

ATF-4 and hydrogen sulfide signalling mediate longevity from inhibition of translation or mTORC1

Cyril Statzer^{1§}, Jin Meng^{2,3§}, Richard Venz¹, Monet Bland^{2,3}, Stacey Robida-Stubbs^{2,3}, Krina Patel^{2,3}, Dunja Petrovic⁵, Raffaella Emsley⁴, Pengpeng Liu⁶, Ianessa Morantte⁷, Cole Haynes⁶, William B. Mair⁷, Alban Longchamp⁴, Milos Filipovic⁵, T. Keith Blackwell^{2,3*}, and Collin Y. Ewald^{1*}

1 Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland

2 Department of Genetics, Harvard Medical School, Boston, MA, United States

3 Joslin Diabetes Center, Research Division, Boston, MA, United States

4 Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

5 Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany

6 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, U.S.A.

7 Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, U.S.A.

§ Authors contributed equally

*Corresponding authors: collin-ewald@ethz.ch (C.Y.E.) and

keith.blackwell@joslin.harvard.edu (T.K.B.). These authors jointly supervised the work.

Keywords: mRNA translation, cystathionine gamma-lyase, H₂S, ageing, mTORC1, integrated stress response, *C. elegans*

1 **Abstract**

2 Inhibition of the master growth regulator mTORC1 (mechanistic target of
3 rapamycin complex 1) slows ageing across phyla, in part by reducing protein
4 synthesis. Various stresses globally suppress protein synthesis through the integrated
5 stress response (ISR), resulting in preferential translation of the transcription factor
6 ATF-4. Here we show in *C. elegans* that inhibition of translation or mTORC1 increases
7 ATF-4 expression, and that ATF-4 mediates longevity under these conditions
8 independently of ISR signalling. ATF-4 promotes longevity by activating canonical
9 anti-ageing mechanisms, but also by elevating expression of the transsulfuration
10 enzyme CTH-2 to increase hydrogen sulfide (H₂S) production. This H₂S boost
11 increases protein persulfidation, a protective modification of redox-reactive cysteines.
12 The ATF-4/CTH-2/H₂S pathway also mediates longevity and increased stress
13 resistance from mTORC1 suppression. Increasing H₂S levels, or enhancing
14 mechanisms that H₂S influences through persulfidation, may represent promising
15 strategies for mobilising therapeutic benefits of the ISR, translation suppression, or
16 mTORC1 inhibition.

17

18 Introduction

19 Over the last three decades, genetic and phenotypic analyses of ageing have
20 revealed that across eukaryotes, lifespan can be extended by inhibition of
21 mechanisms that promote growth and proliferation¹⁻³. Prominent among these is the
22 serine/threonine kinase complex mTORC1, which coordinates the activity of multiple
23 growth-related processes in response to growth factor and nutrient signals²⁻⁴.
24 mTORC1 activity can be reduced by genetic perturbations, dietary restriction (DR), or
25 pharmacological interventions such as rapamycin, an mTORC1 inhibitor that
26 increases lifespan from yeast to mice^{2,3}. However, while rapamycin represents a very
27 exciting paradigm for anti-ageing pharmacology, mTORC1 suppression has wide-
28 ranging effects on the organism^{2,3}. Rapamycin is used clinically as an
29 immunosuppressant, and mTORC1 broadly affects metabolism and supports the
30 synthesis of proteins, nucleic acids, and lipids²⁻⁴. Elucidation of specific mechanisms
31 through which mTORC1 influences longevity is critical not only for understanding the
32 biology of ageing and longevity, but also for the development of molecularly targeted
33 anti-ageing therapies that maintain health.

34

35 mTORC1 increases the rates at which numerous different mRNAs are
36 translated, and a hallmark of mTORC1 inhibition is a reduction in overall protein
37 synthesis^{2,3}. Work in the model organisms *C. elegans* and *Drosophila* indicates that
38 lifespan extension from mTORC1 inhibition is mediated in part through this global
39 decrease in translation^{2,5,6}. Furthermore, in *C. elegans* suppression of translation is
40 sufficient to increase both lifespan and stress resistance⁷⁻¹². A mechanistic
41 understanding of how mRNA translation levels affect longevity should therefore
42 provide mechanistic insights into how mTORC1 influences lifespan.

43

44 Suppression of new protein synthesis is also an important mechanism through
45 which cells protect themselves from stressful conditions that include nutrient
46 deprivation, and thermal-, oxidative-, and endoplasmic reticulum (ER) stress^{13,14}.
47 Those stresses induce the evolutionarily conserved ISR by activating kinases that
48 phosphorylate and inhibit the translation initiation factor subunit eIF2 α , thereby
49 imposing a broad reduction in cap-dependent mRNA translation^{13,14}. This
50 suppression of translation leads in turn to preferential translation of the activating
51 transcription factor ATF4, which mobilizes stress defense mechanisms to reestablish
52 homeostasis^{13,14}. Although the ISR has important protective functions, its effects on
53 longevity and health are complex. In *C. elegans*, genetic or pharmacological
54 interventions that impair the ISR extend lifespan by inducing preferential translation of
55 selective mRNAs¹⁵. In older mice, pharmacological ISR inhibition enhances memory
56 and cognition by allowing protein synthesis to be maintained^{14,16}. On the other hand,
57 in *S. cerevisiae* the ATF4 ortholog Gcn4 promotes longevity^{17,18}, and in *C. elegans*
58 hexosamine pathway activation enhances proteostasis through the ISR and ATF-4¹⁹.
59 The effects of ATF4 on metazoan longevity have not been explored.

60

61 Here we have investigated whether and how ATF-4 affects lifespan in *C.*
62 *elegans*. We find that ATF-4 but not upstream ISR signalling is required for longevity
63 induced by conditions that inhibit protein synthesis. Importantly, ATF-4 is a pro-
64 longevity factor that extends lifespan when overexpressed on its own. ATF-4
65 increases lifespan not only by enhancing canonical anti-ageing mechanisms, but also
66 by inducing transsulfuration enzyme-mediated H₂S production and therefore levels of
67 protein persulfidation. Importantly, the anti-ageing benefits of mTORC1 suppression

68 depend upon this ATF-4-induced increase in H₂S production, further supporting the
69 idea that they derive from lower translation rates and suggesting that increases in
70 ATF-4 and H₂S levels may recapitulate these benefits.

71

72 **Results**

73 **ATF-4 responds to translation suppression to increase *C. elegans* lifespan**

74 We investigated whether *C. elegans* *atf-4* is regulated similarly to mammalian
75 ATF4 at the level of mRNA translation. In mammals, 2-3 small upstream open reading
76 frames (uORFs) within the ATF4 5' untranslated region (UTR) occupy the translation
77 machinery under normal conditions, inhibiting translation of the downstream ATF4
78 coding region^{14,20}. By contrast, when translation initiation is impaired by eIF2 α
79 phosphorylation, the last uORF is bypassed, and ATF4 is translated preferentially^{14,20}.
80 The *C. elegans* *atf-4* ortholog (previously named *atf-5*) contains two 5' UTR uORFs
81 (Fig. 1a; Extended Data Fig. 1a, 1b), deletion of which increases translation of a
82 transgenic reporter²¹, predicting that translation of the *atf-4* mRNA may be increased
83 under conditions of global translation suppression.

84

85 We tested this idea in *C. elegans* that express green fluorescent protein (GFP)
86 driven by the *atf-4* upstream region, including the two uORFs (*Patf-4(uORF)::GFP*,
87 Fig. 1a). *Patf-4(uORF)::GFP* expression was extremely low under unstressed
88 conditions, but increased when translation was suppressed by treatment with the
89 translation elongation blocker cycloheximide, or RNA interference (RNAi)-mediated
90 knockdown of the tRNA synthase *rars-1* (Fig. 1b, Extended Data Fig. 1c, 1d, 1e, 1f).
91 Compounds that induce ER stress and elicit the ISR, including tunicamycin (TM) or
92 dithiothreitol (DTT), also strongly induced *Patf-4(uORF)::GFP* expression (Fig. 1b,
93 Extended Data Fig. 1c, 1d). By contrast, TM treatment increased *atf-4* mRNA levels
94 by only 1.5-fold (Fig. 1d, Extended Data Fig. 1g). Treatment with alpha-amanitin,
95 which blocks transcription, prevented TM from increasing the levels of the *atf-4* mRNA
96 but not *Patf-4(uORF)::GFP* fluorescence (Fig. 1c, 1d). Together, the data indicate that

97 the *Patf-4*(uORF)::GFP reporter is regulated post-transcriptionally during ER stress.
98 The endogenous *atf-4* mRNA was expressed at steady levels during development and
99 ageing (Extended Data Fig. 1h). By contrast, ribosome occupancy was decreased on
100 its uORFs compared to the coding region as larval development progressed, with the
101 lowest levels apparent during the L4 stage after the body plan has been formed and
102 growth has slowed (Fig. 1e, 1f). This suggests that the endogenous *atf-4* gene is
103 regulated translationally through its uORF region under unstressed conditions,
104 possibly in response to growth-related cues. We conclude that, like mammalian ATF4,
105 *C. elegans* *atf-4* is regulated translationally and preferentially translated upon
106 conditions of reduced protein synthesis (Extended Data Fig. 1i).

107

108 Given that ATF-4 is upregulated by translation suppression during the ISR, we
109 hypothesized that it might be important for lifespan extension by reduced protein
110 synthesis. In *C. elegans*, RNAi-mediated knockdown of various translation initiation
111 factors increases lifespan⁷⁻¹². Notably, the lifespan increases that occurred in
112 response to knockdown of *ifg-1*/eIF4G, *ife-2*/eIF4E, or *eif-1A*/eIF1AY, was abrogated
113 in *atf-4(tm4397)* loss-of-function mutants (Fig. 2a, Supplementary Table 1). Similarly,
114 a low dose of cycloheximide extended the lifespan of wild type (WT) but not *atf-4*
115 (*tm4397*) animals (Fig. 2b, Supplementary Table 1). Thus, *atf-4* is required for
116 longevity arising from a global reduction in protein synthesis.

117

118 The increase in ATF-4 translation that occurs during the canonical ISR is
119 induced by translation suppression that is imposed through increased eIF2 α
120 phosphorylation²², but this might not be the case when translation is reduced by
121 directly inhibiting translation initiation or elongation. Importantly, the low dose of

122 cycloheximide that was sufficient to extend lifespan (Fig. 2b) increased ATF-4
123 expression (Extended Data Fig. 1f), but not eIF2 α phosphorylation (Fig. 2c, 2d).
124 Similarly, depletion of the translation initiation factor *ifg-1*/eIF4G reduced protein
125 synthesis and dramatically increased expression of *Patf-4*(uORF)::GFP, but knocking
126 down either *ifg-1* or *eif-1A* only modestly increased eIF2 α phosphorylation (Fig. 2e, 2f,
127 2g, 2h, 2i). This suggests that treatments that inhibit translation can increase ATF-4
128 expression without triggering canonical induction of the ISR through eIF2 α
129 phosphorylation.

130

131 We next investigated whether translation inhibition might increase lifespan
132 independently of this canonical ISR signalling, using a well-characterized eIF2 α
133 mutant (*eif2 α (qd338)*) in which the serine at which inhibitory phosphorylation occurs
134 during the ISR (S49 in *C. elegans*; S51 in mammals) is mutated to phenylalanine, so
135 that eIF2 α phosphorylation and ISR induction are blocked²³. A mutation that prevents
136 phosphorylation of this serine partially suppresses lifespan extension from reduced
137 insulin/IGF-1 signalling, suggesting that ISR signalling is important for longevity in this
138 context²⁴. Importantly, the *eif2 α (qd338)* mutation did not interfere with the *atf-4*-
139 dependent increase in lifespan that was seen with *ifg-1* knockdown (Fig. 2j). We
140 conclude that canonical ISR signalling through eIF2 α phosphorylation is not
141 necessarily required for translation inhibition to induce preferential ATF-4 translation
142 or increase lifespan through ATF-4.

143

144 **ATF-4 mobilises canonical pro-longevity mechanisms**

145 In *C. elegans*, a limited number of transcription factors have been identified that
146 increase lifespan when overexpressed, including DAF-16/FOXO, HSF-1/HSF1, and

147 SKN-1/NRF^{1,25}. These evolutionarily conserved regulators are generally associated
148 with enhancement of protective mechanisms such as stress resistance, protein folding
149 or turnover, and immunity. To determine whether ATF-4 can actually promote
150 longevity, as opposed to being required generally for health, we investigated whether
151 an increase in ATF-4 levels might extend lifespan. Transgenic ATF-4-overexpressing
152 animals (ATF-4OE) exhibited nuclear accumulation of ATF-4 in neuronal, hypodermal,
153 and other somatic tissues under unstressed conditions (*Patf-4::ATF-4(gDNA)::GFP*;
154 Extended Data Fig. 2a). TM treatment doubled ATF-4 protein levels (Extended Data
155 Fig. 2b, Supplementary Data File 1), indicating that this ATF-4 transgene responds to
156 environmental stimuli. Importantly, ATF-4 overexpression increased lifespan by 7-
157 44% across >10 independent trials, which included two experiments without 5-Fluoro-
158 2'deoxyuridine (FUDR) and analysis of two independent transgenic lines (Fig. 3a,
159 Supplementary Table 1). ATF-4 overexpression also prolonged healthspan (Fig. 3b,
160 Extended Data Fig. 2c, Supplementary Table 2). We conclude that the elevated
161 activity of the ATF-4 transcriptional program is sufficient to extend lifespan and
162 promote health.

163

164 To identify longevity-promoting mechanisms that are enhanced by ATF-4, we
165 used RNA sequencing (RNA-seq) to compare gene expression profiles in *atf-4* loss-
166 of-function or ATF-4OE animals compared to WT under non-stressed conditions
167 (Extended Data Fig. 3a, 3b, Supplementary Table 3). Only a modest number of genes
168 were detectably up- or down-regulated by *atf-4* loss or overexpression, respectively
169 (Fig. 3c, Extended Data Fig. 3c, 3d). Notably, ATF-4 overexpression upregulated
170 several small heat shock protein (HSP) genes that are also controlled by HSF-1/HSF
171 (heat shock factor) and DAF-16/FOXO (Fig. 3d), and are typically induced by

172 longevity-assurance pathways¹. Each of the ATF-4-upregulated chaperone genes
173 *sip-1*/CRYAA, *hsp-70*/HSPA1L, *hsp-16.2*/HSPB1, and *hsp-12.3*/HSPB2 was required
174 for lifespan extension from ATF-4 overexpression (Extended Data Fig. 3e;
175 Supplementary Table 1). Translation of *atf-4* was increased within minutes by a heat
176 shock (Extended Data Fig. 3f), suggesting that ATF-4 functions in tandem with HSF-
177 1/HSF1. Together, the data suggest that ATF-4 enhances proteostasis mechanisms
178 that have been linked to longevity.

179

180 Other findings further linked ATF-4 to longevity-associated mechanisms. ATF-
181 4 overexpression increased expression of the cytoprotective gene *nit-1*/Nitrilase (Fig.
182 3d), a canonical target of the xenobiotic response regulator SKN-1/NRF²⁵, along with
183 expression of collagen genes that are typically upregulated by SKN-1/NRF in
184 response to lifespan extension interventions (Fig. 3c)²⁶. The 3kb predicted promoter
185 regions of many ATF-4-upregulated genes included not only the binding consensus
186 for mammalian ATF4 (-TGATG-)^{27,28}, but also sites for DAF-16, HSF-1, and SKN-1
187 (Fig. 3d, Supplementary Table 4, 5). Furthermore, many genes that were upregulated
188 by ATF-4 overexpression had been detected in chromatin IP (ChIP) analyses of these
189 transcription factors (Extended Data Fig. 3g, Supplementary Table 5). Each of those
190 transcription factors is critical for lifespan extension arising from suppression of
191 translation^{10,11}, and we determined that they are also needed for longevity conferred
192 by ATF-4 overexpression (Fig. 3e, Supplementary Table 1). ATF-4 overexpression
193 also robustly upregulated two adenine nucleotide translocase genes (ANT; *ant-1.3*
194 and *ant-1.4*, Fig. 3c). The ANT complex is important for transport of ATP from the
195 mitochondrial space into the cytoplasm, as well as for mitophagy²⁹. Both *ant-1.3* and
196 *ant-1.4* were required for longevity by ATF-4 overexpression (Fig. 3f, Supplementary

197 Table 1). Together, our findings suggest that while the transcriptional impact of ATF-
198 4 may seem limited in breadth, it cooperates with other longevity factors to enhance
199 the activity of multiple mechanisms that protect cellular functions, thereby driving
200 lifespan extension.

201

202 **ATF-4 increases lifespan through H₂S production**

203 To identify ATF-4-regulated genes that are conserved across species and
204 might be particularly likely to have corresponding roles in humans, we queried our
205 ATF-4OE vs WT RNA-seq results, and compared the top 200 significantly upregulated
206 *C. elegans* genes against 152 mammalian genes that are thought to be regulated
207 directly by ATF4²⁸. Seven orthologues of these genes were upregulated in ATF-4OE
208 (Fig. 4a, Supplementary Table 4), four of which encoded components of the reverse
209 transsulfuration (hereafter referred to as transsulfuration) pathway (*cth-2/CTH*), or
210 associated mechanisms (*glt-1/SLC1A2*, *C02D5.4/GSTO1*, and *F22F7.7/CHAC1*) (Fig.
211 4b, Supplementary Table 4). The transsulfuration pathway provides a mechanism for
212 utilising methionine to synthesize cysteine and glutathione when their levels are
213 limiting³⁰, but the CTH enzyme (cystathionine gamma-lyase, also known as CGL or
214 CSE) also generates H₂S as a direct product. Underscoring the potential importance
215 of the H₂S-generating enzyme CTH-2 for ATF-4 function, the levels of its mRNA and
216 protein were each increased by ATF-4 overexpression (Fig. 4c, 4d, 4e, Supplementary
217 Data File 1).

218

219 Regulation of amino acid biosynthesis genes is a conserved ATF4 function¹³,
220 and reduced levels of methionine³¹ and higher levels of H₂S^{32,33} have each been linked
221 to longevity. We did not detect any differences in the relative abundance of amino

222 acids between ATF-4OE and WT animals (Supplementary Table 6), suggesting that
223 ATF-4 is unlikely to influence longevity by altering amino acid levels. By contrast,
224 ATF-4 overexpression consistently increased H₂S production capacity in a *cth-2*-
225 dependent manner (Fig. 4f, Extended Data Fig. 4a, 4b, 4c, 4d). Using the fluorescent
226 H₂S probe MeRho-Az³⁴, we also found that H₂S levels are reduced by mutation of
227 either *atf-4* or *cth-2* (Fig. 4g). Taken together, our data indicate that ATF-4 promotes
228 H₂S production by acting through CTH-2. The increases in longevity and stress
229 resistance that are conferred by ATF-4 overexpression are abrogated by *cth-2*
230 mutation or knockdown (Fig. 4h, Extended Data Fig. 4e, Supplementary Table 1, 7).
231 Similarly, *ifg-1/eIF4G* knockdown failed to extend lifespan in *cth-2* mutant animals (Fig.
232 4i). We conclude that the increase in H₂S production that derived from CTH-2
233 upregulation is a critical and beneficial aspect of ATF-4 function (Fig. 4j).

234

235 An important consequence of increased H₂S levels is an increase in the
236 proportion of protein cysteine thiols (-SH) that are converted to persulfides (-SSH)^{35,36}.
237 Redox modification at reactive cysteine residues is critical in growth signalling and
238 other mechanisms³⁶, and in *C. elegans* thousands of redox-regulated cysteine
239 residues are present in proteins that are involved in translation regulation, lipid and
240 carbohydrate metabolism, stress signalling, and other fundamental biological
241 processes³⁷. Under oxidising conditions, these thiols are readily converted to sulfenic
242 acids (-SOH), which is a reversible and in many cases regulatory modification that can
243 proceed to irreversible and potentially damaging oxidized forms (-SO₂H, -SO₃H) (Fig.
244 5a)³⁶. H₂S converts -SOH to -SSH in the process called persulfidation, preventing
245 protein overoxidation and thereby preserving protein functions under stressed
246 conditions (Fig. 5a)^{35,36}. The levels of overall protein persulfidation (PSSH) can be

247 visualised in individual animals by using chemical probes and confocal microscopy³⁵.
248 In *C. elegans* PSSH levels are decreased by mutation of the *cth-2* paralog *cth-1*,
249 suggesting that they depend upon a background level of H₂S produced by the latter³⁵.
250 We found that PSSH levels are also reduced by mutation of either *cth-2* or *atf-4*, and
251 are modestly increased by ATF-4 overexpression (Fig. 5b, 5c). Taken together, our
252 results show that ATF-4 acts through multiple mechanisms to promote stress
253 resistance and longevity, and that a CTH-2-driven increase in H₂S production and
254 persulfidation is an essential aspect of this program.

255

256 **A partial role for ATF-4 in some lifespan extension programs**

257 Given that *atf-4* is required for lifespan extension in response to reduced
258 translation, we investigated whether *atf-4* and its transcriptional target *cth-2* might be
259 generally required for *C. elegans* longevity. Although ATF4/ATF-4 has been
260 implicated in responses to mitochondrial stress or protein synthesis imbalance^{27,38}, *atf-*
261 *4* was dispensable for the increases in lifespan or oxidative stress resistance that
262 follow from developmental impairment of mitochondrial function (Extended Data Fig.
263 5a, 5b, 5c, Supplementary Table 1, 8). The extent of lifespan extension by reduced
264 insulin/IGF-1 signalling or germ cell proliferation was decreased by *atf-4* mutation but
265 did not depend upon *cth-2*, consistent with other transsulfuration components and H₂S
266 producers being implicated in the latter pathway (Extended Data Fig. 5d, 5e,
267 Supplementary Table 1)³⁹. The ATF-4-CTH-2 pathway of H₂S production may
268 therefore be fully essential specifically when lifespan extension is driven by
269 suppression of protein synthesis.

270

271 We also investigated whether the ATF-4-CTH pathway might be involved in
272 longevity induced by DR, which extends lifespan in essentially all eukaryotes. An
273 increase in H₂S production capacity has been implicated in mediating some DR
274 benefits in mammals³³. In *C. elegans*, *atf-4* was not required for lifespan to be
275 extended by a liquid culture food-dilution DR protocol but was partially required for
276 lifespan extension in the genetic DR-related model *eat-2(ad1116)* (Extended Data Fig.
277 5f, Supplementary Table 1). Consistent with these findings, transsulfuration pathway
278 genes other than *cth-2* are also partially required for *eat-2* lifespan extension^{33,35},
279 suggesting that in *C. elegans* other pathways than ATF-4-CTH might also increase
280 H₂S production during DR. In mammals, restriction of sulfur-containing amino acids
281 (methionine and cysteine) acts through ATF4 and CTH to boost endothelial H₂S levels
282 and angiogenesis⁴⁷, and multiple longevity interventions increase CTH mRNA levels⁴⁸,
283 suggesting a possible role for the ATF4-CTH pathway in DR. Supporting this idea,
284 our bioinformatic analysis revealed that CTH mRNA levels increased in various mouse
285 tissues in response to DR (32/36 profiles), rapamycin (4/6 profiles), or growth hormone
286 insufficiency (8/8 profiles) (Extended Data Fig. 5g, Supplementary Table 11).
287 Therefore, ATF4-induced H₂S upregulation is likely to be evolutionarily conserved as
288 a contributor to lifespan extension.

289

290 **Longevity from mTORC1 suppression is driven by ATF-4 and H₂S**

291 Because mTORC1 inhibition increases lifespan in part by reducing protein
292 synthesis^{2,5,6}, we hypothesized that ATF-4 might be activated and required for lifespan
293 extension when mTORC1 is inhibited. The heterodimeric RAG GTPases transduce
294 amino acid signals to activate mTORC1 signalling, and are composed of RAGA-1 and
295 RAGC-1 in *C. elegans*. mTORC1 is required for *C. elegans* larval development², but

296 lifespan can be increased by RNAi-mediated knockdown of either *raga-1* or *ragc-1*
297 during adulthood, or by a partial loss-of-function mutation of *raga-1*^{2,3}. The former
298 strategy allows mTORC1 activity to be reduced without any associated developmental
299 effects. Adulthood RAG gene knockdown reduced protein synthesis (Fig. 2g and 2h),
300 consistent with previous studies of mTORC1^{2,3}, but did not induce eIF2 α
301 phosphorylation (Fig. 2e and 2f). Under these conditions *Patf-4(uORF)::GFP*
302 expression was increased robustly even when eIF2 α phosphorylation was blocked
303 genetically (Fig. 6a, 6b, Supplementary Table 9). We conclude that ATF-4 is
304 preferentially translated when mTORC1 activity is reduced and translation rates are
305 low, and that this occurs independently of the canonical ISR mechanism of increased
306 eIF2 α phosphorylation.

307

308 Importantly, the increases in lifespan extension, stress tolerance, and
309 healthspan that resulted from loss of either *raga-1* or *ragc-1* function required *atf-4* but
310 not phosphorylation of eIF2 α (Fig. 6c, 6d, 6e, 6f, Extended Data Fig. 2c, 5c, 6a,
311 Supplementary Table 1-2, 7, 8, 10), consistent with our analyses of *Patf-4(uORF)::GFP* activation.
312 In a single trial, the longevity induced by *raga-1* knockdown was blunted by ATF-4 overexpression,
313 suggesting that too much ATF-4 activity might be harmful (Extended Data Fig. 2c), but this has been observed for some other
314 longevity factors²⁵. In summary, the data demonstrate that ATF-4 activation plays an
315 essential role in the benefits of reducing mTORC1 activity

317

318 Having determined that *atf-4* is required for mTORC1 suppression to extend
319 lifespan, we were surprised to find that *atf-4* was dispensable for lifespan extension
320 from rapamycin treatment, even though rapamycin increased ATF-4 translational

321 reporter expression (Fig. 6g, Extended Data Fig. 6b, Supplementary Table 1, 9).
322 Notably, mTOR is present in both the mTORC1 and mTORC2 complexes (Extended
323 Data Fig. 6c)³. mTORC2 is not as well understood as mTORC1, but it functions in
324 growth signalling and its activation involves binding to the ribosome, suggesting an
325 association with translation regulation (Extended Data Fig. 6c)⁴⁰. Rapamycin
326 mechanistically inhibits mTORC1 activity, but continuous rapamycin treatment also
327 reduces mTORC2 activity by blocking complex assembly^{41,42}, leading us to investigate
328 the possible involvement of *atf-4* in mTORC2 effects. Knockdown of the essential
329 mTORC2 subunit RICT-1 (Rictor) suppressed translation (Fig. 2g, 2h) and increased
330 *Patf-4(uORF)::GFP* expression independently of eIF2 α phosphorylation (Fig. 2e, 2f,
331 6b, Supplementary Table 9). The effects of mTORC2 on *C. elegans* lifespan are
332 complex, but adulthood RNAi knockdown of *rict-1* extends lifespan^{2,6}. Lifespan
333 extension by *rict-1* knockdown required *atf-4* (Fig. 6h, Supplementary Table 1).
334 Interestingly, however, simultaneous inactivation of mTORC1 and mTORC2 by
335 knocking down both *raga-1* and *rict-1* extended lifespan independently of *atf-4* (Fig.
336 6i, Supplementary Table 1), as occurred with rapamycin treatment, suggesting that
337 when the activity of both mTOR complexes is suppressed the requirement for *atf-4* is
338 relieved.

339
340 We investigated whether an ATF-4-mediated increase in H₂S production is
341 required for lifespan extension arising from inhibition of the mTORC1 or mTORC2
342 kinase complexes. Genetic inhibition of either mTORC1 or mTORC2 increased H₂S
343 production capability in an *atf-4*-dependent manner (Fig. 7a, 7b, Extended Data Fig.
344 6d, 6e). Furthermore, the ATF-4 target gene *cth-2* was required for the increased
345 lifespan of animals with reduced mTORC1 or mTORC2 activity (Fig. 7c, 7d,
346 Supplementary Table 1, 7), suggesting that an ATF-4/CTH-2-mediated increase in

347 H₂S production is essential for the benefits of either mTORC1 or mTORC2 inhibition.
348 Knockdown of *cth-2* prevented mTORC1 inhibition from increasing stress resistance,
349 further supporting this idea (Extended data Fig. 6f). Interestingly, simultaneous
350 knockdown of *raga-1* and *rict-1* dramatically increased H₂S production capability, and
351 this was greatly reduced but not eliminated in the *atf-4* loss-of-function mutant
352 (Extended Data Fig. 6g). This result, together with the dispensable role for ATF-4 in
353 longevity under these conditions, suggests that simultaneous inhibition of both mTOR
354 complexes mobilizes mechanisms that increase lifespan independently of *atf-4* and
355 possibly H₂S.

356

357 The observation that PSSH levels are reduced by lack of either ATF-4 or CTH-
358 2 (Fig. 5b) suggests that the ATF-4/CTH-2 pathway might increase persulfidation in
359 response to interventions that boost H₂S production through this pathway, including
360 mTORC1 inhibition. Accordingly, in *raga-1* mutant adults PSSH levels were elevated
361 in an *atf-4*-dependent manner (Fig. 7e, 7f). Taken together, our results show that
362 reduced mTORC1 signalling leads to preferential translation of ATF-4, which acts
363 through CTH-2 to promote stress resilience and healthy ageing by increasing H₂S
364 production, and possibly through the resulting increase in PSSH levels across the
365 proteome (Fig. 7g).

366

367 **Discussion**

368 We have identified ATF-4, the transcriptional effector of the ISR, as a pro-
369 longevity factor that can extend *C. elegans* lifespan when overexpressed.
370 Furthermore, conditions that reduce mRNA translation, including mTORC1 inhibition,
371 increase ATF-4 expression without activating canonical ISR signalling that is
372 downstream of eIF2 α phosphorylation, and require ATF-4 for lifespan extension.
373 Previous studies revealed that longevity arising from inhibition of translation depends
374 upon preferential translation of protective genes⁴³ and increased transcription of stress
375 defence genes^{6,10}. Our new findings link these mechanisms by revealing that
376 preferentially translated ATF-4 cooperates with DAF-16/FOXO, HSF-1/HSF, and
377 SKN-1/NRF to drive protective gene transcription. Viewed alongside the well-
378 documented pro-longevity activity of *S. cerevisiae* Gcn4 (ATF-4 ortholog)^{17,18} and
379 evidence that ATF-4 levels and activity are increased in long-lived mouse models^{44,45},
380 our results indicate that ATF-4 has an ancient and broadly conserved function in
381 promoting longevity.

382

383 A striking aspect of our findings is that the longevity and health benefits of ATF-
384 4 depend upon activation of its target transsulfuration pathway gene *cth-2*, and the
385 resultant increase in H₂S production. For many years an understanding of how H₂S
386 might promote health and longevity proved to be elusive⁴⁶, but recent work has
387 implicated increased PSSH and its salutary effects on the proteome³⁵. This
388 modification protects the proteome from the effects of oxidative stress by “rescuing”
389 sulfenylated cysteine residues from the fate of further oxidation (Fig. 5a), declines
390 during ageing, and is increased in other long-lived models³⁵. Here we demonstrated
391 that PSSH levels were increased or decreased by ATF-4 overexpression or *cth-2*

392 mutation, respectively, and that mTORC1 inhibition increased PSSH levels through
393 ATF-4 (Figs. 5 and 7). These results provide the first definition of a regulatory pathway
394 through which a pro-longevity intervention increases H₂S and PSSH levels (Fig. 7g).
395 Although persulfides can be introduced during translation⁴⁷, our results align with
396 previous evidence that H₂S levels may largely determine the extent of this protective
397 cysteine modification³⁵. It was particularly intriguing that the ATF-4/CTH-2 pathway,
398 which boosts H₂S formation and PSSH levels, was required for lifespan extension from
399 mTORC1 suppression. This ATF-4/H₂S-induced posttranslational shift in PSSH levels
400 could influence many biological functions, including the activity of redox-regulated
401 signalling pathways^{35,37}, making it of interest to elucidate how these modifications
402 mediate the downstream effects of mTORC1 signalling.

403

404 Our data add to the evidence that translation suppression is an essential
405 effector of the longevity effects of mTORC1 inhibition^{5,6}. We were surprised, however,
406 to find that mTORC2 knockdown decreased protein synthesis levels and depended
407 upon ATF-4 for lifespan extension (Figs. 2 and 6). It will be very interesting to elucidate
408 the mechanisms underlying the former observation. It was also surprising that either
409 simultaneous mTORC1 and mTORC2 inhibition or rapamycin extended lifespan
410 independently of ATF-4, suggesting that when both mTOR complexes are inhibited an
411 independent mechanism compensates for lack of ATF-4. An understanding of how
412 this occurs is likely to identify additional mechanisms that promote longevity.

413

414 Our evidence that reduced mTORC1 activity promotes longevity by increasing
415 ATF-4 levels contrasts with mammalian evidence that pharmacological mTORC1
416 inhibition reduces ATF4 translation^{20,48}. However, those findings were obtained in

417 cultured cells in which mTORC1 activity was elevated genetically or by growth factor
418 treatment, a very different scenario from adult *C. elegans* *in vivo*, in which growth has
419 largely ceased and most tissues are post-mitotic. It seems logical that mTORC1 might
420 increase ATF4 translation under the former conditions, given the importance of
421 mTORC1 for translation of many genes and the need to maintain amino acid levels
422 under conditions of high growth activity. Importantly, it is consistent with our *C.*
423 *elegans* results that analyses of mouse liver found that ATF4 protein levels and activity
424 are increased in long-lived models that include rapamycin treatment and nutrient
425 restriction^{44,45}, and that mTORC1 hyperactivation (TSC1 deletion) decreases CTH
426 expression and prevents DR from increasing *CTH* mRNA levels³³. It will be interesting
427 in the future to determine how mammalian mTORC1 influences ATF4 *in vivo* under
428 different conditions, including analysis of tissues with varying rates of growth and
429 levels of mTORC1 activity.

430

431 Although inhibition of mTORC1 has received widespread enthusiasm as an
432 anti-ageing strategy, mTORC1 maintains fundamental processes that include protein
433 synthesis, mRNA splicing, and metabolic pathways^{2,3,48-50}, suggesting that not all
434 effects of mTORC1 suppression are necessarily beneficial. Similarly, although
435 conditions that suppress ISR signalling can promote longevity through effects on
436 selective translation¹⁵, ISR signalling through eIF2 α contributes to lifespan extension
437 from reduced insulin/IGF-1 signalling²⁴, and our results demonstrate that the
438 downstream ISR effector ATF-4 is a potent pro-longevity factor. Furthermore, while
439 pharmacological ISR inhibition preserves cognitive functions during ageing by
440 maintaining protein synthesis^{14,16}, our findings suggest that ISR suppression could
441 reduce levels of H₂S, which has been shown to prevent neurodegeneration^{51,52}. In

442 these and other settings, targeted mobilisation of beneficial mechanisms that are
443 activated by ATF-4, including H₂S production, might be of promising long-term value.
444 Consistent with this notion, H₂S confers many cardiovascular benefits in mammals,
445 including a reduction in blood pressure^{52,53}, and patients suffering from vascular
446 diseases show reduced CTH and H₂S levels⁵⁴, prompting clinical trials of H₂S-
447 releasing agents for cardiovascular conditions (NCT02899364 and NCT02278276). It
448 could be of considerable value to examine the potential benefits of ATF4 and H₂S in
449 various settings, including prevention of ageing-related phenotypes and disease.

450

451 **Author contributions**

452 C.Y.E. and T.K.B. conceived the study and designed the experiments. All authors
453 participated in analysing and interpreting the data. C.Y.E., K.P., M.B., S.R.S., C.S.,
454 and R.V. performed lifespan assays. C.Y.E., M.B., C.S., and R.V. performed oxidative
455 stress assays. C.Y.E., M.B., and C.S. performed thermotolerance assays. C.Y.E.,
456 M.B., K.P., S.R.S., and R.V. scored GFP reporters. C.S., R.E., J.M., A.L., and D.P.
457 performed H₂S measurement assays. P.L. and C.H. performed Ribo-sequencing
458 analysis. D.P. and M.F. performed persulfidation assays and analysis. C.S. and C.Y.E.
459 analyzed transcription profiles. C.Y.E., C.S., and J.M. performed qRT-PCR. J.M. and
460 R.V. performed the Western blots and puromycin assays. I.M. and W.B.M. generated
461 transgenic strains. C.Y.E. performed all other assays. C.Y.E., T.K.B., and J. M. wrote
462 the manuscript in consultation with the other authors.

463

464 **Competing interests**

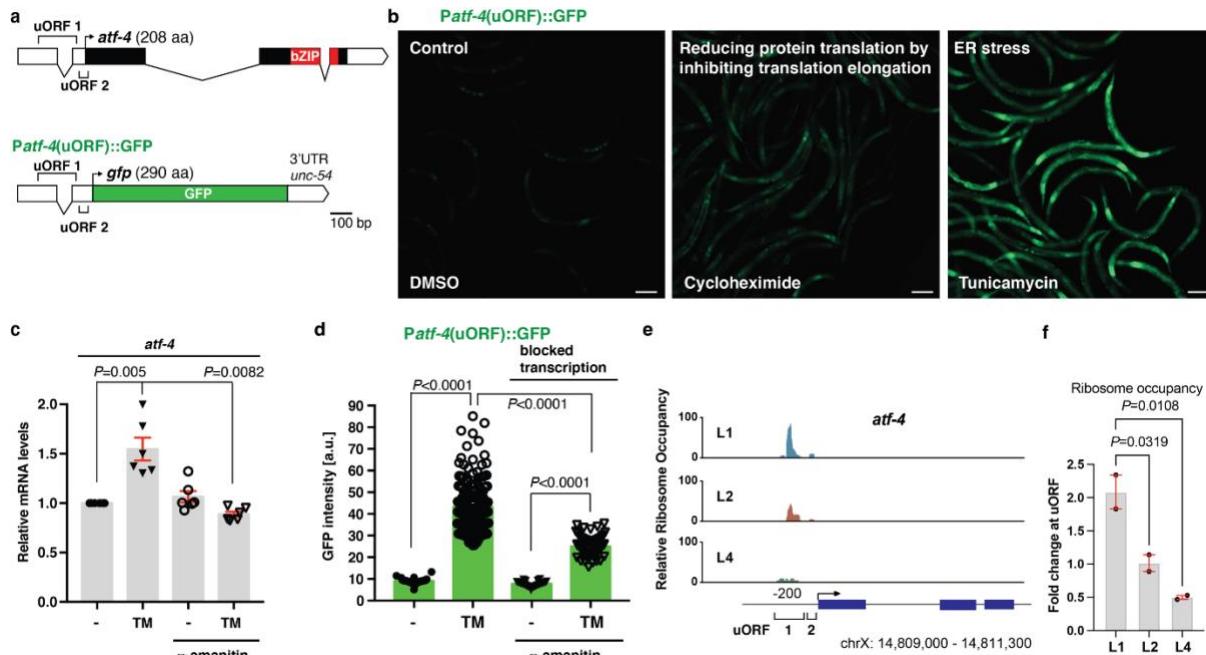
465 The authors have no competing interests to declare. Correspondence should be
466 addressed to C. Y. E. and T.K.B.

467

468 **Data availability**

469 The RNA sequencing data in this publication have been deposited in NCBI's Gene
470 Expression Omnibus and are accessible through GEO Series accession number
471 GSE173799.

472

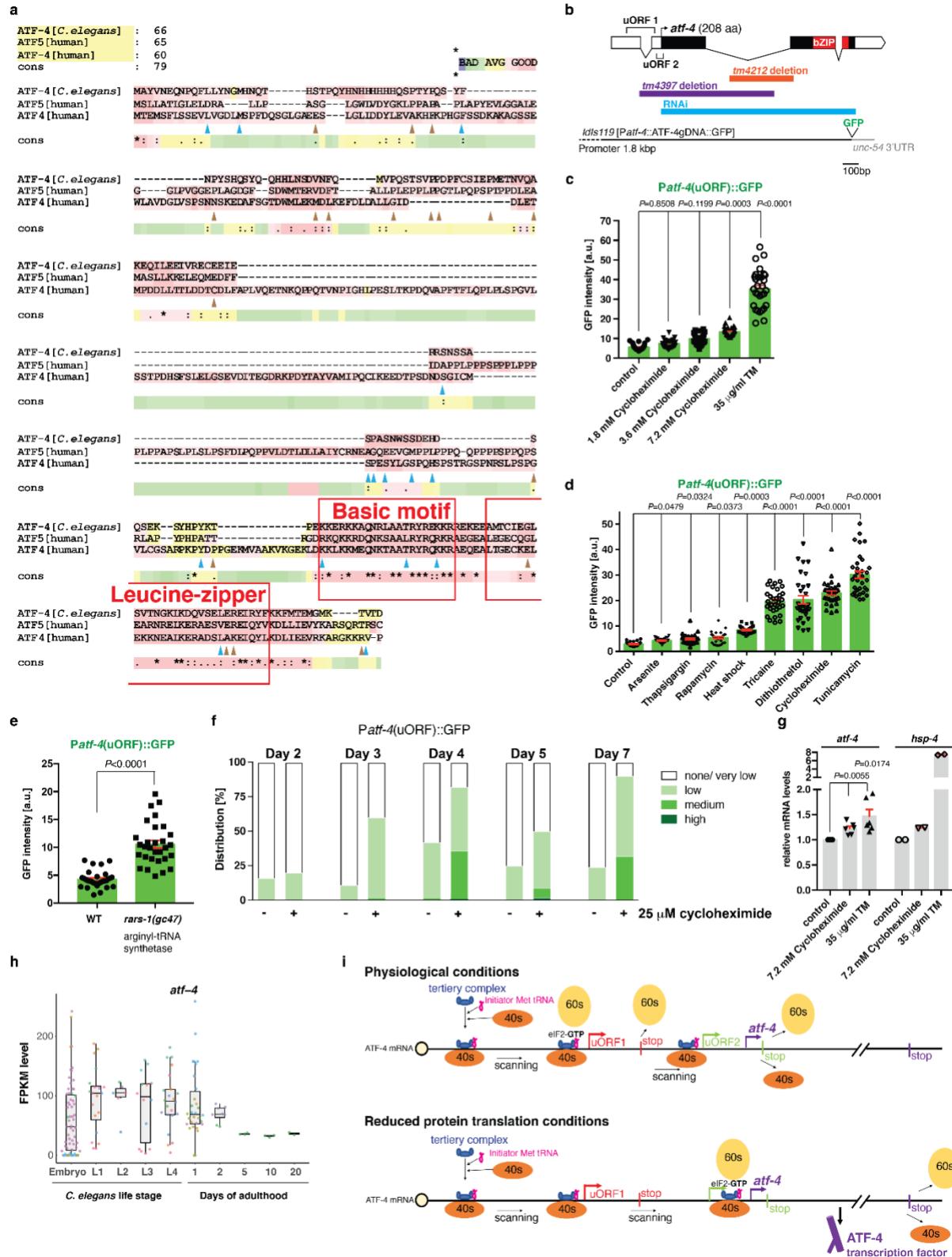

473 **Acknowledgement**

474 We thank Alex Hofer, Anita Goyala, Sara Schütze, Carolin Imse, Julia Rogers, and
475 Lorenza E. Moronetti Mazzeo for help with scoring lifespan, stress, and GFP assays,

476 Michael Steinbaugh for help with the initial analysis of the RNA sequencing data,
477 Stephanie Lin for contributing to earlier stages of this work, S. Mitani and the National
478 BioResource Project for the *atf-4*(*tm4212* and *tm4397*) alleles, Mike Crowder for the
479 *rars-1*(*gc47*) allele, Chi Yun and David Ron for the *Patf-4*(uORF)::GFP reporter strain,
480 WormBase for curated gene and phenotype information, Jay Mitchell and Nancy Pohl
481 for comments on the manuscript, and Spalentor and Michael Hall for inspiration. Some
482 strains were provided by the CGC, which is funded by the NIH Office of Research
483 Infrastructure Programs (P40 OD010440). Portions of this research were conducted
484 on the Orchestra High Performance Computer Cluster at Harvard Medical School
485 (NCRR 1S10RR028832-01). Supported by funding from the Swiss National Science
486 Foundation PBSKP3_140135, P300P3_154633, and PP00P3_163898 to C.Y.E. and
487 C.S., and PZ00P3-185927 to A.L., the Leenaards and Novartis Foundation to A.L.,
488 ETH Research Grant (ETH-30-16-2) to R.V., the Iacocca Family Foundation to J.M.,
489 and NIH R35GM122610 and AG054215 to T.K.B. Part of this research was conducted
490 while Collin Y. Ewald was an Ellison Medical Foundation/AFAR Postdoctoral Fellow.
491

492 **Figure Legends**

493

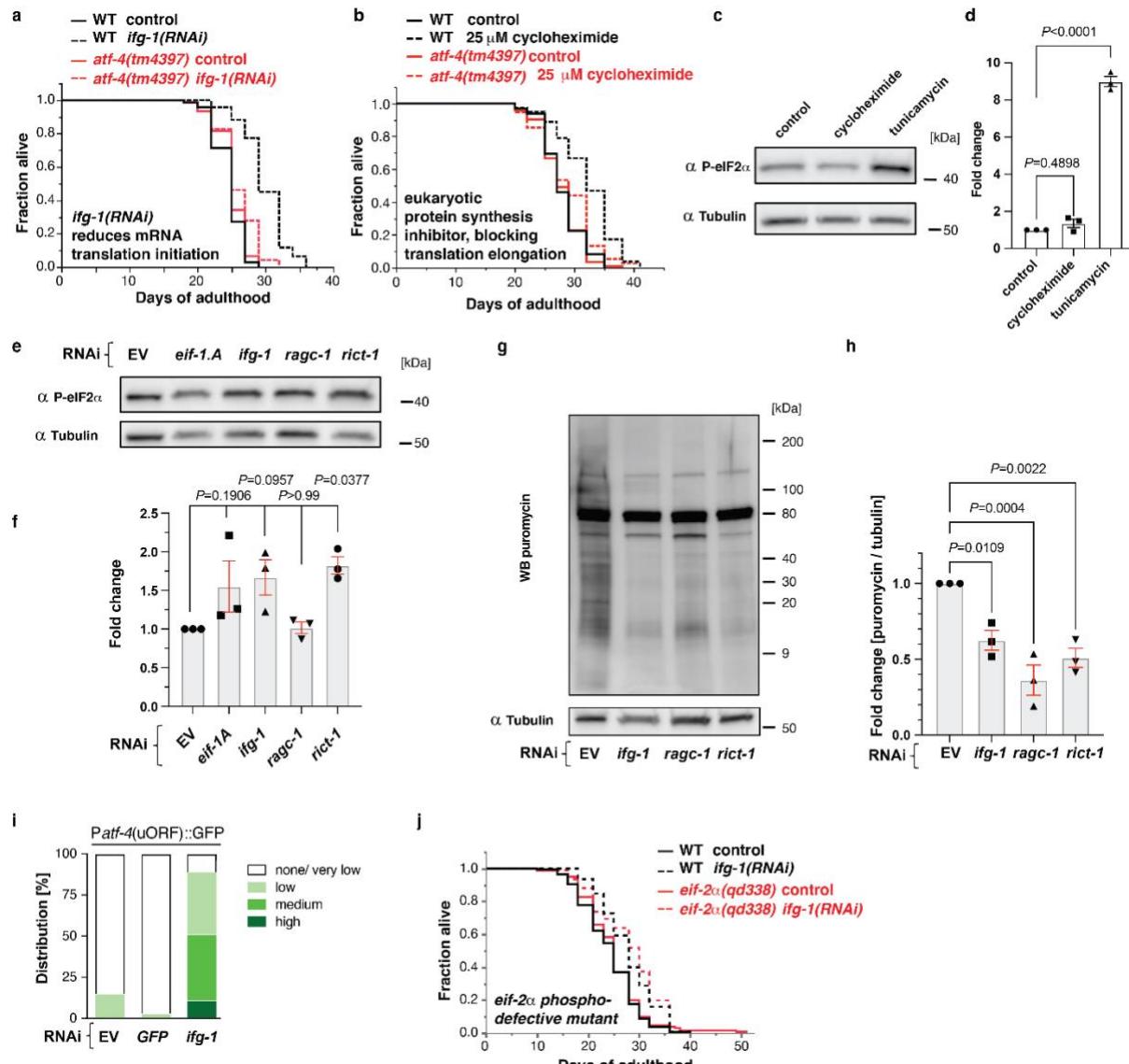


494

495 **Fig. 1. ATF-4 is preferentially translated under conditions of reduced global**
496 **protein synthesis. a** Schematic diagram of the *atf-4* mRNA and the *Patf-*
497 *4(uORF)::GFP* reporter. UTRs are represented as empty boxes, exons as filled boxes,
498 and the basic leucine zipper domain (bZIP) in red. **b** Representative images showing
499 that reducing translation by administering 7.2 mM cycloheximide for 1 hour or 35 μ g/ml
500 tunicamycin (TM) for 4 hours increased expression of transgenic *Patf-4(uORF)::GFP*
501 in L4 stage animals. Quantification of GFP fluorescence intensity is shown in Extended
502 Data Fig. **1c**. Scale bar = 100 μ m. **c** A 1 hour pre-treatment with 0.7 μ g/ml α -amanitin
503 (RNA Pol II inhibitor) prevented 4 hours of 35 μ g/ml TM treatment from increasing *atf-*
504 *4* mRNA levels in L4 stage animals. Mean \pm SEM. Three independent trials, measured
505 in duplicates. *P* values are relative to WT (N2) determined by one sample *t*-test, two-
506 tailed, hypothetical mean of 1. **d** A 1 hour pre-treatment with 0.7 μ g/ml α -amanitin did
507 not prevent TM treatment from increasing levels of transgenic *Patf-4(uORF)::GFP*
508 expression in L4 stage animals. Mean \pm SEM. n>30 animals, 2 independent trials,

509 One-way ANOVA with post hoc Tukey. **e** Stage-specific ribosome occupancy profiles
510 of the endogenous *atf-4* mRNA, along with quantification of relative uORF occupancy
511 (**f**). Analysis of ribosomal profiling data⁵⁵ revealed a decrease in ribosome occupancy
512 on the endogenous *atf-4* uORFs under unstressed conditions during late larval
513 development. Occupancy profiles were generated by assigning counts to the *atf-4*
514 transcript based on the number of raw reads at each position. Blue boxes indicate the
515 *atf-4* exons. One-way ANOVA post hoc Dunnett's test.

516

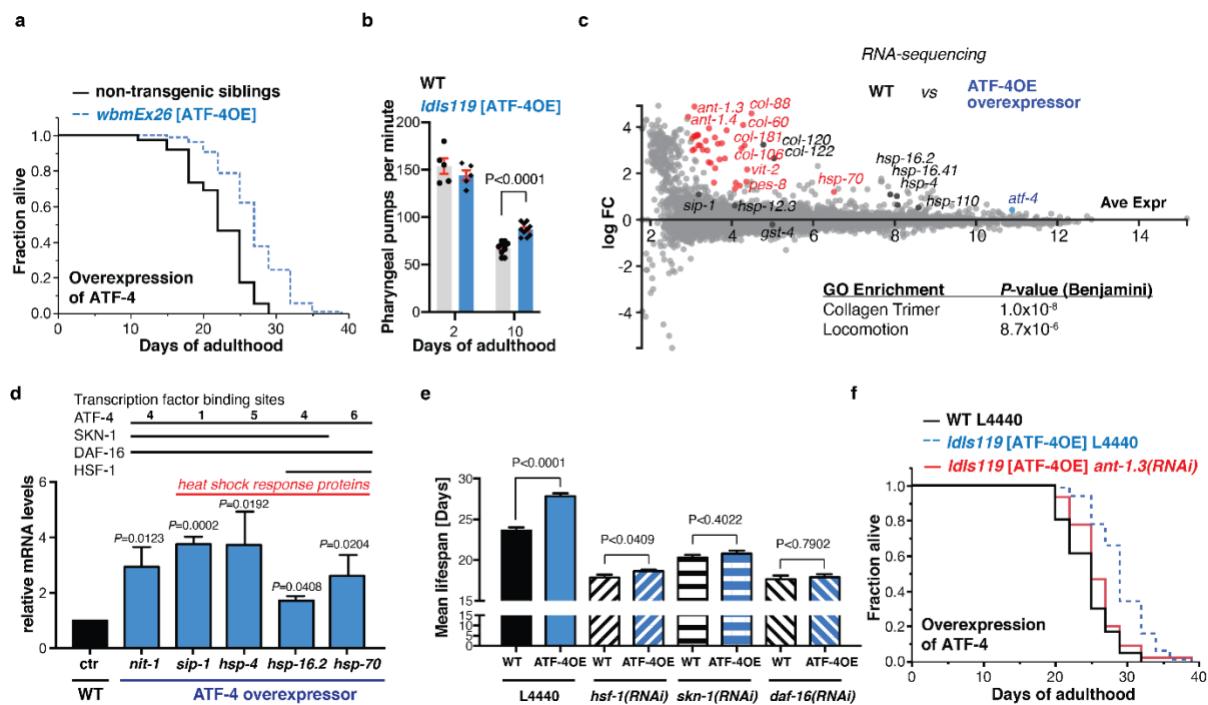

517

518 **Extended Data Fig. 1. Translational regulation of *C. elegans* *atf-4* expression. a**
519 *C. elegans* ATF-4 (T04C10.4) shares identical amino acids with human ATF4 (blue
520 arrowheads) and ATF5 (brown arrowheads), and its basic DNA binding region is more

521 similar to that of human ATF4. Stars indicate identical amino acids among *C. elegans*
522 ATF-4, human ATF4, and ATF5 (25 in total). Single dots indicate that size or
523 hydropathy is conserved, while double dots indicate that both size and hydropathy are
524 conserved between the corresponding residues. The *C. elegans* ortholog of human
525 ATF5 is ATFS1⁵⁶. **b** Diagram of *atf-4* mRNA, mutations and RNAi clone, and the *Patf-*
526 *4(uORF)::GFP* transgene. The *atf-4* mRNA has an extensive 5'UTR of 250 nucleotides
527 containing two uORFs, of which uORF1 translates into a 39 amino acids (aa) peptide
528 and uORF2 into a 14 aa peptide. The *tm4397* variation is an 806 base pair (bp)
529 deletion that covers part of the uORF1, the uORF2, the translational start site and the
530 first exon, suggesting that *tm4397* is a putative null allele. **c** Quantification of GFP
531 fluorescence in *Patf-4(uORF)::GFP* transgenic animals at the L4 stage treated either
532 with cycloheximide for 1 hour or TM for 4 hours. Mean \pm SEM. One-way ANOVA with
533 post hoc Tukey. **d** Quantification of GFP fluorescence showing the effects on ATF-4
534 expression of various drug treatments or interventions that reduce mRNA translation.
535 L4 stage animals were treated either with 20 mM arsenite (an inducer of oxidative
536 stress) for 30 min, 200 mM thapsigargin (which induces ER stress by inhibiting the
537 ER Ca²⁺ ATPase) for 4 hours, 100 μ M rapamycin (an inhibitor of mTORC1) for
538 overnight, heat shock at 35°C for 30 min, 2% tricaine for 1 hour (which induces ER
539 stress), 10 mM dithiothreitol (which induces reductive ER stress) for 4 hours, 10 mM
540 cycloheximide (an inhibitor of translation elongation) for 1 hour, or 35 μ g/ml
541 tunicamycin (a glycosylation inhibitor that induces ER stress) for 4 hours. Mean \pm
542 SEM. One-way ANOVA with post hoc Tukey. **e** Nonsense mutation in the arginyl-tRNA
543 synthetase *rars-1(gc47)* increased *Patf-4(uORF)::GFP* expression compared to WT at
544 the L4 stage. Mean \pm SEM. Unpaired two-tailed Student's *t*-test, hypothetical mean of
545 1. **f** Quantification of GFP intensity in transgenic *Patf-4(uORF)::GFP* animals at

546 different ages showing that 25 uM cycloheximide induced ATF-4 induction. n=2
547 independent trials. L4 animals were transferred onto plates containing either DMSO
548 or cycloheximide with FUdR. **g** Quantification of *atf-4* mRNA levels after cycloheximide
549 or TM treatment in L4 stage animals. n=3 independent trials, measured in duplicates.
550 In one trial, *hsp-4* mRNA was assessed as a positive control for ER stress. Mean \pm
551 SEM. *P* values relative to control determined by one-sample *t*-test, two-tailed, a
552 hypothetical mean of 1. **h** Expression levels of *atf-4* mRNA plotted as Fragments Per
553 Kilobase of transcript per Million mapped reads (FPKM) during development and
554 ageing. The *atf-4* mRNA expression levels of untreated WT *C. elegans* were retrieved
555 using the RNAseq FPKM Gene Search tool (www.wormbase.org). The boxplots
556 represent the overall expression pattern and the color of the individual dots refer to
557 the 32 individual studies used. Hypothetical working model for *C. elegans* *atf-4*
558 preferential translation, assuming that its regulation is the same as mammalian
559 *ATF4*^{14,20}. The *C. elegans* *atf-4* gene encodes two uORFs. After translating the first
560 uORF, the small ribosomal subunit will continue scanning along the *ATF4* mRNA.
561 Under non-stressed conditions, *i.e.*, when high amounts of the eIF2-GFP bound Met-
562 tRNA_i^{Met} are available, the small ribosomal subunit will readily acquire the eIF2 ternary
563 complex, and the large ribosomal subunit will associate to translate the second uORF.
564 In mammalian *ATF4*, the ribosome disassociates from the *atf-4* mRNA after translating
565 the last uORF. However, under stress or reduced translational conditions, *i.e.*, low
566 amounts of the eIF2-GFP bound Met-tRNA_i^{Met} availability, the association of the large
567 to the small ribosomal subunit is delayed, whereby the inhibitory second uORF is
568 skipped and the re-initiation complex starts to translate the *ATF-4* coding region.
569 Phosphorylation of eIF2 α subunit inhibits the guanine nucleotide exchange factor

570 eIF2B, which lowers the exchange of the eIF2-GDP to eIF2-GTP and thereby lowers
571 global mRNA translation initiation.

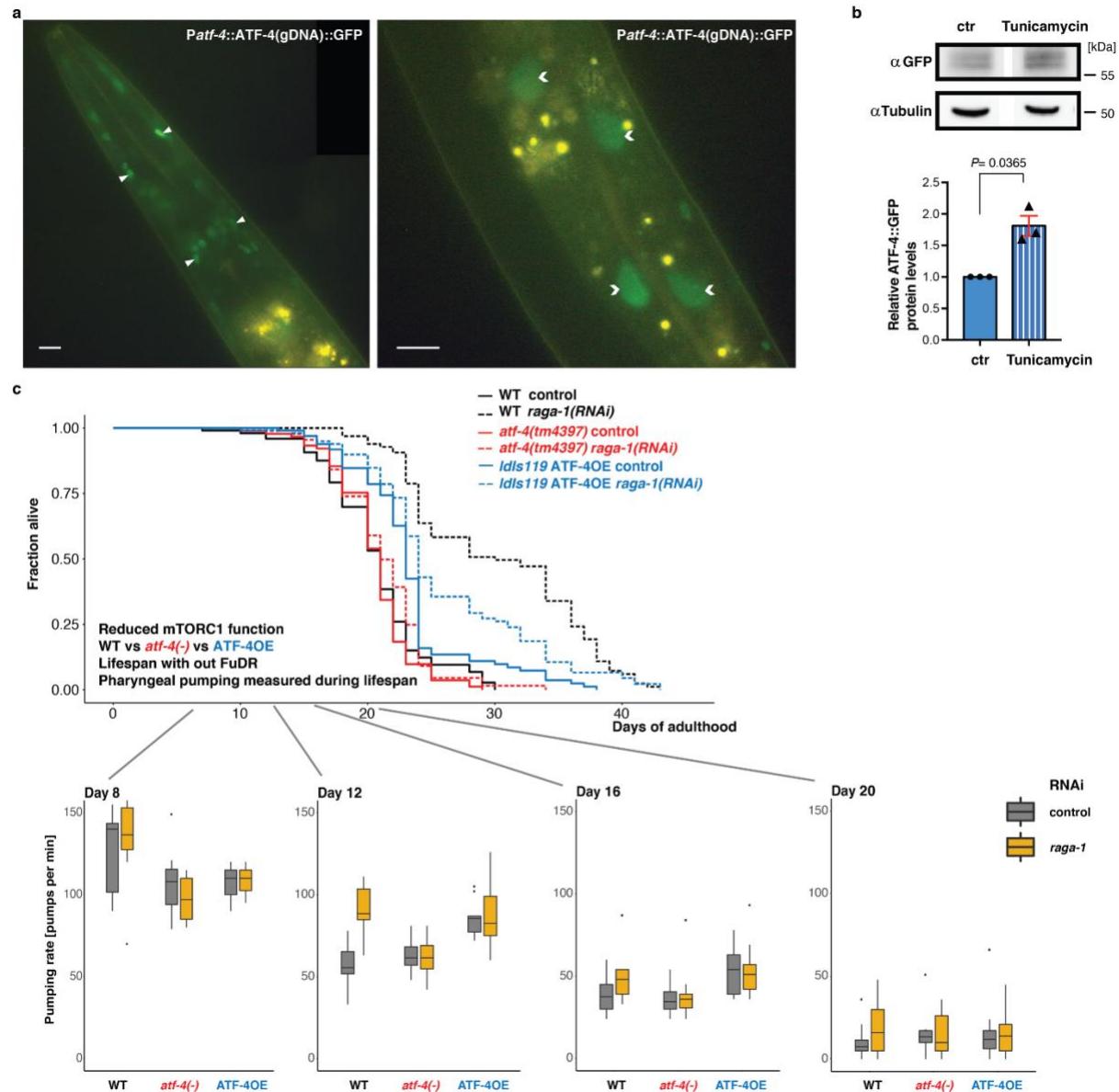

572

573 **Figure 2. ATF-4 mediates lifespan extension from translation inhibition. a** Adult-
 574 specific knockdown of *ifg-1* extended the lifespan of *WT* animals but not *atf-4(tm4397)*
 575 mutants. **b** Adult-specific treatment with 25 μ M cycloheximide increased lifespan
 576 dependent upon *atf-4*. **c** Representative western blots and quantification (**d**) showing
 577 that treatment with 35 μ g/ml tunicamycin for 4 hours dramatically increased eIF2 α
 578 phosphorylation levels in L4 stage animals, while treatment with 7.2 mM
 579 cycloheximide for 1 hour did not. One-way ANOVA with post hoc Tukey. **e**
 580 Representative western blots and quantification (**f**) showing the effects of adult-
 581 specific knockdown of *eif-1.A*, *ifg-1*, *ragc-1*, or *rict-1* on eIF2 α phosphorylation levels.

582 One-way ANOVA with Dunnett's post-test compared to EV. **g** Representative
583 western blots of puromycin incorporation assay and quantification (**h**) showing that
584 adult-specific knockdown of *ifg-1*, *ragc-1*, or *rict-1* decreased translation. One-way
585 ANOVA with Bonferroni post-test. **i** Quantification of GFP fluorescence showing that
586 adult-specific *ifg-1* knockdown increases expression of *Patf-4*(uORF)::GFP. **j** Adult-
587 specific knockdown of *ifg-1* comparably extended the lifespan of *WT* animals and *eif-
588 2a*(*qd338*) phosphorylation-defective mutants. For statistics and additional trials in (**a**),
589 (**b**), and (**j**), see Supplementary Table 1.

590

591

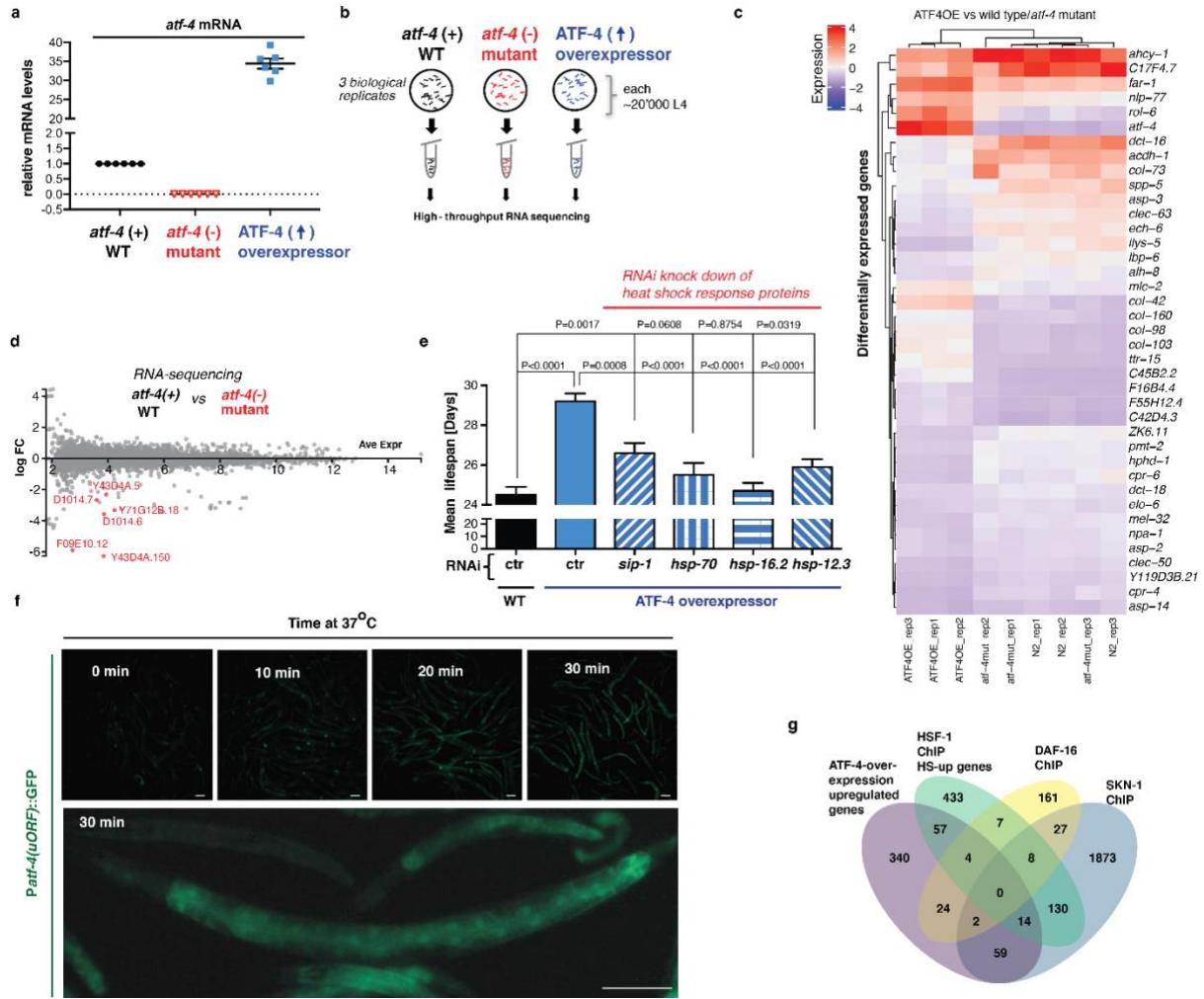


592

593 **Figure 3. ATF-4 overexpression is sufficient to increase lifespan. a** Transgenic
594 animals (*wbmEx26* [*Patf-4*::ATF-4(gDNA)::GFP]) that overexpress ATF-4 (ATF-4OE)
595 live longer compared to their non-transgenic siblings. **b** Pharyngeal pumping rate is
596 similar at day 2 of adulthood between ATF-4OE (*Idls119* [*Patf-4*::ATF-4(gDNA)::GFP])
597 and WT, but higher in ATF-4OE at day 10 of adulthood, suggesting an improved

598 healthspan. For the complete time-course of pharyngeal pumping rate during ageing,
599 see Supplementary Table 2. Mean \pm SEM. Unpaired two-tailed *t*-test. **c** MA (log ratio
600 and mean average)-plot of RNA sequencing analysis comparing ATF-4OE(*lds119*) to
601 abs log FC relative to WT. In red, highlighted genes with FDR < 0.1 and log FC > 1
602 compared to WT. In black, genes with FDR > 0.1. Details are in Supplementary Table
603 3. **d** Validation by qRT-PCR of genes differentially expressed in ATF-4OE(*lds119*),
604 using two new independent biological samples of over 200 animals each. Mean \pm
605 SEM. *P* values relative to WT determined by one sample *t*-test, two-tailed, hypothetical
606 mean of 1. The numbers of ATF4 binding sequences (-TGATG-)^{27,28} are indicated in
607 Supplementary Table 4. The DAF-16 and SKN-1 transcription factor binding sites are
608 based on chromatin immunoprecipitation ChIP data from www.modencode.org
609 (Supplementary Table 5). **e** Longevity conferred by ATF-4OE(*lds119*) is abolished by
610 knockdown of *hsf-1*, *skn-1*, or *daf-16*. Mean \pm SEM. **f** The mitochondrial ATP
611 translocase *ant-1.3* is required for ATF-4 overexpression-induced longevity. For
612 statistical details and additional lifespan trials in (a), (e), and (f), see Supplementary
613 Table 1.

614

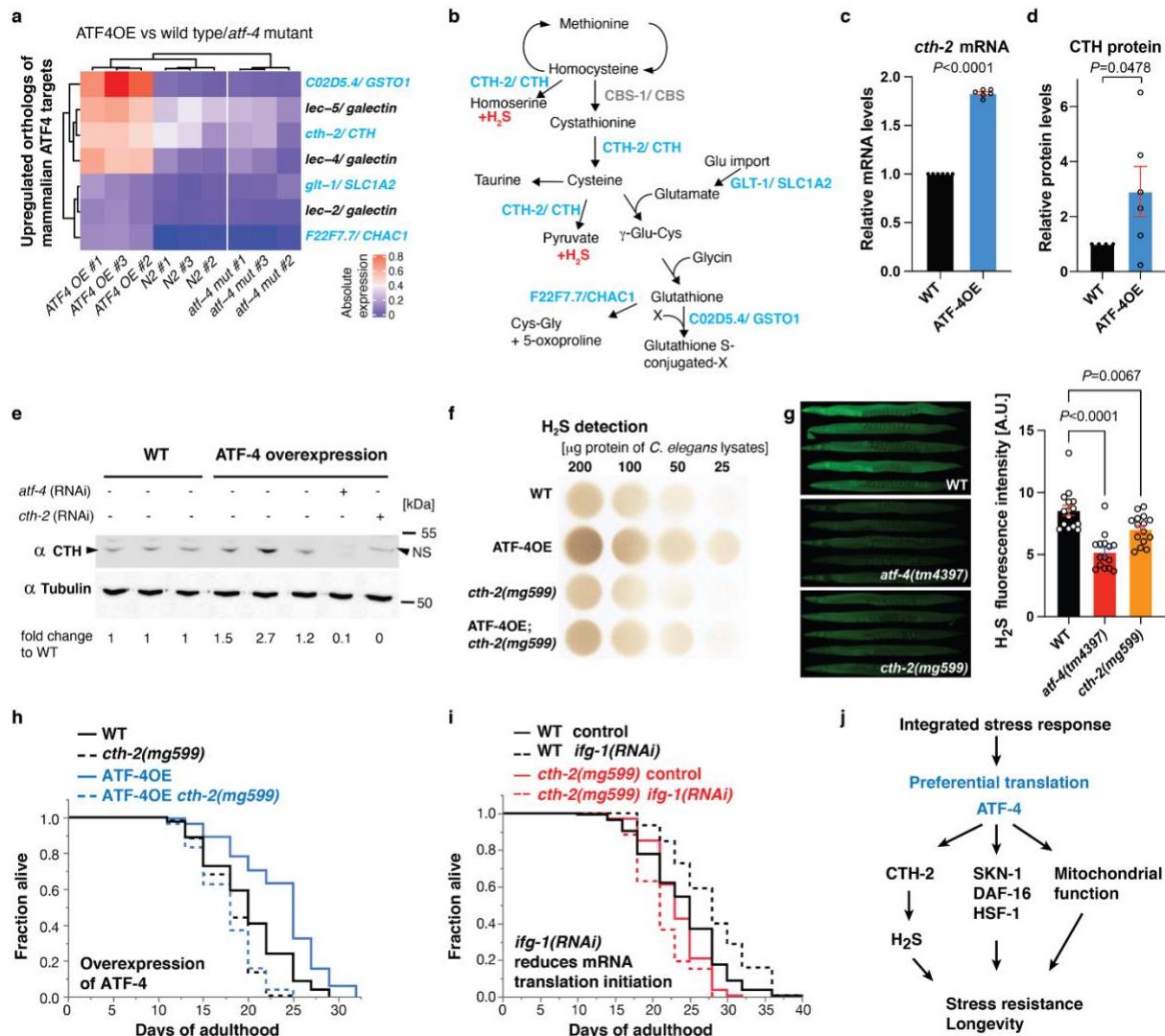

615

616 **Extended Data Figure 2. Overexpression of ATF-4 increases healthspan. a**

617 Representative images showing the expression of ATF-4 in the head (left) and mid-
618 body (right). ATF-4::GFP (*Idls119*) is displayed in green and found predominantly in
619 nuclei (nuclei of head neurons or glia indicated by arrowheads, intestinal nuclei
620 indicated by chevrons). Yellow puncta are autofluorescent gut granules. 100 x
621 magnification. Scale bar = 10 μ m. **b** Western blots and quantification showing ATF-
622 4::GFP levels in day-1-adult transgenic ATF-4OE (*Idls119*) either treated with DMSO
623 (ctr) or 35 μ g/mL tunicamycin for 6 hours. n= 3 replicates. Mean \pm SEM. One-sample
624 t-test, two-tailed, a hypothetical mean of 1. **c** Pharyngeal pumping measurements

625 across the lifespan comparing WT (N2), *atf-4(tm4397)* mutants, and ATF-
626 4OE(*lds119*) treated with either empty vector control RNAi (L4440) or *raga-1(RNAi)*,
627 on plates that do not contain FUdR. See Supplementary Table 2 for raw data.

628



629

630 **Extended Data Figure 3. RNA-sequencing reveals transcriptional targets of ATF-**
 631 **4. a** Quantification of *atf-4* mRNA expression levels in *atf-4(tm4397)* mutants (*atf-4(-)*)
 632 and *ATF-4OE(lids119)* relative to wild type (*atf-4(+) WT*) animals by qRT-PCR. The
 633 same samples were used for RNA sequencing. n=3 independent biological replicates
 634 of about 20, 000 L4 *C. elegans*. P values for both *atf-4(tm4397)* or *ATF-4OE(lids119)*
 635 are <0.0001 relative to WT determined by one-sample t-test, two-tailed, a hypothetical
 636 mean of 1. **b** Schematic representation of sample collection for RNA sequencing. See
 637 Materials and methods for details. **c** Hierarchical clustering heatmap of the genes that
 638 are most differentially regulated in either direction when comparing *ATF-4OE(lids119)*
 639 to WT and *atf-4(tm4397)* mutants (*atf-4 (-) mutant*). As expected, *atf-4* is in the top
 640 gene set. The collagen *rol-6* is the co-injection marker for the transgenic *lids119*.

641 Independent biological replicates are indicated as “rep#”. For details and raw data see
642 Supplementary Table 3. **d** MA (log ratio and mean average)-plot of RNA sequencing
643 analysis comparing *atf-4(tm4397)* mutants (*atf-4* (-) mutant) to absolute log fold-
644 change (FC) relative to WT. In red, highlighted genes with a false discovery rate (FDR)
645 < 0.1 and abs log FC > 1 to WT. Details in Supplementary Table 3. **e** Longevity
646 conferred by ATF-4 overexpression (*lds119*) is blunted by knockdown of *sip-1*, *hsp-*
647 *70*, *hsp-16.2*, or *hsp-12.3*. Mean \pm SEM. P values are relative to WT on empty vector
648 RNAi (L4440). For statistical details see Supplementary Table 1. **f** Representative
649 images that heat increases *Patf-4(uORF)::GFP* transgene expression. Bottom panel
650 shows higher magnification. Anterior to the right, ventral side down. Scale bar = 100
651 μ m. **g** Venn diagram showing the overlap of ATF-4 overexpression-upregulated genes
652 with genes that were bound directly by SKN-1, DAF-16, and HSF-1 in chromatin
653 immunoprecipitation (ChIP) studies. For details and references see Supplementary
654 Table 5.

655

656

657 **Figure 4. ATF-4 overexpression increases H₂S levels via cystathionine gamma-**

658 **lyase, which is required for longevity.** **a** Heatmap of gene expression in ATF-4OE

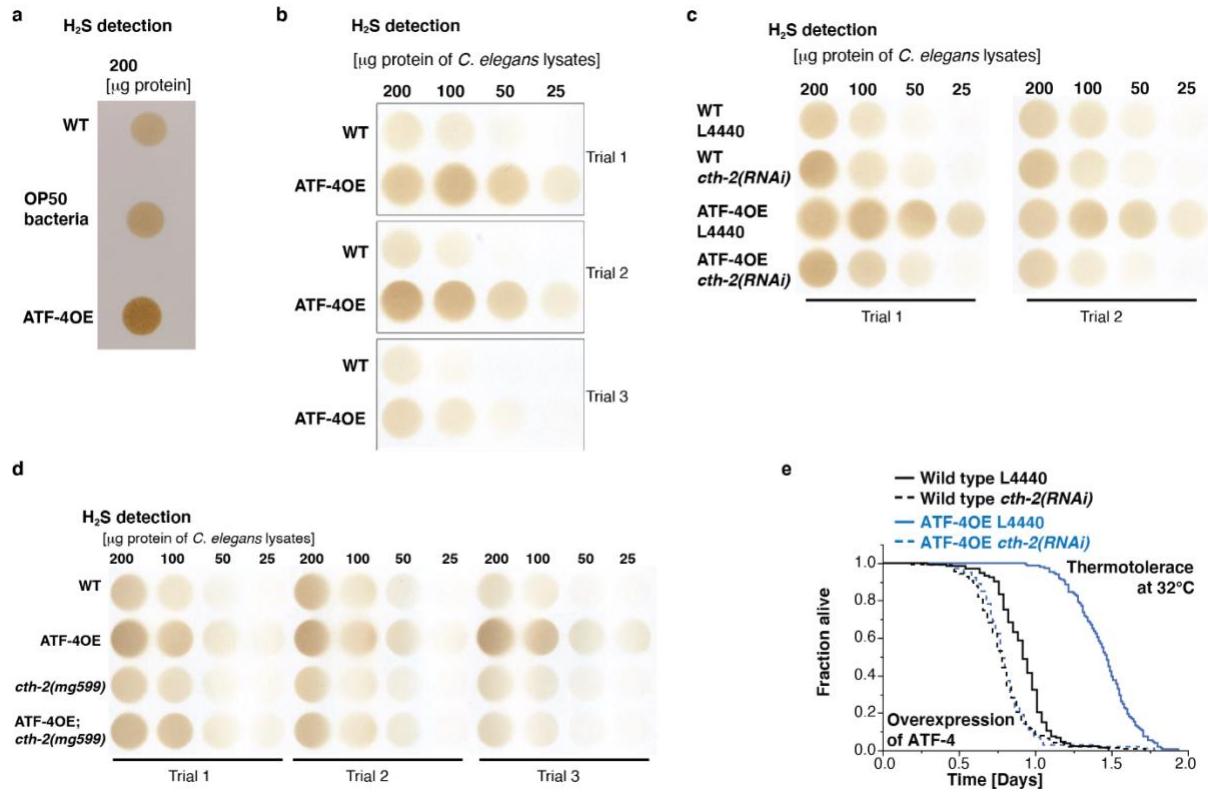
659 (*lds119*), wild type (WT), and *atf-4(tm4397)* showing genes whose orthologs are

660 directly regulated by mammalian ATF4 (Details are in Materials and Methods,

661 Supplementary Table 4). Absolute levels of expression were compared. Genes in light

662 blue are predicted to be involved in the transsulfuration pathway, which is shown in

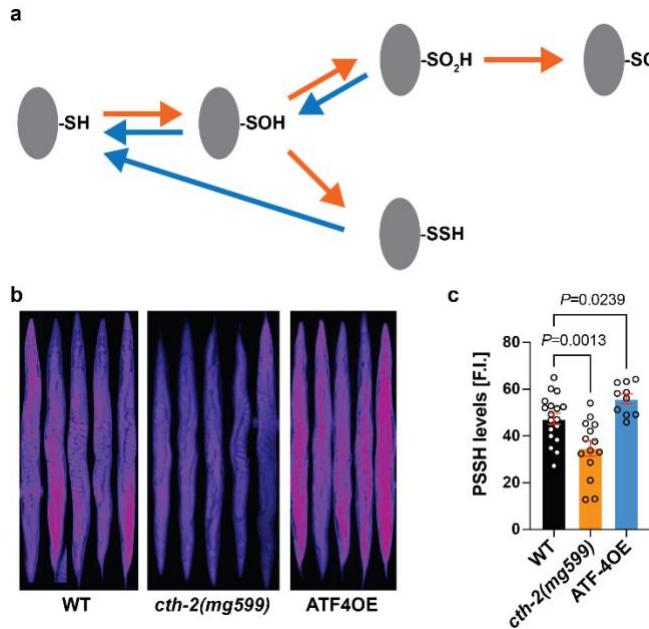
663 (b). **c** ATF-4OE(*lds119*) showed higher *cth-2* mRNA levels compared to WT by qRT-


664 PCR. n=3 independent biological samples in duplicates (each over 200 L4 worms).

665 Mean \pm SEM. *P* values relative to WT determined by one-sample *t*-test, two-tailed, a

666 hypothetical mean of 1. **d** Quantification of CTH protein levels in ATF-4OE(*lds119*)

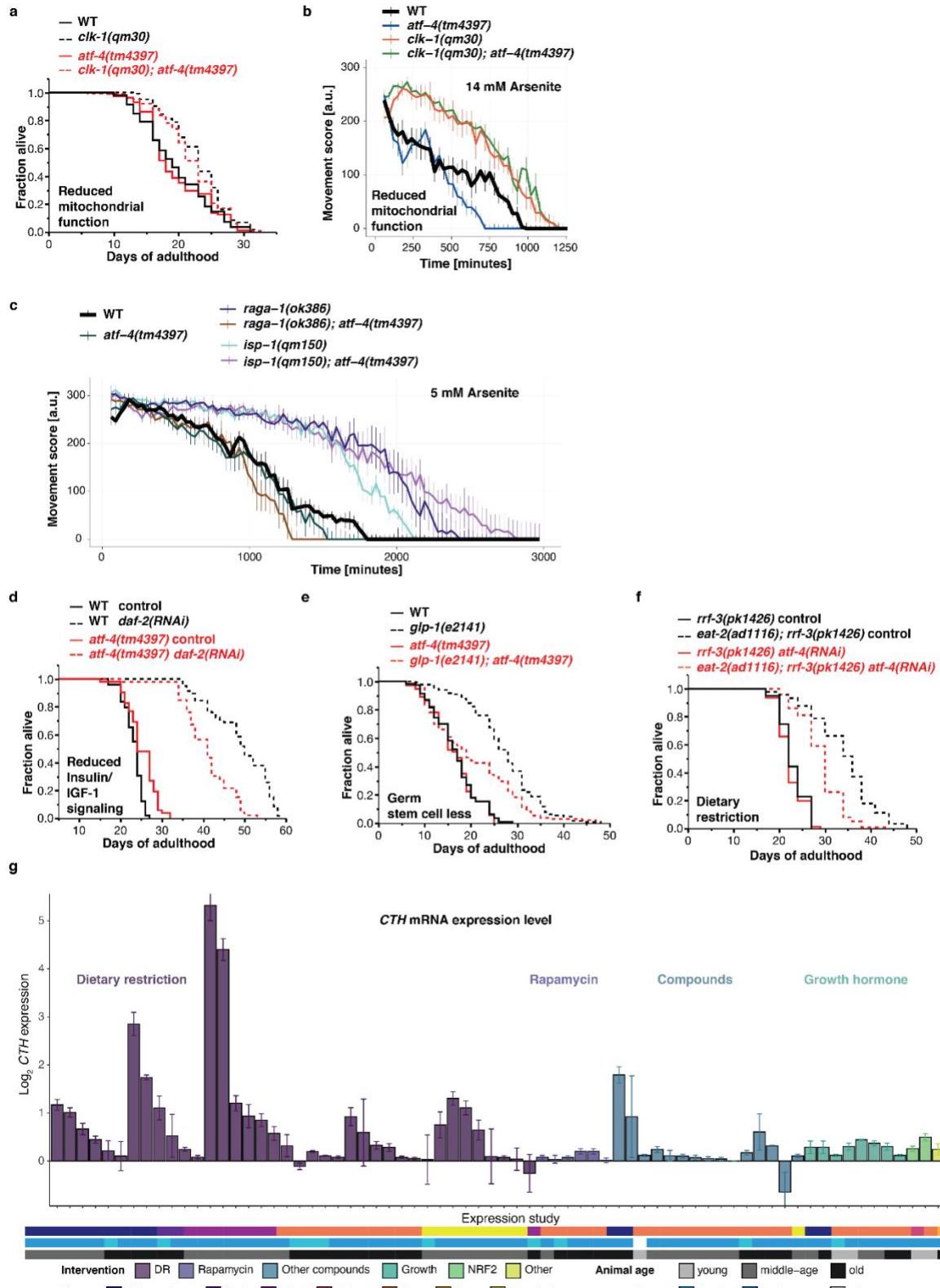
667 compared to WT. n=6 independent biological trials probed in 3 western blots. One-
668 tailed *t*-test. **e** Western blots showing an ATF-4-induced increase in CTH levels was
669 abolished by *atf-4* or *cth-2* knockdown. NS = non-specific band. **f** ATF-4
670 overexpression increases H₂S production capacity in a *cth-2*-dependent manner.
671 Additional biological trials are shown in Extended Data Fig. 4d. For H₂S quantification,
672 see Supplementary Table 12. **g** Representative fluorescent microscopy images and
673 quantification showing that H₂S levels *in vivo* is decreased in either *atf-4(tm4397)* or
674 *cth-2(mg599)* mutants compared to WT. Data are represented as mean + SEM. *P*
675 values to WT are unpaired *t*-test, two-tailed. **h** Lifespan extension induced by ATF-4
676 overexpression depends upon *cth-2*. **i** Lifespan extension induced by *ifg-1* knockdown
677 requires *cth-2*. **j** Model for how ATF-4 promotes stress resistance and longevity. For
678 statistical details and additional trials in (h) and (i), see Supplementary Table 7.


679

680

681 **Extended Data Figure 4. ATF-4 overexpression increases H₂S production via**
682 **CTH-2. a** Measurements of H₂S production capacity of protein lysates from WT *C.*
683 *elegans*, the food source OP50 *E. coli* bacteria alone, or ATF-4OE(*lds119*). Because
684 OP50 lysates have the capacity to produce H₂S, we washed *C. elegans* at least three
685 times or until no bacteria were visible before lysing worms. **b** ATF-4OE(*lds119*)
686 exhibited increased H₂S production capacity compared to WT. n=3 independent
687 biological trials. **c** The increase in H₂S production capacity in ATF-4OE was reduced
688 by *cth-2* knockdown. **d** Additional trials of Fig. 4f. **e** The increased heat stress
689 resistance deriving from ATF-4 overexpression was suppressed by *cth-2* knockdown.
690 For H₂S quantification in (a)-(d), see Supplementary Table 12. For statistical details
691 and additional trials in (e) see Supplementary Table 7.

692



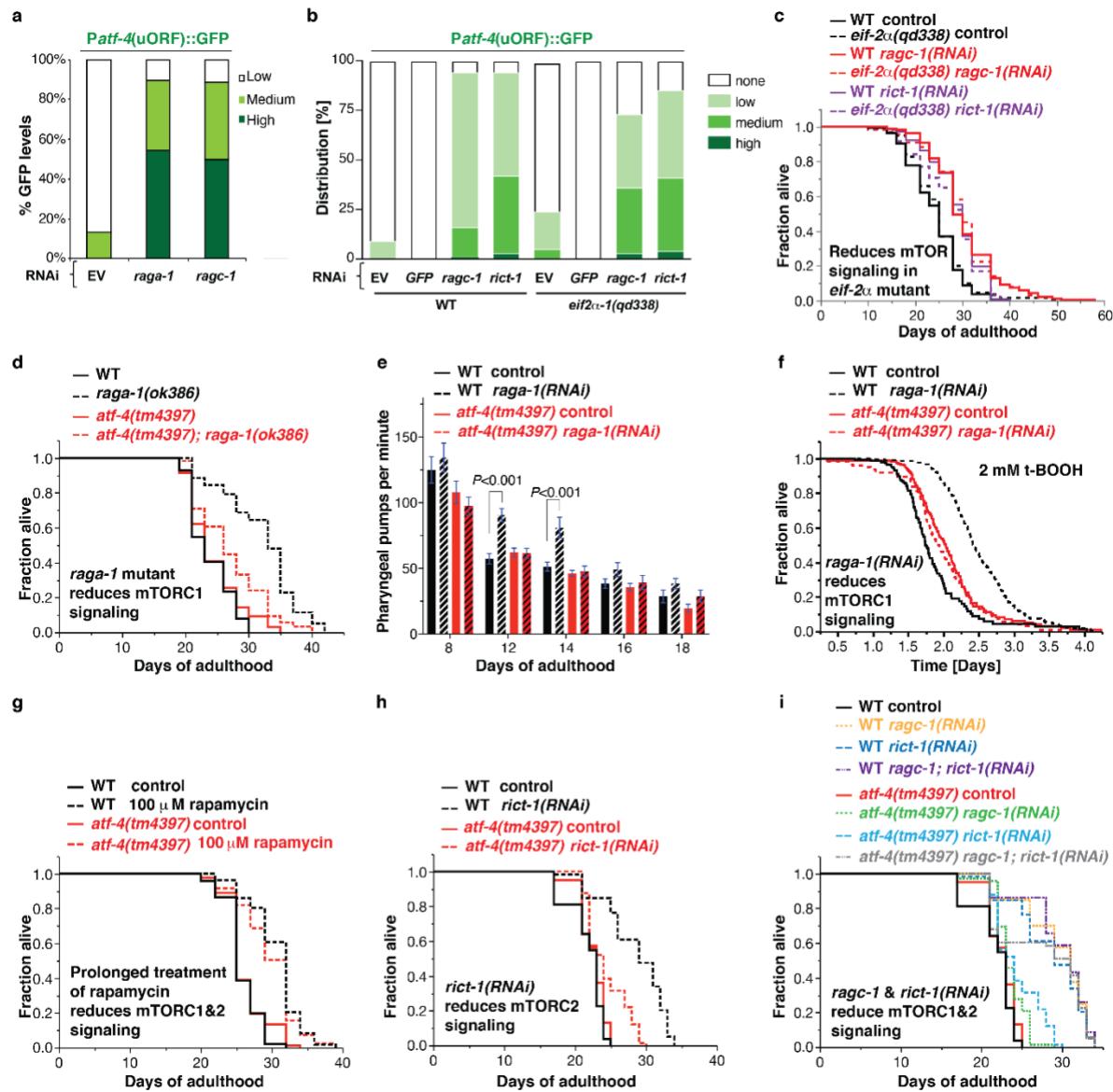
693

694 **Figure 5. ATF-4 and CTH-2 regulate protein persulfidation levels. a** Schematic
695 diagram showing that the thiol group (-SH) of reactive cysteine residues in proteins
696 can undertake various redox states. Sulfenylation (-SOH) can be reversed,
697 particularly efficiently through the intermediate of persulfidation (-SSH), but
698 sulfinylation (-SO₂H) is reversible only within peroxiredoxins and sulfonylation (-SO₃H)
699 is irreversible^{35,37}. Arrows in orange indicate oxidation processes while those in blue
700 indicate reduction processes. **b** Representative fluorescent images and quantification
701 (**c**) showing that ATF-4OE exhibited higher persulfidation levels, while *cth-2(mg599)*
702 animals exhibited lower global persulfidation levels, compared to WT. Data are
703 represented as mean + SEM. *P* values to WT are unpaired *t*-test, two-tailed.

704

705

706

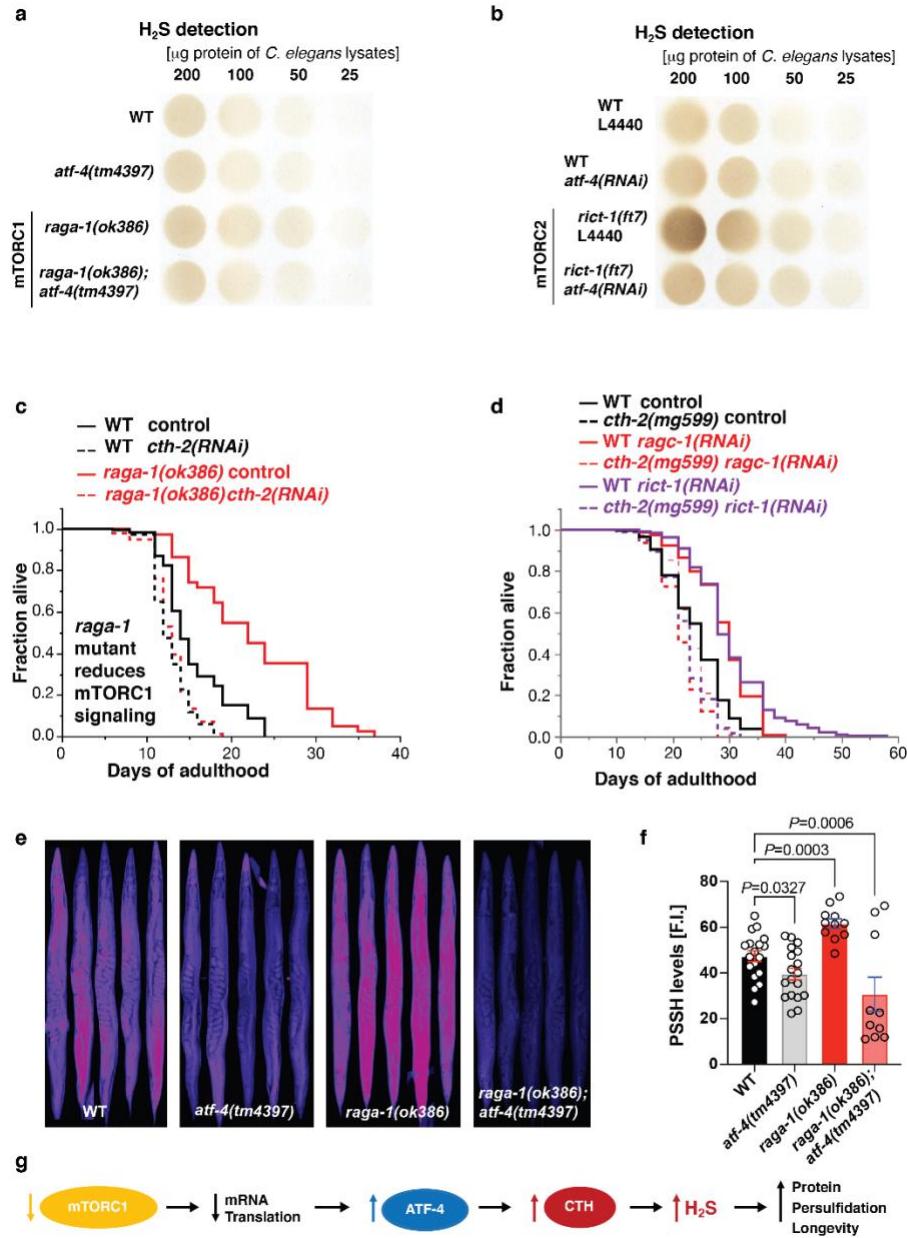

707 **Extended Data Figure 5. A partial role for ATF-4 in various lifespan extension**
 708 **programs. a** The longevity of *clk-1(qm30)* animals (impaired mitochondrial function)
 709 does not depend on *atf-4*. **b** The increased oxidative stress resistance of *clk-1(qm30)*

710 mutants does not require *atf-4*. **c** Loss of *atf-4* suppresses the oxidative stress
711 resistance of *raga-1(ok386)* mutants (reduced mTORC1 activity), but not that of
712 reduced mitochondrial function mutant *isp-1(qm150)*. **d** Longevity arising from
713 reduced insulin/IGF-1 signalling by adult-specific knockdown of the *daf-2* receptor is
714 partially suppressed by *atf-4(tm4397)* mutation. **e** The *atf-4(tm4397)* mutation partially
715 suppresses the longevity of *glp-1(e2141)* mutants (genetic germline stem cell
716 ablation). **f** Knockdown of *atf-4* partially suppresses the longevity of the genetic DR-
717 related model *eat-2(ad1116)* in the RNAi-sensitized *rrf-3(pk1426)* background. **g** CTH
718 mRNA expression levels in long-lived over control mice, analyzed from publicly
719 available expression datasets (Supplementary Table 11). Data are grouped and
720 colored by interventions and represented as Mean \pm SEM. The meta data of the
721 samples are summarized by colored tiles indicating first the tissue of origin, followed
722 by the sex and then the age group of the mice in each experiment. Animals sacrificed
723 before 16 weeks of age were classified as “young”, between 16 to 32 weeks as
724 “middle-aged” and animals above 32 weeks as “old”. If no meta information could be
725 found, it was labelled as “not specified”. For statistical details and additional trials in
726 **(a), (d)-(f)**, see Supplementary Table 1. For statistical details and additional trials in
727 **(b), (c)**, and see Supplementary Tables 8.

728

729

730


731

732 **Figure 6. ATF-4 is essential for longevity from reduced mTORC1 activity. a**

733 Inhibition of mTORC1 by either *raga-1* or *ragc-1* knockdown led to preferential
734 translation of ATF-4. RNAi treatments were initiated at the L4 stage, with GFP intensity
735 scored at day 3 of adulthood. **b** Inhibition of mTORC1 or mTORC2 by knockdown of
736 *ragc-1* or *rict-1*, respectively, leads to preferential translation of ATF-4. Similar effects
737 were observed in WT and *eif2α(qd338)* mutants. **c** Post-development knockdown of
738 *raga-1* or *rict-1* extends lifespan in both WT and *eif2α(qd338)* mutants. **d** Mutation in
739 *raga-1* increases lifespan in an *atf-4*-dependent manner. **e** Reducing mTORC1
740 signalling by adulthood specific *raga-1* knockdown improves healthspan dependent

741 upon *atf-4*, as assessed by pharyngeal pumping rate. Mean \pm S.E.M. *P* values relative
742 to WT of the corresponding day with One-way ANOVA with post hoc Dunnett's multiple
743 comparisons test. **f** Adult-specific knockdown *raga-1* increases oxidative stress
744 resistance (2 mM tert-butyl hydrogen peroxide (tBOOH)) in an *atf-4*-dependent
745 manner. RNAi was started at the L4 stage, and stress resistance was measured at
746 day 3 of adulthood with the lifespan machine (See Supplementary Table 10 for
747 details). **g** Rapamycin treatment during adulthood extends lifespan independently of
748 *atf-4*. **h** Adult-specific knockdown of the mTORC2 subunit *rict-1* extends lifespan in an
749 *atf-4*-dependent manner. **i** Adult-specific inactivation of both mTORC1 and mTORC2
750 increases lifespan independently of *atf-4*. For statistical details and additional trials in
751 (**a**), (**b**), see Supplementary Table 9. For statistical details and additional lifespan trials
752 in (**c**), (**d**), (**g**)-(i), see Supplementary Table 1.

753

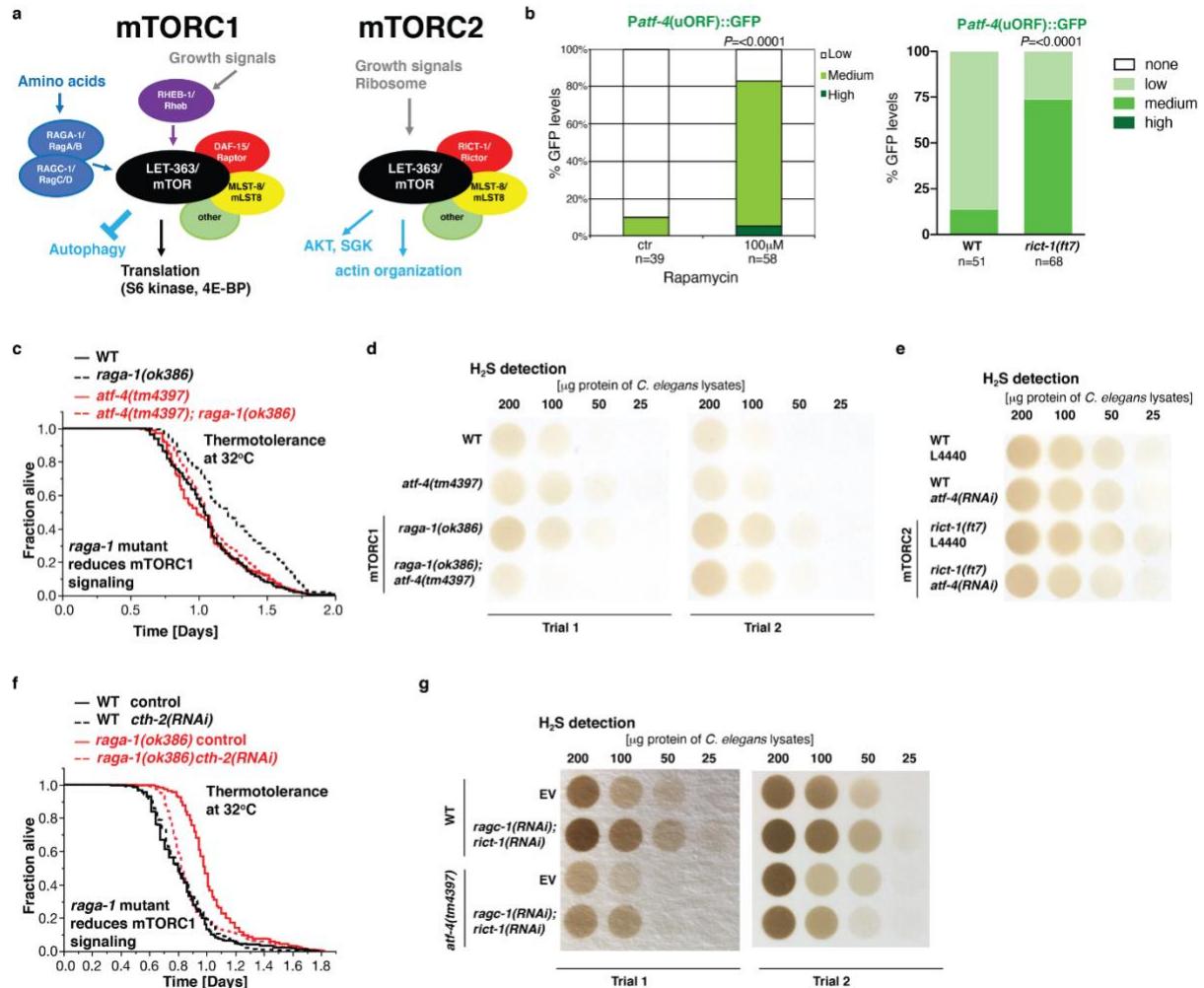


Figure 7. Longevity from mTOR inhibition upregulates H₂S and requires *cth-2*.

755 **a** Assay of *C. elegans* lysates showing that *raga-1* mutation increased H₂S production
756 capacity in an *atf-4*-dependent manner. Two additional independent biological trials
757 are in Extended Data Fig. 6d. **b** Assay of *C. elegans* lysates showing that *rict-1*
758 mutation increased H₂S production capacity in an *atf-4*-dependent manner. An
759 additional independent biological trial is in Extended Data Fig. 6e. **c** Longevity of *raga-1*
760 (*ok386*) mutants is ablated by *cth-2* knockdown. This particular experiment was
761 performed at 25°C. **d** Longevity induced by adult-specific knockdown of either *raga-1*
762

763 or *rict-1* depends upon *cth-2*. **e** and **f** Representative images showing persulfidation
764 levels in WT (N2), *cth-2* (*mg599*), *atf-4* (*tm4397*), *raga-1* (*ok386*), and *raga-1;atf-4*
765 mutants. Data are represented as mean + SEM. *P* values to WT are unpaired *t*-test,
766 two-tailed. **g** Inhibition of mTORC1 promotes longevity by increasing ATF-4
767 expression and stimulating H₂S production. For H₂S quantification in **(a)** and **(b)**, see
768 Supplementary Table 12. For statistical details and additional lifespan trials in **(c)** and
769 **(d)**, see Supplementary Table 1.

770

771

772 **Extended Data Figure 6. Preferential *atf-4* translation and H₂S signalling upon**
 773 **reduced mTOR signalling.** **a** Schematic diagram showing the composition,
 774 regulation, and functions of the two mTOR complexes (mTORC1 and mTORC2)
 775 adapted from⁶. **b** Rapamycin treatment (left) or *rict-1(ft7)* mutation (right) leads to
 776 preferential translation of ATF-4. Rapamycin treatment was initiated at L4. GFP
 777 intensity was scored at day 3 of adulthood. *P* values were determined by Chi² test. **c**
 778 Increased heat stress resistance (32°C) of *raga-1(ok386)* mutants depends on *atf-4*.
 779 **d** Two additional independent biological trials of Fig. 7a. **e** One additional independent
 780 biological trial of Fig. 7b. **f** Increased heat stress resistance (32°C) of *raga-1(ok386)*
 781 mutants depends on *cth-2*. **g** H₂S production capacity assay from *C. elegans* lysates
 782 showing that simultaneous knockdown of both *raga-1* and *rict-1* increases H₂S

783 production capacity in an *atf-4*-independent manner. For statistical details and
784 additional trials in (c) and (f), see Supplementary Table 7; Quantification of H₂S assays
785 in (d), (e), and (g) are in Supplementary Table 12.

786

787 **Materials and Methods**

788 **Strains**

789 *Caenorhabditis elegans* strains were maintained on NGM plates and OP50
790 *Escherichia coli* bacteria. LD1499 [P_{atf-4}(uORF)::GFP::unc-54(3'UTR)] was made by
791 Chi Yun (1.8kb promoter 5' of *atf-4* including both uORFs into pPD95.75, personal
792 communication with Chi Yun and David Ron)⁵⁷. All strains used are listed in
793 Supplementary Table 13.

794

795 **Generation of transgenic lines**

796 Construction of a translational fusion of ATF-4 with GFP. The plasmid pWM48 (P_{atf-4}
797 ::ATF-4(gDNA)::GFP::unc-54(3'UTR)) was generated by introducing the 1.8kb
798 promoter region 5' of *atf-4* and the *atf-4* genomic sequence into pAD1. This construct
799 was used to generate two independent transgenic lines: *wbmEx26* [pWM48 (P_{atf-4}
800 ::ATF-4(gDNA)::GFP::unc-54(3'UTR), pRF4 (*rol-6(su1006)*)] and *wbmEx27* [pWM48
801 (P_{atf-4}::ATF-4(gDNA)::GFP::unc-54(3'UTR), pRF4 (*rol-6(su1006)*)]. UV irradiation
802 was used for integration resulting in *Idls119* from *wbmEx26* and *Idls120-1* from
803 *wbmEx27*, which were outcrossed 8-10x against N2.

804

805 **Genomic organisation and alignments**

806 Alignment of *C. elegans* ATF-4 (T04C10.4, WBGene00000221, 208 amino acids,
807 www.wormbase.org) with human ATF4 (350 amino acids, P18848; www.uniprot.org)
808 or ATF5 (282 amino acids, Q9Y2D1; www.uniprot.org) sequences was performed by
809 T-COFFEE (Version_11.00.d625267). The *atf-4* genomic representation was made
810 using Exon-Intron Graphic Maker (<http://wormweb.org/exonintron>) from Nikhil Bhatla.
811 DNA and mRNA sequences were from www.wormbase.org (WS258). For human

812 *ATF4* GenBank BC008090 mRNA sequence was used. The uORFs were predicted
813 with ApE- A plasmid Editor v2.0.50b3. For amino acid alignments T-COFFEE
814 (Version_11.00.d625267) was used.

815

816 **Ribosome profiling analysis**

817 Ribosome profiling sequencing data were downloaded from the NCBI Sequence Read
818 Archive (S.R.A.) (<http://www.ncbi.nlm.nih.gov/sra/>) under accession number
819 SRA055804. Data were analyzed as described⁵⁴: Data analysis was performed with
820 the help of Unix-based software tools. First, the quality of raw sequencing reads was
821 determined by FastQC (Andrews, S. FastQC (Babraham Bioinformatics, 2010)).
822 Reads were then filtered according to quality via FASTQ for a mean PHRED quality
823 score above 30 (<http://usegalaxy.org/u/dan/p/fastq>). Filtered reads were mapped to
824 the worm reference genome (Wormbase WS275) using B.W.A. (version 0.7.5), and
825 S.A.M. files were converted into B.A.M. files by SAMtools (version 0.1.19). Read
826 counts were then assigned to each gene or non-coding RNA. Library sizes were
827 normalized using the EdgeR software package and the TMM normalization mode.
828 Ribosome profiling was computed separately for each library as the average
829 normalized read counts across all for normalized libraries. Thus, the mapped reads
830 were determined and normalized based on library size for each transcript in each
831 ribosome profiling library. The ATF-4 coverage data for each larval stage (L1, L2 and
832 L4) and for the whole transcript (including 5'UTR, exons and 3'UTR) were calculated
833 and exported by SAMtools. The stage-specific averaged coverage data for each gene
834 were plotted using R (<https://www.r-project.org>).

835

836 **Knockdown by RNA interference**

837 RNAi clones were obtained from the Vidal and Ahringer RNAi libraries. RNAi bacteria
838 cultures were grown overnight in LB with carbenicillin [100 µg/ml] and tetracycline
839 [12.5 µg/ml], diluted to an OD600 of 1, and induced with 1 mM IPTG and spread onto
840 NGM plates containing tetracycline [12.5 µg/ml] and ampicillin [50 µg/ml]. For empty
841 RNAi vector (EV) plasmid pL4440 was used as control.

842

843 **Manual lifespan assays**

844 Adult lifespan was determined either with or without FUdR as described in Ewald and
845 colleagues⁵⁸. About 100 L4 *C. elegans* per strain were picked onto NGM plates
846 containing OP50 bacteria. The next day, *C. elegans* (day-1-adults) were transferred
847 onto either NGM plates containing 400 µM FUdR and OP50 bacteria or RNAi bacteria.
848 For cycloheximide-treatment lifespan, day-1-adults were transferred on NGM OP50
849 plates either containing the solvent 0.25% dimethyl sulfoxide (DMSO) alone as a
850 control or cycloheximide (Sigma #C7698) dissolved in 0.25% DMSO. The rapamycin
851 lifespan and liquid DR lifespan assays were performed as described^{6,58}. Animals were
852 classified as dead if they failed to respond to prodding. Exploded, bagged, burrowed,
853 or animals that left the agar were excluded from the statistics. The estimates of survival
854 functions were calculated using the product-limit (Kaplan-Meier) method. The log-rank
855 (Mantel-Cox) method was used to test the null hypothesis and calculate *P* values (JMP
856 software v.9.0.2.).

857

858 **Pharyngeal Pumping**

859 Pharyngeal pumping was assessed as described previously²⁶. Pharyngeal pumping
860 was determined by counting grinder movements in 45 second intervals while the
861 animals were feeding on the bacterial lawn.

862

863 **Puromycin assay**

864 Puromycin incorporation and detection assays were adapted from previous
865 studies^{15,59}. Approximately 500 L4 animals were resuspended in M9 and transferred
866 to NGM plates containing 50 µM FUdR seeded with RNAi bacteria clones. After 3 days,
867 worms were collected in M9 and then transferred to S-basal medium. Worms were
868 incubated with 4 ml S-Basal that contained OP50 and 0.5 mg/ml puromycin for 1 hr.
869 Afterwards, worms were washed with S-basal for three times. Protein extraction and
870 Western blots for puromycin detection were performed as described below.

871

872 **Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Assays**

873 RNA was isolated with Trizol (TRI REAGENT Sigma), DNase-treated, and cleaned
874 over a column (RNA Clean & ConcentratorTM ZYMO Research). First-strand cDNA
875 was synthesized in duplicate from each sample (Invitrogen SuperScript III). SYBR
876 green was used to perform qRT-PCR (ABI 7900). For each primer set, a standard
877 curve from genomic DNA accompanied the duplicate cDNA samples. mRNA levels
878 relative to WT control were determined by normalizing to the number of *C. elegans*
879 and the geometric mean of three reference genes (*cdc-42*, *pmp-3*, and Y45F10D.4).
880 At least two independent biological replicates were examined for each sample. For
881 statistical analysis, one-sample *t*-test, two-tailed, a hypothetical mean of 1 was used
882 for comparison using Prism 6.0 software (GraphPad).

883

884 **RNA sequencing**

885 Three independent biological replicates were prepared by using sodium hypochlorite
886 to harvest eggs and overnight L1 arrest in M9 buffer with 10 µg/ml cholesterol to

887 synchronize *C. elegans*. For each sample, about 20000 *C. elegans* per strain were
888 allowed to develop to the L4 stage under normal growth conditions on NGM OP50
889 plates at 20°C (about 1000 *C. elegans* per one 10 cm NGM OP50 plate). WT, *atf-*
890 *4(tm4397)*, and *lds119* were grown at the same time for each biological replicate. *C.*
891 *elegans* were washed from the culturing NGM plates and washed additional 3 times
892 with M9 buffer to wash away the OP50 bacteria. RNA was isolated with Trizol (TRI
893 REAGENT Sigma), DNase-treated, and cleaned over a column (RNA Clean &
894 Concentrator™ ZYMO Research). The RNA was sent to Dana-Farber Cancer Institute
895 Center core for sequencing (<http://mbcf.dfcf.harvard.edu>). The RNA Integrity Number
896 (RIN) was then assessed by using the Bioanalyzer 2100 (Agilent Technologies), and
897 only samples with a high RIN score were used to prepare cDNA libraries. All nine
898 samples were multiplexed in a single lane. Single read 50 bp RNA-sequencing with
899 poly(A) enrichment was performed using a HiSeq 2000 (Illumina). We aligned the
900 FASTQ output files to the *C. elegans* WBcel235 reference genome using STAR 2.4.0j
901 software (<http://code.google.com/p/rna-star/>) with an average >80% coverage
902 mapping the reads to the genome. The differential gene expression analysis was
903 performed using Bioconductor (<http://bioconductor.org>) as described in⁶⁰. Rsubread
904 1.16.1 featureCounts was used to quantify the mapped reads in the aligned SAM
905 output files. Transcripts with <1 count per million reads were discarded. Counts were
906 scaled to Reads Per Kilobase of transcript per Million mapped reads (RPKM) and
907 deposited as a final output file in (Supplementary Table 3). To analyze the differential
908 expressed genes, we compared *atf-4(tm4397)*, and *lds119* to wild type using Degust
909 (<http://degust.erc.monash.edu>) with the following settings: RPKM with minimum 5
910 counts using edgeR with a false discovery rate (FDR) of 0.1 and an absolute log fold
911 change (FC) of 1 relative to WT. Results are displayed in MA-plots. Functional

912 annotation clustering was performed with DAVID using high classification stringencies
913 (<https://david.ncifcrf.gov>).

914

915 **Comparison of RNA sequencing data with mammalian ATF4 target genes**

916 The RNA-sequencing data described in the previous section was subjected to
917 differential expression analysis using the limma package (Smyth, Gordon K. "Limma:
918 linear models for microarray data." Bioinformatics and computational biology solutions
919 using R and Bioconductor. Springer, New York, NY, 2005. 397-420) available in the
920 programming language R (Team, R. Core. "R: A language and environment for
921 statistical computing." (2013): 201). The 200 most-upregulated genes that were
922 identified by comparison of ATF4 OE to WT and passed a Benjamini-Hochberg
923 adjusted *P*-value threshold of 0.1 were analyzed further. Mammalian ATF4-specific
924 gene targets were obtained from Quiros et al. 2017²⁷ and subjected to Ortholist2 to
925 infer *C. elegans* orthologs based on a comparative genomic meta-analysis⁶¹. The
926 intersection of the most-upregulated genes in our ATF4OE to WT expression analysis
927 and the orthologs of the mammalian ATF4 targets is depicted as a heatmap showing

928 all biological replicates (#1-3)

929 (<http://www.bioconductor.org/packages/devel/bioc/html/ComplexHeatmap.html>). The
930 *atf-4* mutant samples are shown separately since the displayed genes were selected
931 based on the comparison between ATF4OE and WT. The absolute expression levels
932 are displayed in a blue (low) to white (medium) to red (high) color gradient, with genes
933 indicated as gene names or sequence names if the former is not available.
934 Hierarchical clustering was applied to both genes (rows) and samples (columns).
935 Additional information: GO term enrichment yielded a significant (*P*=0.047, Benjamini-
936 Hochberg corrected) enrichment of the membrane raft compartment (*lec-2*, *lec-4*, *lec-*

937 5) while no significant enrichment for GO biological process, GO molecular function,
938 KEGG- or REACTOME pathways were found.

939

940 **Analysis of CTH expression levels in mice**

941 Publicly-available expression datasets were analyzed to quantify the change of CTH
942 expression levels in long-lived compared to normal-lived mice. A selected subset of
943 comparisons displaying CTH upregulation in longevity is depicted in Fig. 6b, while the
944 full table is provided in Supplementary Table 11. Microarray datasets and platform
945 information were obtained from GEO (<https://www.ncbi.nlm.nih.gov/geo/>) followed by
946 mapping probes to their corresponding genes and sequencing information was
947 obtained from SRA (<https://www.ncbi.nlm.nih.gov/sra>) and processed using Trim
948 Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and
949 Salmon⁶². Datasets were centered and scaled, and subsequently, the mean fold
950 change, as well as its standard error, were computed for the CTH gene.

951

952 **Manual thermotolerance assays**

953 Day-1-adults were placed on NGM OP50 plates (maximum 20 *C. elegans* per plate)
954 and placed in an incubator at 35°C. Survival was scored every hour. Animals were
955 classified as dead if they failed to respond to prodding. Exploded animals or animals
956 that moved up on the side of the plate were censored from the analysis. The estimates
957 of survival functions were calculated using the product-limit (Kaplan-Meier) method.
958 The log-rank (Mantel-Cox) method was used to test the null hypothesis and calculate
959 *P* values (JMP software v.9.0.2.).

960

961 **Automated survival assays using the lifespan machine**

962 Automated survival analysis was conducted using the lifespan machine described by
963 Stroustrup and colleagues⁶³. Approximately 500 L4 animals were resuspended in M9
964 and transferred to NGM plates containing 50 µM FUdR seeded with OP50 bacteria,
965 RNAi bacteria supplemented with 100 µg/ml carbenicillin, heat-killed OP50 bacteria,
966 or UV-inactivated *E. coli* strain NEC937 B (OP50 Δ uvrA; KanR) containing 100 µg/ml
967 carbenicillin. For oxidative stress assays, tBOOH was added to 2 mM to the NGM
968 immediately before pouring and seeding with heat-killed OP50 bacteria. Animals were
969 kept at 20°C until measurement. Heat and oxidative stress experiments were
970 performed using regular petri dishes sealed with parafilm, while tight-fitting petri dishes
971 (BD Falcon Petri Dishes, 50x9mm) were used for lifespan experiments. Tight-fitting
972 plates were dried without lids in a laminar flow hood for 40 minutes before starting the
973 experiment. Air-cooled Epson V800 scanners were utilized for all experiments
974 operating at a scanning frequency of one scan per 10 - 30 minutes. Temperature
975 probes (Thermoworks, Utah, U.S.) were used to monitor the temperature on the
976 scanner flatbed and maintain 20°C constantly. Animals which left the imaging area
977 during the experiment were censored.

978 Population survival was determined using the statistical software R⁶⁴ with the survival
979 and survminer (<https://rpkgs.datanovia.com/survminer/>) packages. Lifespans were
980 calculated from the L4 stage (= day 0). For stress survival assays the moment of
981 exposure was utilized to define the time point zero of each experiment.

982

983 **Manual oxidative stress assay (arsenite and tBOOH)**

984 The manual oxidative stress assays were performed as described in detail in the bio-
985 protocol⁶⁵. L4 worms were manually picked onto fresh OP50 plates. The next day, 10–
986 12 day-one old *C. elegans* were transferred into 24 well plates containing 1 mL M9

987 Buffer in quadruplicates for each strain and condition (three wells with sodium arsenite
988 (Sigma-Aldrich) and one well M9 as control). For *tert*-Butyl hydroperoxide (tBOOH)
989 stress assay, about 80 L4 *C. elegans* per condition were picked onto fresh RNAi
990 plates. Three days later, 20 day-three-old *C. elegans* were picked onto NGM plates
991 containing 15.4 mM tBOOH (Sigma-Aldrich). The survival was scored every hour until
992 all animas died. Exploded animals were excluded from the statistics. The log-rank
993 (Mantel-Cox) method was used to test the null hypothesis and calculate *P*values (JMP
994 software v.9.0.2.).

995

996 **Oxidative stress assay by quantifying movement**

997 *C. elegans* were collected from NGM plates and washed four times by centrifugation,
998 aspirating the supernatant and resuspending in fresh M9 buffer again. After the final
999 wash, the supernatant was removed, and 10 µl of the *C. elegans* suspension pipetted
1000 into each well of a round-bottom 96-well microplate resulting in approximately 40 - 70
1001 animals per well. To prevent desiccation, the wells were filled up immediately with
1002 either 30 µl M9, or 30 µl M9 containing 6.7 mM or 18.7 mM sodium arsenite yielding a
1003 final arsenite concentration of 0, 5, or 14 mM, respectively. Per *C. elegans* strain and
1004 conditions, we loaded two wells with M9 as control and six wells with either 5 or 14
1005 mM arsenite as technical replicates. The plate was closed, sealed with Parafilm and
1006 briefly stirred and then loaded into the wMicrotracker device (NemaMetrix). Data
1007 acquisition was performed for 50 hours, according to the manufacturer's instructions.
1008 The acquired movement dataset was analyzed using the dplyr
1009 (<https://dplyr.tidyverse.org/reference/dplyr-package.html>) and ggplot2
1010 (<https://ggplot2.tidyverse.org>) R packages.

1011

1012 **H₂S production capacity assay**

1013 The H₂S production capacity assay was adapted from Hine and colleagues³³. C.
1014 *elegans* were harvested from NGM plates and washed four times by centrifugation
1015 and resuspension with M9 to remove residual bacteria. Approximately 3000 animals
1016 were collected as a pellet and mixed with the same volume of 2x passive lysis buffer
1017 (Promega, E194A) on ice. Three freeze-thaw cycles were performed by freezing the
1018 samples in liquid nitrogen and thawing them again using a heat block set to 37°C.
1019 Particles were removed by centrifuging at 12000 g for 10 minutes at 4°C. The pellet
1020 was discarded, and the supernatant used further. The protein content of each sample
1021 was determined (BCA protein assay, Thermo scientific, 23225) and the sample
1022 sequentially diluted with distilled water to the required protein mass range, usually 25
1023 - 200 µg protein. To produce the lead acetate paper, we submerged chromatography
1024 paper (Whatman paper 3M (GE Healthcare, 3030-917)) in a 20 mM lead acetate (Lead
1025 (II) acetate trihydrate (Sigma, 215902-25G)) solution for one minute and then let it dry
1026 overnight. The fuel mix was prepared freshly by mixing Pyridoxal 5'-phosphate hydrate
1027 (Sigma, P9255-5G) and L-Cysteine (Sigma, C7352-25G) in Phosphate Buffered
1028 Saline on ice at final concentrations of 2.5 mM and 25 mM, respectively. A 96-well
1029 plate was placed on ice, 80 µl of each sample were loaded into each well and mixed
1030 with 20 µl fuel mix and subsequently covered using the lead acetate paper. The assay
1031 plate was then incubated at 37°C for 3 hours under a weight of approximately 1 kg to
1032 keep the lead acetate paper firmly in place. For analysis, the exposed lead acetate
1033 paper was imaged using a photo scanner. H₂S levels were quantified as the amount
1034 of lead sulfide captured on the paper, measured by the integrated density of each well
1035 area (Supplementary Table 12). Quantification of H₂S production was performed by

1036 measuring the integrated density using ImageJ, compared to a well next to it that
1037 contained no protein for background.

1038

1039 **Detection of H₂S levels by confocal microscopy**

1040 For the quantification of H₂S levels, worms were synchronized and grown at 20°C on
1041 regular NGM plates seeded with OP50-1 until they reached late L4 stage. At this point,
1042 50 animals per strain were transferred to fresh plates containing fluorescent H₂S probe
1043 to develop until the next day. Plates with H₂S sensor were made by spreading 100 µl
1044 of 40 µM MeRho-Az solution (in DMSO)³⁴ on the plate surfaces and left to dry for at
1045 least 4 h. On the control plates, the same volume of DMSO was spread as a vehicle
1046 control. On the day 1 of adulthood, worms were collected by picking, transferred to a
1047 tube containing M9 buffer and centrifuged for 1 minute at 400 x g to remove bacteria.
1048 Fixation was done in 2% PFA for 20 minutes at 37°C followed by incubation with 4%
1049 PFA for 20 minutes at RT with shaking. PFA was removed and worms were washed
1050 3 times with PBS supplemented with 0.01% Triton and twice with PBS. PBS was
1051 removed and mounting media (Ibidi, ref. 50001) was added directly to the tube. Worm
1052 suspension was transferred to the glass slide, covered with a cover slip and sealed
1053 with the nail polish. Samples were recorded on Leica TCS SP8 DLC Digital Light Sheet
1054 and Confocal microscope using 10X air objective and VIS (488 nm) laser. Obtained
1055 images were first processed with Worm-align open source pipeline for straightening
1056 and then analyzed for fluorescence intensity using Cell Profiler software.

1057

1058 **Persulfidation detection by confocal microscopy**

1059 Worms were synchronized by putting 15 gravid adults to lay eggs for 2 h. Once the
1060 animals reached day 1 of adulthood, they were washed off the plates with M9 buffer,

1061 collected into a 1.5 ml tube, and centrifuged for 1 minute at 400 x g. After 3 washes,
1062 M9 was removed, and worms were snap frozen in liquid nitrogen. Samples were
1063 defrosted by putting the tubes shortly in the water bath, and 200 μ l of 5 mM NBF-Cl in
1064 PBS supplemented with 0.01% Triton was immediately added to tubes, followed by
1065 incubation at 37°C for 1 h with shaking. Worms were washed for 1 minute with ice-
1066 cold methanol while mixing, followed by 3 washes with PBS-Triton to remove excess
1067 NBF-Cl. Methanol/acetone fixation was performed on ice by incubating the samples
1068 in the ice-cold methanol for 5 minutes and then with the ice-cold acetone for 5 minutes.
1069 Acetone was removed, and 3 washes with PBS-Triton were performed. Samples were
1070 then again incubated with 5 mM NBF-Cl for 30 minutes at 37°C to ensure complete
1071 labelling. After the washes were performed in the same order as previously described,
1072 worms were incubated with 150 μ l of 25 μ M DAz-2:Cy-5 click mix for 1 h at 37°C with
1073 shaking. For the negative control, worms were incubated with 25 μ M DAz-2:Cy-5 click
1074 mix prepared without DAz-2. Samples were then washed 2 times for 5 minutes with
1075 ice-cold methanol and 3 times for 5 minutes with PBS-Triton to remove excess of the
1076 preclick product. DAPI staining was performed by incubating the samples with 300 nM
1077 DAPI solution in PBS-Triton for 5 minutes at RT with agitation. After several washes
1078 with PBS-Triton and PBS, worms were mounted on glass slide. Samples were
1079 recorded on Leica TCS SP8 DLC Digital Light Sheet and Confocal microscope using
1080 10X air objective and 405 nm laser for DAPI, 488 nm laser for NBF-adducts and 635
1081 nm laser for PSSH. Obtained images were first processed with Worm-align open
1082 source pipeline for straightening and then analyzed for fluorescence intensity using
1083 Cell Profiler software.

1084

1085 **Scoring of transgenic promoter-driven GFP**

1086 For *Patf-4*(uORF)::GFP, L4 stage transgenic animals were exposed to chemicals by
1087 top-coating with 500 μ l of each reagent (alpha-amanitin (Sigma #A2263),
1088 cycloheximide (Sigma #C7698), tunicamycin (Sigma #T7765), sodium arsenite
1089 (Honeywell International #35000)) or control (DMSO or M9 buffer) onto 6 cm NGM
1090 OP50 plates for 30 min to 4 hours, except that rapamycin (LC laboratories) was added
1091 to the NGM agar as described⁶. Then GFP fluorescent levels were either (1) scored
1092 or (2) quantified. (1) GFP scoring: Transgenic animals were first inspected with a
1093 dissecting scope while on still on the plate. GFP intensity was scored in the following
1094 categories: 0= none or very low GFP usually corresponding to untreated control, 1=
1095 low, 2= medium, and 3= high GFP fluorescence visible. Animals were washed off
1096 chemical treated plates, washed again at least twice, placed on OP50 NGM plates
1097 and were picked from there and mounted onto slides and GFP fluorescence was
1098 scored using a Zeiss AxioSKOP2 or a Tritech Research BX-51-F microscope with
1099 optimized triple-band filter-sets to distinguish autofluorescence from GFP at 40x as
1100 described⁶⁶. GFP was scored as the following: None: no GFP (excluding
1101 spermatheca), low: either only anterior or only posterior of the animal with weak GFP
1102 induction, Medium: both anterior and posterior of the animal with GFP but no GFP in
1103 the middle of the animal. High: GFP throughout the animal. *P* values were determined
1104 by Chi² test. (2) Quantification of GFP fluorescent levels: Animals were washed off
1105 reagent-containing plates, washed an additional two times, then placed into 24-well
1106 plates containing 0.06% tetramisole dissolved in M9 buffer to immobilize animals.
1107 Fluorescent pictures were taken with the same exposure settings (1s) at 10x
1108 magnification using an Olympus Cellsens Standard Camera on an inverted
1109 microscope. GFP levels were assessed by drawing a line around the animal,
1110 measuring mean grey value and using the same area next to it for background using

1111 ImageJ. The arbitrary fluorescent value corresponds to mean grey value of the animals
1112 minus the background.

1113

1114 **Western blot**

1115 About 5000 *C. elegans* (L4 or day-1-adults indicated in figure legends) were sonicated
1116 in lysis buffer (RIPA buffer (ThermoFisher #89900), 20 mM sodium fluoride (Sigma
1117 #67414), 2 mM sodium orthovanadate (Sigma #450243), and protease inhibitor
1118 (Roche #04693116001)) and kept on ice for 15 min before being centrifuged for 10
1119 min at 15'000 x g⁶⁷. For equal loading, the protein concentration of the supernatant
1120 was determined with BioRad DC protein assay kit II (#5000116) and standard curve
1121 with Albumin (Pierce #23210). Samples were treated at 95°C for 5 min, centrifuged for
1122 1 min at 10'000 x g and 40 µg protein was loaded onto NuPAGE Bis-Tris 10% Protein
1123 Gels (ThermoFisher #NP0301BOX), and proteins were transferred to nitrocellulose
1124 membranes (Sigma #GE10600002). Western blot analysis was performed under
1125 standard conditions with antibodies against Tubulin (1:500, Sigma #T9026), GFP
1126 (1:1'000, Roche #11814460001), Cystathionase/CTH (1:2000, abcam #ab151769),
1127 Puromycin (1:10'000, Millipore #MABE343), and Phospho-eIF2α (Ser51) (1:1'000,
1128 Cell Signaling #9721). HRP-conjugated goat anti-mouse (1:2'000, Cell Signaling
1129 #7076) and goat anti-rabbit (1:2'000, Cell Signaling #7074) secondary antibodies were
1130 used to detect the proteins by enhanced chemiluminescence (Bio-Rad #1705061). For
1131 loading control (*i.e.*, Tubulin) either corresponding samples were run in parallel,
1132 membrane was cut if the size of Tubulin and protein of interest were not overlapping,
1133 membrane was incubated with loading control after detection of protein of interest on
1134 the same blot, or the blot was stripped (indicated in figure legends). For stripping,
1135 membranes were incubated for 5 min in acid buffer (0.2 M Glycin, 0.5 M NaCl, pH set

1136 to 2 with HCl) and afterwards for 10 min in basic buffer (0.5 M Tris, pH set to 11 with
1137 NaOH) and washed with TBS-T before blocking. Quantification of protein levels was
1138 determined by densitometry using ImageJ software and normalized to loading control
1139 (*i.e.*, Tubulin). Uncropped blots are provided in the Supplementary Data File 1.

1140

1141 **References**

1142 1 Kenyon, C. J. The genetics of ageing. *Nature* **464**, 504-512, doi:10.1038/nature08980
1143 (2010).

1144 2 Blackwell, T. K., Sewell, A. K., Wu, Z. & Han, M. TOR Signaling in *Caenorhabditis*
1145 *elegans* Development, Metabolism, and Aging. *Genetics* **213**, 329-360,
1146 doi:10.1534/genetics.119.302504 (2019).

1147 3 Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and
1148 disease. *Nat Rev Mol Cell Biol* **21**, 183-203, doi:10.1038/s41580-019-0199-y (2020).

1149 4 Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell
1150 growth. *Curr Opin Cell Biol* **45**, 72-82, doi:10.1016/j.ceb.2017.02.012 (2017).

1151 5 Bjedov, I. *et al.* Mechanisms of life span extension by rapamycin in the fruit fly
1152 *Drosophila melanogaster*. *Cell Metab* **11**, 35-46, doi:10.1016/j.cmet.2009.11.010
1153 (2010).

1154 6 Robida-Stubbs, S. *et al.* TOR signaling and rapamycin influence longevity by
1155 regulating SKN-1/Nrf and DAF-16/FoxO. *Cell Metab* **15**, 713-724,
1156 doi:10.1016/j.cmet.2012.04.007 (2012).

1157 7 Pan, K. Z. *et al.* Inhibition of mRNA translation extends lifespan in *Caenorhabditis*
1158 *elegans*. *Aging Cell* **6**, 111-119, doi:10.1111/j.1474-9726.2006.00266.x (2007).

1159 8 Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes
1160 essential for viability. *PLoS Genet* **3**, e56, doi:10.1371/journal.pgen.0030056 (2007).

1161 9 Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells
1162 modulates ageing in *Caenorhabditis elegans*. *Nature* **445**, 922-926,
1163 doi:10.1038/nature05603 (2007).

1164 10 Wang, J. *et al.* RNAi screening implicates a SKN-1-dependent transcriptional
1165 response in stress resistance and longevity deriving from translation inhibition. *PLoS*
1166 *Genet* **6**, doi:10.1371/journal.pgen.1001048 (2010).

1167 11 Howard, A. C., Rollins, J., Snow, S., Castor, S. & Rogers, A. N. Reducing translation
1168 through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock
1169 factor HSF-1 in *Caenorhabditis elegans*. *Aging Cell* **15**, 1027-1038,
1170 doi:10.1111/acel.12516 (2016).

1171 12 Hansen, M. *et al.* Lifespan extension by conditions that inhibit translation in
1172 *Caenorhabditis elegans*. *Aging Cell* **6**, 95-110, doi:10.1111/j.1474-9726.2006.00267.x
1173 (2007).

1174 13 Harding, H. P. *et al.* An integrated stress response regulates amino acid metabolism
1175 and resistance to oxidative stress. *Mol Cell* **11**, 619-633, doi:10.1016/s1097-
1176 2765(03)00105-9 (2003).

1177 14 Costa-Mattioli, M. & Walter, P. The integrated stress response: From mechanism to
1178 disease. *Science* **368**, doi:10.1126/science.aat5314 (2020).

1179 15 Derisbourg, M. J., Wester, L. E., Baddi, R. & Denzel, M. S. Mutagenesis screen
1180 uncovers lifespan extension through integrated stress response inhibition without
1181 reduced mRNA translation. *Nat Commun* **12**, 1678, doi:10.1038/s41467-021-21743-x
1182 (2021).

1183 16 Sidrauski, C. *et al.* Pharmacological brake-release of mRNA translation enhances
1184 cognitive memory. *Elife* **2**, e00498, doi:10.7554/elife.00498 (2013).

1185 17 Mittal, N. *et al.* The Gcn4 transcription factor reduces protein synthesis capacity and
1186 extends yeast lifespan. *Nat Commun* **8**, 457, doi:10.1038/s41467-017-00539-y (2017).

1187 18 Hu, Z. *et al.* Ssd1 and Gcn2 suppress global translation efficiency in replicatively
1188 aged yeast while their activation extends lifespan. *Elife* **7**, doi:10.7554/elife.35551
1189 (2018).

1190 19 Horn, M. *et al.* Hexosamine Pathway Activation Improves Protein Homeostasis
1191 through the Integrated Stress Response. *iScience* **23**, 100887,
1192 doi:10.1016/j.isci.2020.100887 (2020).

1193 20 Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 Balances Cellular
1194 Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional
1195 Control of ATF4. *Cell Rep* **19**, 1083-1090, doi:10.1016/j.celrep.2017.04.042 (2017).

1196 21 Rousakis, A. *et al.* The general control nonderepressible-2 kinase mediates stress
1197 response and longevity induced by target of rapamycin inactivation in *Caenorhabditis*
1198 *elegans*. *Aging Cell* **12**, 742-751, doi:10.1111/ace.12101 (2013).

1199 22 Pakos-Zebrucka, K. *et al.* The integrated stress response. *EMBO Rep* **17**, 1374-1395,
1200 doi:10.15252/embr.201642195 (2016).

1201 23 Kulalert, W., Sadeeshkumar, H., Zhang, Y. K., Schroeder, F. C. & Kim, D. H.
1202 Molecular Determinants of the Regulation of Development and Metabolism by
1203 Neuronal eIF2alpha Phosphorylation in *Caenorhabditis elegans*. *Genetics* **206**, 251-
1204 263, doi:10.1534/genetics.117.200568 (2017).

1205 24 Li, W. J. *et al.* Insulin signaling regulates longevity through protein phosphorylation
1206 in *Caenorhabditis elegans*. *Nat Commun* **12**, 4568, doi:10.1038/s41467-021-24816-z
1207 (2021).

1208 25 Blackwell, T. K., Steinbaugh, M. J., Hourihan, J. M., Ewald, C. Y. & Isik, M. SKN-
1209 1/Nrf, stress responses, and aging in *Caenorhabditis elegans*. *Free Radic Biol Med* **88**,
1210 290-301, doi:10.1016/j.freeradbiomed.2015.06.008 (2015).

1211 26 Ewald, C. Y., Landis, J. N., Porter Abate, J., Murphy, C. T. & Blackwell, T. K.
1212 Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in
1213 longevity. *Nature* **519**, 97-101, doi:10.1038/nature14021 (2015).

1214 27 Quiros, P. M. *et al.* Multi-omics analysis identifies ATF4 as a key regulator of the
1215 mitochondrial stress response in mammals. *J Cell Biol* **216**, 2027-2045,
1216 doi:10.1083/jcb.201702058 (2017).

1217 28 Han, J. *et al.* ER-stress-induced transcriptional regulation increases protein synthesis
1218 leading to cell death. *Nat Cell Biol* **15**, 481-490, doi:10.1038/ncb2738 (2013).

1219 29 Hoshino, A. *et al.* The ADP/ATP translocase drives mitophagy independent of
1220 nucleotide exchange. *Nature* **575**, 375-379, doi:10.1038/s41586-019-1667-4 (2019).

1221 30 Zhu, J. *et al.* Transsulfuration Activity Can Support Cell Growth upon Extracellular
1222 Cysteine Limitation. *Cell Metab* **30**, 865-876 e865, doi:10.1016/j.cmet.2019.09.009
1223 (2019).

1224 31 Miller, R. A. *et al.* Methionine-deficient diet extends mouse lifespan, slows immune
1225 and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte
1226 MIF levels and stress resistance. *Aging Cell* **4**, 119-125, doi:10.1111/j.1474-
1227 9726.2005.00152.x (2005).

1228 32 Miller, D. L. & Roth, M. B. Hydrogen sulfide increases thermotolerance and lifespan
1229 in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **104**, 20618-20622,
1230 doi:10.1073/pnas.0710191104 (2007).

1231 33 Hine, C. *et al.* Endogenous hydrogen sulfide production is essential for dietary
1232 restriction benefits. *Cell* **160**, 132-144, doi:10.1016/j.cell.2014.11.048 (2015).

1233 34 Hammers, M. D. *et al.* A Bright Fluorescent Probe for H2S Enables Analyte-
1234 Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence
1235 Microscopy. *J Am Chem Soc* **137**, 10216-10223, doi:10.1021/jacs.5b04196 (2015).

1236 35 Zivanovic, J. *et al.* Selective Persulfide Detection Reveals Evolutionarily Conserved
1237 Antiaging Effects of S-Sulphydratation. *Cell Metab* **30**, 1152-1170 e1113,
1238 doi:10.1016/j.cmet.2019.10.007 (2019).

1239 36 Paul, B. D. & Snyder, S. H. H₂S: A Novel Gasotransmitter that Signals by
1240 Sulphydratation. *Trends Biochem Sci* **40**, 687-700, doi:10.1016/j.tibs.2015.08.007
1241 (2015).

1242 37 Meng, J. *et al.* Global profiling of distinct cysteine redox forms reveals wide-ranging
1243 redox regulation in *C. elegans*. *Nat Commun* **12**, 1415, doi:10.1038/s41467-021-
1244 21686-3 (2021).

1245 38 Molenaars, M. *et al.* A Conserved Mito-Cytosolic Translational Balance Links Two
1246 Longevity Pathways. *Cell Metab* **31**, 549-563 e547, doi:10.1016/j.cmet.2020.01.011
1247 (2020).

1248 39 Wei, Y. & Kenyon, C. Roles for ROS and hydrogen sulfide in the longevity response
1249 to germline loss in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **113**, E2832-
1250 2841, doi:10.1073/pnas.1524727113 (2016).

1251 40 Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by
1252 association with the ribosome. *Cell* **144**, 757-768, doi:10.1016/j.cell.2011.02.014
1253 (2011).

1254 41 Sarbassov, D. D. *et al.* Prolonged rapamycin treatment inhibits mTORC2 assembly
1255 and Akt/PKB. *Mol Cell* **22**, 159-168, doi:10.1016/j.molcel.2006.03.029 (2006).

1256 42 Lamming, D. W. *et al.* Rapamycin-induced insulin resistance is mediated by
1257 mTORC2 loss and uncoupled from longevity. *Science* **335**, 1638-1643,
1258 doi:10.1126/science.1215135 (2012).

1259 43 Rogers, A. N. *et al.* Life span extension via eIF4G inhibition is mediated by
1260 posttranscriptional remodeling of stress response gene expression in *C. elegans*. *Cell*
1261 **Metab** **14**, 55-66, doi:10.1016/j.cmet.2011.05.010 (2011).

1262 44 Li, W., Li, X. & Miller, R. A. ATF4 activity: a common feature shared by many kinds
1263 of slow-aging mice. *Aging Cell* **13**, 1012-1018, doi:10.1111/acel.12264 (2014).

1264 45 Li, W. & Miller, R. A. Elevated ATF4 function in fibroblasts and liver of slow-aging
1265 mutant mice. *J Gerontol A Biol Sci Med Sci* **70**, 263-272, doi:10.1093/gerona/glu040
1266 (2015).

1267 46 Hine, C., Zhu, Y., Hollenberg, A. N. & Mitchell, J. R. Dietary and Endocrine
1268 Regulation of Endogenous Hydrogen Sulfide Production: Implications for Longevity.
1269 *Antioxid Redox Signal* **28**, 1483-1502, doi:10.1089/ars.2017.7434 (2018).

1270 47 Akaike, T. *et al.* Cysteinyl-tRNA synthetase governs cysteine polysulfidation and
1271 mitochondrial bioenergetics. *Nat Commun* **8**, 1177, doi:10.1038/s41467-017-01311-y
1272 (2017).

1273 48 Valvezan, A. J. & Manning, B. D. Molecular logic of mTORC1 signalling as a
1274 metabolic rheostat. *Nat Metab* **1**, 321-333, doi:10.1038/s42255-019-0038-7 (2019).

1275 49 Heintz, C. *et al.* Splicing factor 1 modulates dietary restriction and TORC1 pathway
1276 longevity in *C. elegans*. *Nature* **541**, 102-106, doi:10.1038/nature20789 (2017).

1277 50 Lee, G. *et al.* Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-
1278 S6K1-SRPK2 Signaling. *Cell* **171**, 1545-1558 e1518, doi:10.1016/j.cell.2017.10.037
1279 (2017).

1280 51 Paul, B. D. & Snyder, S. H. H₂S signalling through protein sulphydratation and
1281 beyond. *Nat Rev Mol Cell Biol* **13**, 499-507, doi:10.1038/nrm3391 (2012).

1282 52 Filipovic, M. R., Zivanovic, J., Alvarez, B. & Banerjee, R. Chemical Biology of H₂S
1283 Signaling through Persulfidation. *Chem Rev* **118**, 1253-1337,
1284 doi:10.1021/acs.chemrev.7b00205 (2018).

1285 53 Longchamp, A. *et al.* Amino Acid Restriction Triggers Angiogenesis via
1286 GCN2/ATF4 Regulation of VEGF and H₂S Production. *Cell* **173**, 117-129 e114,
1287 doi:10.1016/j.cell.2018.03.001 (2018).

1288 54 Islam, K. N., Polhemus, D. J., Donnarumma, E., Brewster, L. P. & Lefer, D. J.
1289 Hydrogen Sulfide Levels and Nuclear Factor-Erythroid 2-Related Factor 2 (NRF2)
1290 Activity Are Attenuated in the Setting of Critical Limb Ischemia (CLI). *J Am Heart
1291 Assoc* **4**, doi:10.1161/JAHA.115.001986 (2015).

1292 55 Stadler, M., Artiles, K., Pak, J. & Fire, A. Contributions of mRNA abundance,
1293 ribosome loading, and post- or peri-translational effects to temporal repression of C.
1294 elegans heterochronic miRNA targets. *Genome Res* **22**, 2418-2426,
1295 doi:10.1101/gr.136515.111 (2012).

1296 56 Fiorese, C. J. *et al.* The Transcription Factor ATF5 Mediates a Mammalian
1297 Mitochondrial UPR. *Curr Biol* **26**, 2037-2043, doi:10.1016/j.cub.2016.06.002 (2016).

1298 57 Venz, R., Korosteleva, A., Jongsma, E. & Ewald, C. Y. Combining Auxin-Induced
1299 Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid Bilayer
1300 Stress Sensing in *Caenorhabditis elegans*. *G3 (Bethesda)* **10**, 3921-3928,
1301 doi:10.1534/g3.120.401635 (2020).

1302 58 Ewald, C. Y. *et al.* NADPH oxidase-mediated redox signaling promotes oxidative
1303 stress resistance and longevity through memo-1 in *C. elegans*. *Elife* **6**,
1304 doi:10.7554/elife.19493 (2017).

1305 59 Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUSET, a nonradioactive
1306 method to monitor protein synthesis. *Nat Methods* **6**, 275-277,
1307 doi:10.1038/nmeth.1314 (2009).

1308 60 Steinbaugh, M. J. *et al.* Lipid-mediated regulation of SKN-1/Nrf in response to germ
1309 cell absence. *Elife* **4**, doi:10.7554/elife.07836 (2015).

1310 61 Kim, W., Underwood, R. S., Greenwald, I. & Shaye, D. D. OrthoList 2: A New
1311 Comparative Genomic Analysis of Human and *Caenorhabditis elegans* Genes.
1312 *Genetics* **210**, 445-461, doi:10.1534/genetics.118.301307 (2018).

1313 62 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides
1314 fast and bias-aware quantification of transcript expression. *Nat Methods* **14**, 417-419,
1315 doi:10.1038/nmeth.4197 (2017).

1316 63 Stroustrup, N. *et al.* The *Caenorhabditis elegans* Lifespan Machine. *Nat Methods* **10**,
1317 665-670, doi:10.1038/nmeth.2475 (2013).

1318 64 Gentleman, R. I. a. R. R: A Language for Data Analysis and Graphics. *Journal of
1319 Computational and Graphical Statistics* **5**, 299-314 (1996).

1320 65 Ewald, C. Y., Hourihan, J. M. & Blackwell, T. K. Oxidative Stress Assays (arsenite
1321 and tBHP) in *Caenorhabditis elegans*. *Bio Protoc* **7**, doi:10.21769/BioProtoc.2365
1322 (2017).

1323 66 Teuscher, A. C. & Ewald, C. Y. Overcoming Autofluorescence to Assess GFP
1324 Expression During Normal Physiology and Aging in *Caenorhabditis elegans*. *Bio
1325 Protoc* **8**, doi:10.21769/BioProtoc.2940 (2018).

1326 67 Hourihan, J. M., Moronetti Mazzeo, L. E., Fernandez-Cardenas, L. P. & Blackwell, T.
1327 K. Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant
1328 Response. *Mol Cell* **63**, 553-566, doi:10.1016/j.molcel.2016.07.019 (2016).

1329