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Abstract

Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regu-
latory and functional potential of cells at the individual, population and community levels of organization.
Although the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping
annotated proteins onto known pathways using a reference database, pathway-centric methods based on
heuristics or machine learning to infer pathway presence provide a powerful engine for hypothesis generation
in biological systems. Such methods rely on rule sets or rich feature information that may not be known
or readily accessible. Here, we present pathway2vec, a software package consisting of six representational
learning based modules used to automatically generate features for pathway inference. Specifically, we build
a three layered network composed of compounds, enzymes, and pathways, where nodes within a layer mani-
fest inter-interactions and nodes between layers manifest betweenness interactions. This layered architecture
captures relevant relationships used to learn a neural embedding-based low-dimensional space of metabolic
features. We benchmark pathway2vec performance based on node-clustering, embedding visualization and
pathway prediction using MetaCyc as a trusted source. In the pathway prediction task, results indicate that
it is possible to leverage embeddings to improve pathway prediction outcomes.
Availability and implementation: The software package, and installation instructions are published on
github.com/pathway2vec
Contact: shallam@mail.ubc.ca

1 Introduction

Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regula-
tory and functional potential of cells at the individual, population and community levels of organization.
([3]). Exponential advances in sequencing throughput continue to lower the cost of data generation with
concomitant increases in data volume and complexity ([4]). Resulting data sets create new opportunities
for metabolic reconstruction within biological systems that require the development of new computational
tools and approaches that scale with data volume and complexity. Although the most common methods for
metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins onto known pathways
using a reference database based on sequence homology, heuristic or rule-based methods for pathway-centric
inference including PathoLogic ([21]) and MinPath ([35]) have become increasingly used to generate hy-
potheses and build quantitative models. For example, Pathologic generates pathway genome databases
(PGDBs) that can be refined based on experimental validation e.g. EcoCyc ([22]) and stored in repositories
e.g. BioCyc ([9]) for community access and use in flux balance analysis.

The development of accurate and flexible rule sets for pathway prediction remains a challenging enterprise
informed by expert curators incorporating thermodynamic, kinetic, and structural information for validation
([33]). Updating these rule sets as new organisms or pathways are described and validated can be cumbersome
and out of phase with current user needs. This has led to the consideration of machine learning (ML)
approaches for pathway prediction based on rich feature information. Dale and colleagues conducted a
seminal study comparing the performance of Pathologic to different types of supervised ML algorithms (naive
Bayes, k nearest neighbors, decision trees and logistic regression), converting rules into features, defining
new features, and evaluating on experimentally validated pathways from six highly curated organisms in
the BioCyc collection randomly divided into training and test sets ([11]). Resulting performance metrics
indicated that generic ML methods equaled and in some cases exceeded performance of Pathologic with the
benefit of probability estimation for pathway presence and increased flexibility and transparency of use.

Despite the potential benefits of adopting ML methods for pathway prediction from genomic sequence in-
formation, Pathologic remains the primary inference engine of Pathway Tools ([21]), and alternative methods
for pathway-centric inference expanding on the generic methods described above remain nascent. Several
of these methods incorporate metabolite information to improve pathway inference and reaction rules to
infer metabolic pathways ([7, 33, 32]). Other methods including BiomeNet ([29]) and MetaNetSim ([19])
dispense with pathways all together and model reaction networks based on enzyme abundance information.
Recently, Basher et. al ([6]) implemented a multi-label classification approach to predict metabolic path-
ways for individual genomes as well as more complex cellular communities e.g. microbiomes. One of the
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primary challenges encountered in developing mlLGPR relates to engineering reliable features representing
heterogeneous and degenerate functions within multi-organism data sets ([23]).

Advances in representational learning have led to the development of scalable methods for engineering
features from graphical networks e.g. networks composed of multiple nodes including information systems
or social networks ([16, 12, 28])). These approaches learn feature vectors for nodes in a network by solving
an optimization problem in an unsupervised manner, using random walks followed by Skip-Gram extraction
of low dimensional latent continuous features, known as embeddings ([25]). Here we present pathway2vec,
a software package incorporating multiple random walks based algorithms for representational learning used
to automatically generate feature representations of metabolic pathways, which are decomposed into three
interacting layers: compounds, enzymes and pathways, where each layer consists of associated nodes. A Skip-
Gram model is applied to extract embeddings for each node, encoding smooth decision boundaries between
groups of nodes in that graph. Nodes within a layer manifest inter-interactions and nodes between layers
manifest betweenness interactions resulting in a multi-layer heterogeneous information network ([30]). This
layered architecture captures relevant relationships used to learn a neural embedding-based low-dimensional
space of metabolic features (Fig. 1).

(a) (b)

Figure 1: Three interacting metabolic pathways (a), depicted as a cloud glyph, where each pathway is com-
prised of compounds (green) and enzymes (red). Interacting compound, enzyme and pathway components are
transformed into a multi-layer heterogeneous information network (b).

In addition to implementing several published random walk methods, we developed RUST (unit-circle
based jump and stay random walk), adopting a unit-circle equation to sample node pairs that generalize
previous random walk methods ([16, 12, 18]). The modules in pathway2vec were benchmarked based on
node-clustering, embedding visualization, and pathway prediction. In the case of pathway prediction, path-
way2vec modules provided a viable adjunct or alternative to manually curated feature sets used in ML based
metabolic pathway reconstruction from genomic sequence information. The distinctness of this work lies in
decomposing pathway into components, so various graph learning methods can be applied to automatically
extract semantic features of metabolic pathways, and to incorporate the learned embeddings for pathway
inference.

2 Definitions and Problem Statement

In this section, we formulate the problem of metabolic features engineering using a heterogeneous information
network. Throughout the paper, all vectors are column vectors denoted by boldface lowercase letters (e.g.,
x) while matrices are represented by boldface uppercase letters (e.g., X). The Xi matrix denotes the i-th
row of X and Xi,j denotes the (i, j)-th element of X. A subscript character to a vector, xi, denotes an i-th
cell of x. Occasional superscript, X(i), suggests an index to a sample, position, or current epoch during
learning period. We use calligraphic letters to represent sets (e.g., E) while we use the notation |.| to denote
the cardinality of a given set.

Definition 2.1. Multi-label Pathway Dataset ([6]). A pathway dataset is characterized by S =
{(x(i),y(i)) : 1 < i 6 n} consisting of n examples, where x(i) is a vector indicating abundance informa-
tion for each enzymatic reaction denoted by z, which is an element of a set Z = {z1, z2, ..., zr}, having r

possible reactions. The abundance of an enzymatic reaction for a given example i, say z
(i)
l , is defined as

a
(i)
l (∈ R≥0). The class label y(i) = [y

(i)
1 , ..., y

(i)
t ] ⊆ {−1,+1}t is a pathway label vector of size t representing

the total number of pathways obtained from a trusted source of experimentally validated metabolic pathways
Y. The matrix form of x(i) and y(i) are symbolized as X and Y, respectively.

Both Z and Y are derived from trusted sources, such as KEGG ([20]) or MetaCyc ([8]). We assume that
there is a numerical representation behind every instance and label.
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Figure 2: Graphical representation of pathway2vec framework. Main components: (a) a multi-layer
heterogeneous information network composed from MetaCyc, showing meta-level interaction among compounds,
enzymes, and pathways, (b) four random walks, and (c) two representational learning models: traditional Skip-
Gram (top) and Skip-Gram by normalizing domain types (bottom). In the subfigure (a), the highlighted network
neighbors of T1 (nitrifier denitrification) indicate this pathway interacts directly with T2 (nitrogen fixation I
(ferredoxin)) and indirectly to T3 (nitrate reduction I (denitrification)) by second-order with relationships to
several compounds, including nitric oxide (C3) and nitrite (C4) converted by enzymes represented by the EC
numbers (Z2: EC 1.7.2.6, Z3: EC 1.7.2.1, and Z4: EC 1.7.2.5). The black colored nodes in subfigure (b) indicate
the current position of the walkers and red links suggest the next possible nodes to sample while black links
indicate route taken by a walker to reach the current node. node2vec is parameterized by local search s and
in-out h hyperparameters. These two hyperparameters constitute a unit circle, i.e., h2 + s2 = 1, for RUST. M
stores previously visited node types which is 2 and only applied for JUST and RUST. c is number of nodes of
the same domain type as the current node which is 3 and is associated with JUST. For metapath2vec, a walker
requires a prespecified scheme which is set to “ZCTCZ”. The normalized Skip-Gram in the subfigure (c) bottom
is simply trained based on the domain type, in contrast to the traditional Skip-Gram model. More information
related to both learning strategies is provided in Section 3.2. Zoom for readability.
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The pathway inference task can be formulated as retrieving a set of pathway labels for an example i
given features learned according to a heterogeneous information network defined as:

Definition 2.2. Heterogeneous Information Network A heterogeneous information network is defined
as a graph G = (V, E), where V and E denote to the set of nodes and edges (either directed or undirected),
respectively ([31]). Each v ∈ V is associated with an object type mapping function φ(v) : V → O, where O
represents a set of object types. Each edge e ∈ E ⊆ V ×V includes multiple types of links, and is associated
with a link type mapping function φ(e) : E → R, where R represents a set of relation types. In particular,
when |O|+ |R| > 2, the graph is referred to as a heterogeneous information network.

In heterogeneous information networks, both object types and relationship types are explicitly segregated.
For the undirected edges, notice that if a relation exists from a type Oi(∈ O) to a type Oj(∈ O), denoted as
OiROj and R ∈ R, the inverse relation R−1 holds naturally for OjR

−1Oi. However, in many circumstances,
R and its inverse R−1 are not equal, unless the two objects are in the same domain, and R is symmetric.
In addition, the network may be weighted where each edge ei,j , of nodes i and j, is associated with a
weight of type R. The linkage type of an edge automatically defines the node types of it’s end points. The
graph articulated in this paper is considered directed and weighted (in some cases), but for simplification is
converted to a undirected network by simply treating edges as symmetric links. Note that if |O| = |R| = 1,
the network is homogeneous; otherwise, it is heterogeneous.

Example 2.2.1. MetaCyc can be abstracted as a heterogeneous information network, in Fig. 1(b), which
contains 3 types of objects, namely compounds (C), enzymes (Z), and pathways (T). There exist different
types of links between objects representing semantic relationships e.g. “composed of” and “involved in”,
relationships between pathways and compounds or relations between enzymes and compounds e.g. “trans-
form” and “transformed by”. An enzyme may be mapped to a numerical category, known as an enzyme
commission number (EC) based on the chemical reaction it catalyzes.

Two objects within heterogeneous information networks describe meta-level relationships refereed to as
meta-paths ([31]).

Definition 2.3. Meta-Path A meta-path P ∈ P is a path over G in the form of O1
R1−−→ O2

R2−−→ Oi
Rk−−→

. . .
Rj−−→ Oj+1, which defines an aggregation of relationships U = R1 ◦ R2 ◦ . . . ◦ Rj between type O1 and

Oj+1, where ◦ denotes the composition operator on relationships and Oi ∈ O and Rk ∈ R are object and
relation type, respectively.

Example 2.3.1. MetaCyc contains multiple meta-paths conveying different semantics. For example, a meta-
path “ZCZ” represents the co-catalyst relationships on a compound (C) between two enzymatic reactions
(Z), and “ZCTCZ” may indicate a meta-path that requires two enzymatic reactions (Z) transforming two
compounds (C) within a pathway (T). Another important meta-path to consider is “CZC”, which implies
“C + Z ⇒ C” transformation relationship.

Problem Statement 1. Metabolic Pathway Prediction Given three inputs: i)-a heterogeneous infor-
mation network G, ii)- a dataset S, and iii)- an optional set of meta-paths P, the goal is to automatically
resolve node embeddings such that leveraging the features will effectively improve pathway prediction for a
hitherto unseeen instance x∗.

3 The pathway2vec Framework

The pathway2vec framework is composed of five modules: i)- node2vec ([16]), ii)- metapath2vec ([12]), iii)-
metapath2vec++ ([12]), iv)- JUST ([18]), and v)- RUST (this work), where each module contains a random
walk modeling and node representation step. A graphical representation of the pathway2vec framework is
depicted in Fig. 2.

C1. Random Walks. In this step, a sequence of random walks over an input graph (whether heterogeneous
or homogeneous) is generated based on the selected model. (see Section 3.1).

C2. Learning Node Representation. Resulting walks are fed into the Skip-Gram model to learn node
embeddings ([25, 15, 16, 12]). An embedding is a low dimensional latent continuous feature for each
node in G, which encodes smooth decision boundaries between groups or communities within a graph.
Details are provided in Section 3.2.

3.1 Random Walks

To capture meaningful graph relationships, existing techniques such as DeepWalk ([28]), design simple but
effective algorithms based on random walks for representational learning of features. However, DeepWalk
does not address in-depth and in-breadth graph exploration. Therefore, node2vec ([16]) was developed
to traverse local and global graph structures based on the principles of: i)- homophily ([26, 14]) where
interconnected nodes form a community of correlated attributes and ii)- structural equivalence ([17]) where
nodes having similar structural roles in a graph should be close to one another. node2vec simulates a second-
order random walk, where the next node is sampled conditioned on the previous and the current node in a
walk. For this, two hyper-parameters are adjusted, s ∈ R>0 that extracts local information of a graph, and
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Figure 3: An illustrative example showing the selection of the next node for both JUST and RUST
on HIN extracted from MetaCyc. The walker is currently stationed at C3 arriving from node C2 (indicated
by black colored link), where M stores two previously visited node types and c (for JUST) holds 3 consecutive
nodes that are of the same domain as C3. As can be seen JUST would prefer selecting the next node of type
pathway while RUST may prefer returning to C2 than jumping to T1 or T2, as indicated by red edges, because
s < h represented by an ellipsis glyph.

h ∈ R>0 that enables local and global traversals by moving deep in a graph or walking within the vicinity
of the current node. This method is illustrated in Fig. 2 (b) top.

First-order and second-order random walks were initially proposed for homogeneous graphs, but can
be readily extended to heterogeneous information networks. Sun and colleagues ([31]) have observed that
random walks can suffer from implicit bias due to initial node selection or the presence of a small set of
dominant node types skewing results toward a subset of interconnected nodes. metapath2vec was developed
([12]), to resolve implicit bias in graph traversal to characterize semantic associations embodied between
different types of nodes according to a certain path definition. This method is illustrated in Fig. 2 (b)
bottom.

metapath2vec overcome the limitation of nove2vec by enabling to extract semantical representations
over heterogeneous graph. However, the use of meta-paths requires either prior domain-specific knowledge
to recover semantic associations of HIN according to a certain path definition. As a result, groups of vertices
with the heterogeneous information network may not be visited or revisited multiple times. This limitation
was partially addressed by leveraging multiple path schemes ([15]) to guide random walks based on a meta-
path length parameter. Hussein and colleagues developed the Jump and Stay (JUST) heterogeneous graph
embedding method using random walks [18] as an alternative to meta-paths. JUST randomly selects the
next node in a walk from either the same node type or from different node types using an exponential decay
function and a tuning parameter based on on two history records: i)- c corresponding the number of nodes
consecutively visited in the same domain as the current node and ii)- a queue M of size m storing the
previously node types. This method is illustrated in Fig. 2 (b) second from top.

However, in order to balance the node distribution over multiple node types, JUST constrains the number
of memorized domains m to be within the range of [1, |O|−1] ∈ Z>1. This can misrepresent graph structure
in two ways: i)- explorations within domain because the last visited consecutive c nodes may enforce sampling
from another domain, or ii) jumping deep towards nodes from other domains because M is constrained. To
alleviate these problems we develop a novel random walk algorithm, RUST, adopting a unit-circle equation
to sample node pairs that generalize previous representational learning methods, as illustrated in Fig. 2
(b) second from bottom. The two hyper-parameters s and h constitute a unit circle, i.e., h2 + s2 = 1,
where h ∈ [0, 1] indicates how much exploration is needed within a domain while s ∈ [0, 1] defines the
in-depth search towards other domains such that s > h encourages the walk to explore more domains and
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vice versa. Consequently, RUST blends both semantic associations and local/global structural information
for generating walks without restricting domain size m in M .

To better illustrate the effect of s and h on RUST, consider an example in Fig. 3, where the walkers
in JUST and RUST are currently stationed at C3 of compound type. While JUST enforces its walker to
jump towards pathway domain, because of the combined effect of c that holds three consecutive nodes of
compound type and M that is currently storing EC and compound types, RUST may prefer returning to
C2 (no links exist to C4) than jumping to T1 or T2. This is because s < h entailing to explore more within
the same domain as C3. If, however, s > h then RUST will perform in-depth search by selecting a node of
type pathway. For formal definitions about the discussed random walks, see Supp. Section 1.

3.2 Learning Latent Embedding in Graph

Random walks W generated using node2vec, metapath2vec, JUST and RUST are fed into the Skip-Gram
model to learn node embeddings ([25]). The Skip-Gram model exploits context information defined as a fixed
number of nodes surrounding a target node. The model attempts to maximize co-occurrence probability
among a pair of nodes identified within a given window of size q in W based on log-likelihood:∑

l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

log p(vj+k|vj) (3.1)

where vj−c, ..., vj+c are the context neighbor nodes of node vj and p(vj+i|vj) defines the conditional prob-
ability of having context nodes given the node vj . The p(vj+k|vj) is the commonly used softmax function,

i.e, = e
D

vj+k .D
vj∑

i∈V e
D

vi .Dvj
, where D ∈ R|V |×d stores the embeddings of all nodes and Dv is the v-th row corre-

sponding to the embedding vector for node v. In practice, the vocabulary of nodes may be very large, which
intensifies the computation of p(vj+k|vj). The Skip-Gram model uses negative sampling, which randomly
selects a small set of nodes N that are not in the context to reduce computational complexity. This idea,
represented in updated Eq. 3.1 is implemented in node2vec, metapath2vec, JUST, and RUST according to:

∑
l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

(
log σ(Dvj+k .Dvj )

+
∑

u∈N∧u/∈N (j)

Evu [log p(vu|vj)]
) (3.2)

where σ(v) = 1
1+e−v is the sigmoid function.

In addition to the equation above, Dong and colleagues proposed a normalized version of metapath2vec,
called metapath2vec++, where the domain type of the context node is considered in calculating the proba-
bility p(vj+k|vj), resulting in the following objective formula:∑

l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

(
log σ(Dvj+k .Dvj )

+
∑

u∈N∧u/∈N (j)∧φ(vu)=φ(vj+k)

Evu [log p(vu|vj)]
) (3.3)

where φ(vu) = φ(vj+k) suggests that the negative nodes are of the same type as the context node φ(vj+k).
The above formula is also applied for RUST, and we refer it to RUST-norm. Through iterative update
over all the context nodes, whether using Eq. 3.2 or Eq. 3.3, for each walk in W, the learned features are
expected to capture semantic and structural contents of a graph, thereby, can be made useful for pathway
inference.

4 Predicting Pathways

For pathway inference, the learned EC embedding vectors are concatenated into each example i according
to:

x̃(i) = x(i) ⊕ 1

r
x(i)Dv:v∈Z (4.1)

where ⊕ denotes the vector concatenation operation, D ∈ R|V |×d stores the embeddings of all nodes and
Dv:v∈Z indicates feature vectors for r enzymatic reactions. By incorporating enzymatic reaction features
into x(i), the dimension size is extended to r + d, where r is the enzyme vector size while d corresponds to
embeddings size. This modified version of x(i) is denoted by x̃(i), which then can be used by an appropriate
machine learning algorithm, such as mlLGPR ([6]), to train and infer a set of metabolic pathways from
enzymatic reactions.
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Figure 4: Parameter sensitivity of RUST based on NMI metric.

Database #EC #Compound #Pathway |V| |E|
MetaCyc 6378 13689 2526 22593 37631
MetaCyc (r) 3606 6469 2467 12542 37631
MetaCyc (uec) 6378 13689 2526 22593 33353
MetaCyc (uec + r) 3229 6469 2467 12165 33353

Table 1: Different configurations of compound, enzyme (EC), and pathway objects extracted from the MetaCyc
database: i)- full content (MetaCyc), ii)- reduced content based on trimming nodes below 2 links (MetaCyc r),
iii)- links among enzymatic reactions are removed, following graph independence assumption (MetaCyc uec)),
and iv)- combination of unconnected enzymatic reactions and trimmed nodes (MetaCyc uec + r).

5 Experimental Setup

In this section, we explain the experimental settings and outline materials used to evaluate the performance
of pathway2vec modules that were written in Python v3 and trained using tensorflow v1.10 ([1]). Unless
otherwise specified all tests were conducted on a Linux server using 10 cores of Intel Xeon CPU E5-2650.

5.1 Preprocessing MetaCyc

We constructed three hierarchical layers of HIN using MetaCyc v21 ([8]), according to: EC (bottom-layer),
compound (mid-layer), and pathway (top-layer) as in Fig. 2(a). Relationships among these layers establish
inter-interactions and betweenness interactions. Three inter-interactions were built: i)- ECs interactions
that were collected based shared metabolites, e.g. if a compound is engaged in two ECs then the two ECs
were considered connected; ii)- compounds interactions that were processed based on shared reactions, e.g.
if any two compounds constituting substrate and product of an engaged enzymatic reaction they would
be linked; and iii)- pathways interactions that were constructed based on shared metabolites, e.g. if any
product in one pathway is being consumed by another then these two pathways were linked. With regard to
betweenness interactions, we considered two forms: i)- EC-compound interaction if any enzyme (represented
by an EC number) engages in any compound then nodes of both types were linked and ii)- compound-
pathway interaction if any compound involves in any pathway then those nodes were considered related.
After building multi-layer HIN, we apply different configurations, as summarized in Table 1, to explore the
relationship between different graph types and the quality of generated walks and embeddings.

5.2 Parameter Settings

Parameterization for the other random walk methods can be found in ([16, 12, 18]). For training, we
randomly initialized model parameters with a truncated Gaussian distribution, and set the learning rate to
0.01, the batch size to 100, and the number of epochs to 10. Unless otherwise indicated, for each module, the
number of sampled path instances is K = 100, the walk length is l = 100, the embedding dimension size is
d = 128, the neighborhood size is 5, the size of negative samples is 5, and the number of memorized domain
m for JUST and RUST are 2 and 3, respectively. The explore and the in-out hyperparameters for node2vec
and RUST are h = 0.7 (or h = 0.55) and s = 0.7 (or s = 0.84), respectively, using the uec configuration. For
metapath2vec and metapath2vec++, we applied the meta-path scheme “ZCTCZ” to guide random walks.
For brevity, we denote node2vec, metapath2vec, metapath2vec++, JUST, RUST, and RUST-norm as n2v,
m2v, cm2v, jt, and rt, crt, respectively.
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6 Experimental Results and Discussion

In this section, we first evaluate parameter sensitivity of RUST prior to benchmarking the four random walk
algorithms, jointly with the two learning methods, based on node-clustering, embedding visualization, and
pathway prediction.

6.1 Parameter Sensitivity of RUST

Experimental setup. In this section, the effect of different hyperparameter settings in RUST on the
quality of learned nodes embeddings is described. Since the hyperparameter space involved in RUST, is
infinite, exhaustive searches for optimal settings are prohibitive. Therefore, settings were sub-selected to
determine RUST performance. Specifically, the effects of the dimensions d ∈ {30, 50, 80, 100, 128, 150}, the
neighborhood size q ∈ {3, 5, 7, 9}, the memorized domains m ∈ {3, 5, 7}, and the two hyperparameters s
and h (∈ {0.55, 0.71, 0.84}) were evaluated based on Normalized Mutual Information (NMI) scores, after
10 trials. The NMI produces scores between 0, indicating no mutual information exists, and 1, indicating
node clusters (feature groups) are perfectly correlated based on class information: enzyme, compound, and
pathway. Clustering was performed using the k-means algorithm ([5]) to group data based on the learned
representations from RUST as described in ([12, 18]). Random walksW were generated using MetaCyc with
uec option for RUST test parameters.
Experimental results. Fig. 4a indicates that RUST performance tends to saturate when the memorized
domains are concentrated around m = 5 and h = 0.55, indicating a preference to explore more domain
types. By fixing m = 3 and h = 0.55 the optimal results of NMI score w.r.t. the number of embedding
dimensionality was found to be at 80 and 128 (Fig. 4b). Beyond this value RUST performance deteriorated.
A similar trend was also observed when the context neighborhood size was increased beyond q > 5 (Fig.
4c). Based on these observations, the following settings m = 3, h = 0.55, d = 80 or d = 128, and q = 5
provide the most efficient and accurate clustering outcomes using MetaCyc with uec option. For comparative
purposes, we set d = 128.

6.2 Node Clustering

Experimental setup. The performance of different random walk methods was tested in relation to node
clustering using NMI after 10 trials and the hyperparameters described above on all MetaCyc graph types
depicted in Table 1. Clustering was performed using the k-means algorithm to group homogeneous nodes
based on the embeddings learned by each method.
Experimental results. Fig. 5 indicates node clustering results for node2vec, metapath2vec, JUST and
RUST. node2vec, JUST and RUST exhibited similar performance across all configurations, indicating that
these methods are less likely to extract semantic knowledge, characterizing node domains, from MetaCyc.
However, RUST performed optimally better than node2vec and JUST in learning representations. In the case
of metapath2vec, the random walk follows a predefined meta-path scheme, capturing the necessary relational
knowledge for defining node types. For example, nitrogenase (EC-1.18.6.1), which reduces nitrogen gas into
ammonium, is exclusively linked to the nitrogen fixation I (ferredoxin) pathway ([13]). Without a predefined
relation, a walker may explore more local/global structure of G, hence, become less efficient in exploiting
relations between these two nodes. Among the four walks, only metapath2vec is able to accurately group
those nodes, according to their classes. Despite the advantages of metapath2vec, it is biased to a scheme, as
described in ([18]), which is explicitly observed for the case of “uec+r” (Fig. 5d). Under these conditions,
both isolated nodes and links among ECs are discarded, resulting in a reduced number of nodes that are more
easily traversed by a meta-path walker. metapath2vec++ exhibited trends similar to metapath2vec because
they share the same walks. However, metapath2vec++ is trained using normalized Skip-Gram. Therefore,
it is expected to achieve good NMI scores, yielding over 0.41 on uec+full content (in Supp. Section 2), which
is also similar to RUST-norm NMI score (∼ 0.38). This is interesting because RUST-norm employs RUST
based walks but the embeddings are learned using normalized Skip-Gram.

Taken together, these results indicate that node2vec, JUST, and RUST based walks are effective for
analyzing graph structure while metapath2vec can learn good embeddings. However, RUST strikes a balance
between the two proprieties through proper adjustments of m and the two unit-circle hyperparameters.
Regarding the MetaCyc type, we recommend “uec” because the associations among ECs are captured at the
pathway level. The trimmed graph is contraindicated, because it eliminates many isolated, but important
pathways and ECs.

6.3 Manifold Visualization

Experimental setup. In this section, learned high dimensional embeddings are visualized by projecting
them onto a two-dimensional space using two case studies. The first case examines the quality of learned
nodes embeddings according to the generated random walks an approach commonly sought in most graph
learning embedding techniques ([16, 34]). We posit that a good representational learning method defines
clear boundaries for nodes of the same type. For illustrative purposes, nodes corresponding to nitrogen
metabolism were selected. The second case examines the limitations of meta-path based random walks,
extending our discussions in Section 6.2. For illustrative purposes we focus on the pathway layer in Fig. 2a
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Figure 5: Node clustering results based on NMI metric using MetaCyc data.
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Figure 6: 2D UMAP projections of the 128 dimension embeddings, trained under uec+full setting depicting 185
nodes related to nitrogen metabolism. Node color indicates the category of the node type, where red indicates
enzymatic reactions, green indicates compounds, and blue is reserved for metabolic pathways.

and consider representation of pathways having no enzymatic reactions. For visualization, we use UMAP,
a.k.a. uniform manifold approximation and projection ([24]) using 1000 epochs with the remaining settings
set to default values.
Experimental results. Fig. 6 visualizes 2D UMAP projections of the 128 dimension embeddings, trained
under uec+full setting depicting 185 nodes related to nitrogen metabolism in MetaCyc. Each point denotes
a node in HIN and each color indicates the node type. node2vec (Fig. 6a), JUST (Fig. 6c), and RUST (Fig.
6d) appear to be less than optimal in extracting walks that preserve three layer relational knowledge e.g.
nodes belonging to different types form unclear boundaries and diffuse clusters. In the cases of metapath2vec
(Fig. 6b), metapath2vec++ (Fig. 6f), and RUST-norm (Fig. 6f), nodes of the same color are more optimally
portrayed. In the second use case 80 pathways were identified, having no enzymatic reactions, with their
109 pathway neighbors, as shown in Fig. 7a. From Fig. 7, we observe that, in contrast to node2vec, JUST,
RUST, and RUST-norm, pathway nodes are skewed incorrectly in both metapath2vec and metapath2vec++
and (with lesser degree). This demonstrates the rigidness of meta-path based methods that follow a defined
scheme that limits their capacity to exploit local structure in learning embeddings. Interestingly, RUST-
norm, based on RUST walks, is the only method that combines structural and semantic information as
indicated in Fig. 7g and Fig. 6f, respectively. Taken together, these results indicate that RUST based walks
with training using Eq. 3.3 provide efficient embeddings, consistent with node clustering observations.

6.4 Metabolic Pathway Prediction

Experimental setup. In this section, the effectiveness of the learned embeddings from pathway2vec
modules is determined across different pathway inference methods including MinPath v1.2 ([35]), PathoLogic
v21 ([21]), and mlLGPR-elastic net (EN), [6]. In contrast to previous multi-label classification methods
([28, 16, 18]), where the goal is to predict the most probable label set for nodes, we leverage the learned
vectors and the multi-label dataset, according to Eq. 4.1. Pathway prediction with mlLGPR-EN used the
default hyperparameter settings, after concatenating features from each learning method, to train on BioCyc
(v20.5 tier (T) T2 & T3) ([9]) consisting of 9255 Pathway/Genome Databases (PGDBs) with 1463 distinct
pathway labels (see Supp. Section 4). Results are reported on T1 golden datasets including EcoCyc,
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Figure 7: 2D UMAP projections of 80 pathways that have no enzymatic reactions, indicated by the blue color,
with 109 corresponding pathway neighbors, represented by the grey color.

HumanCyc, AraCyc, YeastCyc, LeishCyc, and TrypanoCyc. Four evaluation metrics are used to report
performance scores after 3 repeated trials: Hamming loss, micro precision, micro recall, and micro F1 score.

Methods
Micro F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
mlLGPR+n2v 0.7614 0.3857 0.3938 0.4457 0.4780 0.4548
mlLGPR+m2v 0.7638 0.3883 0.3768 0.4642 0.4851 0.4293
mlLGPR+cm2v 0.7508 0.3783 0.3939 0.4598 0.4700 0.4697
mlLGPR+jt 0.7640 0.3783 0.3860 0.4726 0.4528 0.4515
mlLGPR+rt 0.7651 0.4076 0.3883 0.4633 0.4857 0.4680
mlLGPR+crt 0.7682 0.3654 0.4052 0.4451 0.4585 0.4653

Table 2: Micro F1 scores of each comparing algorithm on 6 benchmark datasets.

Experimental results. Table 2 shows micro F1 scores for each pathway predictor. Numbers in boldface
represent the best performance score in each column while the underlined text indicates the best performance
among the embedding methods. From the results, it is obvious that all variation of embedding methods
performs consistently better than MinPath across the T1 golden datasets. With the excpetion of EcoCyc
the performance of embeddings resulted in less optimal micro F1 scores than PathoLogic or mlLGPR. In
the case of mlLGPR, embeddings were trained on less than 1470 pathways, potentially obscuring the actual
benefits of the learned features. Taken together, different pathway2vec modules performed similar to one
another indicating that embeddings are potential alternatives to the pathway and reaction evidence features
used in ([6]). Full results are provided in Supp. Section 5.

7 Conclusion

We have developed the pathway2vec package for learning features relevant to metabolic pathway prediction
from genomic sequence information. The software package consists of six representational learning mod-
ules used to automatically generate features for pathway inference. Metabolic feature representations were
decomposed into three interacting layers: compounds, enzymes and pathways, where each layer consists of
associated nodes. A Skip-Gram model was applied to extract embeddings for each node encoding smooth
decision boundaries between groups of nodes in a graph resulting in a multi-layer heterogeneous informa-
tion network for metabolic interactions within and between layers. Three extensive empirical studies were
conducted to benchmark pathway2vec, indicating that the representational learning approach is a promising
adjunct or alternative to features engineering based on manual curation. At the same time, we introduced
RUST, a novel and flexible random walk method that uses unit-circle and domain size hyperparameters to
exploit local/global structure while absorbing semantic information from both homogeneous and heteroge-
neous graphs. Looking forward, we intend to leverage embeddings and graph structure on more complex
community level metabolic pathway prediction problems. Because random walk based methods depend on
many hyperparameters (e.g. the length of a random walk) that must be tuned, and many walks that must be
generated we are exploring alternative graph convolutional neural networks to reduce computational com-
plexity. Such methods aggregate feature information based on node co-occurrences patterns automatically
without dependence on hyperparameter settings ([2, 10, 27]).
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