectors that were consistent with the expected developmental progression (see Figure 6A, right 308 

plots). This analysis therefore demonstrates that complex expression kinetics apply broadly to 309 

erythropoiesis, and  their  identification can be used  to amend  the RNA velocity  framework  to 310 

prevent erroneous predictions.  311 

 312 

 313 

Discussion 314 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.12.21.423773doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

There is no doubt that single cell molecular profiling constitutes a transformative technology. It 315 

suffers however from the major drawback that cells need to be fixed in order to profile them, 316 

with the consequence that measurements are by necessity static snapshots. To decipher complex 317 

biological processes, however, temporal information is commonly required. The single cell RNA 318 

velocity concept raised the prospect of overcoming some of the limitations associated with static 319 

measurements, by providing a  strategy  that  can  infer  future cellular  states. The RNA velocity 320 

framework  is  based  on  an  explicit model  of  transcriptional  processes  (transcription,  splicing, 321 

degradation). The notion that physical parameters of gene expression can be deduced from single 322 

cell  gene expression data had been explored before  the  single  cell RNA velocity concept was 323 

introduced (38, 39). However, the scVelo implementation provided an attractive framework for 324 

estimating  gene‐specific  expression  parameters  by  taking  advantage  of  the  spliced  versus 325 

unspliced read counts across large cell populations (14). Using erythropoiesis as an example, we 326 

show here  that  this  current  framework needs  to be adapted  to accommodate more complex 327 

expression kinetics. Importantly, our analysis revealed that sets of genes can show a coordinated 328 

increase  in  transcription  rate  along  a  differentiation  pathway. Moreover,  deletion  of  the  key 329 

erythroid  regulator  Gata1  abrogated  this  coordinated  change  in  expression  dynamics,  thus 330 

revealing this increase in transcription rate as an important feature of erythropoiesis. Of note, 331 

current  RNA  velocity  frameworks  consider  only  a  single  reason  for  the  presence  of  introns, 332 

namely that a pre mRNA has not been fully processed. However, it is known that other processes 333 

such  as  intron  retention  can  result  in  the  presence  of  intronic  sequences  in  otherwise  fully 334 

processed cytoplasmic mRNA molecules (40, 41), thus suggesting that a more granular approach 335 
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towards  both  the  modelling  and  experimental  analysis  of  spliced  versus  unspliced  reads 336 

represents a promising avenue for future research. 337 

Application of the single cell RNA velocity concept has commonly been “confirmatory”, whereby 338 

a differentiation path proposed by other means was shown to be consistent with RNA velocity 339 

inference. When we applied the RNA velocity framework to the entire mouse gastrulation atlas, 340 

some inferred vectors of differentiation agreed with our current understanding of developmental 341 

biology,  but  others  disagreed.  Deeper  interrogation  of  predictions  that  conflicted  with  our 342 

current understanding of erythropoiesis showed that the RNA velocity predictions could not be 343 

correct, not only because they ran counter to the known expression changes that accompany red 344 

blood cell differentiation, but also because they contradicted the real‐time sampling of the data. 345 

Our results thus highlight certain limitations of the current implementation of this framework for 346 

identification of novel  trajectories.  Importantly however,  it  is  through our observation of  the 347 

inconsistent predictions that we were led to identify the previously unrecognized dynamic nature 348 

of  the  transcriptional  control  of  erythropoiesis.  Moreover,  it  is  plausible  that  coordinated 349 

increases  in  transcription  rate  midway  through  a  differentiation  process  may  operate  more 350 

widely,  as  a  powerful  mechanism  for  stabilising  a  cell  state.  Our  extension  to  the  scVelo 351 

implementation  reveals  the  presence  of  such  time‐dependent  changes  of  gene  expression 352 

parameters and retrieves the concerned MURK genes in developmental trajectories of interest.  353 

As to the precise mechanisms, at this stage we can only confidently assert that this process occurs 354 

downstream  of  Gata1  during  erythropoiesis.  Of  note,  comprehensive  analysis  of  the  G1ER 355 

erythroid  differentiation model  has  shown  that  Gata1‐induced maturation  triggers  increased 356 

enhancer/promoter interactions for upregulated genes, and that the most highly enriched motif 357 
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in the promoters of these genes are GATA sites (42). These observations are therefore consistent 358 

with the lineage‐determining function of Gata1 involving a coordinated increase in expression 359 

kinetics of a set of genes important for red blood cell function. 360 

Our observations regarding the Gata1 knock‐out phenotype also warrant some discussion. With 361 

embryonically  lethal  phenotypes  such  as  Gata1  knock‐out,  conventional  analysis  tends  to  be 362 

somewhat limited, since the embryos are dead because they have no red blood cells. By contrast, 363 

the Chimaera‐Seq assay enables both quantification of cell numbers as well as characterisation 364 

of  their  molecular  profiles.  Moreover,  there  are  no  secondary  effects  caused  by  the  dying 365 

embryo,  because  the  wildtype  host  cells  rescue  overall  fetal  development,  thus  allowing  a 366 

focussed analysis of cell‐intrinsic molecular defects. One noteworthy observation from our data 367 

is that erythroid differentiation proceeds substantially beyond the stage where Gata1 expression 368 

itself  is  first  initiated,  but  fails  to  proceed  to  the  late  erythroid  phase  where  expression  of 369 

canonical  red blood  cell  genes  is  greatly upregulated. However,  gene expression prior  to  the 370 

differentiation block is not normal. In particular, we observed increased Spi1/Pu.1 in the Gata1 371 

knock‐out cells, consistent with the previously reported (18) but also disputed (43) antagonistic 372 

relationship between Gata1 and Pu.1.  373 

Within haematopoiesis, Pu.1 is recognised as a key regulator of myeloid and T‐cell lineages, but 374 

not erythroid cells, even though a role in the proliferation of immature erythroid progenitors has 375 

been reported (44, reviewed in 45). Upregulation of Pu.1 in our immature Gata1 knock‐out cells 376 

therefore suggests that these cells of the primitive haematopoietic lineage represent progenitors 377 

with multilineage  potential,  rather  than  being  restricted  to  just  the  red  cell  lineage.  Further 378 

evidence for this notion is provided by our observation that the reduction in erythroid cells in the 379 
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Gata1 knock‐out is accompanied by an increase in megakaryocyte progenitors, consistent with a 380 

model whereby Gata1 levels influence the lineage choice decisions of a multipotent progenitor 381 

cell. Live cell tracking studies have suggested that the primary role of Gata1 and Pu.1 may be fate 382 

stabilization rather than fate choice (43). The increase in transcription rate of erythroid genes 383 

downstream of Gata1 would cohere with stabilizing the erythroid fate, thus suggesting that our 384 

results are consistent with roles in both fate choice and fate stabilization. 385 

Our  observation  of  an  expanded  pool  of  megakaryocyte  progenitors  may  also  be  of  direct 386 

relevance to our understanding of the pre‐leukaemic transient myeloproliferative disease (TMD) 387 

that is prevalent in newborns with trisomy 21 (46). TMD is thought to arise when a fetal specific 388 

haematopoietic progenitor cell with trisomy 21 acquires a partial  loss of  function mutation  in 389 

GATA1,  resulting  in  a  short  form  of  GATA1  (GATA1s).  TMD  is  characterized  by  expansion  of 390 

immature megakaryocyte progenitors, and in 10 to 20% of cases transforms into malignant acute 391 

megakaryoblastic  leukaemia  (reviewed  in  47).  Over‐expression  of  GATA1s  in  mouse  models 392 

resulted in the identification of mid‐gestation fetal liver megakaryocyte progenitors as uniquely 393 

sensitive to this mutant GATA1s form compared to their adult bone marrow counterparts (48). 394 

The over‐represented population of  immature megakaryocytic progenitors  in our E8.5 Gata1‐ 395 

chimeras may correspond to the developmental emergence of  this  transient precursor, TMD‐396 

initiating cell, in the yolk sac. 397 

 398 

 399 

Conclusions 400 
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Taken together, this study reports how the RNA velocity framework can be extended to delve 401 

into  the  transcriptional  mechanisms  of  tissue  differentiation,  complemented  with  single  cell 402 

resolution and in vivo analysis of Gata1 function, which revealed a number of previously unknown 403 

facets of this canonical regulator of red blood cell development.  404 

 405 

 406 

Methods 407 

scVelo implementation 408 

Mouse atlas dataset. To obtain separated count matrices for spliced and unspliced mRNAs, we 409 

ran velocyto 0.17.17 (10) on the .bam files from the mouse atlas in Pijuan‐Sala et al. 2019 (25; 410 

GEO accession number: GSE87038). We kept  all  cells  that passed  the QC as described  in  the 411 

original publication, but filtered out from downstream analysis the extraembryonic tissues: ExE 412 

endoderm, ExE ectoderm and Parietal endoderm as well as samples with no timepoint allocation 413 

(labelled as  ‘mixed gastrulation’).  To  select highly variable genes  (HVGs) we applied both  the 414 

scanpy v1.5.1 and the scVelo v0.2.1 (14) pipelines. That is, we removed genes with less than 20 415 

shared counts between spliced and unspliced counts, before normalising and log transforming 416 

the remaining genes. Then, we selected the top 2500  HVGs from each approach (resulting in a 417 

total of 4000, with 1000 overlapping genes) for further calculation of moments; while performing 418 

imputation using the top 30 nearest neighbours from the graph connectivities generated with 419 

the original UMAP coordinates from Pijuan‐Sala et al. 2019. The velocity vectors were computed 420 

in dynamical mode rather than steady state. 421 
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Human dataset. We first downloaded raw reads from Popescu et al., 2019 (37; GEO accession 422 

number: GSE127980), and aligned them against the human genome hg19‐3.0.0 with CellRanger 423 

v3.0.2 to generate the .bam files and obtain separated count matrices for spliced and unspliced 424 

mRNAs as described above. We filtered out cells with less than 3,550 counts, less than 900 genes 425 

and more than 6% mitochondrial counts. Again, we combined scapy and scVelo’s pipelines to 426 

select 1,500 HVGs to compute PCA coordinates and applied batch correction using the function 427 

reducedMNN  from  the  batchelor  package  v1.4.0  (49),  followed  by  the  estimation  of  velocity 428 

vectors in the same way it was done for the mouse dataset.  429 

 430 

MOFA+ implementation 431 

We ran MOFA+ v1.4.0 (26) using as input the two single cell experiment objects obtained from 432 

the spliced and unspliced counts  independently. Each object was created  in R using the scran 433 

v1.16.0 (50) library as follows: we started from the raw counts, normalized them with factor sizes 434 

obtained after pre‐clustering, log transformed and reduced to 5000 HVG. We then switched to 435 

Python v3.7.4, where we regressed out the sample effect and scaled the object to generate a 436 

MOFA+ model with standard parameters. Finally, we used reducedMNN to correct the MOFA 437 

Factors for batch effects. The same objects used as MOFA input were used for PCA calculation in 438 

Figure 2A. 439 

 440 

MURK genes identification 441 
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To identify MURK genes, we considered the imputed counts resulting from the scVelo standard 442 

pipeline. Then, for each gene and each population among the Erythroid lineage, we calculated 443 

the unspliced versus spliced slope with a linear regression, as well as the standard error on the 444 

slope. In the mouse dataset we selected all genes for which the slope in Erythroid3 is significantly 445 

higher than the slope in Erythoid2 (according to a one‐sided t‐test p‐value < 0.05), the average 446 

spliced counts in Erythroid3 is higher than the average spliced counts in every other population, 447 

and the slope in Erythroid3 positive. We found 89 genes that respect all these criteria.  448 

In the human dataset, in order to obtain erythroid populations more comparable to our mouse 449 

data, we re‐clustered the erythroid clusters (Figure 6A). We retained the population annotations 450 

from  the  original  paper  except  for  the  Late  Erythroid  population,  which  we  defined  after 451 

performing Leiden clustering on the Umap coordinates. Specifically, we re‐allocated a subset of 452 

the previously annotated Mid Erythroid population to Late Erythroid,  in such a way that  they 453 

have a similar numbers of cells. We then calculated the unspliced versus spliced slope with linear 454 

regression and identified MURK genes where the slope in Late Erythroid is significantly higher 455 

than the slope in Mid Erythroid. We found 97 genes respecting these criteria. 456 

 457 

Gene ontology enrichment analysis 458 

We performed gene ontology enrichment analysis using  the http://geneontology.org website 459 

comparing the MURK genes against all biological processes, with the default all Mus musculus 460 

genes in database as background set (51, 52). We ranked the processes by FDR. 461 

 462 
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Overlap testing 463 

Overlap was tested with Fisher exact test. We calculated the probability of having m = 55 genes 464 

of our n = 89 MURK genes mapping to the A = 1022 high response genes (out of N = 4195 genes) 465 

in  the Wu  et  al.,  2011  publication  (GEO  accession  number:  GSE30142)  as  the  probability  of 466 

randomly picking m elements of a specific type when randomly choosing n elements out of N, 467 

where the frequency of the special type is A/N. 468 

 469 

Gata1‐ chimera dataset generation and analysis 470 

Embryo collection. All procedures were performed in strict accordance to the UK Home Office 471 

regulations  for  animal  research  under  the  project  license  number  PPL  70/8406.  Chimaera 472 

generation. TdTomato‐expressing mouse embryonic stem cells (ESC) were derived as previously 473 

described (25). Briefly, ESC lines were derived from E3.5 blastocysts obtained by crossing a male 474 

ROSA26tdTomato  (Jax  Labs  –  007905) with  a wildtype  C57BL/6  female,  expanded  under  the 475 

2i+LIF  conditions  (53)  and  transiently  transfected  with  a  Cre‐IRES‐GFP  plasmid  (54)  using 476 

Lipofectamine  3000  Transfection  Reagent  (ThermoFisher  Scientific,  #L3000008)  according  to 477 

manufacturer’s instructions. A tdTomato‐positive, male, karyotypically normal line, competent 478 

for chimaera generation as assessed using morula aggregation assay, was selected for targeting 479 

Gata1.  Two  guides  were  designed  using  the  http://crispr.mit.edu  tool  (guide  1: 480 

CGGCTACTCCACTGTGGCGG;  guide  2:  CGCTTCTTGGGCCGGATGAG)  and  were  cloned  into  the 481 

pX458 plasmid (Addgene, #48138) as previously described (55). The obtained plasmids were then 482 

used to transfect the cells and single transfected clones were expanded and assessed for Cas9‐483 
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induced  mutations.  Genomic  DNA  was  isolated  by  incubating  cell  pellets  in  0.1  mg/ml  of 484 

Proteinase K (Sigma, #03115828001) in TE buffer at 50°C for 2 hours, followed by 5 min at 99°C. 485 

The  sequence  flanking  the  guide‐targeted  sites  was  amplified  from  the  genomic  DNA  by 486 

polymerase chain reaction (PCR) in a Biometra T3000 Thermocycler (30 sec at 98°C ; 30 cycles of 487 

10 sec at 98°C, 20 sec at 58°C, 20 sec at 72°C;  and elongation for 7 min at 72°C) using the Phusion 488 

High‐Fidelity  DNA  Polymerase  (NEB,  #M0530S)  according  to  the manufacturer’s  instructions. 489 

Primers  including  Nextera  overhangs  were  used  (F‐ 490 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTACCCTGCCTCAACTGTG;  R‐ 491 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTTGTCTTGGGCAGGAACA),  allowing  library 492 

preparation with the Nextera XT Kit (Illumina, #15052163), and sequencing was performed using 493 

the Illumina MiSeq system according to manufacturer’s instructions. An ESC clone showing a 38 494 

base‐pair frameshift mutation in exon 4 resulting in the functional  inactivation of Gata1 were 495 

selected  for  injection  into  C57BL/6  E3.5  blastocysts.  A  total  of  6  chimaeric  embryos  were 496 

harvested  at  E8.5,  dissected,  and  single‐cell  suspensions  were  generated  by  TrypLE  Express 497 

dissociation  reagent  (Thermo  Fisher  Scientific)  incubation  for  7‐10  minutes  at  37°C  under 498 

agitation. Single‐cell suspensions were sorted into tdTom+ and tdTom‐ samples using a BD Influx 499 

sorter with  DAPI  at  1µg/ml  (Sigma)  as  a  viability  stain  for  subsequent  10X  scRNA‐seq  library 500 

preparation (version 3 chemistry), and sequencing using an S1 flow cell in the Illumina Novaseq 501 

platform, which resulted in 8420 tdTom‐ and 7944 tdTom+ cells that passed quality control (see 502 

“Single‐cell RNA sequencing analysis” below).  503 

Single‐cell  RNA  sequencing  analysis.  Raw  files  were  processed  with  Cell  Ranger  3.0.2  using 504 

default  mapping  arguments.  Reads  were  mapped  to  the  mm10  genome  and  counted  with 505 
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GRCm38.92  annotation,  including  tdTomato  sequence  for  chimera  cells.  Cell  barcodes  with 506 

expression profiles significantly different to the ambient mRNA expression profile were identified 507 

using emptyDrops (56), and cell barcodes with low complexity, i.e. low total mRNA counts and/or 508 

high  mitochondrial  proportion,  were  identified  by  fitting  four‐component  bivariate  mixture 509 

models to the log10‐transformed total mRNA counts and percentage of mitochondrial counts, and 510 

selecting  the  components  with  high  total  mRNA  and  low  mitochondrial  percentage.  Gene 511 

expression normalization and doublet cell barcodes were identified using the approach taken by 512 

Pijuan‐Sala et al. (2019). Both spliced and unspliced count matrices were extracted using velocyto 513 

0.17.17 (10). 514 

Mapping to the reference dataset. We mapped the chimaera cells to the mouse atlas following 515 

almost exactly the procedure used in the original publication article to map the Tal1 chimaera. 516 

First, we  concatenated  the mouse  atlas  and  chimaera  counts  (both  previously  controlled  for 517 

quality of the cells), normalized the resulting counts matrix with scran, computed HVGs and then 518 

applied multiBatchPCA,  and  reducedMNN with  cosine  normalization  from  batchelor  (49)  for 519 

batch effect correction within samples (where sample refers to a single lane of a 10x Chromium 520 

chip) as well as between datasets in order to extract a number of nearest neighbours between 521 

the mouse atlas and the chimaera using queryKNN from BiocNeighbors package v1.6.0.  522 

Differential Gene Expression Analysis. For differential gene expression analysis, we took samples 523 

that included at least 7 cells per tdTom status per cell population (eg. Erythroid3). We ran the 524 

analysis in scanpy v1.5.1 (57) with Wilcoxon test and choosing 2 as fold change and 0.1 as false 525 

discovery rate thresholds. 526 
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 703 

 704 

Figure Legends 705 

Figure 1. Inferring Differentiation Trajectories at organismal scale 706 

A. Pijuan‐Sala et al. (2019) layout containing single‐cell transcriptomes belonging from E6.5 707 

to  E8.5,  colored  by  sampled  time‐point  (left)  and  by  cell‐type  (right).  The  overlaying 708 

arrows  result  from  applying  the  scVelo  pipeline  to  the whole  embryonic  dataset  and 709 

represent  inferred  developmental  trajectories.  Arrowheads  highlight  the  erythroid 710 
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branch,  displaying  scVelo  trajectory  predictions  that  are  inconsistent  with  real‐time 711 

sampling. 712 

B. Pijuan‐Sala et al. (2019) layout highlighting single‐cell transcriptomes belonging to E7.5 713 

(left) and E8.5 (right) and colored by cell‐type (see legend in A). The overlaying arrows 714 

result  from applying  the  scVelo pipeline  to  these  individual  time‐points and  represent 715 

inferred developmental trajectories. Arrowheads highlight the erythroid branch. 716 

Figure 2. Unspliced counts contribute to explaining the variability among cell types 717 

A. Dimensionality  reduction with  the  first  two principal  components/MOFA  factors using 718 

spliced reads alone (left), unspliced reads alone (middle) and both spliced and unspliced 719 

(right). Single‐cell transcriptomes are colored by cell‐type annotation; see Figure 1 for full 720 

legend. 721 

B. MOFA characterization of spliced and unspliced reads assessing proportion of variance 722 

explained (i), overlap in highly variable genes calculating using either spliced or unspliced 723 

reads (ii), and factor weight distributions (iii). 724 

Figure  3. A  set  of  genes with  complex  expression  kinetics  confounds  velocity  estimation  in 725 

erythropoiesis 726 

A. Illustration of phase plot  representation  in datasets of differentiating cell populations, 727 

and associated scVelo predictions  728 

B.  Illustration of strategy for MURK gene identification 729 

C. Phase plots of representative MURK genes. X‐axis: normalized imputed counts of spliced 730 

transcript; y‐axis: normalized imputed counts of unspliced transcript. 731 
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D. GO‐term enrichment of MURK genes identified in mouse yolk sac erythropoiesis 732 

E. Zoomed‐in  UMAP  of  the  erythroid  branch  (see  Figure  1  for  full  UMAP)  with  scVelo 733 

calculations, before and after  removing MURK genes  identified  in B. Distinct waves of 734 

embryonic  erythropoiesis  are  visible  upon  MURK  gene  removal,  highlighted  with 735 

arrowheads. 736 

Figure 4. In vivo analysis of Gata1 function using a chimaera assay coupled with scRNA‐Seq 737 

A. Schematic of the G1ER system (29, 30) 738 

B. Behaviour of the 89 MURK genes identified in Figure 3 upon Gata1 induction in the G1ER 739 

system (28). Wu et al. report that upon Gata1  induction they obtained a total of 2769 740 

upregulated  genes,  6079 mildly  upregulated,  3566  downregulated,  and  3445 with  no 741 

response. 742 

C. UMAPS of Gata1‐ chimera cells allocated a hemato‐endothelial identity colored by cell‐743 

type  (sub‐clusters  defined  in  Pijuan‐Sala  et  al.  (2019)  ‐  BP:  Blood  Progenitors,  EC: 744 

Endothelial  Cells,  Haem:  Hemato‐endothelial  Progenitors,  Mk:  Megakaryocytes,  My: 745 

Myeloid cells, Ery: Erythroid cells) and split by genotype. Orange arrowheads highlight 746 

increased population with megakaryocytic signature in Gata1‐ fraction. 747 

D. UMAPS  of  Gata1‐  chimera  cells  allocated  a  hemato‐endothelial  identity  colored  by 748 

sampling timepoint and split by genotype. 749 

E. Barplots with  the quantification of  chimera  cells mapping  to each hemato‐endothelial 750 

lineage of the reference dataset (left) and to sampled time‐points of the reference dataset 751 

(right). 752 
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Figure  5.  Gata1  chimaera  assay  reveals  disruption  of MURK  genes  and  perturbed  yolk  sac 753 

hematopoiesis  754 

A. Violin  plots  of  representative  genes  differentially  regulated  in  Gata1‐  hematopoietic 755 

lineages. 756 

B. GO‐term enrichment of genes downregulated in Gata1‐ Ery1 cells compared to their WT 757 

counterparts in chimeras. 758 

C. Venn diagram showing overlap between MURK genes and genes downregulated in Gata1‐ 759 

Ery1 cells 760 

D. Phase  plots  of  MURK  genes  identified  along  erythroid  differentiation,  in  E8.5 Gata1‐ 761 

chimera datasets, colored by tdTom status. 762 

 763 

Figure 6. Concept of dual kinetics of gene expression  is also  revealed  in human  foetal  liver 764 

hematopoiesis  765 

A. UMAP  representation  of  human  fetal  liver  erythroid  cell  populations.  The  overlaying 766 

arrows result from applying the scVelo pipeline using all genes (left) or after MURK gene 767 

exclusion  (right).  Bottom  UMAPs  are  colored  by  corresponding  scVelo‐inferred  latent 768 

time.  In  order  to  facilitate  comparison  with  the  mouse  data,  a  new  clustering  was 769 

performed on the erythroid cells, see Methods. MEMP: megakaryocyte‐erythroid‐mast 770 

cell progenitor. 771 

B. Phase plots of representative MURK genes identified in human fetal liver erythropoiesis 772 

single‐cell RNAseq dataset. 773 
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C. GO‐term enrichment of MURK genes identified in human fetal liver erythropoiesis. 774 

 775 

Supplementary Figures  776 

1. Dimensionality reduction with the first three principal components/MOFA factors using 777 

spliced reads alone (left), unspliced reads alone (middle) and both spliced and unspliced 778 

(right). Single‐cell transcriptomes are colored by cell‐type annotation; see Figure 1 for full 779 

legend. 780 

2. Identification  of  MURK  genes  along  yolk  sac  erythropoiesis.  A.  Phase  plots  of 781 

representative  scVelo  driver  genes,  with  scVelo model  prediction  overlayed  (see  also 782 

Supplementary Table 1). B. Distribution of annotated cell type (top) and sampling time‐783 

point (bottom) along scVelo calculated latent time, using all genes (left panels) and after 784 

removing the MURK genes identified in Figure 3B‐C. 785 

3. Pijuan‐Sala et al. (2019) layout highlighting nearest neighbours of Gata1‐ chimeras. In red 786 

are nearest neighbours of tdTom+ mutant cells, in black those of tdTom‐ wildtype cells. 787 

To compare with Figure 1A. 788 

4. Impact of Gata1 knockout on Spi1/PU.1 expression on the hematoendothelial cell types. 789 

X‐axis: Spi1 log2(fold‐change) in Gata1‐ vs WT chimera cells and Atlas nearest neighbours. 790 

Y‐axis: log10(FDR).  791 

 792 

Supplementary Tables 793 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.12.21.423773doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 
 

1. Driver  genes  of  the  scVelo  perdictions  along  erythroid  differentiation,  ranked  by 794 

likelihood in the dynamic model. 795 

2. List of mouse MURK genes identified in Figure 3B‐C, ranked by calculated increase in slope 796 

value. 797 

3. Differential Expression Analysis of Gata1‐ tdTom+ vs WT tdTom‐ chimera cells. For the Mk 798 

subset, given the low numbers of WT chimera cells present, the nearest neighbors from 799 

the reference Atlas dataset were included in the comparison. LFC: log fold change. 800 

4. List of human MURK genes identified in Figure 6, ranked by calculated increase in slope 801 

value. 802 
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