

1 **The TMJ disc is a common ancestral feature in all mammals, as**
2 **evidenced by the presence of a rudimentary disc during**
3 **monotreme development**

4

5

6 Neal Anthwal, Abigail S Tucker.

7

8 Centre for Craniofacial and Regenerative Biology, 27th Floor Guy's Tower, King's College
9 London, London SE1 9RT

10

11

12 **Abstract**

13 The novel mammalian jaw joint, known in humans as the temporomandibular joint or TMJ, is
14 cushioned by a fibrocartilage disc. This disc is secondarily absent in therian mammals that
15 have lost their dentition, such as giant anteaters and some baleen whales. The disc is also
16 absent in all monotremes. However, it is not known if the absence in monotremes is
17 secondary to the loss of dentition, or if it is an ancestral absence. We use museum held
18 platypus and echidna histological sections to demonstrate that the developing monotreme jaw
19 joint forms a disc primordium that fails to mature and become separated from the mandibular
20 condyle. We then show that monotreme developmental anatomy is similar to that observed in
21 transgenic mouse mutants with reduced musculature. We therefore suggest that the absence of
22 the disc on monotremes is a consequence of the changes in jaw musculature associated with
23 the loss of adult teeth. Taken together, these data indicate that the ancestors of extant
24 monotremes likely had a jaw joint disc, and that the disc evolved in the last common ancestor
25 of all mammals.

26

27 **Keywords**

28 TMJ disc, monotreme, mammalian evolution, jaw joint, evo devo

29

30

31

32 **Introduction**

33 The temporomandibular joint (TMJ) is the one of the most used joints in the body,
34 articulating the upper and lower jaw in mammals. A fibrous articular disc sits between the
35 skeletal elements of the joint and acts as a cushion.

36

37 TMJ development occurs by the coming together of two membranous bones: the condylar
38 process of the dentary bone in the mandible and the squamosal bone in the skull. The
39 interaction of the condylar with the squamosal induces the formation of a glenoid (or
40 mandibular) fossa on the latter (Wang et al., 2011). The articular disc sits between the two
41 within a synovial capsule. The TMJ disc attaches to the superior head of the lateral pterygoid
42 muscle anteriorly, and to ligaments posteriorly including the disco-malleolar ligament that runs
43 thought the capsule of the middle ear, joining the malleus to the TMJ disc. The TMJ
44 articulates the jaw in all mammals, and is referred to as the squamosal dentary joint (SDJ) in
45 those mammals without a fused temporal bone. In non-mammals the upper and lower jaw
46 articulate via the endochondral quadrate and articular, known as the primary jaw joint (Wilson
47 and Tucker, 2004). TMJ developmental anatomy reflects its evolutionary history as this
48 novel, jaw joint forms after the development of the primary joint, which, in mammals, is
49 integrated into the middle ear (Takechi and Kuratani, 2010; Anthwal et al., 2013; Maier and
50 Ruf, 2016; Tucker, 2017). In recent years, a number of studies have advanced the
51 understanding of middle ear evolution in the context of anatomical development (Luo, 2011;
52 Anthwal et al., 2013, 2017; Urban et al., 2017; Wang et al., 2019), but little work has sought
53 to understand the TMJ in an evolutionary and comparative developmental biology context.
54 This is despite the crucial role that the formation of the TMJ has in mammalian evolution.

55

56 An important part of the TMJ is the disc that cushions its action. The origin of the disc is
57 uncertain. The insertion of the lateral pterygoid muscle into the disc on the medial aspect, and
58 the presence of the discomalleolar ligament has led to speculation that the disc represents a
59 fibrocartilage sesamoid with a tendon of a muscle of mastication trapped by the novel
60 mammalian jaw joint (Herring, 2003). However, studies in mice indicate that the disc
61 develops from a region of flattered mesenchyme cells adjacent to, or possibly part of, the
62 perichondrium of the developing condylar cartilage (Purcell et al., 2009, 2012; Hinton et al.,
63 2015). Formation of the disc condensation is dependent on Ihh signalling from the cartilage
64 (Shibukawa et al., 2007; Purcell et al., 2009; Yang et al., 2016), and Fgf signalling via Spry 1
65 and 2 genes from the adjacent muscles (Purcell et al., 2012). Therefore, the disc may have its
66 origins in either a tendon, the novel secondary cartilage of the condylar process, or a
67 combination of the two.

68

69 Interestingly the disc is absent in extant monotremes (Sprinz, 1964). Monotremes and therian
70 mammals (marsupials and placentals) are evolutionary distant, with the common ancestor of
71 the two subclasses being a mammal like reptile form around 160 million years ago (Kemp,
72 2005). Monotremes have a number of “reptile” like anatomical features such as a cloaca,
73 external embryonic development in an egg, a straight cochlear in the inner ear and laterally
74 protruding legs (Griffiths, 1978). The absence of a disc in both echidna and platypus suggests
75 that the disc evolved after the split between monotremes and therian mammals, and is
76 therefore a therian novelty. Alternatively, absence of the TMJ disc in extant monotremes
77 might be due to a secondary loss of this structure, linked to changes in mastication with the
78 reduction and loss of teeth. Extant adult monotremes are edentulous, possibly due to the
79 evolution of electroreceptivity (Asahara et al., 2016). The juvenile platypus has rudimentary
80 teeth that regress (Green, 1937), while the echidna shows only thickening of the dental
epithelium during development. In contrast, fossil monotremes have a mammalian

81 tribosphenic dentition and were capable of chewing (Kemp, 2005). The presence or absence
82 of a disc in such fossils is difficult to ascertain due to lack of preservation of soft tissue. In
83 support of mastication playing a role in disc formation edentulous therian mammals, or those
84 lacking enamel, often lack a disc. These species include some (but not all) baleen whales (El
85 Adli and Deméré, 2015), giant ant eaters and sloths (Naples, 1999).

86 In order to address this uncertainty, we have examined the development of the TMJ in
87 monotremes and made comparison with mouse developmental models where muscle
88 development is perturbed.

89

90 Materials and Methods

91 Platypus (*Ornithorhynchus anatinus*) and short-beaked echidna (*Tachyglossus aculeatus*)
92 slides were imaged from the collections at the Cambridge University Museum of Zoology.
93 Details of samples imaged are in table 1. All museum samples have been studied in
94 previously published works (Watson, 1916; Green, 1937; Presley and Steel, 1978). Stages for
95 platypus are after Ashwell (Ashwell, 2012). Staging of echidna H.SP EC5 is estimated by
96 cross-referencing previous studies (Griffiths, 1978; Rismiller and McKelvey, 2003). CT cans
97 of adult platypus were a gift of Anjali Goswami, the Natural History Museum, London.

98 *Mesp1Cre;Tbx1flx* (*Tbx1CKO*) mice were derived as previously described (Anthwal et al.,
99 2015).

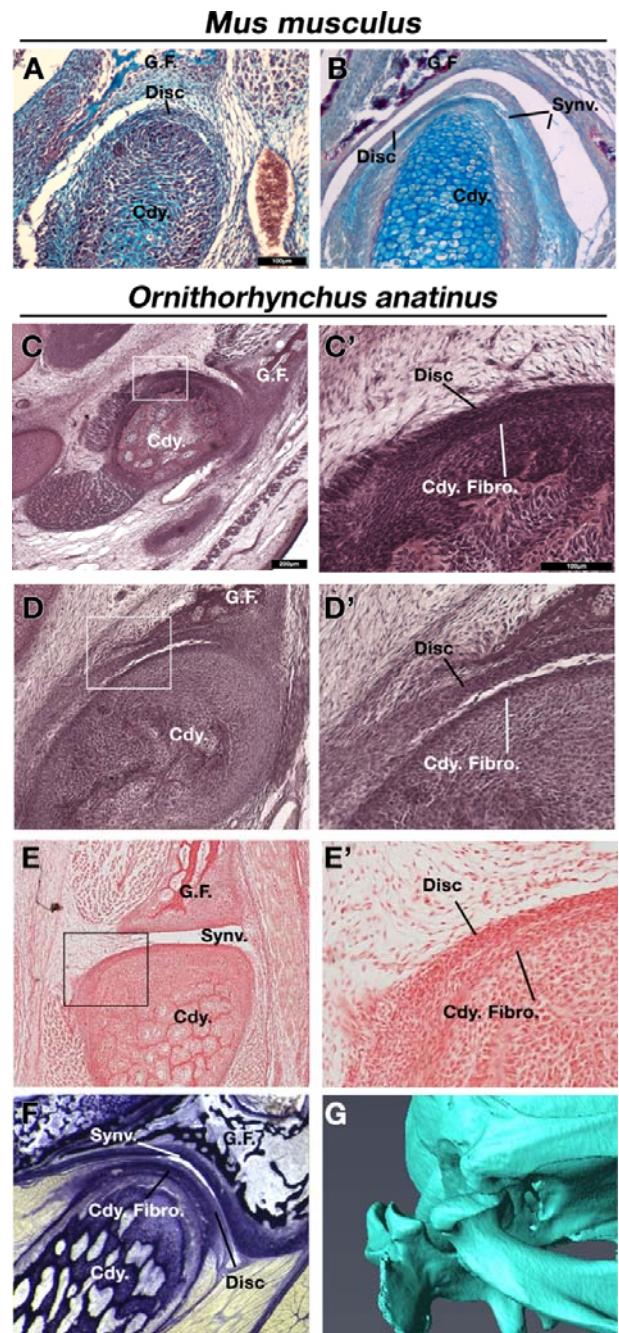
100 Tissue processing and histological staining: embryonic samples for histological sectioning
101 were fixed overnight at 4 °C in 4 % paraformaldehyde (PFA), before being dehydrated
102 through a graded series of ethanol and stored at -20°C. For tissue processing, samples were
103 cleared with Histoclear II, before wax infiltration with paraffin wax at 60°C. Wax embedded
104 samples were microtome sectioned at 8 µm thickness, then mounted in parallel series on
105 charged slides.

106 For histological examination of bone and cartilage, the slides were then stained with
107 picrosirius red and alcian blue trichrome stain using standard techniques.

108

Species	Collection	ID	Estimated Stage	CRL
<i>Ornithorhynchus anatinus</i>	Cambridge	Specimen X	P6.5 [*]	33mm
<i>Ornithorhynchus anatinus</i>	Cambridge	Specimen Delta	P10 [*]	80mm
<i>Ornithorhynchus anatinus</i>	Cambridge	Specimen Beta	P80 [*]	250mm
<i>Tachyglossus aculeatus</i>	Cambridge	Echidna H.SP EC5	P18 [†]	83mm

109 *Table 1: Museum held specimens used in the current study. CRL – Crown rump length. ^{*}Estimate based on Ashwell, 2012.*
110 *[†]Estimate based on Griffiths, 1978 and Rismiller & McKelvey, 2003.*


111

112

Results

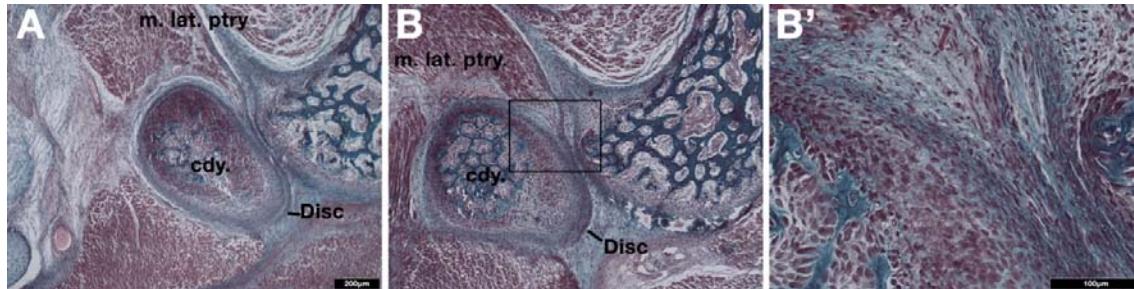
113 If the TMJ disc is a therian novelty then no evidence of a disc would be expected in extant
114 monotremes during development of the TMJ. The development of the jaw joint was therefore
115 examined in museum held histological sections of developing post-hatching platypus and
116 compared with the mouse.

117

118
119
120
121
122
123
124
125
126

Figure 1 Comparison of mouse (*Mus musculus*) and platypus (*Ornithorhynchus anatinus*) developing jaw joint reveals the presence of a jaw joint disc anlage in early post-hatching platypus despite absence of the disc in adults. A,B Histological sections of mouse jaw joint disc development at embryonic day 16.5 (A) and postnatal day 0 (B). C-D' Histological sections of estimated post hatching day 6.5 jaw joint at two different levels (C and D). Note that the separation between the disc anlage and condylar in D is probably a processing artefact. E,E'' Histological sections of estimated post hatching day 10 jaw joint. F Histological section of mature jaw joint in a juvenile platypus are estimated post hatching day 80. G μCT scan of jaw joint region of adult platypus. G.F. – glenoid fossa; Cdy. – condylar process; Cdy. Fibro. – condylar fibrocartilage; Synv. – synovial cavity of the jaw joint.

127
128
129
130
131


As other authors have previously described (Purcell et al., 2009; Hinton, 2014), in the embryonic day (E) 16.5 mouse, the disc anlage is observed as thickened layer of mesenchyme connected to the superior aspect of the condylar cartilage (Figure 1A). At postnatal day (P) 0, the disc has separated from the condylar and sits within the synovial cavity of the jaw joint (Figure 1B). In a platypus sample estimated to be 6.5 days post hatching, the TMJ had been

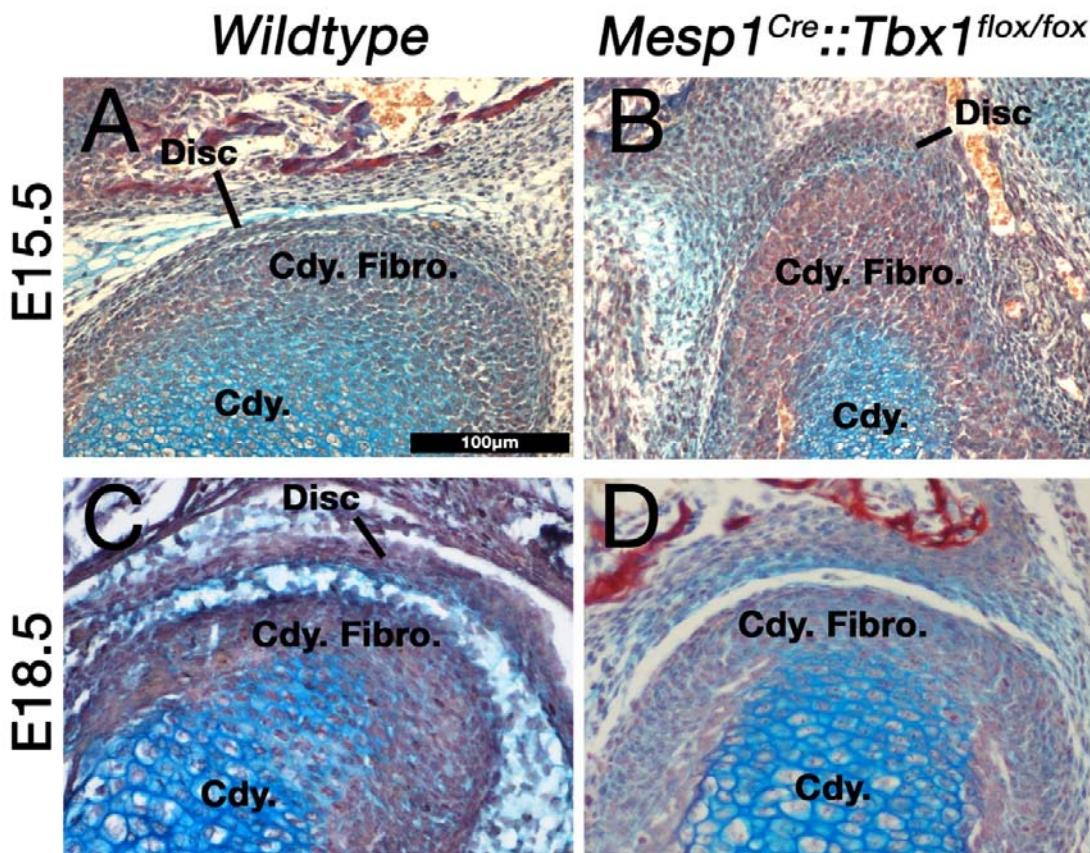
132 initiated, but the joint cavity had not yet formed (Figure 1C,D). Close examination of the
133 superior surface of the condylar cartilage revealed a double layer of thickened mesenchyme in
134 the future fibrocartilage layer of the condylar (Figure 1 C',D'). The outer layer is similar to
135 that known to develop into the articular disc in therian mammals (Purcell et al., 2009). This
136 thickened mesenchyme persisted in older samples, estimated to be P10, where the synovial
137 cavity of the TMJ was beginning to form above (Figure 1 E,E'). In the most mature platypus
138 sample examined (around P80) the fibrocartilage layer of the condylar process was thick and
139 had a double-layered structure (Figure 1F). The outer layer was connected via a tendon to the
140 lateral pterygoid muscle. At this late stage of postnatal development, the platypus puggle
141 would have been expected to start leaving the burrow and to be eating a mixed diet, although
142 full weaning does not occur until around 205 days post hatching (Rismiller and McKelvey,
143 2003). In the mature platypus, the condylar process sits within a glenoid fossa (Figure 1 F,G),
144 which was not fully formed at earlier stages. A disc-like structure lying over the condylar and
145 connected to the adjacent muscles was therefore evident in the platypus postnatally but did
146 not lift off the condylar at any stage.

147

148 Next we examined the development of the TMJ in a derived young short-beaked echidna
149 puggle specimen with a crown-rump length of 83mm, which we estimate to be around P18.
150 The TMJ is not fully (Figure 2). The condylar process possessed a thick, doubled
151 fibrocartilage outer layer (Figure 2), much as was observed in the platypus (Figure 1D). The
152 outer fibrocartilage later was connected by connective tissue to the lateral pterygoid muscle
153 (Figure 2B'). Clear disc-like structures were therefore present during development in both
154 extant monotremes.

155

156
157
158
159
160
161


Figure 2 Examination of the developing jaw joint reveals the presence of a jaw joint disc anlage in post-hatching day 18 short-beaked echidna (*Tachyglossus aculeatus*). A-B Histological staining at the forming jaw articulation in echidna young estimated to be 18 days post hatching at two different level. Fibrocartilage disc anlage superior to the condylar and connected by tendon lateral pterygoid muscle is observed. B' High-powered view of boxed region in B showing the connection between the muscle and the developing disc. Cdy. – condylar process; m. lat. ptry. – lateral pterygoid muscle.

162

163 Taken together, the developmental evidence suggests that extant monotremes initiate a layer
164 of fibrocartilage connected to the lateral pterygoid muscle, similar to the initiation of the TMJ
165 disc in therian mammals. However, unlike in therian mammals, the monotreme fibrocartilage
166 failed to separate from the condylar to form an articular disc in the TMJ. Interactions with
167 musculature, both mechanical (Habib et al., 2007; Purcell et al., 2012; Jahan et al., 2014;
168 Nickel et al., 2018) and molecular (Shibukawa et al., 2007; Gu et al., 2008; Purcell et al.,
169 2009, 2012; Kinumatsu et al., 2011; Michikami et al., 2012; Yasuda et al., 2012; Kubiak et
170 al., 2016), have been suggested to be responsible for the proper formation of the TMJ disc.
171 Lack of mechanical force in monotremes might therefore result in the disc remaining attached
172 to the condylar. In order to examine how changes in mechanical loading affect disc
173 development, we next examined disc development in the *Mesp1Cre;Tbx1flox* conditional
174 mutant mouse (*Tbx1CKO*). This mouse has a mesoderm specific deletion of the T-box

175 transcription factor *Tbx1*, resulting in hypomorphic muscle development (Grifone et al., 2008;
176 Aggarwal et al., 2010; Anthwal et al., 2015).

177
178 We used alcian blue / alizarin red stained histological sections to investigate the development
179 of the TMJ disc in *TbxCKO* mice at embryonic day 15.5. This is the stage when future disc
180 mesenchyme is first observed (see Figure 1A). In wildtype embryos, the future disc
181 mesenchyme was observed as a condensation attached to the superior surface of the condylar
182 fibrocartilage (Figure 3A). A distinct disc-like mesenchyme was also observed superior to the
183 condylar of the *Tbx1CKO* (Figure 3B). This mesenchyme and the fibrocartilage layer of the
184 condylar cartilage both appeared thicker in the *Tbx1CKO* compared to its wildtype littermate.
185 At E18.5, the wildtype TMJ disc had separated from the condylar process, and sat within a
186 synovial joint cavity (Figure 3C). In the *Tbx1CKO* an upper synovial cavity had formed,
187 similar to the WT, but the disc had failed to separate from the condylar (Figure 3D). Instead, a
188 thickened band of fibrocartilage was observed on the superior surface of the condylar process.
189
190

191
192 *Figure 3 Muscle-disc interactions are required for the maturation and separation of the jaw joint articular disc. A,B The disc*
193 *anlage is observed at E15.5 in both wildtype mice (A) and Mesp1^{Cre};Tbx1^{fl/fl} mice with a hypomorphic muscle phenotype*
194 *(B). C,D By E18.5 the disc has separated from the condylar process in wildtype mice (C), but not in and Mesp1^{Cre};Tbx1^{fl/fl}*
195 *mice. Cdy. – condylar process; Cdy. Fibro. – condylar fibrocartilage*

196

197 **Discussion**

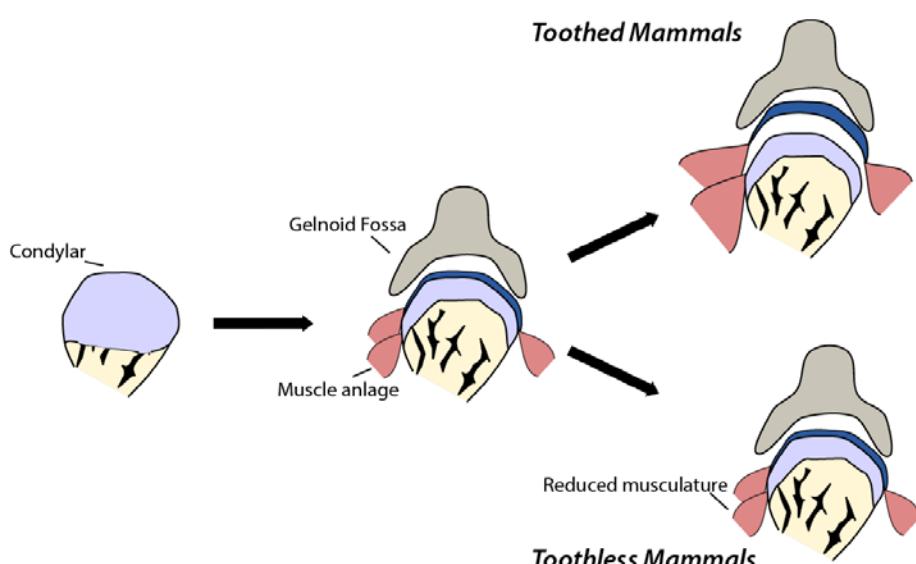
198 The absence of an articular disc in monotremes has been thought to be either a secondary loss
199 related to the absence of mature dentition, or the disc being a later acquisition in the therian
200 clade. The data presented here show that a mesenchyme similar to the TMJ disc is initiated in
201 both platypus and echidna jaws during post-hatching development, but fails to mature and
202 separated from the dentary condyle. In the light of the failure of the disc to fully separate in
203 transgenic mouse models with hypomorphic muscle development, it seems likely that the disc
204 has been secondarily lost in edentulous mammals, including monotremes.

205

206 The secondary jaw joint of some of the earliest mammals-like reptiles with a mandibular
207 middle ear, such as Morganucodon, were able to withstand the biomechanical stresses
208 sufficient for feeding on the hard keratinised bodies of insects, while others such as
209 Kuehneotherium could not (Gill et al., 2014). Later animals developed a range of mandibular
210 movements during chewing, including rolling, yaw and front to back movements (Kemp,
211 2005; Luo et al., 2015; Grossnickle, 2017; Lautenschlager et al., 2017, 2018; Bhullar et al.,
212 2019). It is not clear if these species had evolved an articular disc, since fibrocartilage is
213 rarely fossilised. Based on the presence of the first stages of disc formation during monotreme
214 development it is likely that the common stem Jurassic mammal-like reptilian ancestor of
215 both monotremes and therian mammals had a disc. The data presented here confirms an
216 essential biomechanical component in disc development. Therefore, we are able to consider
217 when during mammalian evolution these forces were able to act to enable disc formation. For
218 example, it is probable that many late Triassic and early Jurassic mammaliaforms such a
219 Hadrocodium (Luo, 2001) possessed an articular disc, since they possessed a well formed
220 squamosal dentary joint and occluding teeth capable of chewing.

221

222 One hypothesis for the origin of the articular disc is that it formed from the tendon of a
223 muscle of jaw closure of the primary jaw joint interrupted by the formation of the novel
224 mammalian jaw joint (Herring, 2003). The tendons and skeleton of the front of the head are
225 derived from the cranial neural crest, whereas much of the musculature is mesoderm derived
226 (Santagati and Rijli, 2003; Yoshida et al., 2008). Interactions between the mesoderm and
227 neural crest co-ordinate the muscular skeletal development of the head (Grenier et al., 2009).
228 A striking piece of evidence for the tendon origin of the disc is the expression in the
229 developing articular disc of *Scleraxis* (Purcell et al., 2012; Roberts et al., 2019), a specific
230 regulator of tendon and ligament development (Schweitzer et al., 2001; Sugimoto et al.,
231 2013). If the disc is derived from a tendon, then it may be thought of as a fibrocartilage
232 sesamoid. Such sesamoids are found in joints and in tendons that are subject to compression,
233 like the tendons that pass around bony pulleys such as the flexor digitorum profundus tendon
234 in quadrupeds, the patella tendon and ligament (Benjamin and Ralphs, 1998), and the
235 cartilago transiliens in crocodilians (Tsai and Holliday, 2011). Fibrocartilages also form at the
236 enthesis of long bones. Interestingly, it has been demonstrated that much like the TMJ disc,
237 enthesis fibrocartilage cells are derived from Hh responsive cells and that these cells are
238 responsive to mechanical loading (Schwartz et al., 2015). To support the tendon origin of the
239 TMJ disc, our data show that the formation of the disc is dependent on interactions between
240 the skeletal and muscle components of the TMJ. Such tissue interaction is also a key process
241 in the formation of tendons and ligaments (Eloy-Trinquet et al., 2009; Huang, 2017).


242

243 The mechanism by which the disc fails to separate from the condylar in monotremes is not yet
244 clear. Hh signalling is known to be involved in both the initiation of the disc, and the later
245 separation from the condylar (Purcell et al., 2009). It is still possible that the role in Hh in

246 separation of the disc is a therian innovation, and as such the reason that monotremes fail to
247 do so is a lack of the later Hh dependent developmental programme for disc separation.
248 However, the absence of the disc in therian edentates strongly suggests that the loss is
249 secondary. Furthermore, the failure of the disc to elevate off the condylar in *Tbx1CKO*, with
250 hypomorphic cranial musculature, suggests that the loss of discs in edentulous mammals is
251 due to changes in the developmental biomechanics of the muscle/bone interactions that
252 occurred as a consequence of loss of teeth, such as a reduction in size and power of the
253 muscles of mastication. The formation and maturation of the disc is unlikely to be directly
254 dependent on the presence of teeth. The TMJ disc forms normally during embryonic
255 development in mice quite some time before the eruption of the teeth during the third
256 postnatal week, while baleen whales vary in the presence or absence of TMJ discs, and indeed
257 TMJ synovial cavities (El Adli and Deméré, 2015). In addition, it is clear that movement of
258 the jaw is essential for maturation of the disc (see also (Habib et al., 2007)). Unfortunately,
259 due to the rarity of fresh material, it is not possible to further examine the mechanistic aspects
260 of TMJ development in edentulous monotreme species at the present time.
261

262 In conclusion, we demonstrate that during development, monotremes show evidence of
263 initiation of the fibrocartilage articular disc, despite all adult monotremes not having an
264 articular TMJ disc. The maturation and separation of the disc is dependent on biomechanical
265 interactions with the associated musculature, as demonstrated by the failure of disc maturation
266 and separation in mice mutants with hypomorphic cranial muscle. Therefore, toothed
267 ancestors of monotremes likely had a TMJ disc. Our research suggests that changes in the
268 cranial musculature that occurred as a consequence of a move towards edentulous dietary
269 niches resulted in absence of the TMJ in monotremes, a parallel loss occurring in edentulous
270 therian mammals (Figure 4). Finally, the presence of the disc anlage in monotremes indicates
271 that the mammal-like reptile ancestors of all modern mammals likely possessed a disc to
272 cushion the novel jaw articulation.
273

Dentary fomation Disc initiation Disc Maturation

274
275 *Figure 4 Maturation of the jaw joint articular disc in mammals is dependent on muscle interactions. In toothless mammals,*
276 *reduction in jaw musculature results in changes in muscle-disc interaction and so the disc does not separate from the*
277 *mandibular condyle to sit within the synovial joint capsule.*

278

279

280 Acknowledgments

281 We would like to thank and acknowledge the following people. Anjali Goswami provided
282 µCT images of the adult platypus. Robert Asher provided access to samples held at the
283 Zoological Museum in Cambridge University. Peter Giere provided access to the Hill
284 Collection at the Berlin Museum für Naturkunde. Andrew Gillis provided assistance with
285 imaging.

286

287 Funding

288 This work was supported by the Wellcome Trust (102889/Z/13/Z).

289

290 Bibliography

291

292 Aggarwal, V. S., Carpenter, C., Freyer, L., Liao, J., Petti, M., and Morrow, B. E. (2010).
293 Mesodermal Tbx1 is required for patterning the proximal mandible in mice. *Dev. Biol.* 344, 669–681. doi:10.1016/j.ydbio.2010.05.496.

294 Anthwal, N., Joshi, L., and Tucker, A. S. (2013). Evolution of the mammalian middle ear and
295 jaw: adaptations and novel structures. *J. Anat.* 222, 147–60. doi:10.1111/j.1469-
296 7580.2012.01526.x.

297 Anthwal, N., Peters, H., and Tucker, A. S. (2015). Species-specific modifications of mandible
298 shape reveal independent mechanisms for growth and initiation of the coronoid.
299 *Evodevo* 6, 35. doi:10.1186/s13227-015-0030-6.

300 Anthwal, N., Urban, D. J., Luo, Z.-X., Sears, K. E., and Tucker, A. S. (2017). Meckel's cartilage
301 breakdown offers clues to mammalian middle ear evolution. *Nat. Ecol. Evol.* 1, 0093.
302 doi:10.1038/s41559-017-0093.

303 Asahara, M., Koizumi, M., Macrini, T. E., Hand, S. J., and Archer, M. (2016). Comparative
304 cranial morphology in living and extinct platypuses: Feeding behavior, electroreception,
305 and loss of teeth. *Sci. Adv.* 2. doi:10.1126/sciadv.1601329.

306 Ashwell, K. W. S. (2012). Development of the hypothalamus and pituitary in platypus
307 (*Ornithorhynchus anatinus*) and short-beaked echidna (*Tachyglossus aculeatus*). *J. Anat.*
308 221, 9–20. doi:10.1111/j.1469-7580.2012.01508.x.

309 Benjamin, M., and Ralphs, J. R. (1998). Fibrocartilage in tendons and ligaments--an
310 adaptation to compressive load. *J. Anat.* 193 (Pt 4, 481–94. Available at:
311 <http://www.ncbi.nlm.nih.gov/pubmed/10029181> Ahttp://www.ncbi.nlm.nih.gov/
312 /pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1467873.

313 Bhullar, B.-A. S., Manafzadeh, A. R., Miyamae, J. A., Hoffman, E. A., Brainerd, E. L., Musinsky,
314 C., et al. (2019). Rolling of the jaw is essential for mammalian chewing and tribosphenic
315 molar function. *Nature* 566, 528–532. doi:10.1038/s41586-019-0940-x.

316 El Adli, J. J., and Deméré, T. A. (2015). On the Anatomy of the Temporomandibular Joint and
317 the Muscles That Act Upon It: Observations on the Gray Whale, *Eschrichtius robustus*.
318 *Anat. Rec.* 298, 680–690. doi:10.1002/ar.23109.

319 Eloy-Trinquet, S., Wang, H., Edom-Vovard, F., and Duprez, D. (2009). Fgf signaling
320 components are associated with muscles and tendons during limb development. *Dev.*
321 *Dyn.* 238, 1195–206. doi:10.1002/dvdy.21946.

322 Gill, P. G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni, M., et al.
323 (2014). Dietary specializations and diversity in feeding ecology of the earliest stem
324 mammals. *Nature* 512, 303–305. doi:10.1038/nature13622.

325 Green, H. L. H. H. (1937). VIII—The development and morphology of the teeth of

374 Luo, Z.-X. (2011). Developmental Patterns in Mesozoic Evolution of Mammal Ears. *Annu. Rev. Ecol. Evol. Syst.* 42, 355–380. doi:10.1146/annurev-ecolsys-032511-142302.

375

376 Luo, Z.-X., Gatesy, S. M., Jenkins, F. A., Amaral, W. W., and Shubin, N. H. (2015). Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. *Proc. Natl. Acad. Sci.* 112, E7101–E7109. doi:10.1073/pnas.1519387112.

377

378

379

380 Maier, W., and Ruf, I. (2016). Evolution of the mammalian middle ear: a historical review. *J. Anat.* 228, 270–83. doi:10.1111/joa.12379.

381

382 Michikami, I., Fukushi, T., Honma, S., Yoshioka, S., Itoh, S., Muragaki, Y., et al. (2012). Trps1 is necessary for normal temporomandibular joint development. *Cell Tissue Res.* 348, 131–40. doi:10.1007/s00441-012-1372-1.

383

384

385 Naples, V. L. (1999). Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla). *J. Zool.* 249, S0952836999009036. doi:10.1017/S0952836999009036.

386

387

388 Nickel, J. C., Iwasaki, L. R., Gonzalez, Y. M., Gallo, L. M., and Yao, H. (2018). Mechanobehavior and Ontogenesis of the Temporomandibular Joint. *J. Dent. Res.* 97, 1185–1192. doi:10.1177/0022034518786469.

389

390

391 Presley, R., and Steel, F. L. D. (1978). The pterygoid and ectopterygoid in mammals. *Anat. Embryol. (Berl.)* 154, 95–110. doi:10.1007/BF00317957.

392

393 Purcell, P., Jheon, A., Vivero, M. P., Rahimi, H., Joo, A., Klein, O. D., et al. (2012). Spry1 and spry2 are essential for development of the temporomandibular joint. *J. Dent. Res.* 91, 387–93. doi:10.1177/0022034512438401.

394

395

396 Purcell, P., Joo, B. W., Hu, J. K., Tran, P. V., Calicchio, M. L., O'Connell, D. J., et al. (2009). Temporomandibular joint formation requires two distinct hedgehog-dependent steps. *Proc. Natl. Acad. Sci. U. S. A.* 106, 18297–302. doi:10.1073/pnas.0908836106.

397

398

399 Rismiller, P. D., and McKelvey, M. W. (2003). Body mass, age and sexual maturity in short-beaked echidnas, *Tachyglossus aculeatus*. *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* 136, 851–865. doi:10.1016/S1095-6433(03)00225-3.

400

401

402 Roberts, R. R., Bobzin, L., Teng, C. S., Pal, D., Tuzon, C. T., Schweitzer, R., et al. (2019). FGF signaling patterns cell fate at the interface between tendon and bone. *Development* 146, dev170241. doi:10.1242/dev.170241.

403

404

405 Santagati, F., and Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. *Nat. Rev. Neurosci.* 4, 806–818. doi:10.1038/nrn1221.

406

407 Schwartz, A. G., Long, F., and Thomopoulos, S. (2015). Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. *Development* 142, 196–206. doi:10.1242/dev.112714.

408

409

410 Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., et al. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. *Development* 128, 3855–66. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/11585810>.

411

412

413

414 Shibukawa, Y., Young, B., Wu, C., Yamada, S., Long, F., Pacifici, M., et al. (2007). Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. *Dev. Dyn.* 236, 426–34. doi:10.1002/dvdy.21036.

415

416

417 Sprinz, R. (1964). A Note On The Mandibular Intra-Articular Disc In The Joints Of Marsupialia And Monotremata. *Proc. Zool. Soc. London* 144, 327–337. doi:10.1088/1751-8113/44/8/085201.

418

419

420 Sugimoto, Y., Takimoto, A., Hiraki, Y., and Shukunami, C. (2013). Generation and

421 characterization of *ScxCre* transgenic mice. *genesis* 51, 275–283.
422 doi:10.1002/dvg.22372.

423 Takechi, M., and Kuratani, S. (2010). History of studies on mammalian middle ear evolution:
424 a comparative morphological and developmental biology perspective. *J. Exp. Zool. B.*
425 *Mol. Dev. Evol.* 314, 417–33. doi:10.1002/jez.b.21347.

426 Tsai, H. P., and Holliday, C. M. (2011). Ontogeny of the Alligator *Cartilago Transiliens* and Its
427 Significance for Sauropsid Jaw Muscle Evolution. *PLoS One* 6, e24935.
428 doi:10.1371/journal.pone.0024935.

429 Tucker, A. S. (2017). Major evolutionary transitions and innovations: the tympanic middle
430 ear. *Philos. Trans. R. Soc. B Biol. Sci.* 372, 20150483. doi:10.1098/rstb.2015.0483.

431 Urban, D. J., Anthwal, N., Luo, Z.-X., Maier, J. A., Sadier, A., Tucker, A. S., et al. (2017). A new
432 developmental mechanism for the separation of the mammalian middle ear ossicles
433 from the jaw. *Proc. R. Soc. B Biol. Sci.* 284, 20162416. doi:10.1098/rspb.2016.2416.

434 Wang, H., Meng, J., and Wang, Y. (2019). Cretaceous fossil reveals a new pattern in
435 mammalian middle ear evolution. *Nature* 576, 102–105. doi:10.1038/s41586-019-1792-
436 0.

437 Wang, Y., Liu, C., Rohr, J., Liu, H., He, F., Yu, J., et al. (2011). Tissue interaction is required for
438 glenoid fossa development during temporomandibular joint formation. *Dev. Dyn.* 240,
439 2466–2473. doi:10.1002/dvdy.22748.

440 Watson, D. M. S. (1916). The Monotreme Skull: A Contribution to Mammalian
441 Morphogenesis. *Philos. Trans. R. Soc. London. Ser. B, Contain. Pap. a Biol. Character*
442 207, 311–374. doi:10.2307/92025.

443 Wilson, J., and Tucker, A. S. (2004). Fgf and Bmp signals repress the expression of Bapx1 in
444 the mandibular mesenchyme and control the position of the developing jaw joint. *Dev.*
445 *Biol.* 266, 138–150. doi:10.1016/j.ydbio.2003.10.012.

446 Yang, L., Gu, S., Ye, W., Song, Y., and Chen, Y. P. (2016). Augmented Indian hedgehog
447 signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic
448 temporomandibular joint in mice. *Cell Tissue Res.* 364, 105–115. doi:10.1007/s00441-
449 015-2306-5.

450 Yasuda, T., Nah, H. D., Laurita, J., Kinumatsu, T., Shibukawa, Y., Shibutani, T., et al. (2012).
451 Muenke Syndrome Mutation, FgfR3 P244R , Causes TMJ Defects. *J. Dent. Res.* 91, 683–
452 689. doi:10.1177/0022034512449170.

453 Yoshida, T., Vivatbuttsiri, P., Morriss-Kay, G., Saga, Y., and Iseki, S. (2008). Cell lineage in
454 mammalian craniofacial mesenchyme. *Mech. Dev.* 125, 797–808.
455 doi:10.1016/j.mod.2008.06.007.

456