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Abstract 38 

Background 39 

Tumor-specific genomic aberrations are routinely determined by high throughput genomic 40 

measurements. It remains unclear though, how complex genome alterations affect molecular networks 41 

through changing protein levels, and consequently biochemical states of tumor tissues.  42 

Results 43 

Here, we investigated the propagation of genomic effects along the axis of gene expression during 44 

prostate cancer progression. For that, we quantified genomic, transcriptomic and proteomic alterations 45 

based on 105 prostate samples, consisting of benign prostatic hyperplasia regions and malignant tumors, 46 

from 39 prostate cancer patients. Our analysis revealed convergent effects of distinct copy number 47 

alterations impacting on common downstream proteins, which are important for establishing the tumor 48 

phenotype. We devised a network-based approach that integrates perturbations across different 49 

molecular layers, which identified a sub-network consisting of nine genes whose joint activity positively 50 

correlated with increasingly aggressive tumor phenotypes and was predictive of recurrence-free survival. 51 

Further, our data revealed a wide spectrum of intra-patient network effects, ranging from similar to very 52 

distinct alterations on different molecular layers.  53 

Conclusions 54 

This study uncovered molecular networks with remarkably convergent alterations across tumor sites and 55 

patients, but it also exposed a diversity of network effects: we could not identify a single sub-network 56 

that was perturbed in all high-grade tumor regions. 57 

 58 

Keywords: molecular aberrations, network effects, prostate cancer, proteogenomic analysis, tumor 59 
heterogeneity  60 

  61 
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Background 62 

Prostate cancer (PCa) represents one of the most common neoplasms among men with almost 63 

1,300,000 new cases and 360,000 deaths in 2018 1 accounting for 15% of all cancers diagnosed. PCa is 64 

the fifth leading cause of cancer death in men and represents 6.6% of total cancer mortality in men [1]. 65 

Despite earlier detection and new treatments, the lifetime risk to die of PCa has remained stable at 66 

approximately 3% since 1980. (National Cancer Institute SEER data: 67 

https://seer.cancer.gov/statfacts/html/prost.html). In many patients, PCa is indolent and slowly growing. 68 

The challenge is to identify those patients who are unlikely to experience significant progression while 69 

offering radical therapy to those who are at risk. Current risk stratification models are based on 70 

clinicopathological variables including histomorphologically defined grade groups, prostate-specific 71 

antigen (PSA) levels and clinical stage. Although those variables provide important information for 72 

clinical risk assessment and treatment planning [2, 3], they do not sufficiently predict the course of the 73 

disease.  74 

 Extensive genomic profiling efforts have provided important insights into the common genomic 75 

alterations in primary and metastatic PCa [4-9]. Interestingly, PCa genomes show a high frequency of 76 

recurrent large-scale chromosomal rearrangements such as TMPRSS2-ERG [10]. In addition, extensive 77 

copy number alterations (CNAs) are common in PCa, yet point mutations are relatively infrequent in 78 

primary PCa compared to other cancers [6, 11]. A major complicating factor is that around 80% of PCas 79 

are multifocal and harbor multiple spatially and often morphologically distinct tumor foci [12, 13]. 80 

Several recent studies have suggested that the majority of topographically distinct tumor foci appear to 81 

arise independently and show few or no overlap in driver gene alterations [14-16]. Therefore, a given 82 

prostate gland can harbor clonally independent PCas.  83 

 To allow for a more functional assessment of the biochemical state of PCa, it is necessary to go 84 

beyond genomic alterations and comprehensively catalogue cancer specific genomic, transcriptomic and 85 

proteomic alterations in an integrated manner [17-19]. Such an approach will provide critical 86 

information for basic and translational research and could result into clinically relevant markers. While 87 

hundreds of PCa genomes and transcriptomes have been profiled to date [20], little is known about the 88 

PCa proteome. Although recent work has emphasized the need for integrated multi-omics profiling of 89 

PCa, we still lack understanding about how genomic changes impact on mRNA and protein levels [17-19]. 90 

Especially the complex relationship between tumor grade, tumor progression and multi-layered 91 

molecular network changes remains largely elusive. 92 
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For example, previous work has shown that copy number changes may alter transcript levels of 93 

many genes, whereas the respective protein levels remain relatively stable [21]. Indeed, there is 94 

compelling evidence across multiple tumor types that many genomic alterations are ‘buffered’ at the 95 

protein level and are hence mostly clinically inconsequential [22]. To better understand the evolution of 96 

PCa and to identify core networks perturbed by genomic alterations and thus central for the tumor 97 

phenotype, it is therefore essential to investigate the transmission of CNAs to the transcriptomic and 98 

proteomic level.  99 

 To this end, it is important to decipher which genomic alterations impact PCa proteomes, which 100 

of those proteomic alterations are functionally relevant, and how molecular networks are perturbed at 101 

the protein level across tumors. 102 

To address these open questions, we performed a multi-omics profiling of radical prostatectomy 103 

(RP) specimens at the level of the genome, transcriptome and proteome from adjacent biopsy-level 104 

samples, using state-of-the-art technologies. Unique features of this study are (1) the utilization of PCT 105 

(pressure cycling technology)-SWATH (Sequential Window Acquisition of all THeoretical Mass Spectra) 106 

mass spectrometry [23, 24], allowing rapid and reproducible quantification of thousands of proteins 107 

from biopsy-level tissue samples collected in clinical cohorts; (2) the simultaneous profiling of all omics 108 

layers from the same tissue regions; (3) inclusion and full profiling of benign regions, which provides a 109 

matching control for each tumor; and (4) the full multi-omics characterization of multiple tumor regions 110 

from the same patients, thus enabling the detailed investigation of tumor heterogeneity. This design 111 

resulted in the multi-layered analyses of 105 samples from 39 PCa patients, as well as of the exome of 112 

corresponding peripheral blood cells yielding a comprehensive molecular profile for each patient and 113 

identified molecular networks that are commonly altered in multiple patients. Importantly, some of the 114 

affected genes/proteins exhibited very small individual effect sizes, suggesting that combined network 115 

effects of multiple genes may significantly contribute to determining PCa phenotypes. 116 

Results 117 

Proteogenomic analysis of the sample cohort identifies known PCa biomarkers. 118 

 In this study, we analyzed 39 PCa patients (Additional file 1: Fig. S1) belonging to three groups 119 

who underwent laparoscopic robotic-assisted RP. The patients were from the PCa Outcomes Cohort 120 

(ProCOC) study [25, 26]. Tumor areas were graded using the ISUP (International Society of Urological 121 

Pathology) grade groups [27], which range from ISUP grade group G1 (least aggressive) to G5 (most 122 
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aggressive). The more advanced grade groups G4 and G5 were considered jointly (G4/5). The cohort 123 

tested included 12 low-grade (G1), 17 intermediate- (G2 and G3), and 10 high-grade (G4/5) patients (Fig. 124 

1a, Additional file 1: Fig. S1, Additional file 2: Table S1). For low-grade PCa patients, we selected two 125 

representative regions, one of benign prostatic hyperplasia (BPH) and one of malignant tumor (TA). Since 126 

PCa often presents as a multifocal disease with heterogeneous grading within each prostate specimen 127 

[24] we analyzed two different tumor regions from the 27 intermediate- and high-grade patients. In 128 

those cases three representative regions, including BPH, the most aggressive tumor (TA1) and a 129 

secondary, lower-grade tumor (TA2) [2] were analyzed. Thus, TA1 always represented the higher-grade 130 

nodule compared to TA2. Note, whereas each patient was assigned a patient-specific overall grade (i.e. 131 

‘low’, ‘intermediate’ or ‘high’), each tumor area was additionally assigned an individual grade group 132 

based on its histological appearance. According to current ISUP guidelines, the grading of the entire 133 

prostate specimen depends on the size and grade of individual nodules [28]. Thus, it is possible that the 134 

patient grading is lower than the grading of the most aggressive nodule, if another lower-grade nodule is 135 

larger. Tumor regions contained at least 70% tumor cellularity and the distance between the analyzed 136 

areas (TA1 versus TA2) was at least 5 mm. Altogether, we obtained 105 prostate tissue specimens 137 

(Additional file 2: Table S1). Three adjacent tissue biopsies of the dimensions 0.6 x 0.6 x 3.0 mm were 138 

punched from each representative region for exome sequencing, CNA (derived from the exome 139 

sequencing data), RNA sequencing (RNA-seq), and quantitative proteomic analysis using the PCT-SWATH 140 

technology [23] respectively. Proteomic analysis was performed in duplicates for each tissue sample. 141 

Peripheral blood samples from each patient were also subjected to exome sequencing and served as the 142 

genomic wild-type reference (Fig. 1). All three types of grading (i.e. patient-specific overall grading, TA1 143 

grading and TA2 grading) were predictive of the recurrence-free survival (RFS) in our study. 144 

In agreement with prior reports, we observed relatively few recurrent point mutations across 145 

patients (Additional file 1: Fig. S2, Additional file 3: Table S2), but substantial CNAs (Additional file 1: 146 

Figs. S3 and S4, Additional file 4: Table S3). Mutations in SPOP, FOXA1, and MED12 reported in 147 

independent cohorts [4-9] were confirmed in this cohort. In total, 1,110 genes showed copy number 148 

gains in at least five samples or copy number losses in at least five samples (see Additional file 1: 149 

Supplementary Text for details). Additional file 1: Fig. S4 shows the CNA status of signature genes 150 

representing known areas of recurrent CNAs in PCa- split into fusion-partner and non-fusion-partner 151 

genes- for instance loss of PTEN and gain of MYC in high-grade PCa [29]. Likewise, our data confirmed 152 

the differential expression of several transcripts/proteins that had previously been suggested as PCa 153 

biomarkers or which are known oncogenes in other tumor types (Additional file 1: Supplementary Text 154 
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and Fig. S5, Additional file 5: Table S4 and Additional file 6: Table S5). We further identified somatic 155 

fusions from the RNA-seq data. A large fraction of the tumors harbored ETS family gene fusions, which 156 

are frequently detected in PCa [8, 9, 11]. ETS fusions were mutually exclusive and appeared in tumors 157 

from all grade groups (Additional file 1: Fig. S6; Additional file 5: Table S4). This consistency with 158 

previously published results confirmed the quality of our data and motivated us to go beyond previous 159 

work by performing a network-based multi-omics multi-gene analysis. 160 

Molecular perturbations correlate with tumor grade. 161 

 Mutational burden is associated with PCa risk [8, 9, 11]. Hence, as a first step towards a cross-162 

layer analysis, we asked if high-grade PCa would generally be affected by stronger alterations (compared 163 

to low-grade PCa) at the genome, transcriptome, and proteome layer [30]. For that purpose, we devised 164 

molecular perturbation scores that quantified the number of affected genes/proteins and the extent to 165 

which these genes/proteins were altered in the tumor specimens compared to their benign controls (see 166 

the ‘Methods’ section for details). In the case of the DNA layer these scores carry a similar meaning as 167 

established mutational burden scores. However, we wanted to capture effects at all three molecular 168 

layers measured in this study. Higher-grade tumors (G3 and G4/5) exhibited significantly higher 169 

molecular perturbation scores than lower-grade tumors (G1 and G2). Those differences were statistically 170 

significant in all but one case (P value < 0.05, one-sided Wilcoxon rank sum test, Fig. 2). The CNA 171 

perturbation magnitude exhibited the highest correlation with the PCa grading, confirming prior studies 172 

documenting the tight association between CNA, histopathological grade and risk of progression [4, 5, 173 

31]. Further, we found that mRNA fold changes (FCs) correlated more strongly with CNAs of the same 174 

genes than protein FCs (average CNA-mRNA Spearman � = 0.1 and average CNA-protein Spearman � = 175 

0.02). This observation is in agreement with previous work, which suggested that copy number changes 176 

are to some extent buffered at the protein level [17, 21, 32]. Interestingly, we observed that proteins 177 

known to be part of protein complexes were significantly less strongly correlated with the FCs of their 178 

coding mRNAs than proteins not known to be part of protein complexes (P value < 2.6e-11, one-sided t-179 

test, Additional file 1: Fig. S7). This result is consistent with the concept that protein complex 180 

stoichiometry contributes to the buffering of mRNA changes at the level of proteins [21, 22, 33-35]. Thus, 181 

molecular patterns in high-grade PCa are more strongly perturbed at all layers and the effects of 182 

genomic variation are progressively but non-uniformly attenuated along the axis of gene expression.  183 
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Effects of distinct CNAs converge on common proteins. 184 

 It has previously been suggested that mutations affecting different genes could impact common 185 

molecular networks if the respective gene products interact at the molecular level [36]. However, 186 

previous analyses were mostly restricted to individual molecular layers. For example, it was shown that 187 

genes mutated in different patients often cluster together in molecular interaction networks [36]. Yet, 188 

effects of these mutations on transcript and protein levels remained unexplored in this case.  189 

Previous work of Sinha and colleagues already suggested extensive trans-effects of CNAs on 190 

mRNA and protein levels [17]. Thus, here we aimed to systematically explore how different CNA events 191 

would impact on the level of one common protein. In order to prioritize potentially interesting proteins 192 

for such an analysis, we focused on the 20 proteins with the largest average absolute FCs across all 193 

tumor specimens (Additional file 1: Fig. S8, Additional file 7: Table S6). Thus, these proteins represent a 194 

set of proteins that was strongly affected across most tumors independent of tumor grade. Among them 195 

was PSA (KLK3), and several other well established PCa-associated proteins like AGR2 [37], MDH2 [38], 196 

MFAP4 [39] and FABP5 [40]. RABL3 was one of the most strongly down-regulated proteins, which is a 197 

surprising finding as RABL3 is known to be up-regulated in other solid tumors [41, 42]. Interestingly, in 198 

most cases these proteins were from loci that were not subject to CNAs (Additional file 1: Fig. S8, 199 

Additional file 7: Table S6), hinting that independent genomic events would impact on these target 200 

proteins via network effects in trans. 201 

Among those top targets we selected AGR2, ACPP, POSTN and LGALS3BP for further analysis (Fig. 202 

3a), because these proteins/genes had correlated protein- and mRNA FCs; thus, protein level changes 203 

were likely caused by cognate mRNA level changes. To identify potential regulators for each target gene, 204 

we used the STRING gene interaction network [43] and selected putative effectors at most one edge 205 

away from the target genes. Further, we required that neighbors or the target itself were subject to 206 

CNAs in at least four tumor samples (‘Methods’ section). By including the target itself we account for 207 

potential CNA cis-effects. However, only POSTN passed that filter. This filtering identified 13 neighbors of 208 

ACPP, 28 neighbors of POSTN (and POSTN itself), 14 neighbors of LGALS3BP and one neighbor for AGR2, 209 

which was not further considered. Next, we correlated CNAs of those neighbor genes with the mRNA FCs 210 

of the respective target genes (Fig. 3b). We then used the non-neighboring genes (i.e. the network 211 

complement) to generate a background distribution of CNA-target correlations specifically for each 212 

target. Here, we also only considered genes with at least four CNAs across the tumor samples. Since 213 

STRING reports predicted functional associations between genes we expected only a minority of the 214 

neighbors to actually correlate with their putative targets. Further note that edges in STRING could 215 
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represent indirect gene-gene relationships. Yet, in the case of ACPP we found that CNA levels of its 13 216 

neighbors were on average more strongly correlated with ACPP mRNA FCs than the complement (Fig. 217 

3b). This observation does not preclude the possibility that also some of the POSTN and LGALS3BP 218 

neighbors impacted on their mRNA levels in trans. However, the fact that ACPP neighbors were on 219 

average more strongly correlated with ACPP mRNA FCs, suggested to us that multiple of its network 220 

neighbors might be involved in tumorigenic down-regulation of ACPP. 221 

ACPP, which is also known as ACP3 or PAcP, is a prostate-specific acid phosphatase with a critical 222 

role in PCa etiology and has been suggested as a PCa biomarker long before PSA [44]. ACP3 is known to 223 

inhibit cell proliferation and is therefore typically down-regulated in PCa [45], despite elevated ACP3 224 

protein levels in patient blood [44]. In our cohort ACP3 levels were strongly down-regulated in all of the 225 

high-grade patients and in the vast majority of low- and intermediate-grade patients, suggesting that 226 

ACP3 down-regulation represents an early event during PCa evolution. Despite its established role in PCa, 227 

little is known about the oncogenic driver events down-regulating ACP3 [44].  228 

We speculated that CNA events affecting different ACPP neighbors might be in operation in 229 

different tumor specimens. Thus, to further narrow the list of candidates we devised a multi-dimensional 230 

regression approach modeling the combined CNA effects of neighbors on ACPP mRNA FCs (‘Methods’ 231 

section). Five neighbors (DGUOK, APRT, GOT1L1, NKX3-1 and ENTPD4) had statistically significant effects 232 

in that multi-dimensional model (Fig. 3c). We utilized two independent PCa cohorts (TCGA; [8] and 233 

MSKCC [31]) to validate potential effects of those five genes: we computed the association between the 234 

CNAs of each significant regulator and the corresponding mRNA log-FC of ACPP in each cohort and 235 

confirmed that the signs of the effects (i.e. effect directions) were the same for all five genes in all 236 

cohorts. Among those hits was NKX3-1, which is a prostate-specific tumor suppressor gene and loss of a 237 

single allele may predispose to prostate carcinogenesis [46, 47]. NKX3-1 is a transcription factor found to 238 

have substantial trans-effects in PCa [17]. Consistent with its potential role as an ACPP regulator, NKX3-1 239 

has been found to bind within 1 kb of the transcription start site of ACPP ([48]; GEO GSE40269). 240 

Interestingly, the CNA signatures of the five putative regulators split into two clusters affecting two 241 

distinct sets of patients (Fig. 3c): the first one harboring joint deletions of DGUOK and APRT, the second 242 

one harboring joint deletions of NKX3-1, ENTPD4 and GOT1L1. The latter three genes are all encoded on 243 

Chromosome 8 and thus, their deletion may be due to single CNA events. DGUOK and APRT however, 244 

are encoded on different chromosomes. Importantly, these events were clonal in most cases, i.e. they 245 

were mostly common to both tumor samples of a given patient. Hence, our network analysis hints that 246 

distinct deletions in the network vicinity of ACP3 can lead to the repression of this anti-proliferative 247 
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protein. Taken together, these findings suggest that tumor mechanisms in different patients converged 248 

on common protein endpoints.  249 

Joint network effects of CNAs drive tumor progression. 250 

The analysis above identified molecular networks driving tumor alterations and thus indicated 251 

altered biochemical states that were common to most tumor specimens. To identify sub-networks that 252 

specifically distinguish high-grade from low-grade tumors, we performed a distinct network analysis: we 253 

mapped our data onto the STRING gene interaction network [43], and employed network propagation 254 

[49, 50] separately to the CNA, transcriptome and proteome data for each of the tumor samples. We 255 

excluded point mutations from this analysis as their frequency was too low in our cohort. By combining 256 

published molecular interactome data with a network propagation algorithm [36, 49], we aimed to 257 

‘enrich’ network regions with many perturbed genes/proteins. We reasoned that the convergent 258 

consequences of genomic variants on common network regions would be indicative of specific 259 

biochemical functions that are important for the tumor biology. We therefore identified genes/proteins 260 

in network regions that showed a higher score (or a lower score) in high-grade (G4/5) relative to lower-261 

grade (G1) tumor groups at all three levels (Fig. 4a, b; ‘Methods’ section). This analysis identified sub-262 

networks consisting of over- and under-expressed genes (relative to the benign controls). We found 57 263 

amplified genes (Additional file 7: Table S6) for which transcripts and proteins were often over-264 

expressed in high-grade PCa (Fig. 4a) and 21 genes with copy number loss (Additional file 7: Table S6) 265 

for which transcripts and proteins were often down-regulated compared to lower-grade tumors (Fig. 4b).  266 

Among the up-regulated network nodes, we observed genes modulating the stability of 267 

chromatin, such as chromatin-binding protein Chromobox 1 (CBX1) [51], SET Domain Bifurcated 1 268 

(SETDB1) [52], a function linking to H3K27me3 and H3K9me3 in chromatin, and CBX3 (known as HP1-γ) 269 

[53]. SETDB1 is an oncogene in melanoma [54] and has also been found to be over-expressed in PCa and 270 

cell lines [55]. Further, we found genes involved in DNA damage repair, such as SMG7 [56] and ATR [57], 271 

and PRKCZ [58], which had already been suggested as a biomarker prognostic for survival in PCa [59]. 272 

Multiple actin related proteins including ARPC1B [60], ARPC5 [61], ACTL6A [62], and CFL1 [63], which are 273 

markers for aggressive cancers, were part of the up-regulated network nodes. Moreover, the up-274 

regulated genes contained proteins related to the cell cycle like BANF1 and proteins interacting with the 275 

centrosome including LAMTOR1 and RAB7A that had already been associated with PCa [64]. Finally, 276 

several signaling molecules with known roles in PCa were up-regulated, such as the transcription factor 277 

Yin Yang 1 (YY1) [65], the TGF-β receptor TGFBR1 [66], and KPNA4, which promotes metastasis through 278 
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activation of NF-κB and Notch signaling [67]. Thus, up-regulated network nodes are involved in 279 

DNA/chromatin integrity and growth control. 280 

 Likewise, several of the down-regulated genes had functions associated with PCa. For example, 281 

the oxidative stress related gene MGST1, which is recurrently deleted in PCa [68]. ALDH1A3 is a direct 282 

androgen-responsive gene, which encodes NAD-dependent aldehyde dehydrogenase [69]. DHCR24 is 283 

involved in cholesterol biosynthesis and regulated by the androgen receptor [70]. Polymorphisms in 284 

CYP1A1 are associated with PCa risk in several meta-analyses among different ethnicities [71-73]. 285 

Further, our network analysis is suggesting tumor mechanisms converging on genes that are 286 

known contributors to PCa tumor biology. For example, the PCa-associated gene SF3B2 [74, 75] was only 287 

weakly amplified in some of the high-grade tumors (average log2FC = 0.016) and mRNA levels showed 288 

similarly small changes (average log2FC = 0.024). On the other hand, the SF3B2 protein levels were 289 

consistently and more strongly up-regulated across tumors (average log2FC = 0.31), especially within the 290 

high-grade tumors (Additional file 1: Fig. S9). Another example is UBE2T whose over-expression is 291 

known to be associated with PCa [76]. Unfortunately, we could not quantify the corresponding protein 292 

levels. However, we observed a strong and consistent mRNA over-expression across several tumors 293 

(average log2FC = 0.73), even though at the DNA level the gene was only weakly amplified (average 294 

log2FC = 0.023; Additional file 1: Fig. S9). Our findings of more heterogeneous CNAs, but more uniform 295 

mRNA and protein alterations point on convergent evolutionary mechanisms, as we move along the axis 296 

of gene expression.  297 

 Next, we analyzed the largest connected component with genes up-regulated in advanced 298 

disease in more detail (see the ‘Methods’ section). It consists of the nine nodes EMD, BANF1, ACTL6A, 299 

YY1, RUVBL1, KANSL1, MRGBP, VPS72 and ZNHIT1 (Fig. 4a), and is referred to in the following as 300 

Network Component 1 (Additional file 7: Table S6). Seven of these proteins are involved in chromosome 301 

organization which may induce genomic alterations and influence the outcome of multiple cancers 302 

including PCa [77]. For example, the actin-related protein ACTL6A is a member of the SWI/SNF (BAF) 303 

chromatin remodeling complex[78], and a known oncogene and a prognostic biomarker for PCa [79]. 304 

Further, ACTL6A, RUVBL1 and MRGBP are together part of the NuA4/Tip60-HAT complex, which is 305 

another chromatin remodeling complex involved in DNA repair [80]. Likewise, KANSL1 is involved in 306 

histone post-translation modifications, while VPS72 is a member of histone- and chromatin remodeling 307 

complexes [81]. Thus, Network Component 1 consists of genes involved in chromatin remodeling and 308 

DNA repair, many of which are known to be involved in cancers. 309 
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Several samples were characterized by a small, but consistent DNA amplification of multiple 310 

members of Network Component 1 (Fig. 4c). Out of the 66 tumor samples, there were 30 samples – 311 

belonging to all grade groups – with a weak but remarkably consistent DNA amplification of Network 312 

Component 1 members, while the high-grade samples had stronger amplifications on average (i.e. larger 313 

effect sizes). Importantly, gene members of Network Component 1 were dispersed across eight 314 

chromosomes (Additional file 7: Table S6). The parallel DNA amplification of these genes is therefore 315 

the result of multiple independent CNA events, while the signal on any single gene alone was too weak 316 

to be significant in isolation. Further, members of Network Component 1 were consistently amplified in 317 

both tumor areas (i.e. TA1 and TA2) of six patients (H2, H4, H5, H6, H8, and H9; Fig. 4c), thus establishing 318 

them as likely clonal events. In some but not all cases, the amplifications led to a small, but consistent 319 

increase in mRNA expression of the amplified gene loci (Fig. 4c). We were able to reconcile 40 tumor 320 

samples with a significant enrichment of this network component in either the CNA or mRNA layer. 321 

Unfortunately, only three out of the nine proteins were detected in our proteomics experiments (Fig. 4c). 322 

Interestingly, patients where the DNA amplifications led to transcript over-expression were almost 323 

always high-grade patients, whereas patients where the amplification affected gene expression to a 324 

smaller extent were low- or intermediate-grade patients (Fig. 4c). Further, we noticed that TA2 samples 325 

graded as G3 from high-grade patients carried amplifications of Network Component 1, whereas tumor 326 

areas graded as G3 from intermediate-grade patients did not have amplifications of this network 327 

component (Fig. 4c). Thus, although the tumor areas were histologically equally classified, tumor areas 328 

from high-grade patients carried a CNA signature and expression patterns reminiscent of the high-grade 329 

areas from the same patients. Therefore, within the cohort tested the joint DNA amplification of this 330 

network component along with RNA up-regulation is a signature of high-grade tumors. Curiously, the 331 

higher-grade tumor areas of those high-grades patients (TA1) carried stronger DNA amplifications than 332 

the respective lower-grade areas (TA2), which implies that the progressive amplification of Network 333 

Component 1 during tumor evolution may contribute to an increasingly aggressive phenotype. To 334 

further corroborate the clinical relevance of this network perturbation, we analyzed published datasets 335 

of three additional PCa cohorts (TCGA[8], MSKCC [31], and Aarhus [82]), together comprising a total of 336 

709 patients with known clinical outcome. We found that amplification of genes from Network 337 

Component 1 was a significant predictor of reduced RFS in the MSKCC cohort (P value = 8.8e-3, log-rank 338 

test). In the TCGA cohort, we observed the same trend although the difference in RFS was not 339 

statistically significant (P value = 0.17; Fig. 4d). Additionally, we found that over-expression of genes 340 

from Network Component 1 was a significant predictor of reduced RFS in the TCGA cohort (P value = 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.02.16.950378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.16.950378
http://creativecommons.org/licenses/by-nc-nd/4.0/


Network effects in prostate cancer          Page  12 / 38 

 

2.1e-4, log-rank test), which was the cohort with the largest number of patients. In the other two 342 

cohorts we observed the same trend, although the difference in RFS was not statistically significant (P 343 

value = 0.30 and 0.093 for MSKCC, and Aarhus; Fig. 4d). Thus, both CNA and RNA changes of Network 344 

Component 1 are predictive of the time to relapse in independent cohorts. To also account for 345 

covariates, we fitted Cox proportional-hazards models with the age and the copy number burden as 346 

(additional) covariates. When including only the age in our model, the results showed minor changes 347 

(Fig. 4d). When including both the age and the copy number burden in our model, the effect direction of 348 

Network Component 1 remained the same but was not statistically significant anymore (P value = 0.055 349 

for TCGA, mRNA and P value = 0.064 for MSKCC, CNA).  350 

In conclusion, our findings suggest that relatively weak but broad CNAs of entire network 351 

components are associated with high-grade tumors and that the presence of some of these 352 

perturbations in lower-grade tumors may be predictive of the future development of a more aggressive 353 

phenotype. 354 

Analysis of distinct tumor nodules defines intra-patient heterogeneity (TA1 versus 355 

TA2 comparison). 356 

 The CNA patterns (Additional file 1: Fig. S4) and the Network Component 1 analysis (Fig. 4c) 357 

suggest that different tumor areas from the same patient shared several mutations. Such common 358 

signatures are expected if different tumor nodules originate from a common clone. If this was true, we 359 

would expect mutational signatures to be more similar between different nodules from the same patient 360 

than between patients, even though mutated genes may be shared across patients. To compare the 361 

intra- and inter-patient molecular heterogeneity at the levels of CNAs, transcript, and protein FCs, we 362 

computed the Pearson correlation between tumor area 1 (TA1) and its paired tumor area 2 (TA2) for 363 

each layer and all of the 27 patients with two characterized tumor areas (25 for the mRNA, see the 364 

‘Methods’ section and Additional file 1: Supplementary Text). As a control, we also computed all 365 

pairwise Pearson correlations between the samples within each of the grade groups (i.e. inter-patient 366 

correlation). As expected, paired TA1 and TA2 from the same patient were on average more strongly 367 

correlated to each other compared to samples from different patients within the same grade group. This 368 

finding was consistent for all omics layers (Fig. 5a), and was more pronounced at the CNA and mRNA 369 

layers compared to the protein layer. 370 

 Next, we tested whether a high correlation at the level of CNAs also implies a high correlation at 371 

the level of mRNA and proteins. We tested this idea by ‘correlating the correlations’, i.e. we correlated 372 
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the TA1-TA2 correlation of CNA profiles with the correlation between the mRNA and protein profiles of 373 

the same tumor areas (Fig. 5b). Indeed, a higher correlation of two tumor areas at the level of CNA 374 

correlated significantly with a higher correlation at the level of mRNA (r=0.49, P value=0.014). In other 375 

words, knowing how similar two tumor areas of a patient are at the CNA level supports a prediction of 376 

their similarity at the mRNA level (and conversely). Although the correlation between protein and CNA 377 

was not statistically significant, it followed the same trend (r=0.35, P value=0.076).  378 

 Comparing molecular similarity across omics layers allowed us to identify specific types of 379 

patients. The patients H2, H4, M13 had highly correlated tumor areas at all three layers (upper right 380 

corner in all scatterplots of Fig. 5b). Likely, the tumor areas of these patients have a common clonal 381 

origin (Additional file 1: Fig. S3). In contrast, patients M12 and M14 had weakly correlated tumor areas 382 

at all levels (bottom left corner in all scatterplots of Fig. 5b). These tumor nodules either have 383 

independent clonal origins or they diverged at an earlier stage during tumor evolution (Additional file 1: 384 

Fig. S3) [16]. For example, in the case of patient M12 large parts of the genome were not affected by 385 

CNAs in the benign sample as well as in TA1 and TA2. However, as shown on Additional file 1: Fig. S3, a 386 

large region was amplified in TA1, whereas the same region was deleted in TA2. This is consistent with a 387 

scenario in which TA1 and TA2 show parallel evolution. A third class of patients is exemplified by the 388 

patients M9 and M17, who showed a high correlation between their tumor areas on the CNA and mRNA 389 

levels, but not on the protein level. Yet other patterns were apparent in patients M4, M7, and H10. They 390 

showed similar mRNA and protein patterns in the two tumor areas, but relatively uncorrelated CNAs. 391 

The results here apply to global proteome patterns and therefore hint that such convergent network 392 

effects of CNAs can be frequent. We confirmed that protein-level similarity correlated with similar 393 

histological characteristics of the tumor areas. Additional file 1: Fig. S10 shows formalin-fixed paraffin-394 

embedded (FFPE) tissue microarray images (duplicates) from the analyzed tumor nodules (TA1 and TA2, 395 

diameter 0.6 mm), further underlining the hypothesis that ultimately protein-level alterations are 396 

responsible for common cellular phenotypes. Although we cannot fully exclude the possibility that some 397 

of these results were affected by technical noise in the data, our findings suggest that transcript 398 

alterations can frequently be buffered at the level of proteins (patients M9, M17, Additional file 1: Fig. 399 

S7) and that convergent evolutionary processes may lead to the alteration of common proteins (patients 400 

M4, M7, H10). We also note that our findings are specific to the two tumor areas available in this study 401 

and could be different if other nodules had been sampled for each of the patients. However, our findings 402 

on patients with weakly correlated tumor areas at all levels like M12 and M14 suggest that these 403 

patients might carry more than one disease [16].  404 
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Discussion 405 

 Despite twenty years of oncological research involving genome-scale (omics) technologies, we 406 

know remarkably little about how the discovered genomic alterations affect the biochemical state of a 407 

cell and consequently the disease phenotype. In particular, little is known about how genomic 408 

alterations propagate along the axis of gene expression [17, 18]. Here, we have exploited recent 409 

technological advances in data acquisition that made it possible to characterize small samples of the 410 

same tumor specimens at the level of genomes, transcriptomes, and proteomes and advances in 411 

computational strategies towards the network-based integration of multi-omics data. 412 

In our study, samples were generated from small, less than 1 mm diameter punches in 413 

immediate spatial proximity in the tumor and subsequently profiled at all three ‘omics layers’ (DNA, RNA, 414 

proteome). Due to the large spatial heterogeneity of PCa [14, 24], this design - which is so far uncommon 415 

for studies profiling multiple layers from tumor specimens - was instrumental for increasing the 416 

comparability of the various omics layers and thus facilitated the analysis of molecular mechanisms. Our 417 

key findings are: (1) we confirmed the importance of CNAs for PCa biology and the alteration of many 418 

known PCa-associated genes at the transcript- and protein-level; (2) we revealed a generally elevated 419 

molecular alteration of high-grade tumors compared to lower-grade tumors; (3) although our study 420 

confirmed large within- and between-patient genomic heterogeneity, (4) we detected molecular 421 

networks that were commonly altered at the mRNA and protein-level. The fact that many of those target 422 

molecules are known drivers of PCa tumorigenesis, supports the notion that these proteins/transcripts 423 

are subject to convergent evolutionary mechanisms. 424 

We integrated the three omics layers using a network-based approach as opposed to directly 425 

comparing gene perturbations (mutations) to gene products (transcripts and proteins). Using genome 426 

data only, it had previously been hypothesized that whereas the identity of specific mutated genes may 427 

differ between tumors, those mutations might still affect common molecular networks [36]. In other 428 

words, tumor phenotypes are determined by the perturbation of molecular networks and not by the 429 

perturbation of isolated genes. Our study provides experimental evidence that such network effects are 430 

indeed propagated to subsequent molecular layers and that this effect propagation may be clinically 431 

relevant. A very prominent example is the indication derived from our data that the long-known PCa 432 

gene ACPP (ACP3) is downregulated through diverse CNA events. Of particular interest is the potential 433 

role of NKX3-1 in ACP3 downregulation. Although both genes have a well-established PCa association 434 

their regulatory relationship had not been reported so far (to our knowledge). 435 
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 Our multi-omics network analysis revealed molecular sub-networks that distinguished high-436 

grade PCa tumors from low-grade tumors. Specifically, our analysis led to the identification of Network 437 

Component 1, a sub-network involved in chromatin remodeling and consisting of genes that were 438 

weakly amplified in intermediate-grade (G3) tumor specimens. Signals of individual gene members of 439 

this component were virtually indistinguishable from noise in our cohort. However, their consistent 440 

alterations across the network region, across molecular layers and the fact that the same genes showed 441 

enhanced signals in high-grade specimens, rendered this component highly interesting. The fact that 442 

copy number and expression changes of Network Component 1 members were predictive for survival in 443 

independent cohorts further supports the potential clinical relevance of this sub-network. Amplification 444 

of Network Component 1 was to some extent confounded with overall CNA burden (r=0.58 (TCGA, CNA), 445 

r=0.55 (TCGA, mRNA), r=0.34 (MSKCC, CNA), r=0.16 (MSKCC, mRNA)). However, the amplifications of 446 

Network Component 1 members were highly correlated and on average above the background of CNAs. 447 

Thus, the coordinated amplification of Network Component 1 does not simply mirror overall CNA burden. 448 

Our network-based cross-omics analysis identified nine other network components (Fig. 4) successfully 449 

capturing several known and potentially new PCa-associated genes. However, neither Network 450 

Component 1 nor any of the other network components was uniformly subject to CNAs across all high-451 

grade patients. Instead, we found different network components modified in different patients and 452 

these sub-networks were involved in cellular processes as diverse as actin remodeling, DNA damage 453 

response, and metabolic functions, all of which are known contributors to PCa biology. This further 454 

underlines the large inter-patient variability of PCa and it demonstrates the diversity of molecular 455 

mechanisms leading to histologically similar phenotypes. Future prediction models of PCa including the 456 

ISUP grade groups, PSA levels and clinical stage might be improved by exploiting multi-omics network 457 

analyses. Detecting aggressive networks alterations in prostate biopsies would help clinicians to advice 458 

either active surveillance or active therapy. However, the development of such multi-dimensional 459 

biomarkers would require much larger patient cohorts. 460 

 Another distinguishing feature of this study was the simultaneous profiling of two different 461 

tumor regions in 27 out of the 39 patients. The profiling of multiple tumor regions from the same 462 

prostate helped to further highlight the enormous heterogeneity of PCa within patients and provided 463 

important insights into PCa evolution. The fact that Network Component 1 was more strongly affected in 464 

the paired higher-grade nodules of high-grade patients suggests that at least certain sub-networks are 465 

subject to an evolutionary process, that progressively ‘moves’ protein levels towards a more aggressive 466 

state. Generally, and at all molecular layers tested, the two paired tumor areas were more similar to 467 
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each other compared to two samples from the same grade group but different patients, suggesting 468 

common evolutionary origins. Although the two tumor areas seemed to mostly originate from the same 469 

clone, this was not always the case. In some patients, different nodules exhibited different molecular 470 

patterns at all omics layers, suggesting early evolutionary separation. Thus, for the first time, current 471 

diagnostic, expert-level consensus guidelines [28] are supported by detailed proteogenomic data. Our 472 

findings support earlier claims that clonality itself might be a prognostic marker with implications for 473 

future, more tumor-specific treatment when targeted therapies become available also for PCa [16, 83]. 474 

Our study shows that all three molecular layers (genome, transcriptome and proteome) 475 

contributed valuable information for understanding the biology of PCa. In particular the DNA layer 476 

informed about causal events, clonality, and genomic similarity between tumors. The transcriptome was 477 

relevant for understanding the transmission of CNA effects to proteins and served as a surrogate in cases 478 

where protein levels remained undetected. The proteome was crucial for revealing protein-level 479 

buffering of CNA effects as well as for indicating convergent evolution on functional endpoints. In a 480 

routine diagnostic context though, measuring all three layers may not be feasible for the near future due 481 

to resource and time limitations. Thus, the identification of improved, routine-usable molecular markers 482 

for PCa diagnostics and prognosis remains an open problem [17]. 483 

Conclusions 484 

This study uncovered molecular networks with remarkably convergent alterations across tumor 485 

sites and patients. In particular, we identified a sub-network consisting of nine genes whose joint activity 486 

positively correlated with increasingly aggressive tumor phenotypes. The fact that this sub-network was 487 

predictive for survival in independent cohorts further supports its potential clinical relevance. At the 488 

same time though, our study also exposed a diversity of network effects: we could not identify a single 489 

sub-network that was perturbed in all high-grade tumor regions, let alone the observed distinct intra-490 

patient alterations at all omics layers for some patients. Overall, our study has significantly expanded our 491 

understanding of PCa biology and serves as a model for future work aiming to explore network effects of 492 

mutations with an integrated multi-omics approach. 493 

  494 
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Methods 495 

Patients and samples 496 

 A total of 39 men with localized PCa who were scheduled for RP were selected from a cohort of 497 

1,200 patients within the ProCOC study and processed at the Department of Pathology and Molecular 498 

Pathology, University Hospital Zurich, Switzerland [25]. Each of the selected intermediate- and high-499 

grade patients had two different tumor nodules with different ISUP grade groups. H&E (Hematoxylin and 500 

Eosin)-stained fresh frozen tissue sections of 105 selected BPH and tumor regions were evaluated by two 501 

experienced pathologists (PJW, NJR) to assign malignancy, tumor stage, and Grade Group according to 502 

the International Union Against Cancer (UICC) and WHO/ISUP criteria. This study was approved by the 503 

Cantonal Ethics Committee of Zurich (KEK-ZH-No. 2008-0040), the associated methods were carried out 504 

in accordance with the approved guidelines, and each patient has signed an informed consent form. 505 

Patients were followed up on a regular basis (every three months in the first year and at least annually 506 

thereafter) or on an individual basis depending on the disease course in the following years. The RFS was 507 

calculated with a biochemical recurrence (BCR) defined as a PSA ≥0.1 ng/ml. Patients were censored if 508 

lost to follow-up or event-free at their most recent clinic visit. Patients with a postoperative PSA 509 

persistence or without distinct follow-up data for the endpoint BCR were excluded from the analysis of 510 

BCR.  511 

Exome sequencing and somatic variant analysis 512 

 The exome sequencing (exome-seq) was performed using the Agilent Sure Select Exome 513 

platform for library construction and Illumina HiSeq 2500 for sequencing read generation. We mapped 514 

and processed the reads using a pipeline based on bowtie2 [84] (1.1.1) and the Genome Analysis Tools 515 

Kit (GATK) [85] (3.2-2). We detected and reported nonsynonymous variants or variants causing splicing 516 

changes using Strelka (1.0.14) and Mutect (1.1.7) combined with post-processing by the CLC Genomics 517 

Workbench (8.0.3). In this process, all tissue samples of a patient were compared to the respective blood 518 

sample. 519 

Trimmomatic [86] (0.36) was used for adaptor clipping and low-quality subsequence trimming of 520 

the FASTQ files. Subsequently, single reads were aligned to the hg19 reference genome with bowtie2 521 

with options “--very-sensitive -k 20”. We applied samtools [87] (0.1.19) and picard-tools (1.119) to sort 522 

the resulting bam files in coordinate order, merge different lanes, filter out all non-primary alignments, 523 
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and remove PCR duplicates. Quality of the runs was checked using a combination of BEDtools [88] (2.21), 524 

samtools, R (3.1) and FastQC (0.11.2). 525 

Bam files containing the mapped reads were preprocessed in the following way: indel 526 

information was used to realign individual reads using the RealignerTargetCreator and IndelRealigner 527 

option of the GATK. Mate-pair information between mates was verified and fixed using Picard tools and 528 

single bases were recalibrated using GATK’s BaseRecalibrator. After preprocessing, variant calling was 529 

carried out by comparing benign or tumor prostate tissue samples with matched blood samples using 530 

the programs MuTect [89] and Strelka [90] independently. Somatic variants that were only detected by 531 

one of the two programs were filtered out using CLC Genomics Workbench. So were those that had an 532 

entry in the dbSNP [91] common database and those that represented synonymous variants without 533 

predicted effects on splicing. 534 

CNA analysis of exome-seq data 535 

 The Bam files generated during the process of somatic variant calling were processed with the 536 

CopywriteR package (v.2.2.0) for the R software [92]. CopywriteR makes use of so-called “off-target” 537 

reads, i.e. reads that cover areas outside of the exon amplicons. “Off-target” reads are produced due to 538 

inefficient enrichment strategies. In our case on average 28.5% of the total reads were not on target. 539 

Briefly, CopywriteR removes low quality and anomalous read pairs, then peaks are called in the 540 

respective blood reference, and all reads in this region are discarded. After mapping the reads into bins, 541 

those peak regions, in which reads had been removed, were compensated for. Additionally, read counts 542 

are corrected based on mappability and GC-content. Finally, a circular binary segmentation is carried out 543 

and for each segment the log count ratios between tissue samples and the respective blood sample are 544 

reported as copy number gain or loss. The copy number of each gene in each sample was reported 545 

based on the log count ratio of the respective segment in which the gene was located.  The overall 546 

performance of this CNA-calling approach was evaluated by comparing the results of the TA1 (and TA) 547 

samples with CNA results obtained by applying the OncoScan Microarray pipeline to FFPE samples from 548 

the same tumors (Additional file 1: Fig. S11). 549 

OncoScan Microarrays 550 

 OncoScan copy number assays were carried out and analyzed as described previously [93]. 551 

Briefly, DNA was extracted from punches of FFPE cancer tissue blocks. Locus-specific molecular inversion 552 

probes were hybridized to complementary DNA and gaps were filled in a nucleotide-specific manner. 553 
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After amplification and cleavage of the probes, the probes were hybridized to the OncoScan assay 554 

arrays. Scanning the fluorescence intensity and subsequent data processing using the Affymetrix® 555 

GeneChip® Command Console and BioDiscovery Nexus express resulted in log intensity ratio data 556 

(sample versus Affymetrix reference) and virtual segmentation of the genome into areas with copy 557 

number gain, loss or stability. 558 

RNA Sequencing 559 

 RNA sequencing was performed at the Functional Genomics Center Zurich. RNA-seq libraries 560 

were generated using the TruSeq RNA stranded kit with PolyA enrichment (Illumina, San Diego, CA, USA). 561 

Libraries were sequenced with 2x126bp paired-end on an Illumina HiSeq 2500 with an average of 105.2 562 

mio reads per sample. 563 

 Paired-end reads were mapped to the human reference genome (GRCh37) using the STAR 564 

aligner (version 2.4.2a) [94]. Quality control of the resulting bam files using QoRTs [95] and mRIN [96] 565 

showed strong RNA degradation[97]  in a significant fraction of the samples: mRIN classified 31 samples 566 

as highly degraded (Additional file 1: Fig. S12, Additional file 5: Table S4). In order to correct for this 3’ 567 

bias, 3 tag counting was performed as described by Sigurgeirsson et al [98] using a tag length of 1,000. 568 

After 3’ bias correction, three samples still showed a clear 3’ bias: the two tumor regions (TA1 and TA2) 569 

of the patient M5 and TA2 from patient M8 (Additional file 1: Fig. S12). These samples were excluded 570 

from subsequent analyses. Additionally, the BPH region of the patient M5 was excluded due to the 571 

exclusion of both its tumor regions.  572 

 FeatureCounts [99] was used to determine read counts for all genes annotated in ENSEMBL v75. 573 

Genes for which no read was observed in any of the samples in the original data were excluded from the 574 

analysis. Further, after 3 tag counting, all genes with without at least 1 read per million in N of the 575 

samples were removed. We chose N to be 10 which corresponds to the size of the smallest grade group 576 

(G2). In a last reduction step, all genes with more than one transcript were excluded, yielding a final set 577 

of 14,281 genes. 578 

 Read count normalization and differential gene expression analysis was performed using the R 579 

packages sva [100] and DESeq2 [101]. All benign tissues were considered biological replicates and 580 

differential gene expression for the individual tumor samples was determined against all benign tissues. 581 

Gene expression changes with an adjusted P value < 0.1 were considered significant.  582 
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RNA-seq - 3’ bias correction 583 

 The 3 tag counting approach for 3’ bias correction was used on the RNA-seq dataset [98]. This 584 

approach requires changing of the annotation file in two steps: 1) isoform filtering and 2) transcript 585 

length restriction. As proposed in [98] for each gene we determined the highest expressed isoform 586 

within a set of high quality samples. As high quality samples we used all samples with an mRIN score 587 

greater than or equal to 0.02. This set contains 7 benign and 15 tumor samples. Isoform expression was 588 

determined using cufflinks [102]. As transcript length we chose 1,000bp. 589 

Gene fusions 590 

 FusionCatcher (version 0.99.5a beta) was used to determine gene fusions for all samples. 591 

Fusions classified as “probably false positive” are discarded unless they are also classified as “known 592 

fusion”. 593 

PCT assisted sample preparation for SWATH-MS 594 

 We first washed each tissue sample to remove O.C.T., followed by PCT-assisted tissue lysis and 595 

protein digestion, and SWATH-MS analysis, as described previously [23]. Briefly, a series of ethanol 596 

solutions were used to wash the tissues each tissue, including 70% ethanol / 30% water (30 s), water (30 597 

s), 70% ethanol / 30% water (5 min, twice), 85% ethanol / 15% water (5 min, twice), and 100% ethanol (5 598 

min, twice). Subsequently, the tissue punches were lysed in PCT-MicroTubes with PCT-MicroPestle [103] 599 

with 30 µl lysis buffer containing 8 M urea, 0.1 M ammonium bicarbonate, Complete protease inhibitor 600 

cocktail (Roche) and PhosSTOP phosphatase inhibitor cocktail (Roche) using a barocycler (model 601 

NEP2320-45k, PressureBioSciences, South Easton, MA). The lysis was performed with 60 cycles of high 602 

pressure (45,000 p.s.i., 50 s per cycle) and ambient pressure (14.7 p.s.i., 10 s per cycle). The extracted 603 

proteins were then reduced and alkylated prior to lys-C and trypsin-mediated proteolysis under pressure 604 

cycling. Lys-C (Wako; enzyme-to-substrate ratio, 1:40) -mediated proteolysis was performed using 45 605 

cycles of pressure alternation (20,000 p.s.i. for 50 s per cycle and 14.7 p.s.i. for 10 s per cycle), followed 606 

by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-mediated proteolysis using the same cycling 607 

scheme for 90 cycles. The resultant peptides were cleaned using SEP-PAC C18 (Waters Corp., Milford, 608 

MA) and analyzed, after spike-in 10% iRT peptides 51, using SWATH-MS following the 32-fixed-size-609 

window scheme as described previously 19, 21 using a 5600 TripleTOF mass spectrometer (Sciex) and a 610 

1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient was formulated with buffer A (2% 611 

acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water and 0.1% formic acid in 612 
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acetonitrile) through an analytical column (75 μm × 20 cm) and a fused silica PicoTip emitter (New 613 

Objective, Woburn, MA, USA) with 3-μm 200 Å Magic C18 AQ resin (Michrom BioResources, Auburn, CA, 614 

USA). Peptide samples were separated with a linear gradient of 2% to 35% buffer B over 120 min at a 615 

flow rate of 0.3 μl min−1. Ion accumulation time for MS1 and MS2 was set at 100 ms, leading to a total 616 

cycle time of 3.3 s. 617 

SWATH assay query library for prostate tissue proteome 618 

 To build a comprehensive library for SWATH data analysis, we analyzed unfractionated prostate 619 

tissue digests prepared by the PCT method using Data Dependent Acquisition (DDA) mode in a tripleTOF 620 

mass spectrometer over a gradient of 2 hours as described previously 19. We spiked iRT peptides 51 into 621 

each sample to enable retention time calibration among different samples. We then combined these 622 

data with the DDA files from the pan-human library project [104]. All together we analyzed 422 DDA files 623 

using X!Tandem 52 and OMSSA 53 against three protein sequence databases downloaded on Oct 21, 2016 624 

from UniProt, including the SwissProt database of curated protein sequences (n=20,160), the splicing 625 

variant database (n=21,970), and the trembl database (n=135,369). Using each database, we built target-626 

decoy protein sequence database by reversing the target protein sequences. We allowed maximal two 627 

missed cleavages for fully tryptic peptides, and 50 p.p.m. for peptide precursor mass error, and 0.1 Da 628 

for peptide fragment mass error. Static modification included carbamidomethyl at cysteine, while 629 

variable modification included oxidation at methionine. Search results from X!Tandem and OMSSA were 630 

further analyzed through Trans-Proteomic Pipeline (TPP, version 4.6.0) 54 using PeptideProphet and 631 

iProphet, followed by SWATH assay library building procedures as detailed previously 19, 55.  Altogether, 632 

we identified 167,402 peptide precursors, from which we selected the proteins detected in prostate 633 

tissue samples, and built a sample-specific library. SWATH wiff files were converted into mzXML files 634 

using ProteoWizard 56 msconvert v.3.0.3316, and then mzML files using OpenMS 57 tool FileConverter. 635 

OpenSWATH[105] was performed using the tool OpenSWATHWorkflow with input files including the 636 

mzXML file, the TraML library file, and TraML file for iRT peptides.  637 

Peptide quantification using OpenSWATH 638 

 To obtain consistent quantification of the SWATH files, we obtained the all annotated b and y 639 

fragments from the sp, sv and tr libraries. About ten thousand redundant and low-quality assays were 640 

removed. Then we extracted the chromatography of these fragments and MS1 signals using 641 

OpenSWATHWorkflow, followed by curation using DIA-expert[106]. Briefly, the chromatography of all 642 
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fragments and MS1 signals were subject to scrutiny by empirically developed expert rules. A reference 643 

sample with best q value by pyprophet was picked up to refined fragments. The peptide precursors are 644 

further filtered based on the following criteria: i) remove peptide precursors with a q value higher than 645 

1.7783e-06 to achieve a false discovery rate of 0.00977 at peptide level using SWATH2stats [107]; ii) 646 

peptides with a FC higher than 2 between the reference sample and its technical replicate were 647 

removed; iii) peptides matching to multiple SwissProt protein sequences were removed. The data matrix 648 

was first quantile normalized, log2 transformed, followed by batch correction using the ComBat R 649 

package [108]. Finally, for each protein and pair of technical replicates the average value was computed. 650 

Statistical analysis 651 

 All plots were produced with R. Kaplan-Meier estimators were used for RFS analysis. Differences 652 

between survival estimates were evaluated by the log-rank test.  653 

Computation of molecular perturbation scores 654 

 On the genomic level (mutation and CNA), we kept the tumor samples (66 in total) that contain 655 

FCs with respect to the blood. The mutation matrix was further discretized by setting all non-zero events 656 

to 1. At the transcriptomics level, the FCs for the 63 tumor samples were computed as described above 657 

(see ‘RNA Sequencing’). Finally, on the proteomics level, we computed the FCs for the tumor samples (66 658 

in total) as follows: for each protein, its mean intensity over the normal samples was subtracted from 659 

the intensities of the tumor samples. (We chose to compute the FCs for the tumor samples with respect 660 

to a global reference (average of all normal samples) and not with respect to their paired benign sample 661 

in order to achieve a higher consistency with the transcriptomics level.)  662 

 We assigned to each sample two molecular perturbation scores summarizing/quantifying the 663 

magnitude of its FCs: DE_count counts the number of mutated/differentially expressed (DE) genes, while 664 

the DE_sum score is the sum of absolute FCs of all genes. Thus, while the first score counts the number 665 

of events (mutations/DE genes), the second one quantifies their magnitude. These two scores can be 666 

regarded as generalizations of the term ‘mutational burden’ for the mRNA and protein layer. A gene is 667 

regarded as mutated/DE if its value is 1 in the mutation layer and if its absolute value is above a 668 

threshold that has been set to 1 for the mRNA and protein layer. For the CNA layer, the corresponding 669 

threshold was set to 0.5 because the range of FCs in the CNA matrix is smaller than the mRNA and 670 

protein matrices. Both types of scores were computed for each molecular level, except for the point 671 

mutations where only DE_count was computed. Afterwards, the 66 DE_count scores (63 for the mRNA) 672 
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and the DE_sum scores at each layer were divided into the four grade groups G1, G2, G3 and G4/5 673 

respectively.  674 

Correlating CNAs with mRNA and protein layer 675 

 For each of the 2,120 genes measured in all three layers (CNA, mRNA and protein), we computed 676 

the Spearman correlation between its CNAs and corresponding mRNA FCs as well as between its CNAs 677 

and corresponding protein FCs. We reduced each layer to the 63 tumor samples with available mRNA 678 

data. 679 

Network propagation/smoothing 680 

 As a network, the STRING gene interaction network (version 10)[43] was used, after removing all 681 

edges with combined score smaller or equal to 0.9 and keeping subsequently the largest connected 682 

component. The resulting network consisted of 10,729 nodes and 118,647 (high-confidence) edges. For 683 

the network smoothing, the weight matrix was computed as described in Vanunu et al.[49], but for an 684 

unweighted graph and the propagation parameter was set to 0.5. The propagation was iteratively 685 

repeated 500 times to ensure convergence of the results. For the mapping from gene symbols to STRING 686 

identifiers (Additional file 7: Table S6) we used the R/Bioconductor package STRINGdb [109]. The gene 687 

symbols with no matching STRING identifier were removed, while for those that mapped to multiple 688 

STRING identifiers, the first mapping was kept (default choice in the package). From the multiple gene 689 

symbols that mapped to the same STRING identifier, the first mapping was kept. The genes that were 690 

not present in the network were removed from the datasets, while those that were present in the 691 

network but not in the corresponding dataset were initially filled in with 0’s.  692 

 Genes with very small, ‘smoothed’ (absolute) FCs were filtered out as follows: after the network 693 

propagation, only network nodes that had protein measurements themselves or at least one direct 694 

neighbor (on the filtered STRING network) with protein measurements were considered in the next 695 

steps of this analysis. I.e. network nodes without measured FCs at the protein layer that had no direct 696 

neighbor with measured protein values were removed from the subsequent analyses. 697 

 For significance testing, the one-sided Wilcoxon rank sum test comparing the smoothed FCs 698 

between the groups G4/5 (consisting of 12 samples for the CNA, mRNA and protein layer) and G1 699 

(consisting of 26 samples for the CNA and proteins and 25 for the mRNA) was applied to each network 700 

node (after filtering) and layer, once for up-regulation and once for down-regulation. The resulting sub-701 
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networks (up-regulated and down-regulated) consisted of those genes that were significant (P value 702 

below 0.05) at all three layers and all of the edges connecting them on the filtered STRING network. 703 

 It should be noted that although measurements from the same patient might not be statistically 704 

independent, we have kept them in our analyses firstly in order to increase statistical power and 705 

secondly because not all of them correspond to clonal events as shown on Fig. 5. To make sure though 706 

that having two samples for some of the patients has not affected our conclusions, we have repeated 707 

the statistical testing step (one-sided Wilcoxon rank sum test) in two ways: comparing G4/5 with G1 as 708 

before but removing the second tumor area of a patient if it belonged to the same grade group as tumor 709 

area 1 (i.e. removing TA2 of patients H3 and H10), and secondly comparing G4/5 with the combined (G1 710 

and G2) group and once again removing the second tumor area of a patient if it belonged to the same 711 

grade group as his tumor area 1. P values resulting from these analyses were highly correlated 712 

(Additional file 1: Fig. S9), and we would thus consider the current conclusions to be robust. 713 

Network Component 1 analysis 714 

 For each tumor sample at the CNA layer, a one-sided, one-sample t-test has been applied testing 715 

if its average FC over the genes of the Network Component 1 (and in particular those that have been 716 

measured at the CNA) is significantly greater than 0. Due to the presence of outliers in some samples, 717 

the non-parametric, one-sided Wilcoxon signed-rank test has been applied as well yielding very similar 718 

results (data not shown). A result is considered to be significant if the corresponding P value is below 719 

0.05. The analysis has been repeated for the mRNA and protein layer.  720 

Independent cohorts validation 721 

 For the validation of Network Component 1, we used published datasets of three PCa cohorts: 722 

TCGA, MSKCC, and Aarhus. For TCGA and MSKCC, we downloaded the CNA, mRNA with precomputed z-723 

scores per gene, and corresponding clinical data from cBioPortal[110] (https://www.cbioportal.org/). 724 

There were 489 samples with log2CNA data and 493 samples with mRNA profiles in TCGA. In MSKCC, 725 

there were 157 primary tumors with CNA data and 131 primary tumors with mRNA data. The clinical 726 

endpoint used in TCGA was the progression-free survival time and the disease-free survival in MSKCC. All 727 

previous samples had known survival time. 728 

 For the Aarhus study (NCBI GEO dataset GSE46602), we downloaded the mRNA matrix and 729 

corresponding clinical information as described in Ycart et al [111]. The resulting mRNA matrix consisted 730 

of 20,186 genes and 50 samples- 36 PCa samples with known RFS time and 14 benign samples. Once 731 
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excluding the benign samples, we computed z-scores per gene in order to have comparable values with 732 

the other two studies. These 36 PCa samples were also considered in the subsequent survival analysis. 733 

CNA data was not available for the Aarhus study. 734 

 We reduced all datasets to the nine genes of Network Component 1. In each of the datasets, we 735 

computed for each sample an average copy number change (CNA) or an average z-score (mRNA) across 736 

the nine genes of Network Component 1 (combined risk score). Subsequently, we used these combined 737 

risk scores to split the samples of each dataset into two groups: samples with a combined risk score 738 

larger or equal to the median combined risk score of the study were considered as ‘altered’ and the rest 739 

as ‘unaltered’. Kaplan-Meier curves were generated for the two groups. Due to the high level of 740 

discretized values in MSKCC at the CNA layer, a sample is considered to be ‘altered’ in that dataset if its 741 

combined risk score is above zero. 742 

 Additionally, we fitted for each dataset a Cox proportional-hazards model to predict survival 743 

time using as input variables the average copy number change (CNA) or average z-score (mRNA) of 744 

Network Component 1 (variable of interest) and the age (when available, i.e. for TCGA and Aarhus). For 745 

each dataset with available copy number information (i.e. for the TCGA and MSKCC studies), we fitted a 746 

second Cox proportional-hazards model with the fraction of genome altered as an additional input 747 

variable. For the model fitting, we used the R package survival (https://cran.r-748 

project.org/web/packages/survival/index.html). 749 

Analysis of regulators and target genes 750 

 For this analysis, we used once again the STRING gene interaction network. For each target gene 751 

(AGR2, ACPP, POSTN, LGALS3BP), we split the network nodes into two groups as follows: firstly we 752 

identified the neighbors of the target gene supported by a combined evidence larger than 0.2. This set 753 

together with the target gene constituted group 1 while the remaining network nodes constituted group 754 

2. For this splitting, only genes present in the network with copy number measurements and with a 755 

matching STRING identifier (Additional file 7: Table S6) were considered (i.e. 17,306 genes in total). 756 

Subsequently, genes altered (i.e. with log2 copy number ratio greater than 0.5 in absolute) in fewer than 757 

four tumor samples across the 66 tumor samples were filtered out in each of the two groups. Genes in 758 

group 1 after the CNA filtering are potential regulators of the target under consideration. For each gene 759 

in the two groups after the filtering, we computed the Spearman correlation between its CNAs and the 760 

mRNA FCs of the target gene. For computing the correlation, the samples were reduced to the 63 tumor 761 

samples with available mRNA data. 762 
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Subsequently, we fitted an elastic net model with alpha=0.5 for ACPP. We used as output 763 

variable the mRNA FC of ACPP and as input variables the CNAs of the genes in group 1 after the copy 764 

number event filtering. The value for the regularization parameter lambda was chosen through 10-fold 765 

cross validation (default in the R package glmnet (https://cran.r-project.org/web/packages/glmnet/)). 766 

The samples were necessarily reduced to the 63 mRNA tumor samples. Predictors/regulators with a non-767 

zero beta coefficient were deemed significant. We have used the elastic net model with alpha=0.5 768 

because it is a method giving sparse solutions and can deal with correlated predictors at the same time. 769 

 As an additional validation to our approach, we used the two independent PCa cohorts 770 

described above (TCGA and MSKCC) and reduced the samples to those having both CNA and mRNA 771 

profile. This resulted in 488 samples for TCGA and 109 samples for MSKCC. Next, for each of the 772 

significant regulators/predictors we computed the Spearman correlation between its CNAs and the 773 

corresponding mRNA z-scores of ACPP in each of the two independent studies and checked if the sign of 774 

the Spearman correlation matched the sign of the Spearman correlation computed for our cohort, i.e. 775 

there was an agreement regarding the direction of the association. 776 
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Additional file 2: Table S1. Clinicopathological, immunological and other molecular information of the 814 

39 PCa patients. (a) Overall clinicopathological characteristics. (b) Detailed information for each patient. 815 

Pat: numeric patient ID; Pat_id: patient ID grouped by the overall grade. L: low grade; M: intermediate 816 

grade; H: high grade; Overall_Gleason_GrGp: overall ISUP grade group; pT: tumor stage; pN: nodal 817 
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status; R: surgical margin status; Age_at_OP: age at operation; PSA_at_Diag: blood PSA level at 818 

diagnosis; Time (months): RFS time. A value of 0 corresponds to patients excluded for the reasons 819 

explained in the ‘Methods’ section (see ‘Patients and samples’); Status: status indicator. 1 means 820 

recurrence; DX name: tissue region name; ImageName: name of the scanned images; index_tumor_id: 821 

patient ID of TA1 (or TA); TA1_GrGp: grade group for TA1; T_GrGp: grade group for TA2.  822 

Additional file 3: Table S2. Exome analysis of the peripheral blood cells and 105 prostate tumor 823 

punches in 39 patients. (a) Allele frequencies (AF) of somatic single nucleotide variants (SNVs) that were 824 

called by our bioinformatics pipeline. Genes with called SNV are indicated by an AF > 0. A value of 0 825 

indicates that no SNV was found in the respective genes. In our data, no gene was found with more than 826 

one called somatic SNV. (b)  Number of samples per gene with called somatic SNV. (c) Protein domain 827 

analysis using DAVID. 828 

Additional file 4: Table S3. Copy number analysis of 105 PCa samples. (a) Log2 ratios indicating the CNA 829 

status are shown for all genes in all samples. Values were determined by overlapping gene locations with 830 

CNA segments as calculated by CopywriteR. In case more than one segment overlapped with a gene, 831 

number was chosen that had the highest absolute value. (b) Genes are shown with log2 ratios higher 832 

than 0.5 or lower than -0.5 in at least one sample. 833 

Additional file 5: Table S4. RNA-seq analysis. (a) Log2FCs (relative to all benign samples) for all genes 834 

across the tumor samples. (b) mRIN score per sample generated using mRIN (v1.2.0). (c) ETS family gene 835 

fusions observed in tumor samples using FusionCatcher: a value of 1 means that the fusion was observed 836 

in the respective sample but not its corresponding benign sample, otherwise the value is 0. (d) 837 

Normalized RNA-seq count data matrix.  838 

Additional file 6: Table S5. Proteomics data of 210 PCa samples with duplicates. (a) Sample information 839 

includes patient ID, clinical diagnosis, sample ID and batch design. (b) Protein matrix of log2 scaled 840 

intensity of 2,371 proteins quantified in 210 PCa samples. 841 

Additional file 7: Table S6. Integration analysis of 66 tumor samples. (a) Information (i.e. reference 842 

linking them to PCa, consistency between observed and reported effect and number of tumor samples 843 

with CNAs) for the first 10 highest-scoring proteins (those with largest average absolute FCs across all 844 

tumor specimens). (b) Consistently up-regulated genes in the high-grade tumors: for each of these 845 

genes, there is a significant up-regulation of its FCs after network smoothing in the group G4/5 846 

compared to the group G1 in all three layers (CNA, mRNA and protein). (c) Consistently down-regulated 847 
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genes in the high-grade tumors: for each of these genes, there is a significant down-regulation of its FCs 848 

after network smoothing in the group G4/5 compared to the group G1 in all three layers (CNA, mRNA 849 

and protein). (d) Chromosome information for the gene members of Network Component 1. (e) 850 

Mapping from gene symbols to STRING identifiers.  851 
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Figure legends 1161 

 1162 

Figure 1. Proteogenomics analysis of 105 tissue regions from 39 PCa patients. a Representative 1163 
immunohistochemistry images of prostate tissues and the selection of BPH and tumorous tissue regions 1164 
for genome, transcriptome and proteome analysis. b Kaplan-Meier curves for our cohort when the 1165 
patients are stratified by the overall grade (left), the TA1 or TA grade group (middle) and the TA2 or TA 1166 
grade group (right). Point-wise 95% confidence bands are shown for the whole range of time values. 1167 

 1168 

Figure 2. Molecular perturbation scores for point mutations, CNAs, transcriptome and proteome data. 1169 
a Distributions of the first type of molecular perturbation scores (DE_count’s) for the four grade groups 1170 
(visualized as violin plots) at the mutation layer (upper left), CNA layer (upper right), mRNA layer (lower 1171 
left) and protein layer (lower right). Points represent the actual values. The horizontal lines correspond 1172 
to the median value in each of the four grade groups. b Distributions of the second type of molecular 1173 
perturbation scores (DE_sum’s) for the four grade groups (visualized as violin plots) at the CNA layer 1174 
(upper left), mRNA layer (upper right) and protein layer (lower left). Points represent the actual values. 1175 
The horizontal lines correspond to the median value in each of the four grade groups. P values (in each 1176 
of the titles) show the significance of the one-sided Wilcoxon rank sum test where the values of G3 and 1177 
G4/5 are gathered together and compared to the values of G1 and G2 (also gathered together). 1178 

 1179 

Figure 3. Target genes and putative effectors. a Density plots of the FCs in the four grade groups for 1180 
three selected proteins (ACPP, POSTN, LGALS3BP) among the 20 highest scoring (score: mean of the 1181 
absolute FCs across all tumor samples) proteins. Vertical lines correspond to the average FC in each of 1182 
the four grade groups. These proteins were selected as target genes to identify potential regulators. b 1183 
Distributions of the Spearman correlations of the mRNA target gene FCs with the CNAs of the ‘filtered 1184 
neighborhood order one’ and the ‘complement’, for the three target genes. The first set/group consists 1185 
of the target itself and of those neighbors in STRING with confidence above 0.2, while the second 1186 
consists of the remaining network genes in STRING. Both sets are filtered out for genes subject to CNAs 1187 
in less than four tumor samples. P values (in each of the titles) show the significance of the one-sided t-1188 
test. c Heatmap of the CNA matrix reduced to the significant regulators of the target gene ACPP output 1189 
by the fitted elastic net model (i.e. those with a non-zero beta coefficient). The columns are ordered 1190 
based on the grade group while there is a hierarchical clustering of the rows. The added colorbar depicts 1191 
the mRNA FCs of the target gene ACPP. 1192 

 1193 

Figure 4. Cross-omics networks distinguishing high-grade from low-grade tumors. a Sub-networks 1194 
consistently up-regulated in high-grade (G4/5) compared to low-grade (G1) tumors across all three 1195 
layers (CNA, mRNA and protein). b Same as in (a) but down-regulated genes. Functional annotation of 1196 
the sub-networks in (a) and (b) with more than one node is given. All edges in (a) and (b) are supported 1197 
by either experimental or database evidence (STRING evidence ≥ 0.348). c CNA, RNA and protein FCs of 1198 
Network Component 1 from (a). Samples are ordered by grade group (top bar). T-test results comparing 1199 
Network Component 1 members against no change (i.e. 0) are shown for each molecular layer along 1200 
with the average FC across Network Component 1 members (‘effect size’). Black box marks selected 1201 
matching samples from patients with G4/5 and G3 tumor areas; i.e. tumor sample pairs from identical 1202 
patients. Those areas exhibit weak, but common amplifications of Network Component 1 members at 1203 
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the CNA and RNA layers. mRNA samples in grey were removed due to low RNA quality. Gray bars at the 1204 
bottom show the grade group of the patients (low, intermediate, high) where the samples have (mainly) 1205 
come from. d Kaplan-Meier curves for ‘altered’ and ‘unaltered’ samples, where ‘altered’ is defined as an 1206 
effect size greater or equal to the median effect. Results for three independent studies, TCGA (left), 1207 
MSKCC (middle) and Aarhus (right) using the corresponding CNA data when available (first row) and 1208 
mRNA data (second row). The Cox model P value corresponds to the P value of the variable of interest 1209 
(i.e. average copy number change (CNA) or average z-score (mRNA) of Network Component 1) from the 1210 
fitted Cox model after adjusting for patient age (when available, i.e. for TCGA and Aarhus). 1211 

 1212 

Figure 5. Within-patient similarity at the different layers. a Distributions of the within-group similarities 1213 
for the four grade groups (visualized as violin plots) based on the Pearson correlation at the CNA layer 1214 
(upper), mRNA layer (middle) and protein layer (lower). A ‘violin’ with the correlations between TA1 and 1215 
paired TA2 for the different patients has been added to all three plots and colored in purple. Points 1216 
represent the actual values. The horizontal lines correspond to the median value in each of the groups. P 1217 
values from the one-sided Wilcoxon rank sum test comparing the within-patient to the within-group 1218 
similarities (where all values from the four groups are gathered together): 8.97e-09 for the CNA, 4.42e-1219 
08 for the mRNA and 6.27e-04 for the protein layer. b The correlations between TA1 and paired TA2 for 1220 
the different patients at one layer are plotted against the corresponding correlations at another layer for 1221 
each pair of layers: mRNA versus CNA (upper), protein versus CNA (middle) and protein versus mRNA 1222 
(lower). The points are labeled and colored based on the overall grade in all plots; r: Pearson correlation.  1223 

 1224 

 1225 
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