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Abstract

Background

Tumor-specific genomic aberrations are routinely determined by high throughput genomic
measurements. It remains unclear though, how complex genome alterations affect molecular networks
through changing protein levels, and consequently biochemical states of tumor tissues.

Results

Here, we investigated the propagation of genomic effects along the axis of gene expression during
prostate cancer progression. For that, we quantified genomic, transcriptomic and proteomic alterations
based on 105 prostate samples, consisting of benign prostatic hyperplasia regions and malignant tumors,
from 39 prostate cancer patients. OQur analysis revealed convergent effects of distinct copy number
alterations impacting on common downstream proteins, which are important for establishing the tumor
phenotype. We devised a network-based approach that integrates perturbations across different
molecular layers, which identified a sub-network consisting of nine genes whose joint activity positively
correlated with increasingly aggressive tumor phenotypes and was predictive of recurrence-free survival.
Further, our data revealed a wide spectrum of intra-patient network effects, ranging from similar to very
distinct alterations on different molecular layers.

Conclusions

This study uncovered molecular networks with remarkably convergent alterations across tumor sites and
patients, but it also exposed a diversity of network effects: we could not identify a single sub-network

that was perturbed in all high-grade tumor regions.

Keywords: molecular aberrations, network effects, prostate cancer, proteogenomic analysis, tumor
heterogeneity
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Background

Prostate cancer (PCa) represents one of the most common neoplasms among men with almost
1,300,000 new cases and 360,000 deaths in 2018 * accounting for 15% of all cancers diagnosed. PCa is
the fifth leading cause of cancer death in men and represents 6.6% of total cancer mortality in men [1].
Despite earlier detection and new treatments, the lifetime risk to die of PCa has remained stable at
approximately 3% since 1980. (National Cancer Institute SEER data:
https://seer.cancer.gov/statfacts/html/prost.html). In many patients, PCa is indolent and slowly growing.
The challenge is to identify those patients who are unlikely to experience significant progression while
offering radical therapy to those who are at risk. Current risk stratification models are based on
clinicopathological variables including histomorphologically defined grade groups, prostate-specific
antigen (PSA) levels and clinical stage. Although those variables provide important information for
clinical risk assessment and treatment planning [2, 3], they do not sufficiently predict the course of the
disease.

Extensive genomic profiling efforts have provided important insights into the common genomic
alterations in primary and metastatic PCa [4-9]. Interestingly, PCa genomes show a high frequency of
recurrent large-scale chromosomal rearrangements such as TMPRSS2-ERG [10]. In addition, extensive
copy number alterations (CNAs) are common in PCa, yet point mutations are relatively infrequent in
primary PCa compared to other cancers [6, 11]. A major complicating factor is that around 80% of PCas
are multifocal and harbor multiple spatially and often morphologically distinct tumor foci [12, 13].
Several recent studies have suggested that the majority of topographically distinct tumor foci appear to
arise independently and show few or no overlap in driver gene alterations [14-16]. Therefore, a given
prostate gland can harbor clonally independent PCas.

To allow for a more functional assessment of the biochemical state of PCa, it is necessary to go
beyond genomic alterations and comprehensively catalogue cancer specific genomic, transcriptomic and
proteomic alterations in an integrated manner [17-19]. Such an approach will provide critical
information for basic and translational research and could result into clinically relevant markers. While
hundreds of PCa genomes and transcriptomes have been profiled to date [20], little is known about the
PCa proteome. Although recent work has emphasized the need for integrated multi-omics profiling of
PCa, we still lack understanding about how genomic changes impact on mRNA and protein levels [17-19].
Especially the complex relationship between tumor grade, tumor progression and multi-layered

molecular network changes remains largely elusive.
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93 For example, previous work has shown that copy number changes may alter transcript levels of
94 many genes, whereas the respective protein levels remain relatively stable [21]. Indeed, there is
95 compelling evidence across multiple tumor types that many genomic alterations are ‘buffered’ at the
96 protein level and are hence mostly clinically inconsequential [22]. To better understand the evolution of
97 PCa and to identify core networks perturbed by genomic alterations and thus central for the tumor
98 phenotype, it is therefore essential to investigate the transmission of CNAs to the transcriptomic and
99 proteomic level.
100 To this end, it is important to decipher which genomic alterations impact PCa proteomes, which
101 of those proteomic alterations are functionally relevant, and how molecular networks are perturbed at
102  the protein level across tumors.
103 To address these open questions, we performed a multi-omics profiling of radical prostatectomy
104 (RP) specimens at the level of the genome, transcriptome and proteome from adjacent biopsy-level
105  samples, using state-of-the-art technologies. Unique features of this study are (1) the utilization of PCT
106  (pressure cycling technology)-SWATH (Sequential Window Acquisition of all THeoretical Mass Spectra)
107 mass spectrometry [23, 24], allowing rapid and reproducible quantification of thousands of proteins
108  from biopsy-level tissue samples collected in clinical cohorts; (2) the simultaneous profiling of all omics
109 layers from the same tissue regions; (3) inclusion and full profiling of benign regions, which provides a
110  matching control for each tumor; and (4) the full multi-omics characterization of multiple tumor regions
111 from the same patients, thus enabling the detailed investigation of tumor heterogeneity. This design
112 resulted in the multi-layered analyses of 105 samples from 39 PCa patients, as well as of the exome of
113 corresponding peripheral blood cells yielding a comprehensive molecular profile for each patient and
114 identified molecular networks that are commonly altered in multiple patients. Importantly, some of the
115  affected genes/proteins exhibited very small individual effect sizes, suggesting that combined network

116  effects of multiple genes may significantly contribute to determining PCa phenotypes.

117 Results

118 Proteogenomic analysis of the sample cohort identifies known PCa biomarkers.

119 In this study, we analyzed 39 PCa patients (Additional file 1: Fig. S1) belonging to three groups
120  who underwent laparoscopic robotic-assisted RP. The patients were from the PCa Outcomes Cohort
121 (ProCOC) study [25, 26]. Tumor areas were graded using the ISUP (International Society of Urological

122 Pathology) grade groups [27], which range from ISUP grade group G1 (least aggressive) to G5 (most
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123 aggressive). The more advanced grade groups G4 and G5 were considered jointly (G4/5). The cohort
124  tested included 12 low-grade (G1), 17 intermediate- (G2 and G3), and 10 high-grade (G4/5) patients (Fig.
125 1a, Additional file 1: Fig. S1, Additional file 2: Table S1). For low-grade PCa patients, we selected two
126 representative regions, one of benign prostatic hyperplasia (BPH) and one of malignant tumor (TA). Since
127 PCa often presents as a multifocal disease with heterogeneous grading within each prostate specimen
128 [24] we analyzed two different tumor regions from the 27 intermediate- and high-grade patients. In
129 those cases three representative regions, including BPH, the most aggressive tumor (TA1l) and a
130  secondary, lower-grade tumor (TA2) [2] were analyzed. Thus, TA1 always represented the higher-grade
131 nodule compared to TA2. Note, whereas each patient was assigned a patient-specific overall grade (i.e.
132 ‘low’, ‘intermediate’ or ‘high’), each tumor area was additionally assigned an individual grade group
133 based on its histological appearance. According to current ISUP guidelines, the grading of the entire
134 prostate specimen depends on the size and grade of individual nodules [28]. Thus, it is possible that the
135 patient grading is lower than the grading of the most aggressive nodule, if another lower-grade nodule is
136 larger. Tumor regions contained at least 70% tumor cellularity and the distance between the analyzed
137 areas (TA1 versus TA2) was at least 5 mm. Altogether, we obtained 105 prostate tissue specimens
138  (Additional file 2: Table S1). Three adjacent tissue biopsies of the dimensions 0.6 x 0.6 x 3.0 mm were
139 punched from each representative region for exome sequencing, CNA (derived from the exome
140 sequencing data), RNA sequencing (RNA-seq), and quantitative proteomic analysis using the PCT-SWATH
141  technology [23] respectively. Proteomic analysis was performed in duplicates for each tissue sample.
142 Peripheral blood samples from each patient were also subjected to exome sequencing and served as the
143 genomic wild-type reference (Fig. 1). All three types of grading (i.e. patient-specific overall grading, TA1
144  grading and TA2 grading) were predictive of the recurrence-free survival (RFS) in our study.

145 In agreement with prior reports, we observed relatively few recurrent point mutations across
146 patients (Additional file 1: Fig. S2, Additional file 3: Table S2), but substantial CNAs (Additional file 1:
147 Figs. S3 and S4, Additional file 4: Table S3). Mutations in SPOP, FOXA1, and MED12 reported in
148  independent cohorts [4-9] were confirmed in this cohort. In total, 1,110 genes showed copy number
149  gains in at least five samples or copy number losses in at least five samples (see Additional file 1:
150 Supplementary Text for details). Additional file 1: Fig. S4 shows the CNA status of signature genes
151 representing known areas of recurrent CNAs in PCa- split into fusion-partner and non-fusion-partner
152  genes- for instance loss of PTEN and gain of MYC in high-grade PCa [29]. Likewise, our data confirmed
153  the differential expression of several transcripts/proteins that had previously been suggested as PCa

154  biomarkers or which are known oncogenes in other tumor types (Additional file 1: Supplementary Text
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155 and Fig. S5, Additional file 5: Table S4 and Additional file 6: Table S5). We further identified somatic
156  fusions from the RNA-seq data. A large fraction of the tumors harbored ETS family gene fusions, which
157 are frequently detected in PCa [8, 9, 11]. ETS fusions were mutually exclusive and appeared in tumors
158  from all grade groups (Additional file 1: Fig. S6; Additional file 5: Table S4). This consistency with
159 previously published results confirmed the quality of our data and motivated us to go beyond previous

160  work by performing a network-based multi-omics multi-gene analysis.

161  Molecular perturbations correlate with tumor grade.

162 Mutational burden is associated with PCa risk [8, 9, 11]. Hence, as a first step towards a cross-
163 layer analysis, we asked if high-grade PCa would generally be affected by stronger alterations (compared
164  to low-grade PCa) at the genome, transcriptome, and proteome layer [30]. For that purpose, we devised
165 molecular perturbation scores that quantified the number of affected genes/proteins and the extent to
166 which these genes/proteins were altered in the tumor specimens compared to their benign controls (see
167  the ‘Methods’ section for details). In the case of the DNA layer these scores carry a similar meaning as
168 established mutational burden scores. However, we wanted to capture effects at all three molecular
169 layers measured in this study. Higher-grade tumors (G3 and G4/5) exhibited significantly higher
170 molecular perturbation scores than lower-grade tumors (G1 and G2). Those differences were statistically
171 significant in all but one case (P value < 0.05, one-sided Wilcoxon rank sum test, Fig. 2). The CNA
172 perturbation magnitude exhibited the highest correlation with the PCa grading, confirming prior studies
173 documenting the tight association between CNA, histopathological grade and risk of progression [4, 5,
174  31]. Further, we found that mRNA fold changes (FCs) correlated more strongly with CNAs of the same
175  genes than protein FCs (average CNA-mRNA Spearman p = 0.1 and average CNA-protein Spearman p =
176 0.02). This observation is in agreement with previous work, which suggested that copy number changes
177  are to some extent buffered at the protein level [17, 21, 32]. Interestingly, we observed that proteins
178 known to be part of protein complexes were significantly less strongly correlated with the FCs of their
179 coding mRNAs than proteins not known to be part of protein complexes (P value < 2.6e-11, one-sided t-
180  test, Additional file 1: Fig. S7). This result is consistent with the concept that protein complex
181  stoichiometry contributes to the buffering of mRNA changes at the level of proteins [21, 22, 33-35]. Thus,
182 molecular patterns in high-grade PCa are more strongly perturbed at all layers and the effects of

183 genomic variation are progressively but non-uniformly attenuated along the axis of gene expression.
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184  Effects of distinct CNAs converge on common proteins.

185 It has previously been suggested that mutations affecting different genes could impact common
186 molecular networks if the respective gene products interact at the molecular level [36]. However,
187  previous analyses were mostly restricted to individual molecular layers. For example, it was shown that
188  genes mutated in different patients often cluster together in molecular interaction networks [36]. Yet,
189  effects of these mutations on transcript and protein levels remained unexplored in this case.

190 Previous work of Sinha and colleagues already suggested extensive trans-effects of CNAs on
191 mRNA and protein levels [17]. Thus, here we aimed to systematically explore how different CNA events
192  would impact on the level of one common protein. In order to prioritize potentially interesting proteins
193  for such an analysis, we focused on the 20 proteins with the largest average absolute FCs across all
194  tumor specimens (Additional file 1: Fig. S8, Additional file 7: Table S6). Thus, these proteins represent a
195 set of proteins that was strongly affected across most tumors independent of tumor grade. Among them
196 was PSA (KLK3), and several other well established PCa-associated proteins like AGR2 [37], MDH2 [38],
197 MFAP4 [39] and FABP5 [40]. RABL3 was one of the most strongly down-regulated proteins, which is a
198 surprising finding as RABL3 is known to be up-regulated in other solid tumors [41, 42]. Interestingly, in
199 most cases these proteins were from loci that were not subject to CNAs (Additional file 1: Fig. S8,
200 Additional file 7: Table S6), hinting that independent genomic events would impact on these target
201 proteins via network effects in trans.

202 Among those top targets we selected AGR2, ACPP, POSTN and LGALS3BP for further analysis (Fig.
203 3a), because these proteins/genes had correlated protein- and mRNA FCs; thus, protein level changes
204  were likely caused by cognate mRNA level changes. To identify potential regulators for each target gene,
205  we used the STRING gene interaction network [43] and selected putative effectors at most one edge
206 away from the target genes. Further, we required that neighbors or the target itself were subject to
207  CNAs in at least four tumor samples (‘Methods’ section). By including the target itself we account for
208 potential CNA cis-effects. However, only POSTN passed that filter. This filtering identified 13 neighbors of
209 ACPP, 28 neighbors of POSTN (and POSTN itself), 14 neighbors of LGALS3BP and one neighbor for AGR2,
210  which was not further considered. Next, we correlated CNAs of those neighbor genes with the mRNA FCs
211  of the respective target genes (Fig. 3b). We then used the non-neighboring genes (i.e. the network
212 complement) to generate a background distribution of CNA-target correlations specifically for each
213 target. Here, we also only considered genes with at least four CNAs across the tumor samples. Since
214  STRING reports predicted functional associations between genes we expected only a minority of the

215 neighbors to actually correlate with their putative targets. Further note that edges in STRING could
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216 represent indirect gene-gene relationships. Yet, in the case of ACPP we found that CNA levels of its 13
217 neighbors were on average more strongly correlated with ACPP mRNA FCs than the complement (Fig.
218 3b). This observation does not preclude the possibility that also some of the POSTN and LGALS3BP
219 neighbors impacted on their mRNA levels in trans. However, the fact that ACPP neighbors were on
220  average more strongly correlated with ACPP mRNA FCs, suggested to us that multiple of its network
221 neighbors might be involved in tumorigenic down-regulation of ACPP.

222 ACPP, which is also known as ACP3 or PAcP, is a prostate-specific acid phosphatase with a critical
223 role in PCa etiology and has been suggested as a PCa biomarker long before PSA [44]. ACP3 is known to
224  inhibit cell proliferation and is therefore typically down-regulated in PCa [45], despite elevated ACP3
225 protein levels in patient blood [44]. In our cohort ACP3 levels were strongly down-regulated in all of the
226 high-grade patients and in the vast majority of low- and intermediate-grade patients, suggesting that
227  ACP3 down-regulation represents an early event during PCa evolution. Despite its established role in PCa,
228 little is known about the oncogenic driver events down-regulating ACP3 [44].

229 We speculated that CNA events affecting different ACPP neighbors might be in operation in
230  different tumor specimens. Thus, to further narrow the list of candidates we devised a multi-dimensional
231 regression approach modeling the combined CNA effects of neighbors on ACPP mRNA FCs (‘Methods’
232 section). Five neighbors (DGUOK, APRT, GOT1L1, NKX3-1 and ENTPD4) had statistically significant effects
233 in that multi-dimensional model (Fig. 3c). We utilized two independent PCa cohorts (TCGA; [8] and
234 MSKCC [31]) to validate potential effects of those five genes: we computed the association between the
235 CNAs of each significant regulator and the corresponding mRNA log-FC of ACPP in each cohort and
236  confirmed that the signs of the effects (i.e. effect directions) were the same for all five genes in all
237 cohorts. Among those hits was NKX3-1, which is a prostate-specific tumor suppressor gene and loss of a
238 single allele may predispose to prostate carcinogenesis [46, 47]. NKX3-1 is a transcription factor found to
239 have substantial trans-effects in PCa [17]. Consistent with its potential role as an ACPP regulator, NKX3-1
240  has been found to bind within 1 kb of the transcription start site of ACPP ([48]; GEO GSE40269).
241 Interestingly, the CNA signatures of the five putative regulators split into two clusters affecting two
242 distinct sets of patients (Fig. 3c): the first one harboring joint deletions of DGUOK and APRT, the second
243 one harboring joint deletions of NKX3-1, ENTPD4 and GOT1L1. The latter three genes are all encoded on
244  Chromosome 8 and thus, their deletion may be due to single CNA events. DGUOK and APRT however,
245  are encoded on different chromosomes. Importantly, these events were clonal in most cases, i.e. they
246  were mostly common to both tumor samples of a given patient. Hence, our network analysis hints that

247  distinct deletions in the network vicinity of ACP3 can lead to the repression of this anti-proliferative
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248 protein. Taken together, these findings suggest that tumor mechanisms in different patients converged

249 on common protein endpoints.

250 Joint network effects of CNAs drive tumor progression.

251 The analysis above identified molecular networks driving tumor alterations and thus indicated
252  altered biochemical states that were common to most tumor specimens. To identify sub-networks that
253  specifically distinguish high-grade from low-grade tumors, we performed a distinct network analysis: we
254  mapped our data onto the STRING gene interaction network [43], and employed network propagation
255 [49, 50] separately to the CNA, transcriptome and proteome data for each of the tumor samples. We
256  excluded point mutations from this analysis as their frequency was too low in our cohort. By combining
257 published molecular interactome data with a network propagation algorithm [36, 49], we aimed to
258  ‘enrich’ network regions with many perturbed genes/proteins. We reasoned that the convergent
259 consequences of genomic variants on common network regions would be indicative of specific
260 biochemical functions that are important for the tumor biology. We therefore identified genes/proteins
261 in network regions that showed a higher score (or a lower score) in high-grade (G4/5) relative to lower-
262  grade (G1) tumor groups at all three levels (Fig. 4a, b; ‘Methods’ section). This analysis identified sub-
263 networks consisting of over- and under-expressed genes (relative to the benign controls). We found 57
264  amplified genes (Additional file 7: Table S6) for which transcripts and proteins were often over-
265  expressed in high-grade PCa (Fig. 4a) and 21 genes with copy number loss (Additional file 7: Table S6)
266  for which transcripts and proteins were often down-regulated compared to lower-grade tumors (Fig. 4b).
267 Among the up-regulated network nodes, we observed genes modulating the stability of
268 chromatin, such as chromatin-binding protein Chromobox 1 (CBX1) [51], SET Domain Bifurcated 1
269 (SETDB1) [52], a function linking to H3K27me3 and H3K9me3 in chromatin, and CBX3 (known as HP1-y)
270 [53]. SETDB1 is an oncogene in melanoma [54] and has also been found to be over-expressed in PCa and
271 cell lines [55]. Further, we found genes involved in DNA damage repair, such as SMG7 [56] and ATR [57],
272  and PRKCZ [58], which had already been suggested as a biomarker prognostic for survival in PCa [59].
273 Multiple actin related proteins including ARPC1B [60], ARPC5 [61], ACTL6A [62], and CFL1 [63], which are
274 markers for aggressive cancers, were part of the up-regulated network nodes. Moreover, the up-
275 regulated genes contained proteins related to the cell cycle like BANF1 and proteins interacting with the
276  centrosome including LAMTOR1 and RAB7A that had already been associated with PCa [64]. Finally,
277 several signaling molecules with known roles in PCa were up-regulated, such as the transcription factor

278  Yin Yang 1 (YY1) [65], the TGF-B receptor TGFBR1 [66], and KPNA4, which promotes metastasis through
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279 activation of NF-kB and Notch signaling [67]. Thus, up-regulated network nodes are involved in
280 DNA/chromatin integrity and growth control.

281 Likewise, several of the down-regulated genes had functions associated with PCa. For example,
282 the oxidative stress related gene MGST1, which is recurrently deleted in PCa [68]. ALDH1A3 is a direct
283 androgen-responsive gene, which encodes NAD-dependent aldehyde dehydrogenase [69]. DHCR24 is
284 involved in cholesterol biosynthesis and regulated by the androgen receptor [70]. Polymorphisms in
285 CYP1A1 are associated with PCa risk in several meta-analyses among different ethnicities [71-73].

286 Further, our network analysis is suggesting tumor mechanisms converging on genes that are
287 known contributors to PCa tumor biology. For example, the PCa-associated gene SF3B2 [74, 75] was only
288 weakly amplified in some of the high-grade tumors (average log,FC = 0.016) and mRNA levels showed
289  similarly small changes (average log,FC = 0.024). On the other hand, the SF3B2 protein levels were
290  consistently and more strongly up-regulated across tumors (average log,FC = 0.31), especially within the
291 high-grade tumors (Additional file 1: Fig. S9). Another example is UBE2T whose over-expression is
292  known to be associated with PCa [76]. Unfortunately, we could not quantify the corresponding protein
293 levels. However, we observed a strong and consistent mRNA over-expression across several tumors
294 (average log,FC = 0.73), even though at the DNA level the gene was only weakly amplified (average
295 log,FC = 0.023; Additional file 1: Fig. $9). Our findings of more heterogeneous CNAs, but more uniform
296 mRNA and protein alterations point on convergent evolutionary mechanisms, as we move along the axis
297 of gene expression.

298 Next, we analyzed the largest connected component with genes up-regulated in advanced
299  disease in more detail (see the ‘Methods’ section). It consists of the nine nodes EMD, BANF1, ACTL6A,
300 YY1, RUVBL1, KANSL1, MRGBP, VPS72 and ZNHIT1 (Fig. 4a), and is referred to in the following as
301 Network Component 1 (Additional file 7: Table $6). Seven of these proteins are involved in chromosome
302  organization which may induce genomic alterations and influence the outcome of multiple cancers
303 including PCa [77]. For example, the actin-related protein ACTL6A is a member of the SWI/SNF (BAF)
304  chromatin remodeling complex[78], and a known oncogene and a prognostic biomarker for PCa [79].
305 Further, ACTL6A, RUVBL1 and MRGBP are together part of the NuA4/Tip60-HAT complex, which is
306 another chromatin remodeling complex involved in DNA repair [80]. Likewise, KANSL1 is involved in
307  histone post-translation modifications, while VPS72 is a member of histone- and chromatin remodeling
308  complexes [81]. Thus, Network Component 1 consists of genes involved in chromatin remodeling and

309 DNA repair, many of which are known to be involved in cancers.
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310 Several samples were characterized by a small, but consistent DNA amplification of multiple
311 members of Network Component 1 (Fig. 4c). Out of the 66 tumor samples, there were 30 samples —
312 belonging to all grade groups — with a weak but remarkably consistent DNA amplification of Network
313 Component 1 members, while the high-grade samples had stronger amplifications on average (i.e. larger
314  effect sizes). Importantly, gene members of Network Component 1 were dispersed across eight
315  chromosomes (Additional file 7: Table $6). The parallel DNA amplification of these genes is therefore
316  the result of multiple independent CNA events, while the signal on any single gene alone was too weak
317  to be significant in isolation. Further, members of Network Component 1 were consistently amplified in
318 both tumor areas (i.e. TA1 and TA2) of six patients (H2, H4, H5, H6, H8, and H9; Fig. 4c), thus establishing
319  them as likely clonal events. In some but not all cases, the amplifications led to a small, but consistent
320 increase in mMRNA expression of the amplified gene loci (Fig. 4c). We were able to reconcile 40 tumor
321 samples with a significant enrichment of this network component in either the CNA or mRNA layer.
322 Unfortunately, only three out of the nine proteins were detected in our proteomics experiments (Fig. 4c).
323 Interestingly, patients where the DNA amplifications led to transcript over-expression were almost
324  always high-grade patients, whereas patients where the amplification affected gene expression to a
325 smaller extent were low- or intermediate-grade patients (Fig. 4¢). Further, we noticed that TA2 samples
326 graded as G3 from high-grade patients carried amplifications of Network Component 1, whereas tumor
327 areas graded as G3 from intermediate-grade patients did not have amplifications of this network
328 component (Fig. 4¢). Thus, although the tumor areas were histologically equally classified, tumor areas
329 from high-grade patients carried a CNA signature and expression patterns reminiscent of the high-grade
330 areas from the same patients. Therefore, within the cohort tested the joint DNA amplification of this
331 network component along with RNA up-regulation is a signature of high-grade tumors. Curiously, the
332 higher-grade tumor areas of those high-grades patients (TA1) carried stronger DNA amplifications than
333 the respective lower-grade areas (TA2), which implies that the progressive amplification of Network
334  Component 1 during tumor evolution may contribute to an increasingly aggressive phenotype. To
335  further corroborate the clinical relevance of this network perturbation, we analyzed published datasets
336 of three additional PCa cohorts (TCGA[8], MSKCC [31], and Aarhus [82]), together comprising a total of
337 709 patients with known clinical outcome. We found that amplification of genes from Network
338 Component 1 was a significant predictor of reduced RFS in the MSKCC cohort (P value = 8.8e-3, log-rank
339  test). In the TCGA cohort, we observed the same trend although the difference in RFS was not
340  statistically significant (P value = 0.17; Fig. 4d). Additionally, we found that over-expression of genes

341 from Network Component 1 was a significant predictor of reduced RFS in the TCGA cohort (P value =
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342 2.1le-4, log-rank test), which was the cohort with the largest number of patients. In the other two
343  cohorts we observed the same trend, although the difference in RFS was not statistically significant (P
344 value = 0.30 and 0.093 for MSKCC, and Aarhus; Fig. 4d). Thus, both CNA and RNA changes of Network
345 Component 1 are predictive of the time to relapse in independent cohorts. To also account for
346 covariates, we fitted Cox proportional-hazards models with the age and the copy number burden as
347 (additional) covariates. When including only the age in our model, the results showed minor changes
348  (Fig. 4d). When including both the age and the copy number burden in our model, the effect direction of
349 Network Component 1 remained the same but was not statistically significant anymore (P value = 0.055
350  for TCGA, mRNA and P value = 0.064 for MSKCC, CNA).

351 In conclusion, our findings suggest that relatively weak but broad CNAs of entire network
352 components are associated with high-grade tumors and that the presence of some of these
353 perturbations in lower-grade tumors may be predictive of the future development of a more aggressive

354 phenotype.

355  Analysis of distinct tumor nodules defines intra-patient heterogeneity (TA1 versus
356 TA2 comparison).

357 The CNA patterns (Additional file 1: Fig. S4) and the Network Component 1 analysis (Fig. 4c)
358 suggest that different tumor areas from the same patient shared several mutations. Such common
359  signatures are expected if different tumor nodules originate from a common clone. If this was true, we
360  would expect mutational signatures to be more similar between different nodules from the same patient
361 than between patients, even though mutated genes may be shared across patients. To compare the
362 intra- and inter-patient molecular heterogeneity at the levels of CNAs, transcript, and protein FCs, we
363 computed the Pearson correlation between tumor area 1 (TAl) and its paired tumor area 2 (TA2) for
364  each layer and all of the 27 patients with two characterized tumor areas (25 for the mRNA, see the
365 ‘Methods’ section and Additional file 1: Supplementary Text). As a control, we also computed all
366 pairwise Pearson correlations between the samples within each of the grade groups (i.e. inter-patient
367  correlation). As expected, paired TAl and TA2 from the same patient were on average more strongly
368  correlated to each other compared to samples from different patients within the same grade group. This
369 finding was consistent for all omics layers (Fig. 5a), and was more pronounced at the CNA and mRNA
370 layers compared to the protein layer.

371 Next, we tested whether a high correlation at the level of CNAs also implies a high correlation at

372 the level of mRNA and proteins. We tested this idea by ‘correlating the correlations’, i.e. we correlated
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373  the TA1-TA2 correlation of CNA profiles with the correlation between the mRNA and protein profiles of
374  the same tumor areas (Fig. 5b). Indeed, a higher correlation of two tumor areas at the level of CNA
375  correlated significantly with a higher correlation at the level of mRNA (r=0.49, P value=0.014). In other
376 words, knowing how similar two tumor areas of a patient are at the CNA level supports a prediction of
377  their similarity at the mRNA level (and conversely). Although the correlation between protein and CNA
378  was not statistically significant, it followed the same trend (r=0.35, P value=0.076).

379 Comparing molecular similarity across omics layers allowed us to identify specific types of
380 patients. The patients H2, H4, M13 had highly correlated tumor areas at all three layers (upper right
381 corner in all scatterplots of Fig. 5b). Likely, the tumor areas of these patients have a common clonal
382 origin (Additional file 1: Fig. $3). In contrast, patients M12 and M14 had weakly correlated tumor areas
383  at all levels (bottom left corner in all scatterplots of Fig. 5b). These tumor nodules either have
384 independent clonal origins or they diverged at an earlier stage during tumor evolution (Additional file 1:
385 Fig. S3) [16]. For example, in the case of patient M12 large parts of the genome were not affected by
386 CNAs in the benign sample as well as in TA1 and TA2. However, as shown on Additional file 1: Fig. S3, a
387 large region was amplified in TA1, whereas the same region was deleted in TA2. This is consistent with a
388  scenario in which TA1 and TA2 show parallel evolution. A third class of patients is exemplified by the
389 patients M9 and M17, who showed a high correlation between their tumor areas on the CNA and mRNA
390 levels, but not on the protein level. Yet other patterns were apparent in patients M4, M7, and H10. They
391 showed similar mRNA and protein patterns in the two tumor areas, but relatively uncorrelated CNAs.
392  The results here apply to global proteome patterns and therefore hint that such convergent network
393  effects of CNAs can be frequent. We confirmed that protein-level similarity correlated with similar
394  histological characteristics of the tumor areas. Additional file 1: Fig. S10 shows formalin-fixed paraffin-
395  embedded (FFPE) tissue microarray images (duplicates) from the analyzed tumor nodules (TA1 and TA2,
396 diameter 0.6 mm), further underlining the hypothesis that ultimately protein-level alterations are
397 responsible for common cellular phenotypes. Although we cannot fully exclude the possibility that some
398  of these results were affected by technical noise in the data, our findings suggest that transcript
399  alterations can frequently be buffered at the level of proteins (patients M9, M17, Additional file 1: Fig.
400  S7) and that convergent evolutionary processes may lead to the alteration of common proteins (patients
401 M4, M7, H10). We also note that our findings are specific to the two tumor areas available in this study
402  and could be different if other nodules had been sampled for each of the patients. However, our findings
403  on patients with weakly correlated tumor areas at all levels like M12 and M14 suggest that these

404  patients might carry more than one disease [16].
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405 Discussion

406 Despite twenty years of oncological research involving genome-scale (omics) technologies, we
407 know remarkably little about how the discovered genomic alterations affect the biochemical state of a
408 cell and consequently the disease phenotype. In particular, little is known about how genomic
409 alterations propagate along the axis of gene expression [17, 18]. Here, we have exploited recent
410  technological advances in data acquisition that made it possible to characterize small samples of the
411 same tumor specimens at the level of genomes, transcriptomes, and proteomes and advances in
412 computational strategies towards the network-based integration of multi-omics data.

413 In our study, samples were generated from small, less than 1 mm diameter punches in
414 immediate spatial proximity in the tumor and subsequently profiled at all three ‘omics layers’ (DNA, RNA,
415 proteome). Due to the large spatial heterogeneity of PCa [14, 24], this design - which is so far uncommon
416  for studies profiling multiple layers from tumor specimens - was instrumental for increasing the
417  comparability of the various omics layers and thus facilitated the analysis of molecular mechanisms. Our
418 key findings are: (1) we confirmed the importance of CNAs for PCa biology and the alteration of many
419 known PCa-associated genes at the transcript- and protein-level; (2) we revealed a generally elevated
420 molecular alteration of high-grade tumors compared to lower-grade tumors; (3) although our study
421 confirmed large within- and between-patient genomic heterogeneity, (4) we detected molecular
422 networks that were commonly altered at the mRNA and protein-level. The fact that many of those target
423 molecules are known drivers of PCa tumorigenesis, supports the notion that these proteins/transcripts
424  are subject to convergent evolutionary mechanisms.

425 We integrated the three omics layers using a network-based approach as opposed to directly
426 comparing gene perturbations (mutations) to gene products (transcripts and proteins). Using genome
427 data only, it had previously been hypothesized that whereas the identity of specific mutated genes may
428  differ between tumors, those mutations might still affect common molecular networks [36]. In other
429 words, tumor phenotypes are determined by the perturbation of molecular networks and not by the
430 perturbation of isolated genes. Qur study provides experimental evidence that such network effects are
431 indeed propagated to subsequent molecular layers and that this effect propagation may be clinically
432 relevant. A very prominent example is the indication derived from our data that the long-known PCa
433  gene ACPP (ACP3) is downregulated through diverse CNA events. Of particular interest is the potential
434  role of NKX3-1 in ACP3 downregulation. Although both genes have a well-established PCa association

435  their regulatory relationship had not been reported so far (to our knowledge).
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436 Our multi-omics network analysis revealed molecular sub-networks that distinguished high-
437 grade PCa tumors from low-grade tumors. Specifically, our analysis led to the identification of Network
438 Component 1, a sub-network involved in chromatin remodeling and consisting of genes that were
439  weakly amplified in intermediate-grade (G3) tumor specimens. Signals of individual gene members of
440  this component were virtually indistinguishable from noise in our cohort. However, their consistent
441 alterations across the network region, across molecular layers and the fact that the same genes showed
442  enhanced signals in high-grade specimens, rendered this component highly interesting. The fact that
443 copy number and expression changes of Network Component 1 members were predictive for survival in
444 independent cohorts further supports the potential clinical relevance of this sub-network. Amplification
445  of Network Component 1 was to some extent confounded with overall CNA burden (r=0.58 (TCGA, CNA),
446 r=0.55 (TCGA, mRNA), r=0.34 (MSKCC, CNA), r=0.16 (MSKCC, mRNA)). However, the amplifications of
447 Network Component 1 members were highly correlated and on average above the background of CNAs.
448  Thus, the coordinated amplification of Network Component 1 does not simply mirror overall CNA burden.
449  Our network-based cross-omics analysis identified nine other network components (Fig. 4) successfully
450  capturing several known and potentially new PCa-associated genes. However, neither Network
451  Component 1 nor any of the other network components was uniformly subject to CNAs across all high-
452  grade patients. Instead, we found different network components modified in different patients and
453  these sub-networks were involved in cellular processes as diverse as actin remodeling, DNA damage
454  response, and metabolic functions, all of which are known contributors to PCa biology. This further
455 underlines the large inter-patient variability of PCa and it demonstrates the diversity of molecular
456 mechanisms leading to histologically similar phenotypes. Future prediction models of PCa including the
457 ISUP grade groups, PSA levels and clinical stage might be improved by exploiting multi-omics network
458 analyses. Detecting aggressive networks alterations in prostate biopsies would help clinicians to advice
459 either active surveillance or active therapy. However, the development of such multi-dimensional
460 biomarkers would require much larger patient cohorts.

461 Another distinguishing feature of this study was the simultaneous profiling of two different
462 tumor regions in 27 out of the 39 patients. The profiling of multiple tumor regions from the same
463 prostate helped to further highlight the enormous heterogeneity of PCa within patients and provided
464  important insights into PCa evolution. The fact that Network Component 1 was more strongly affected in
465  the paired higher-grade nodules of high-grade patients suggests that at least certain sub-networks are
466  subject to an evolutionary process, that progressively ‘moves’ protein levels towards a more aggressive

467  state. Generally, and at all molecular layers tested, the two paired tumor areas were more similar to
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468 each other compared to two samples from the same grade group but different patients, suggesting
469 common evolutionary origins. Although the two tumor areas seemed to mostly originate from the same
470 clone, this was not always the case. In some patients, different nodules exhibited different molecular
471 patterns at all omics layers, suggesting early evolutionary separation. Thus, for the first time, current
472 diagnostic, expert-level consensus guidelines [28] are supported by detailed proteogenomic data. Our
473 findings support earlier claims that clonality itself might be a prognostic marker with implications for
474  future, more tumor-specific treatment when targeted therapies become available also for PCa [16, 83].

475 Our study shows that all three molecular layers (genome, transcriptome and proteome)
476 contributed valuable information for understanding the biology of PCa. In particular the DNA layer
477 informed about causal events, clonality, and genomic similarity between tumors. The transcriptome was
478 relevant for understanding the transmission of CNA effects to proteins and served as a surrogate in cases
479 where protein levels remained undetected. The proteome was crucial for revealing protein-level
480  buffering of CNA effects as well as for indicating convergent evolution on functional endpoints. In a
481 routine diagnostic context though, measuring all three layers may not be feasible for the near future due
482 to resource and time limitations. Thus, the identification of improved, routine-usable molecular markers

483  for PCa diagnostics and prognosis remains an open problem [17].

484 Conclusions

485 This study uncovered molecular networks with remarkably convergent alterations across tumor
486  sites and patients. In particular, we identified a sub-network consisting of nine genes whose joint activity
487 positively correlated with increasingly aggressive tumor phenotypes. The fact that this sub-network was
488 predictive for survival in independent cohorts further supports its potential clinical relevance. At the
489  same time though, our study also exposed a diversity of network effects: we could not identify a single
490  sub-network that was perturbed in all high-grade tumor regions, let alone the observed distinct intra-
491 patient alterations at all omics layers for some patients. Overall, our study has significantly expanded our
492 understanding of PCa biology and serves as a model for future work aiming to explore network effects of

493  mutations with an integrated multi-omics approach.

494


https://doi.org/10.1101/2020.02.16.950378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.16.950378; this version posted September 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Network effects in prostate cancer Page 17 /38

495 Methods

496 Patients and samples

497 A total of 39 men with localized PCa who were scheduled for RP were selected from a cohort of
498 1,200 patients within the ProCOC study and processed at the Department of Pathology and Molecular
499 Pathology, University Hospital Zurich, Switzerland [25]. Each of the selected intermediate- and high-
500 grade patients had two different tumor nodules with different ISUP grade groups. H&E (Hematoxylin and
501  Eosin)-stained fresh frozen tissue sections of 105 selected BPH and tumor regions were evaluated by two
502 experienced pathologists (PJW, NJR) to assign malignancy, tumor stage, and Grade Group according to
503 the International Union Against Cancer (UICC) and WHO/ISUP criteria. This study was approved by the
504  Cantonal Ethics Committee of Zurich (KEK-ZH-No. 2008-0040), the associated methods were carried out
505 in accordance with the approved guidelines, and each patient has signed an informed consent form.
506 Patients were followed up on a regular basis (every three months in the first year and at least annually
507  thereafter) or on an individual basis depending on the disease course in the following years. The RFS was
508 calculated with a biochemical recurrence (BCR) defined as a PSA 20.1 ng/ml. Patients were censored if
509 lost to follow-up or event-free at their most recent clinic visit. Patients with a postoperative PSA
510  persistence or without distinct follow-up data for the endpoint BCR were excluded from the analysis of

511 BCR.

512 Exome sequencing and somatic variant analysis

513 The exome sequencing (exome-seq) was performed using the Agilent Sure Select Exome
514 platform for library construction and lllumina HiSeq 2500 for sequencing read generation. We mapped
515  and processed the reads using a pipeline based on bowtie2 [84] (1.1.1) and the Genome Analysis Tools
516 Kit (GATK) [85] (3.2-2). We detected and reported nonsynonymous variants or variants causing splicing
517  changes using Strelka (1.0.14) and Mutect (1.1.7) combined with post-processing by the CLC Genomics
518 Workbench (8.0.3). In this process, all tissue samples of a patient were compared to the respective blood
519 sample.

520 Trimmomatic [86] (0.36) was used for adaptor clipping and low-quality subsequence trimming of
521 the FASTQ files. Subsequently, single reads were aligned to the hgl9 reference genome with bowtie2
522  with options “--very-sensitive -k 20”. We applied samtools [87] (0.1.19) and picard-tools (1.119) to sort

523 the resulting bam files in coordinate order, merge different lanes, filter out all non-primary alignments,
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524  and remove PCR duplicates. Quality of the runs was checked using a combination of BEDtools [88] (2.21),
525 samtools, R (3.1) and FastQC (0.11.2).

526 Bam files containing the mapped reads were preprocessed in the following way: indel
527 information was used to realign individual reads using the RealignerTargetCreator and IndelRealigner
528  option of the GATK. Mate-pair information between mates was verified and fixed using Picard tools and
529 single bases were recalibrated using GATK’s BaseRecalibrator. After preprocessing, variant calling was
530  carried out by comparing benign or tumor prostate tissue samples with matched blood samples using
531 the programs MuTect [89] and Strelka [90] independently. Somatic variants that were only detected by
532 one of the two programs were filtered out using CLC Genomics Workbench. So were those that had an
533 entry in the dbSNP [91] common database and those that represented synonymous variants without

534  predicted effects on splicing.

535 CNA analysis of exome-seq data

536 The Bam files generated during the process of somatic variant calling were processed with the
537  CopywriteR package (v.2.2.0) for the R software [92]. CopywriteR makes use of so-called “off-target”
538 reads, i.e. reads that cover areas outside of the exon amplicons. “Off-target” reads are produced due to
539 inefficient enrichment strategies. In our case on average 28.5% of the total reads were not on target.
540 Briefly, CopywriteR removes low quality and anomalous read pairs, then peaks are called in the
541 respective blood reference, and all reads in this region are discarded. After mapping the reads into bins,
542 those peak regions, in which reads had been removed, were compensated for. Additionally, read counts
543 are corrected based on mappability and GC-content. Finally, a circular binary segmentation is carried out
544  and for each segment the log count ratios between tissue samples and the respective blood sample are
545 reported as copy number gain or loss. The copy number of each gene in each sample was reported
546 based on the log count ratio of the respective segment in which the gene was located. The overall
547 performance of this CNA-calling approach was evaluated by comparing the results of the TA1 (and TA)
548 samples with CNA results obtained by applying the OncoScan Microarray pipeline to FFPE samples from
549 the same tumors (Additional file 1: Fig. $S11).

550 OncoScan Microarrays
551 OncoScan copy number assays were carried out and analyzed as described previously [93].
552 Briefly, DNA was extracted from punches of FFPE cancer tissue blocks. Locus-specific molecular inversion

553 probes were hybridized to complementary DNA and gaps were filled in a nucleotide-specific manner.
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554  After amplification and cleavage of the probes, the probes were hybridized to the OncoScan assay
555 arrays. Scanning the fluorescence intensity and subsequent data processing using the Affymetrix®
556 GeneChip® Command Console and BioDiscovery Nexus express resulted in log intensity ratio data
557  (sample versus Affymetrix reference) and virtual segmentation of the genome into areas with copy

558 number gain, loss or stability.

559 RNA Sequencing

560 RNA sequencing was performed at the Functional Genomics Center Zurich. RNA-seq libraries
561  were generated using the TruSeq RNA stranded kit with PolyA enrichment (lllumina, San Diego, CA, USA).
562 Libraries were sequenced with 2x126bp paired-end on an lllumina HiSeq 2500 with an average of 105.2
563  mio reads per sample.

564 Paired-end reads were mapped to the human reference genome (GRCh37) using the STAR
565  aligner (version 2.4.2a) [94]. Quality control of the resulting bam files using QoRTs [95] and mRIN [96]
566  showed strong RNA degradation[97] in a significant fraction of the samples: mRIN classified 31 samples
567  as highly degraded (Additional file 1: Fig. S12, Additional file 5: Table S4). In order to correct for this 3’
568 bias, 3 tag counting was performed as described by Sigurgeirsson et al [98] using a tag length of 1,000.
569  After 3’ bias correction, three samples still showed a clear 3’ bias: the two tumor regions (TA1 and TA2)
570  of the patient M5 and TA2 from patient M8 (Additional file 1: Fig. $12). These samples were excluded
571 from subsequent analyses. Additionally, the BPH region of the patient M5 was excluded due to the
572 exclusion of both its tumor regions.

573 FeatureCounts [99] was used to determine read counts for all genes annotated in ENSEMBL v75.
574  Genes for which no read was observed in any of the samples in the original data were excluded from the
575 analysis. Further, after 3 tag counting, all genes with without at least 1 read per million in N of the
576 samples were removed. We chose N to be 10 which corresponds to the size of the smallest grade group
577 (G2). In a last reduction step, all genes with more than one transcript were excluded, yielding a final set
578 of 14,281 genes.

579 Read count normalization and differential gene expression analysis was performed using the R
580  packages sva [100] and DESeq2 [101]. All benign tissues were considered biological replicates and
581 differential gene expression for the individual tumor samples was determined against all benign tissues.

582 Gene expression changes with an adjusted P value < 0.1 were considered significant.
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583 RNA-seq - 3’ bias correction

584 The 3 tag counting approach for 3’ bias correction was used on the RNA-seq dataset [98]. This
585  approach requires changing of the annotation file in two steps: 1) isoform filtering and 2) transcript
586 length restriction. As proposed in [98] for each gene we determined the highest expressed isoform
587  within a set of high quality samples. As high quality samples we used all samples with an mRIN score
588  greater than or equal to 0.02. This set contains 7 benign and 15 tumor samples. Isoform expression was

589  determined using cufflinks [102]. As transcript length we chose 1,000bp.

590 Gene fusions
591 FusionCatcher (version 0.99.5a beta) was used to determine gene fusions for all samples.

592 Fusions classified as “probably false positive” are discarded unless they are also classified as “known

593 fusion”.

594 PCT assisted sample preparation for SWATH-MS

595 We first washed each tissue sample to remove O.C.T., followed by PCT-assisted tissue lysis and
596 protein digestion, and SWATH-MS analysis, as described previously [23]. Briefly, a series of ethanol
597 solutions were used to wash the tissues each tissue, including 70% ethanol / 30% water (30 s), water (30
598 s), 70% ethanol / 30% water (5 min, twice), 85% ethanol / 15% water (5 min, twice), and 100% ethanol (5
599 min, twice). Subsequently, the tissue punches were lysed in PCT-MicroTubes with PCT-MicroPestle [103]
600  with 30 pl lysis buffer containing 8 M urea, 0.1 M ammonium bicarbonate, Complete protease inhibitor
601 cocktail (Roche) and PhosSTOP phosphatase inhibitor cocktail (Roche) using a barocycler (model
602 NEP2320-45k, PressureBioSciences, South Easton, MA). The lysis was performed with 60 cycles of high
603 pressure (45,000 p.s.i., 50 s per cycle) and ambient pressure (14.7 p.s.i.,, 10 s per cycle). The extracted
604 proteins were then reduced and alkylated prior to lys-C and trypsin-mediated proteolysis under pressure
605 cycling. Lys-C (Wako; enzyme-to-substrate ratio, 1:40) -mediated proteolysis was performed using 45
606  cycles of pressure alternation (20,000 p.s.i. for 50 s per cycle and 14.7 p.s.i. for 10 s per cycle), followed
607 by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-mediated proteolysis using the same cycling
608 scheme for 90 cycles. The resultant peptides were cleaned using SEP-PAC C18 (Waters Corp., Milford,
609  MA) and analyzed, after spike-in 10% iRT peptides >*, using SWATH-MS following the 32-fixed-size-

192 ysing a 5600 TripleTOF mass spectrometer (Sciex) and a

610  window scheme as described previously
611 1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient was formulated with buffer A (2%

612  acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water and 0.1% formic acid in
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613  acetonitrile) through an analytical column (75 pum x 20 cm) and a fused silica PicoTip emitter (New
614 Objective, Woburn, MA, USA) with 3-um 200 A Magic C18 AQ resin (Michrom BioResources, Auburn, CA,
615 USA). Peptide samples were separated with a linear gradient of 2% to 35% buffer B over 120 min at a
616  flow rate of 0.3 pl min™". lon accumulation time for MS1 and MS2 was set at 100 ms, leading to a total

617 cycletimeof 3.3 s.

618 SWATH assay query library for prostate tissue proteome

619 To build a comprehensive library for SWATH data analysis, we analyzed unfractionated prostate
620  tissue digests prepared by the PCT method using Data Dependent Acquisition (DDA) mode in a tripleTOF
621  mass spectrometer over a gradient of 2 hours as described previously *°. We spiked iRT peptides > into
622  each sample to enable retention time calibration among different samples. We then combined these
623  data with the DDA files from the pan-human library project [104]. All together we analyzed 422 DDA files
624 using X!Tandem > and OMSSA *° against three protein sequence databases downloaded on Oct 21, 2016
625  from UniProt, including the SwissProt database of curated protein sequences (n=20,160), the splicing
626 variant database (n=21,970), and the trembl database (n=135,369). Using each database, we built target-
627 decoy protein sequence database by reversing the target protein sequences. We allowed maximal two
628 missed cleavages for fully tryptic peptides, and 50 p.p.m. for peptide precursor mass error, and 0.1 Da
629 for peptide fragment mass error. Static modification included carbamidomethyl at cysteine, while
630  variable modification included oxidation at methionine. Search results from X!Tandem and OMSSA were

54

631 further analyzed through Trans-Proteomic Pipeline (TPP, version 4.6.0) " using PeptideProphet and

19, 55

632 iProphet, followed by SWATH assay library building procedures as detailed previously . Altogether,
633 we identified 167,402 peptide precursors, from which we selected the proteins detected in prostate
634  tissue samples, and built a sample-specific library. SWATH wiff files were converted into mzXML files
635  using ProteoWizard *® msconvert v.3.0.3316, and then mzML files using OpenMS >’ tool FileConverter.
636  OpenSWATH[105] was performed using the tool OpenSWATHWorkflow with input files including the

637 mzXML file, the TraML library file, and TraML file for iRT peptides.

638 Peptide quantification using OpenSWATH

639 To obtain consistent quantification of the SWATH files, we obtained the all annotated b and y
640  fragments from the sp, sv and tr libraries. About ten thousand redundant and low-quality assays were
641 removed. Then we extracted the chromatography of these fragments and MS1 signals using

642  OpenSWATHWorkflow, followed by curation using DIA-expert[106]. Briefly, the chromatography of all
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643 fragments and MS1 signals were subject to scrutiny by empirically developed expert rules. A reference
644  sample with best g value by pyprophet was picked up to refined fragments. The peptide precursors are
645 further filtered based on the following criteria: i) remove peptide precursors with a q value higher than
646 1.7783e-06 to achieve a false discovery rate of 0.00977 at peptide level using SWATH2stats [107]; ii)
647 peptides with a FC higher than 2 between the reference sample and its technical replicate were
648 removed; iii) peptides matching to multiple SwissProt protein sequences were removed. The data matrix
649 was first quantile normalized, log, transformed, followed by batch correction using the ComBat R

650 package [108]. Finally, for each protein and pair of technical replicates the average value was computed.

651  Statistical analysis
652 All plots were produced with R. Kaplan-Meier estimators were used for RFS analysis. Differences

653  between survival estimates were evaluated by the log-rank test.

654 Computation of molecular perturbation scores

655 On the genomic level (mutation and CNA), we kept the tumor samples (66 in total) that contain
656 FCs with respect to the blood. The mutation matrix was further discretized by setting all non-zero events
657  to 1. At the transcriptomics level, the FCs for the 63 tumor samples were computed as described above
658  (see ‘RNA Sequencing’). Finally, on the proteomics level, we computed the FCs for the tumor samples (66
659 in total) as follows: for each protein, its mean intensity over the normal samples was subtracted from
660  the intensities of the tumor samples. (We chose to compute the FCs for the tumor samples with respect
661  to a global reference (average of all normal samples) and not with respect to their paired benign sample
662 in order to achieve a higher consistency with the transcriptomics level.)

663 We assigned to each sample two molecular perturbation scores summarizing/quantifying the
664  magnitude of its FCs: DE_count counts the number of mutated/differentially expressed (DE) genes, while
665  the DE_sum score is the sum of absolute FCs of all genes. Thus, while the first score counts the number
666  of events (mutations/DE genes), the second one quantifies their magnitude. These two scores can be
667  regarded as generalizations of the term ‘mutational burden’ for the mRNA and protein layer. A gene is
668 regarded as mutated/DE if its value is 1 in the mutation layer and if its absolute value is above a
669  threshold that has been set to 1 for the mRNA and protein layer. For the CNA layer, the corresponding
670  threshold was set to 0.5 because the range of FCs in the CNA matrix is smaller than the mRNA and
671 protein matrices. Both types of scores were computed for each molecular level, except for the point

672 mutations where only DE_count was computed. Afterwards, the 66 DE_count scores (63 for the mRNA)
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673 and the DE_sum scores at each layer were divided into the four grade groups G1, G2, G3 and G4/5

674 respectively.

675 Correlating CNAs with mRNA and protein layer

676 For each of the 2,120 genes measured in all three layers (CNA, mRNA and protein), we computed
677  the Spearman correlation between its CNAs and corresponding mRNA FCs as well as between its CNAs
678  and corresponding protein FCs. We reduced each layer to the 63 tumor samples with available mRNA

679 data.

680 Network propagation/smoothing

681 As a network, the STRING gene interaction network (version 10)[43] was used, after removing all
682 edges with combined score smaller or equal to 0.9 and keeping subsequently the largest connected
683  component. The resulting network consisted of 10,729 nodes and 118,647 (high-confidence) edges. For
684  the network smoothing, the weight matrix was computed as described in Vanunu et al.[49], but for an
685 unweighted graph and the propagation parameter was set to 0.5. The propagation was iteratively
686 repeated 500 times to ensure convergence of the results. For the mapping from gene symbols to STRING
687 identifiers (Additional file 7: Table S6) we used the R/Bioconductor package STRINGdb [109]. The gene
688  symbols with no matching STRING identifier were removed, while for those that mapped to multiple
689  STRING identifiers, the first mapping was kept (default choice in the package). From the multiple gene
690  symbols that mapped to the same STRING identifier, the first mapping was kept. The genes that were
691  not present in the network were removed from the datasets, while those that were present in the
692 network but not in the corresponding dataset were initially filled in with 0’s.

693 Genes with very small, ‘smoothed’ (absolute) FCs were filtered out as follows: after the network
694  propagation, only network nodes that had protein measurements themselves or at least one direct
695 neighbor (on the filtered STRING network) with protein measurements were considered in the next
696  steps of this analysis. l.e. network nodes without measured FCs at the protein layer that had no direct
697  neighbor with measured protein values were removed from the subsequent analyses.

698 For significance testing, the one-sided Wilcoxon rank sum test comparing the smoothed FCs
699 between the groups G4/5 (consisting of 12 samples for the CNA, mRNA and protein layer) and G1
700  (consisting of 26 samples for the CNA and proteins and 25 for the mRNA) was applied to each network

701 node (after filtering) and layer, once for up-regulation and once for down-regulation. The resulting sub-
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702 networks (up-regulated and down-regulated) consisted of those genes that were significant (P value
703 below 0.05) at all three layers and all of the edges connecting them on the filtered STRING network.

704 It should be noted that although measurements from the same patient might not be statistically
705 independent, we have kept them in our analyses firstly in order to increase statistical power and
706 secondly because not all of them correspond to clonal events as shown on Fig. 5. To make sure though
707  that having two samples for some of the patients has not affected our conclusions, we have repeated
708  the statistical testing step (one-sided Wilcoxon rank sum test) in two ways: comparing G4/5 with G1 as
709 before but removing the second tumor area of a patient if it belonged to the same grade group as tumor
710  area 1 (i.e. removing TA2 of patients H3 and H10), and secondly comparing G4/5 with the combined (G1
711 and G2) group and once again removing the second tumor area of a patient if it belonged to the same
712 grade group as his tumor area 1. P values resulting from these analyses were highly correlated

713 (Additional file 1: Fig. S9), and we would thus consider the current conclusions to be robust.

714  Network Component 1 analysis

715 For each tumor sample at the CNA layer, a one-sided, one-sample t-test has been applied testing
716 if its average FC over the genes of the Network Component 1 (and in particular those that have been
717 measured at the CNA) is significantly greater than 0. Due to the presence of outliers in some samples,
718  the non-parametric, one-sided Wilcoxon signed-rank test has been applied as well yielding very similar
719 results (data not shown). A result is considered to be significant if the corresponding P value is below

720  0.05. The analysis has been repeated for the mRNA and protein layer.

721  Independent cohorts validation

722 For the validation of Network Component 1, we used published datasets of three PCa cohorts:
723  TCGA, MSKCC, and Aarhus. For TCGA and MSKCC, we downloaded the CNA, mRNA with precomputed z-
724  scores per gene, and corresponding clinical data from cBioPortal[110] (https://www.cbioportal.org/).
725  There were 489 samples with log,CNA data and 493 samples with mRNA profiles in TCGA. In MSKCC,
726  there were 157 primary tumors with CNA data and 131 primary tumors with mRNA data. The clinical
727  endpoint used in TCGA was the progression-free survival time and the disease-free survival in MSKCC. All
728 previous samples had known survival time.

729 For the Aarhus study (NCBlI GEO dataset GSE46602), we downloaded the mRNA matrix and
730  corresponding clinical information as described in Ycart et al [111]. The resulting mRNA matrix consisted

731 of 20,186 genes and 50 samples- 36 PCa samples with known RFS time and 14 benign samples. Once
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732 excluding the benign samples, we computed z-scores per gene in order to have comparable values with
733 the other two studies. These 36 PCa samples were also considered in the subsequent survival analysis.
734  CNA data was not available for the Aarhus study.

735 We reduced all datasets to the nine genes of Network Component 1. In each of the datasets, we
736 computed for each sample an average copy number change (CNA) or an average z-score (mRNA) across
737  the nine genes of Network Component 1 (combined risk score). Subsequently, we used these combined
738 risk scores to split the samples of each dataset into two groups: samples with a combined risk score
739 larger or equal to the median combined risk score of the study were considered as ‘altered’ and the rest
740  as ‘unaltered’. Kaplan-Meier curves were generated for the two groups. Due to the high level of
741 discretized values in MSKCC at the CNA layer, a sample is considered to be ‘altered’ in that dataset if its
742  combined risk score is above zero.

743 Additionally, we fitted for each dataset a Cox proportional-hazards model to predict survival
744  time using as input variables the average copy number change (CNA) or average z-score {mRNA) of
745 Network Component 1 (variable of interest) and the age (when available, i.e. for TCGA and Aarhus). For
746  each dataset with available copy number information (i.e. for the TCGA and MSKCC studies), we fitted a
747  second Cox proportional-hazards model with the fraction of genome altered as an additional input
748  variable. For the model fitting, we wused the R package survival (https://cran.r-

749  project.org/web/packages/survival/index.html).

750 Analysis of regulators and target genes

751 For this analysis, we used once again the STRING gene interaction network. For each target gene
752 (AGR2, ACPP, POSTN, LGALS3BP), we split the network nodes into two groups as follows: firstly we
753 identified the neighbors of the target gene supported by a combined evidence larger than 0.2. This set
754  together with the target gene constituted group 1 while the remaining network nodes constituted group
755 2. For this splitting, only genes present in the network with copy number measurements and with a
756 matching STRING identifier (Additional file 7: Table S6) were considered (i.e. 17,306 genes in total).
757  Subsequently, genes altered (i.e. with log, copy number ratio greater than 0.5 in absolute) in fewer than
758  four tumor samples across the 66 tumor samples were filtered out in each of the two groups. Genes in
759 group 1 after the CNA filtering are potential regulators of the target under consideration. For each gene
760 in the two groups after the filtering, we computed the Spearman correlation between its CNAs and the
761 mRNA FCs of the target gene. For computing the correlation, the samples were reduced to the 63 tumor

762  samples with available mRNA data.
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763 Subsequently, we fitted an elastic net model with alpha=0.5 for ACPP. We used as output
764  variable the mRNA FC of ACPP and as input variables the CNAs of the genes in group 1 after the copy
765 number event filtering. The value for the regularization parameter lambda was chosen through 10-fold
766  cross validation (default in the R package glmnet (https://cran.r-project.org/web/packages/glmnet/)).
767  The samples were necessarily reduced to the 63 mRNA tumor samples. Predictors/regulators with a non-
768  zero beta coefficient were deemed significant. We have used the elastic net model with alpha=0.5
769 because it is a method giving sparse solutions and can deal with correlated predictors at the same time.

770 As an additional validation to our approach, we used the two independent PCa cohorts
771 described above (TCGA and MSKCC) and reduced the samples to those having both CNA and mRNA
772 profile. This resulted in 488 samples for TCGA and 109 samples for MSKCC. Next, for each of the
773 significant regulators/predictors we computed the Spearman correlation between its CNAs and the
774  corresponding mRNA z-scores of ACPP in each of the two independent studies and checked if the sign of
775 the Spearman correlation matched the sign of the Spearman correlation computed for our cohort, i.e.

776  there was an agreement regarding the direction of the association.
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812 Supplementary information

813  Additional file 1: Supplementary text and supplementary figures.

814  Additional file 2: Table S1. Clinicopathological, immunological and other molecular information of the
815 39 PCa patients. (a) Overall clinicopathological characteristics. (b) Detailed information for each patient.
816 Pat: numeric patient ID; Pat_id: patient ID grouped by the overall grade. L: low grade; M: intermediate

817 grade; H: high grade; Overall _Gleason_GrGp: overall ISUP grade group; pT: tumor stage; pN: nodal
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818 status; R: surgical margin status; Age_at OP: age at operation; PSA at Diag: blood PSA level at
819 diagnosis; Time (months): RFS time. A value of O corresponds to patients excluded for the reasons
820 explained in the ‘Methods’ section (see ‘Patients and samples’); Status: status indicator. 1 means
821 recurrence; DX name: tissue region name; ImageName: name of the scanned images; index_tumor_id:

822 patient ID of TA1 (or TA); TA1_GrGp: grade group for TA1; T_GrGp: grade group for TA2.

823  Additional file 3: Table S2. Exome analysis of the peripheral blood cells and 105 prostate tumor
824  punches in 39 patients. (a) Allele frequencies (AF) of somatic single nucleotide variants (SNVs) that were
825  called by our bioinformatics pipeline. Genes with called SNV are indicated by an AF > 0. A value of 0
826  indicates that no SNV was found in the respective genes. In our data, no gene was found with more than
827 one called somatic SNV. (b) Number of samples per gene with called somatic SNV. (c) Protein domain

828  analysis using DAVID.

829  Additional file 4: Table S$3. Copy number analysis of 105 PCa samples. (a) Log, ratios indicating the CNA
830  status are shown for all genes in all samples. Values were determined by overlapping gene locations with
831  CNA segments as calculated by CopywriteR. In case more than one segment overlapped with a gene,
832  number was chosen that had the highest absolute value. (b) Genes are shown with log, ratios higher

833  than 0.5 or lower than -0.5 in at least one sample.

834  Additional file 5: Table S4. RNA-seq analysis. (a) Log,FCs (relative to all benign samples) for all genes
835 across the tumor samples. (b) mRIN score per sample generated using mRIN (v1.2.0). (c) ETS family gene
836  fusions observed in tumor samples using FusionCatcher: a value of 1 means that the fusion was observed
837 in the respective sample but not its corresponding benign sample, otherwise the value is 0. (d)

838 Normalized RNA-seq count data matrix.

839  Additional file 6: Table S5. Proteomics data of 210 PCa samples with duplicates. (a) Sample information
840 includes patient ID, clinical diagnosis, sample ID and batch design. (b) Protein matrix of log, scaled

841 intensity of 2,371 proteins quantified in 210 PCa samples.

842  Additional file 7: Table S6. Integration analysis of 66 tumor samples. (a) Information (i.e. reference
843 linking them to PCa, consistency between observed and reported effect and number of tumor samples
844  with CNAs) for the first 10 highest-scoring proteins (those with largest average absolute FCs across all
845  tumor specimens). (b) Consistently up-regulated genes in the high-grade tumors: for each of these
846 genes, there is a significant up-regulation of its FCs after network smoothing in the group G4/5

847  compared to the group G1 in all three layers (CNA, mRNA and protein). (c) Consistently down-regulated
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848 genes in the high-grade tumors: for each of these genes, there is a significant down-regulation of its FCs
849 after network smoothing in the group G4/5 compared to the group G1 in all three layers (CNA, mRNA
850 and protein). (d) Chromosome information for the gene members of Network Component 1. (e)

851 Mapping from gene symbols to STRING identifiers.
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1161  Figure legends

1162

1163 Figure 1. Proteogenomics analysis of 105 tissue regions from 39 PCa patients. a Representative
1164  immunohistochemistry images of prostate tissues and the selection of BPH and tumorous tissue regions
1165 for genome, transcriptome and proteome analysis. b Kaplan-Meier curves for our cohort when the
1166 patients are stratified by the overall grade (left), the TA1 or TA grade group (middle) and the TA2 or TA
1167  grade group (right). Point-wise 95% confidence bands are shown for the whole range of time values.

1168

1169 Figure 2. Molecular perturbation scores for point mutations, CNAs, transcriptome and proteome data.
1170  a Distributions of the first type of molecular perturbation scores (DE_count’s) for the four grade groups
1171 (visualized as violin plots) at the mutation layer (upper left), CNA layer (upper right), mRNA layer (lower
1172 left) and protein layer (lower right). Points represent the actual values. The horizontal lines correspond
1173  to the median value in each of the four grade groups. b Distributions of the second type of molecular
1174  perturbation scores (DE_sum’s) for the four grade groups (visualized as violin plots) at the CNA layer
1175 (upper left), mRNA layer (upper right) and protein layer (lower left). Points represent the actual values.
1176  The horizontal lines correspond to the median value in each of the four grade groups. P values (in each
1177  of the titles) show the significance of the one-sided Wilcoxon rank sum test where the values of G3 and
1178 G4/5 are gathered together and compared to the values of G1 and G2 (also gathered together).

1179

1180  Figure 3. Target genes and putative effectors. a Density plots of the FCs in the four grade groups for
1181  three selected proteins (ACPP, POSTN, LGALS3BP) among the 20 highest scoring (score: mean of the
1182  absolute FCs across all tumor samples) proteins. Vertical lines correspond to the average FC in each of
1183 the four grade groups. These proteins were selected as target genes to identify potential regulators. b
1184  Distributions of the Spearman correlations of the mRNA target gene FCs with the CNAs of the ‘filtered
1185 neighborhood order one’ and the ‘complement’, for the three target genes. The first set/group consists
1186  of the target itself and of those neighbors in STRING with confidence above 0.2, while the second
1187  consists of the remaining network genes in STRING. Both sets are filtered out for genes subject to CNAs
1188 in less than four tumor samples. P values (in each of the titles) show the significance of the one-sided t-
1189 test. ¢ Heatmap of the CNA matrix reduced to the significant regulators of the target gene ACPP output
1190 by the fitted elastic net model (i.e. those with a non-zero beta coefficient). The columns are ordered
1191 based on the grade group while there is a hierarchical clustering of the rows. The added colorbar depicts
1192 the mRNA FCs of the target gene ACPP.

1193

1194 Figure 4. Cross-omics networks distinguishing high-grade from low-grade tumors. a Sub-networks
1195 consistently up-regulated in high-grade (G4/5) compared to low-grade (G1) tumors across all three
1196 layers (CNA, mRNA and protein). b Same as in (a) but down-regulated genes. Functional annotation of
1197  the sub-networks in (a) and (b) with more than one node is given. All edges in (a) and (b) are supported
1198 by either experimental or database evidence (STRING evidence > 0.348). ¢ CNA, RNA and protein FCs of
1199 Network Component 1 from (a). Samples are ordered by grade group (top bar). T-test results comparing
1200 Network Component 1 members against no change (i.e. 0) are shown for each molecular layer along
1201 with the average FC across Network Component 1 members (‘effect size’). Black box marks selected
1202 matching samples from patients with G4/5 and G3 tumor areas; i.e. tumor sample pairs from identical
1203 patients. Those areas exhibit weak, but common amplifications of Network Component 1 members at
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1204  the CNA and RNA layers. mRNA samples in grey were removed due to low RNA quality. Gray bars at the
1205 bottom show the grade group of the patients (low, intermediate, high) where the samples have (mainly)
1206  come from. d Kaplan-Meier curves for ‘altered’” and ‘unaltered’ samples, where ‘altered’ is defined as an
1207  effect size greater or equal to the median effect. Results for three independent studies, TCGA (left),
1208  MSKCC (middle) and Aarhus (right) using the corresponding CNA data when available (first row) and
1209 mRNA data (second row). The Cox model P value corresponds to the P value of the variable of interest
1210  (i.e. average copy number change (CNA) or average z-score (mRNA) of Network Component 1) from the
1211  fitted Cox model after adjusting for patient age (when available, i.e. for TCGA and Aarhus).

1212

1213 Figure 5. Within-patient similarity at the different layers. a Distributions of the within-group similarities
1214  for the four grade groups (visualized as violin plots) based on the Pearson correlation at the CNA layer
1215 (upper), mRNA layer (middle) and protein layer (lower). A ‘violin’ with the correlations between TA1 and
1216 paired TA2 for the different patients has been added to all three plots and colored in purple. Points
1217 represent the actual values. The horizontal lines correspond to the median value in each of the groups. P
1218  values from the one-sided Wilcoxon rank sum test comparing the within-patient to the within-group
1219  similarities (where all values from the four groups are gathered together): 8.97e-09 for the CNA, 4.42e-
1220 08 for the mRNA and 6.27e-04 for the protein layer. b The correlations between TA1 and paired TA2 for
1221 the different patients at one layer are plotted against the corresponding correlations at another layer for
1222 each pair of layers: mRNA versus CNA (upper), protein versus CNA (middle) and protein versus mRNA
1223 (lower). The points are labeled and colored based on the overall grade in all plots; r: Pearson correlation.

1224
1225
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