

1 **Microbial helpers allow cyanobacteria to thrive in ferruginous waters**

2 **Microbial helpers allow cyanobacteria to thrive in ferruginous waters**

3 Nadia Szeinbaum^{*1}, Yael Toporek², Christopher T. Reinhard¹, and Jennifer B. Glass^{*1}

4 ¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA

5 ²School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA

6 *Corresponding authors: nadia.szeinbaum@biology.gatech.edu; jennifer.glass@eas.gatech.edu

7 Running title: Cyanobacterial fitness in early oceans

8

9 **Acknowledgements.** This research was funded by NASA Exobiology grant NNX14AJ87G,
10 NASA Astrobiology Institute grant 13-13NAI7_2-0027, and a NASA Astrobiology Postdoctoral
11 Fellowship to NS. We thank Jennifer Thweatt for advice on culturing *Synechococcus* sp. PCC
12 7002. We thank Amit Reddi for allowing us to use his plate reading spectrometer. We thank
13 Sommer Durham for technical assistance with the cytometer. We thank Patricia Sanchez-
14 Baracaldo and Manuel Kleiner for helpful discussions.

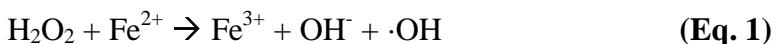
15

16 **Competing Interests:** The authors declare no competing interests.

17

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

18 **Abstract**


19 The Great Oxidation Event (GOE) was a rapid accumulation of oxygen in the atmosphere as a
20 result of the photosynthetic activity of cyanobacteria. This accumulation reflected the
21 pervasiveness of O₂ on the planet's surface, indicating that cyanobacteria had become
22 ecologically successful in Archean oceans. Micromolar concentrations of Fe²⁺ in Archean oceans
23 would have reacted with hydrogen peroxide, a byproduct of oxygenic photosynthesis, to produce
24 hydroxyl radicals, which cause cellular damage. Yet cyanobacteria colonized Archean oceans
25 extensively enough to oxygenate the atmosphere, which likely required protection mechanisms
26 against the negative impacts of hydroxyl radical production in Fe²⁺-rich seas. We identify several
27 factors that could have acted to protect early cyanobacteria from the impacts of hydroxyl radical
28 production and hypothesize that microbial cooperation may have played an important role in
29 protecting cyanobacteria from Fe²⁺ toxicity before the GOE. We found that several strains of
30 facultative anaerobic heterotrophic bacteria (*Shewanella*) with ROS defense mechanisms
31 increase the fitness of cyanobacteria (*Synechococcus*) in ferruginous waters. *Shewanella* species
32 with manganese transporters provided the most protection. Our results suggest that a tightly
33 regulated response to prevent Fe²⁺ toxicity could have been important for the colonization of
34 ancient ferruginous oceans, particularly in the presence of high manganese concentrations, and
35 may expand the upper bound for tolerable Fe²⁺ concentrations for cyanobacteria.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

36 Introduction

37 Earth's first biogeochemical cycles were driven by anaerobic microorganisms (Canfield
38 et al., 2006; Martin et al., 2018). At around 2.3 Ga, the Great Oxidation Event (GOE) resulted in
39 the initial oxygenation of the atmosphere and surficial biosphere, which ultimately led to the
40 modern dominance of aerobic organisms on Earth's surface (Bar-On et al., 2018; Luo et al.,
41 2016). Although biological O₂ production was a prerequisite for the GOE (Haqq-Misra et al.,
42 2011; Holland, 2002), oxygenic photosynthesis may have emerged in cyanobacteria hundreds of
43 millions of years prior to the initial accumulation of O₂ in Earth's atmosphere (Cardona et al.,
44 2019; Lalonde and Konhauser, 2015; Ossa Ossa et al., 2018; Planavsky et al., 2014). The delay
45 between the emergence of cyanobacterial O₂ production and O₂ accumulation in the atmosphere
46 may have been modulated by geophysical drivers (Catling et al., 2001; Holland, 2009; Lee et al.,
47 2016), but may also reflect the time required for metabolic innovations to appear in early
48 cyanobacteria or for the emergence of ecological linkages with other microbes facilitating the
49 success of cyanobacteria (Blank and Sanchez-Baracaldo, 2010; Johnston et al., 2009; Lyons et
50 al., 2014; Ozaki et al., 2019). Understanding how cyanobacteria cooperated with other microbes
51 to colonize the Earth's surface is thus essential to understand the ecology and tempo of the GOE.

52 The emergence of oxygenic photosynthesis in cyanobacteria occurred in the Archean
53 (Chisholm, 2017; Kendall et al., 2010; Konhauser et al., 2011; Lalonde and Konhauser, 2015;
54 Lyons et al., 2014; Olson et al., 2013; Planavsky et al., 2014; Reinhard et al., 2013b). The
55 metabolic expansion of cyanobacteria before the GOE may reflect their transition from land to
56 Fe²⁺-rich Archean oceans (Herrmann and Gehringer, 2019). This transition would have been
57 physiologically challenging due to Fe²⁺ toxicity from its reactions with reactive oxygen species
58 (ROS) produced during photosynthesis (Swanner et al., 2015a). Archean oceans likely contained
59 tens to hundreds of micromolar Fe²⁺ within the ocean interior (Canfield, 2005; Derry, 2015;
60 Drever, 1974; Holland, 1973; Song et al., 2017), which would have reacted rapidly in the surface
61 ocean with O₂ produced from photosynthesis and any hydrogen peroxide (H₂O₂) from
62 photochemical reactions between O₂ and dissolved organic matter, as well as enzymes like
63 superoxide dismutase (Hansel and Diaz, 2020; Zinser, 2018b). This Fe²⁺-driven reaction, known
64 as the Fenton reaction, produces hydroxyl radicals (·OH; **Eq. 1**):

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

66 Hydroxyl radicals cause cellular damage, especially to DNA (Imlay, 2003; Imlay, 2008).
67 Toxicity of Fe^{2+} may have prevented cyanobacteria from extensively colonizing Archean oceans
68 (Swanner et al., 2015a). Yet, cyanobacteria must have colonized vast areas of the ocean in order
69 to oxygenate the atmosphere. This paradox can be resolved by considering that anti-oxidants
70 such as elevated dissolved manganese (Mn^{2+}) and ancient Mn-based catalases may have
71 protected ancient cyanobacteria against ROS toxicity (Fischer et al., 2016).

72 Here, we test the hypothesis that heterotrophic microbial “helpers” may have protected
73 cyanobacteria from ROS produced by Fenton chemistry in Archean oceans, thereby increasing
74 cyanobacterial fitness and enabling their ecological success. Such microbial cooperation is
75 common among modern cyanobacteria and heterotrophic proteobacteria (Christie-Oleza et al.,
76 2017; Morris et al., 2011; Morris et al., 2008; Zinser, 2018a), whose intimate relationship is
77 evidenced by extensive horizontal gene transfer (Ben Said and Or, 2017; Braakman et al., 2017;
78 Goldenfeld and Woese, 2011). At the time of the GOE, many bacterial lineages, including
79 Proteobacteria, had already diversified (Battistuzzi et al., 2004; Cavalier-Smith, 2006a; Cavalier-
80 Smith, 2006b), which would have increased the phenotypic pool available for cooperation.
81 Including microbial cooperation as an ecological mechanism in models of early Earth’s
82 ecological history might provide a more realistic picture of the ancient interactions that
83 ultimately led to the GOE.

84 We explored whether the presence of “helper” heterotrophic proteobacteria leads to
85 increased fitness of cyanobacteria in ferruginous conditions. For a model cyanobacterium, we
86 chose *Synechococcus* sp. PCC 7002 (hereafter *Synechococcus*), which was previously shown to
87 experience Fe^{2+} toxicity at $>100 \mu\text{M}$ Fe^{2+} associated with increased intracellular ROS production
88 (Swanner et al., 2015a). As potential “helper” bacteria, we chose *Shewanella*, facultative
89 anaerobic gammaproteobacteria that can survive O_2 intrusions in the presence of high Fe^{2+} using
90 diverse H_2O_2 -scavenging enzymes (Jiang et al., 2014; Mishra and Imlay, 2012; Sekar et al.,
91 2016). Experimental conditions simulated a pre-GOE illuminated ferruginous surface ocean
92 overlain by a CO_2 - and H_2 -rich anoxic atmosphere. We found that several *Shewanella* species
93 allowed *Synechococcus* to grow in ferruginous conditions that significantly impaired growth of
94 *Synechococcus* monocultures. The “helper” *Shewanella* strains all contained the ability to
95 actively uptake dissolved manganese (Mn^{2+}) via the natural resistance-associated macrophage
96 protein (NRAMP) family MntH Mn^{2+} transporter, a strategy that has previously been shown to

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

97 correlate with ROS survival (Daly et al., 2004). Our results stress the importance of considering
98 microbial cooperation and alternative ROS strategies, such as manganese protection, in models
99 of early Earth microbial ecology.

100

101 Results

102 ***Cyanobacteria growth is impaired in ferruginous conditions and is restored in the***
103 ***presence of some proteobacteria.*** We found that *Synechococcus* growth in the presence of
104 elevated Fe^{2+} improved (to a varying degree) in the presence of all *Shewanella* spp. tested. In
105 monoculture, *Synechococcus* had similar growth rate and yield at 25 and 500 μM Fe^{2+} , but a
106 longer lag period at 500 μM Fe^{2+} (~2 days) than at 25 μM Fe^{2+} (~1 day; **Fig. 1A**). At 1000 μM
107 Fe^{2+} , *Synechococcus* growth was significantly impaired in monoculture, reaching only 10% the
108 cell density of cultures with 25 and 500 μM Fe^{2+} (**Fig. 1A**). In contrast, *Synechococcus* growth
109 was minimally suppressed in the presence of high Fe^{2+} when grown in co-culture with
110 *Shewanella baltica* OS-155, although the initial lag period was extended (**Fig. 1B**). In the
111 presence of *Shewanella algae* MN-01 (**Fig. 1C**) and *Shewanella loihica* PV-4 (**Fig. 1D**),
112 *Synechococcus* growth was slightly suppressed at 500 and 1000 μM Fe^{2+} . Other than an extended
113 lag phase, *Shewanella algae* BrY (**Fig. 1E**) and *Shewanella oneidensis* MR-1 (**Fig. 1F**) had
114 minimal influence on *Synechococcus* growth, compared to the monoculture (**Fig. 1A**), in all three
115 Fe^{2+} treatments. Although difficult to quantify due to spectral interference of $\text{Fe}(\text{III})$ oxide
116 particles, *Shewanella* cell numbers declined throughout the experiment (data not shown).

117 ***The best proteobacterial helpers are the least H_2O_2 sensitive, and the best H_2O_2***
118 ***scavengers.*** We measured growth and H_2O_2 scavenging rates of *Shewanella* spp. in the presence
119 of varying H_2O_2 . *S. baltica* OS-155 was the least sensitive to H_2O_2 (**Fig. 2A**). *S. algae* MN-01
120 (**Fig. 2B**), *S. loihica* PV-4 (**Fig. 2C**), and *S. algae* BrY (**Fig. 2D**) were moderately sensitive to
121 H_2O_2 . *S. oneidensis* MR-01 was the most sensitive to H_2O_2 (**Fig. 2D**). Along with being most
122 H_2O_2 tolerant, *S. algae* MN-01 and *S. baltica* OS-155 had the highest rates of H_2O_2 scavenging
123 activity, followed by *S. algae* BrY (**Fig. 3**). *S. loihica* PV-4 and *S. oneidensis* MR-1 had the
124 lowest H_2O_2 scavenging rates (**Fig. 3**).

125 ***Manganese may protect cyanobacteria from Fe^{2+} toxicity.*** To test whether Mn^{2+} can
126 protect cyanobacteria from Fe^{2+} toxicity, we grew *Synechococcus* PCC 7002 (four replicates per
127 treatment) under anoxic conditions with the addition of 1 mM Fe^{2+} and/or 1 mM Mn^{2+} . Cells

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

128 with 1 mM Mn²⁺ grew similarly to the controls (**Fig. 4**). The A+ medium contained background
129 concentrations of ~140 μ M Fe²⁺ and ~220 μ M Mn²⁺. No growth occurred with 1 mM Fe²⁺. Red
130 Fe(III) oxide particles indicated that Fe²⁺ had been oxidized and precipitated, as observed by
131 Swanner et al. (2015b). Treatments with 1 mM Fe²⁺ and 1 mM Mn²⁺ resembled 1 mM Fe²⁺
132 treatments for approximately the first week. Between 4-13 days, two out of four of the Fe²⁺ and
133 Mn²⁺ treatments grew to maximal OD₇₅₀. These results show that 1 mM Mn²⁺ is not toxic to
134 cyanobacteria and may in fact aid in the survival of cyanobacteria Fe²⁺ toxicity, after an
135 acclimation period. The mechanism that rescued growth of two out of four of the cultures to
136 grow in the presence of high Fe²⁺ after an extended lag phase remains unknown.

137 ***The best proteobacterial helpers encode additional genes for H₂O₂ degradation.***
138 *Synechococcus* PCC 7002's susceptibility to Fe²⁺ toxicity is consistent with the limited number
139 of catalase genes in its genome; it encodes cytoplasmic KatG but not periplasmic KatE (**Table**
140 **1**). Without KatE to scavenge H₂O₂ in the periplasm, H₂O₂ can react with Fe²⁺ to generate ·OH
141 intracellularly (**Eq. 1**). Like *Synechococcus* PCC 7002, most marine cyanobacteria are KatE-
142 negative; a BLAST search of cyanobacterial genomes in NCBI recovered KatE catalase
143 homologs almost exclusively in freshwater and soil cyanobacteria (**Table S1**).

144 To identify genes in *Shewanella* that may have helped alleviate Fe²⁺ toxicity to
145 *Synechococcus*, we compared the genomes of the *Shewanella* strains in our experiments.
146 Notably, several *Shewanella* spp. contained catalases predicted to have multiple cellular
147 locations, as previously observed for other microbial catalases (Hanaoka et al., 2013). Overall,
148 the genomic inventory of catalase and peroxidase proteins was generally similar between the
149 more protective and less protective species (**Table 1**), suggesting (an)other mechanism(s) for
150 ROS survival. We found 52 proteins in the best helpers (OS-155 and MN-01) that were not
151 present in the other *Shewanella* strains, including genes for flagella, phenazine biosynthesis, and
152 transporters (**Table S3**). Flagella may be involved in the ROS-stress response in eukaryotes
153 (Hajam et al., 2017), but their connection to ROS protection in bacteria, if any, is unknown.
154 Phenazines are known to produce oxidative stress (Imlay, 2013), and can also mediate
155 extracellular redox transfers (Hernandez et al., 2004; Wang and Newman, 2008), but are unlikely
156 to be responsible for the protective effect because *Synechococcus* PCC 7002 also possesses the
157 *phzF* gene for phenazine synthesis.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

158 The high H₂O₂ sensitivity of *S. oneidensis* MR-1, which contains a similar repertoire of
159 H₂O₂-scavenging enzymes as less H₂O₂-sensitive *Shewanella* spp., is thought to be due to its
160 inability to actively transport and accumulate intracellular Mn²⁺ (Daly et al., 2004; Jiang et al.,
161 2014). We surmised that differences in ROS scavenging rates between *Shewanella* strains may
162 be due to differences in acquisition of Mn²⁺. We found MntH Mn²⁺ transporters in the genomes
163 of the three top *Shewanella* helpers: OS-155, MN-01, and PV-4 (**Table 1**). *Shewanella* BrY and
164 MR-1 lacked characterized Mn²⁺ transporters. *Synechococcus* PCC 7002 contained genes for the
165 ATP-binding cassette (ABC) family Mn²⁺ transporters MntABCD and SitABCD transporter
166 instead of MntH.

167

168 Discussion

169 The rise of O₂ and ROS from oxygenic photosynthesis would have severely stressed
170 strictly anaerobic microbes (Khademian and Imlay, 2020), resulting in what was perhaps Earth's
171 first mass extinction. Experiments demonstrating that catalase-negative cyanobacteria
172 (*Synechococcus* PCC 7002) grew poorly in >100 μM Fe²⁺ led to the idea that Fe⁺-rich oceans
173 would have slowed cyanobacterial colonization of the ocean surface and possibly delayed global
174 oxygenation (Swanner et al., 2015a). Our study confirms the previous finding that
175 *Synechococcus* PCC 7002, originally isolated from marine mud, has impaired growth when Fe²⁺
176 was 180 μM and higher. We show that this Fe²⁺ toxicity can be alleviated by some strains of
177 "helper" *Shewanella* spp., with the best protection afforded by *Shewanella* strains possessing the
178 most varied sets of ROS-defense pathways (e.g. catalases, MntH transporters) and the highest
179 rates of H₂O₂ degradation. Likely, this protection was afforded by *Shewanella* scavenging H₂O₂
180 prior to its reaction with Fe²⁺, thereby decreasing the production of damaging hydroxyl radicals.

181 Thus, our findings align with previous findings (Brown et al., 2010; Ward et al., 2019)
182 that cyanobacterial colonization of early oceans would not have been hampered by micromolar
183 Fe²⁺ concentrations, if Mn²⁺-transporting and H₂O₂-scavenging genes were present within the
184 microbial communal gene pool. Early marine cyanobacteria, like modern terrestrial
185 cyanobacteria, likely had myriad protections against Fe²⁺ and/or may have benefitted from the
186 presence of co-existing "helper" bacteria to cope with the harmful byproducts produced by their
187 own metabolism in a ferruginous ocean, which would have later been lost due to genome
188 streamlining in marine cyanobacteria.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

189 **Catalase-based protection.** The ubiquity of catalase genes in the genomes of all the
190 *Shewanella* strains we studied suggests that catalase accounts for the background protection
191 provided by all *Shewanella* spp. tested. The enhanced protection provided by *Shewanella* spp.
192 with similar catalase inventories implies that a mechanism other than catalase was likely at play,
193 presumably at the level of gene expression. This process may also be related to the centralized
194 regulation of H₂O₂-related genes in *Shewanella* spp. In *S. oneidensis* MR-1, the transcriptional
195 regulator OxyR is key for suppression of Fenton chemistry by derepression of KatE and Dps
196 (Jiang et al., 2014; Wan et al., 2018) whereas H₂O₂-based regulation is performed by multiple
197 regulators (including PerR) in *Synechococcus* PCC 7002 and other cyanobacteria (Latifi et al.,
198 2009).

199 A protective effect of proteobacterial catalase has previously been observed for the
200 marine cyanobacterium *Prochlorococcus*, which grows in symbiosis with the
201 gammaproteobacterium *Alteromonas* (Biller et al., 2016; Morris et al., 2011; Morris et al., 2008).
202 (For more examples of microbe-microbe H₂O₂ protection, see review by Zinser (2018a).) Yet,
203 unlike those long-lived catalase-based symbioses, the presence of *Shewanella* in our co-cultures
204 was ultimately transient. A transient cooperative interaction can be a natural consequence of the
205 dynamics of public goods between microbial groups (Corno et al., 2013; Rodríguez Amor and
206 Dal Bello, 2019), when the members of the population that provide the extracellular “public
207 good” are at a fitness disadvantage by providing a costly product that nonproducers use (Cremer
208 et al., 2019; Özkaya et al., 2017). In our system, *Synechococcus* gained the fitness advantage of
209 protection from Fe²⁺ toxicity at the expense of *Shewanella*, whose population was eliminated
210 from the system as *Synechococcus* grew. Indeed, previous attempts to co-culture *Shewanella*
211 with cyanobacteria with ~15 μM Fe²⁺, resulted in cyanobacterial dominance, with *Shewanella*’s
212 growth yield compromised by the presence of *Synechococcus* sp. 7002 even in the presence of
213 organic carbon (Beliaev et al., 2014).

214 Thus, our co-culture experiments illustrate that cyanobacteria can benefit from the
215 presence of “helper” proteobacteria under ferruginous conditions. This protection may have been
216 one of the ways that cyanobacteria were able to cope with the harmful byproducts produced by
217 their own metabolism as they incipiently colonized a ferruginous ocean, which would have no
218 longer been necessary once cyanobacteria increased in numbers and seawater Fe²⁺ concentrations
219 dropped. The precise levels of dissolved O₂ prevailing on different spatial scales in the surface

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

220 ocean prior to the GOE are not fully known. However, there is theoretical evidence to suggest
221 that dissolved O₂ would have been locally more than sufficient to support aerobic bacterial
222 respiration (Olson et al., 2013; Reinhard et al., 2013a).

223 **Manganese to the rescue.** One of the genes regulated by OxyR is the Mn²⁺ transporter
224 MntH, which is used for accumulation of intracellular manganese (Mn²⁺) as a potent ROS
225 detoxification method (Anjem et al., 2009; Chen et al., 2008; Kehres et al., 2002). Unlike Fe²⁺,
226 Mn²⁺ does not undergo Fenton-type reactions. Instead, Mn²⁺ has strong antioxidant properties
227 (Cheton and Archibald, 1988) and is highly effective at protecting against H₂O₂-induced
228 oxidative stress through multiple mechanisms (Aguirre and Culotta, 2012; Hansel, 2017;
229 Horsburgh et al., 2002; Latour, 2015; Papp-Wallace and Maguire, 2006). Mn²⁺-carbonate and
230 Mn²⁺-phosphate complexes can chemically disproportionate H₂O₂ (Archibald and Fridovich,
231 1982; Barnese et al., 2012; Stadtman et al., 1990). Mn²⁺-containing catalase, a very ancient
232 member of the ferritin superfamily, detoxifies H₂O₂ (Klotz and Loewen, 2003; Zamocky et al.,
233 2008). Under H₂O₂ stress, OxyR facilitates Mn²⁺ replacement of Fe²⁺ in ROS-sensitive enzymes,
234 preventing their inactivation by Fenton chemistry (Anjem et al., 2009; Smethurst et al., 2020;
235 Sobota and Imlay, 2011).

236 MntH transporters were found in the most protective *Shewanella* strains, but not in
237 *Synechococcus* PCC 7002 (which instead encodes two ABC-type Mn²⁺ transporters) nor in the
238 less protective *Shewanella* spp. (**Table S1**). In monocultures, the rescued growth of
239 *Synechococcus* PCC 7002 in two out of four of high Fe²⁺ treatments with Mn²⁺ was likely related
240 to the antioxidant properties of Mn²⁺, although the details of the protective mechanism, chemical
241 or enzymatic, await further study. Our findings generally support the hypothesis that elevated
242 seawater Mn²⁺ in early Earth environments (~5-120 μM; Holland, 1984; Johnson et al., 2016;
243 Komiya et al., 2008; Liu et al., 2020) played a role in protecting marine cyanobacteria from Fe²⁺
244 toxicity (Fischer et al., 2016).

245 **Modern microbial models for ancient physiologies.** The choice of a model
246 cyanobacterium for physiological experiments applicable to the Precambrian oceans is of great
247 importance (Hamilton, 2019; Hamilton et al., 2016). Many terrestrial cyanobacteria thrive under
248 the 10-100 μM Fe²⁺ concentrations predicted for Archean oceans (Brown et al., 2005; Ionescu et
249 al., 2014; Ward et al., 2019; Ward et al., 2017) and either possess multiple catalases (**Table S1**)
250 and/or have novel defense mechanisms such as intracellular iron precipitation (Brown et al.,

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

251 2010). In contrast, modern marine cyanobacteria (e.g. *Prochlorococcus*) tend to be genetically
252 streamlined for specific modern oceanographic provinces (Partensky and Garczarek, 2010),
253 which are extremely Fe^{2+} -poor compared to modern terrestrial and ancient ecosystems.

254 The closest modern descendants of the ancestral cyanobacteria that evolved into modern
255 marine plankton cyanobacteria are filamentous non-heterocystous *Synechococcales* (Sánchez-
256 Baracaldo, 2015; Sánchez-Baracaldo and Cardona, 2020). KatG was likely present in ancestors
257 of marine cyanobacteria (Bernroitner et al., 2009; Zamocky et al., 2012), whereas KatE was
258 likely horizontally transferred from Proteobacteria and Planctomycetes to some cyanobacterial
259 lineages (e.g. Nostocales; Zamocky et al., 2012). *Synechococcus* PCC 7002 lacks Mn^{2+} -catalase,
260 which is widespread in terrestrial cyanobacteria (Ballal et al., 2020; Banerjee et al., 2012; Bihani
261 et al., 2016; Chakravarty et al., 2016; Chen et al., 2020) (**Table S1**) and was likely present in
262 early cyanobacterial lineages (Klotz and Loewen, 2003; Zamocky et al., 2012).

263 Previous genetic studies of Fe^{2+} -induced oxidative stress have studied cyanobacteria that
264 cannot cope with high Fe^{2+} and H_2O_2 , e.g. *Synechocystis* PCC 6803 (Li et al., 2004; Shcolnick et
265 al., 2009) in monoculture. In nature, ROS and O_2 cycling are communal processes. Thus, models
266 that include shared mechanisms of survival are important to consider on the early Earth,
267 particularly as gene pools were more limited and were in the process of expansion. We advocate
268 for future studies on more deeply branching cyanobacterial species with additional ROS defense
269 mechanisms and encourage more explicit incorporation of microbial interactions in large-scale
270 models of biogeochemical cycling on the ancient Earth.

271

272 Materials and Methods

273 **Bacterial strains.** *Synechococcus* sp. PCC 7002 was ordered from the Pasteur Culture
274 collection of Cyanobacteria. *Shewanella oneidensis* MR-1 and *Shewanella algae* BrY were kind
275 gifts from the lab of Dr. Thomas DiChristina (Georgia Institute of Technology). *Shewanella*
276 *loihica* PV-4 was a kind gift from Dr. Jeffrey Gralnick (University of Minnesota).

277 **Experimental setup and growth conditions.** *Synechococcus* sp. PCC 7002 was grown in
278 serum bottles containing modified A+ medium (Stevens Jr. et al., 1973) with 10 g L^{-1} NaCl ,
279 TRIS buffer (pH 7.2), and 10 mM NH_4^+ as the nitrogen source. *Shewanella* spp. were grown
280 overnight in lysogeny broth (LB, 10 g L^{-1} NaCl , 10 g L^{-1} tryptone, 5 g L^{-1} yeast extract) and
281 transferred into serum bottles containing modified A+ medium with amino acids (20 mg L^{-1} L -

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

282 serine, 20 mg L⁻¹ L-arginine, and 20 mg L⁻¹ L-glutamic acid), 20 mM lactate as electron donor,
283 and 20 mM fumarate as electron acceptor. Bottles were flushed with 90% N₂/10% CO₂ and
284 opened inside an anoxic chamber (5% CO₂/4% H₂/91% N₂). Cultures were washed with anoxic
285 A+ medium and combined at optical density of 600 nm (OD₆₀₀) = 0.01. Co-cultures were grown
286 in triplicate in 10 mL-well tissue culture plates inside the anoxic chamber (5% CO₂/4% H₂/91%
287 N₂). Cultures were mixed daily by gentle pipetting ~50% of the volume three times in order to
288 resuspend cells and particulate Fe(III) oxides; if not mixed regularly, PCC 7002 would grow at
289 the bottom of the well. Light was provided with a fluorescent light in a 12:12 light:dark timer-
290 controlled cycle. FeCl₂ was added at a final concentration of 25, 500, or 1000 μM.

291 **Cyanobacterial quantification by flow cytometry.** Cell numbers of *Synechococcus* sp.
292 PCC 7002 were quantified in an LSR Fortessa flow cytometer using FACSDivaTM (BD
293 Biosciences, CA). At each time point, 200 μL of culture was loaded into a 96-well plate inside
294 the anoxic chamber, covered in parafilm to minimize Fe²⁺ oxidation, transported to the
295 cytometer, and mixed twice in the cytometer. Samples (10 μL) were injected and run at a rate of
296 0.5 μL s⁻¹. Cyanobacteria were detected by phycocyanin/chlorophyll autofluorescence using blue
297 (488 nm) and yellow-green lasers (561 nm) measured at 655-684 nm (Hill et al., 2017).
298 Optimization and calibration of the quantification parameters were achieved using yellow-green
299 1 μm microspheres (441/485 ex/em; Polysciences, PA). Live cyanobacteria were also quantified
300 using Syto9 using FITC filters. Events above the thresholds of PerCP and FITC were considered
301 live cyanobacteria. Propidium iodide could not be used to identify “dead” cyanobacteria, as the
302 emission spectra overlapped with that of their autofluorescence. Due to spectral overlap with iron
303 particles, *Shewanella* cells could not be accurately quantified by cytometry.

304 **H₂O₂ resistance assays.** Six *Shewanella* strains were incubated in 96-well plates with
305 minimal M1 media (Myers and Nealson, 1988) with lactate (10 mM) or acetate (10 mM) as
306 electron donor under oxic conditions. Growth was monitored periodically (every 1-2 hours) by
307 OD₆₀₀ in a spectrophotometer with plate-reading capacity (Tecan, Switzerland). Hydrogen
308 peroxide was added after an initial period of growth for 4 hours, at a final concentration of 10,
309 25, 50, 100, or 250 μM, after which growth continued to be monitored.

310 **H₂O₂ scavenging assays.** We compared the abilities of the *Shewanella* spp. to remove
311 H₂O₂ from their environment in cell suspensions. Strains were seeded in lysogeny broth (LB, 10
312 g L⁻¹ NaCl, 10 g L⁻¹ tryptone, 5 g L⁻¹ yeast extract, Sigma-Aldrich) at 30°C with shaking

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

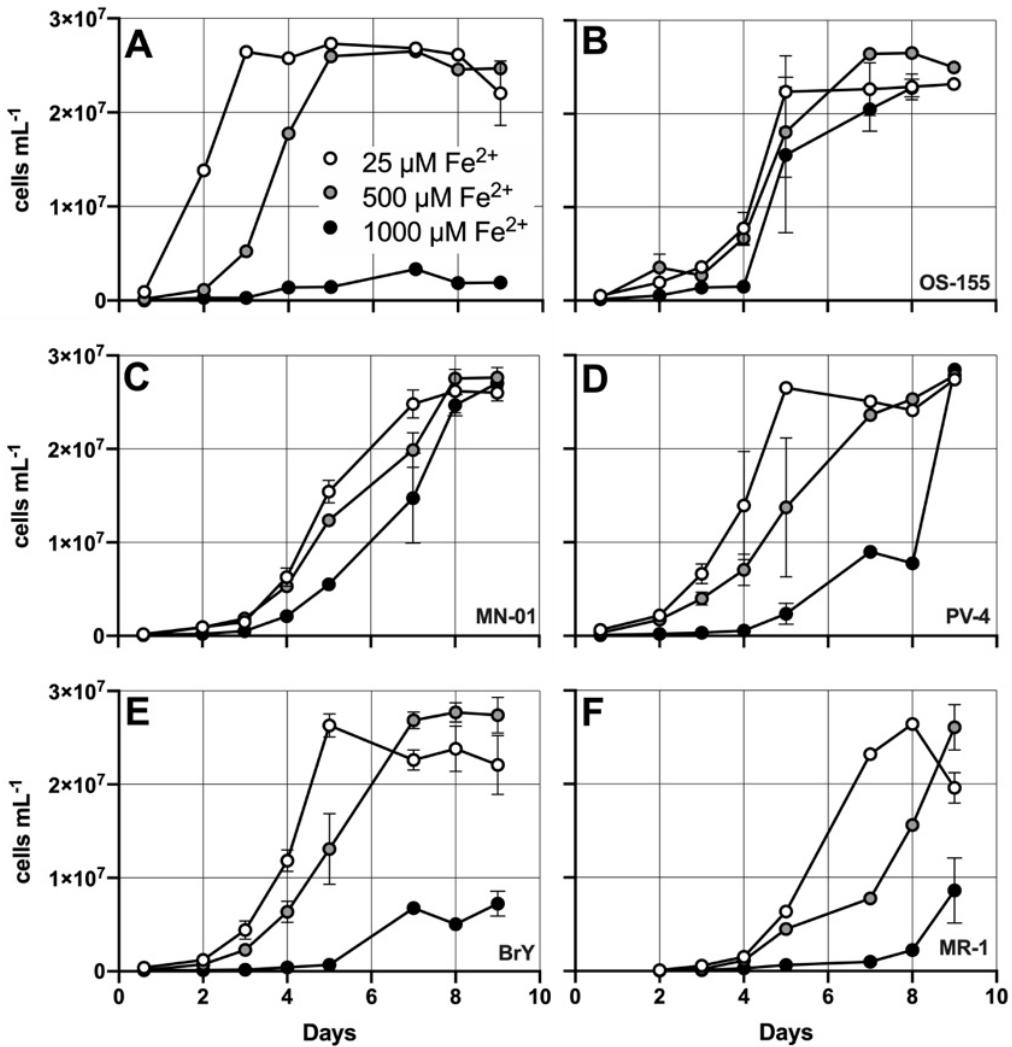
313 overnight, harvested by centrifugation at 12,300 x g, washed, and transferred into minimal M1
314 medium amended with 20 mM lactate at $OD_{600} = 0.02$. Cells were incubated at 30°C with
315 shaking until harvesting at mid-log phase ($OD_{600} = 0.15-0.35$), washed twice with minimal
316 medium, then inoculated at $OD_{600} = 0.05$ into a 24-well plate holding 2 mL minimal M1 medium
317 amended with 20 mM lactate and various concentrations of H_2O_2 (0-5000 μM). Samples were
318 collected every 3-5 minutes and analyzed immediately for exogenous H_2O_2 using the resorufin-
319 horseradish peroxidase colorimetric assay (Zhou et al., 1997). Plates were incubated under oxic
320 conditions at room temperature with shaking for the duration of the experiment (30-200
321 min). H_2O_2 disappearance followed an exponential decay (Eq. 2). First-order apparent rate
322 constants (k) were obtained by plotting the data as shown in Eq. 3, where k is the slope of the
323 graph with $\ln[H_2O_{2(t=0)}/H_2O_{2(t=n)}]$ on the y-axis and time on the x-axis.

324
$$H_2O_{2(t=n)} = H_2O_{2(t=0)} e^{-kt} \quad (Eq. 2)$$

325
$$\ln[H_2O_{2(t=0)}/H_2O_{2(t=n)}] = kt \quad (Eq. 3)$$

326 **Unique proteins.** Proteins present in *Shewanella algae* MN-01 and *Shewanella baltica*
327 OS155 and absent in *Shewanella algae* BrY, *Shewanella oneidensis* MR-1, and *Shewanella*
328 *loihica* PV-4 were identified using the Protein Families tool in PATRIC using three protein
329 family databases: PATRIC cross-genus families (PGfams), PATRIC genus-specific families
330 (PLfams), and FIGfam.

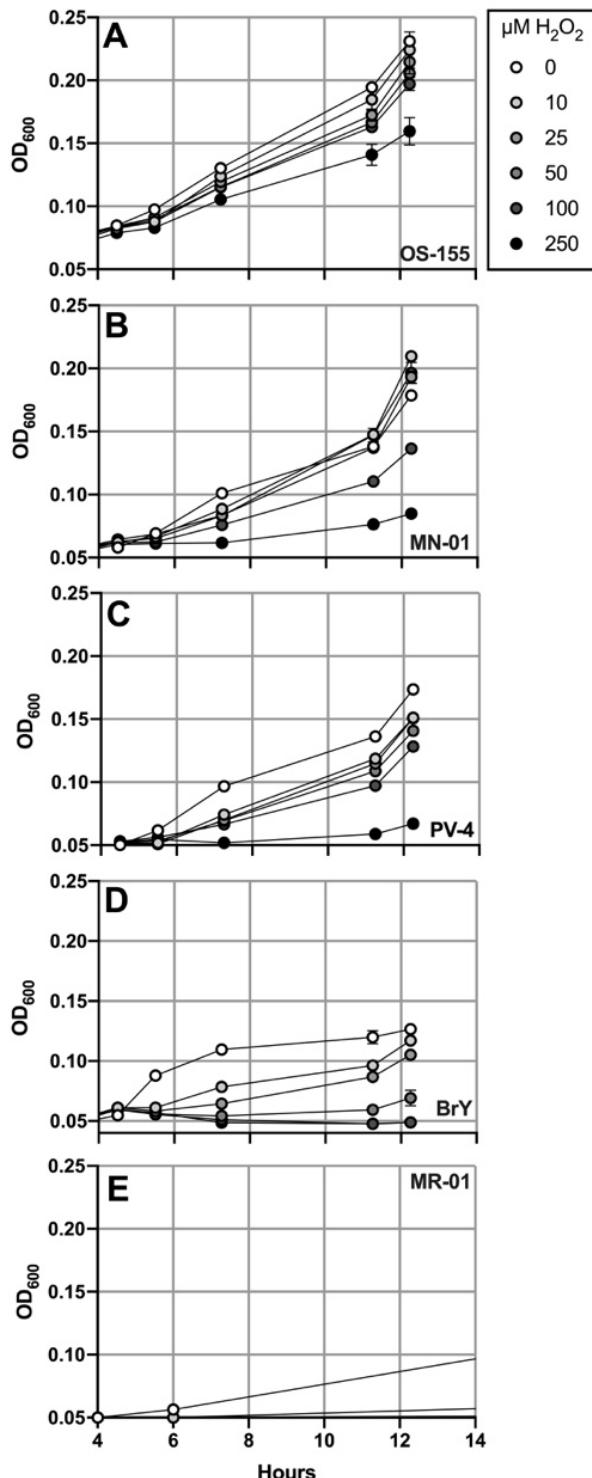
331 ***Synechococcus* monoculture experiments.** To determine the influence of 1 mM Mn^{2+} on
332 *Synechococcus* PCC 7002 growth with and without 1 mM Fe^{2+} , *Synechococcus* was grown in
333 modified A+ medium containing 82 mM bicarbonate in Hungate tubes with bromobutyl rubber
334 stoppers containing 95% N_2 /5% H_2 headspace with constant shaking at 200 rpm under constant
335 light. Growth was determined by measurement of optical density at 750 nm (OD_{750}).


Microbial helpers allow cyanobacteria to thrive in ferruginous waters

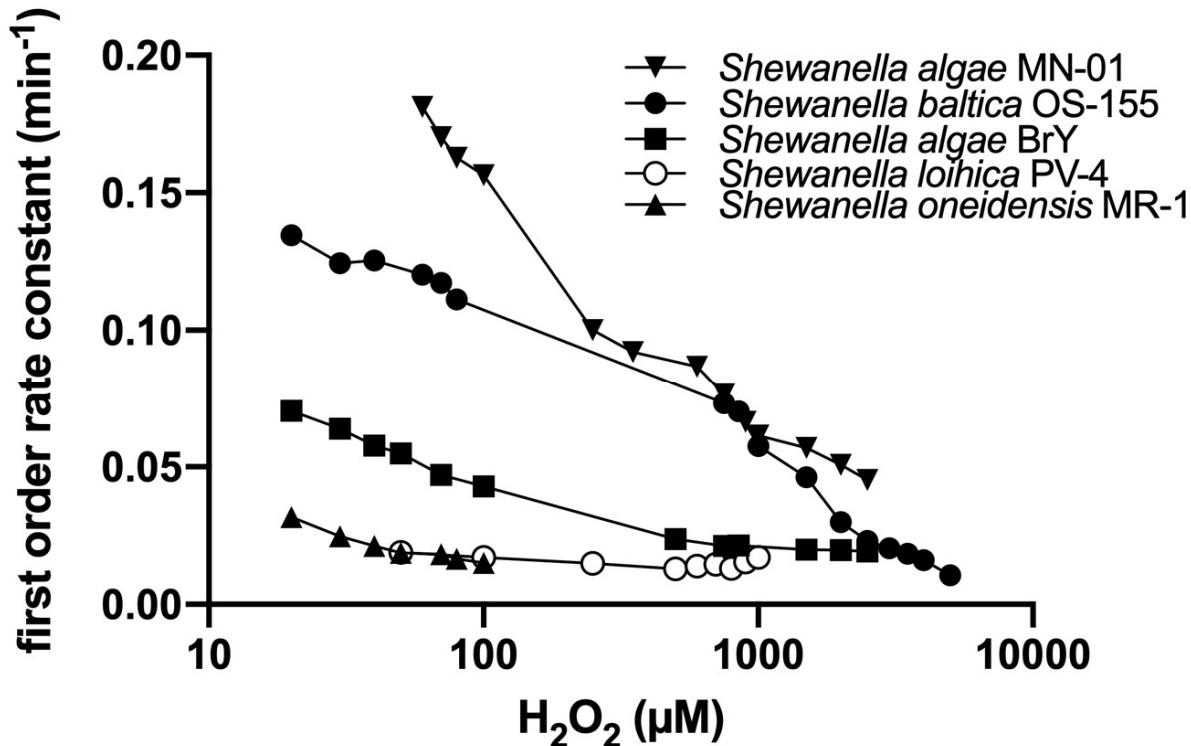
336 **Table 1. Locus tags of ROS response proteins in the bacterial species in this study. None**
337 **contained Mn-catalase or Ni-superoxide dismutase.** “—” indicates no homolog in genome.
338 OxyR: hydrogen peroxide inducible gene activator; KatG: catalase-peroxidase (clade 1); KatE:
339 periplasmic catalase (clade 3); AhpC: alkyl hydroperoxide reductase; Dps/MrgA: DNA-binding
340 ferritin-like protein; BtuE: glutathione peroxidase; SitA and MntA: ABC-type Mn²⁺ transporters;
341 MntH: NRAMP-type MntH Mn²⁺ transporter. KatG cellular localization based on PSORTb (Yu
342 et al., 2010): C: cytoplasmic; U: unknown.
343

Species	Locus prefix	OxyR		KatG	KatE	AhpC	Dps/ MrgA	BtuE	MntA	SitA	MntH
		PerR									
<i>Synecho-</i> <i>coccus</i>	SYN										
	PCC										
<i>PCC 7002</i>	<i>7002_A</i>	1836	2422 ^C	—		0558	0031	0117	1734	2501	—
<i>Shewanella</i> <i>baltica</i>											
<i>OS155</i>	<i>Sbal_</i>	1181	0875 ^C	0894		0849	3285	1384	—	—	0678
<i>Shewanella</i> <i>algae</i>			15815 ^U				RS07				
<i>MN-01</i>	<i>AMR44_</i>	05180	20550 ^C	04925	RS11285	720	08935	—	—	—	05235
<i>Shewanella</i> <i>loihica</i>											
<i>PV-4</i>	<i>Shew_</i>	1035	0709 ^U	3190	0792	—	2741	—	—	—	2965
<i>Shewanella</i> <i>oneidensis</i>			0725 ^U				1563				
<i>MR-1</i>	<i>SO_</i>	1328	4405 ^C	1070	0958	1158	3349	—	—	—	—
<i>Shewanella</i> <i>algae</i>											
<i>BrY</i>	<i>BFS86_</i>	05230	17460 ^U	16195	00635	RS11 070	19140	—	—	—	—

344

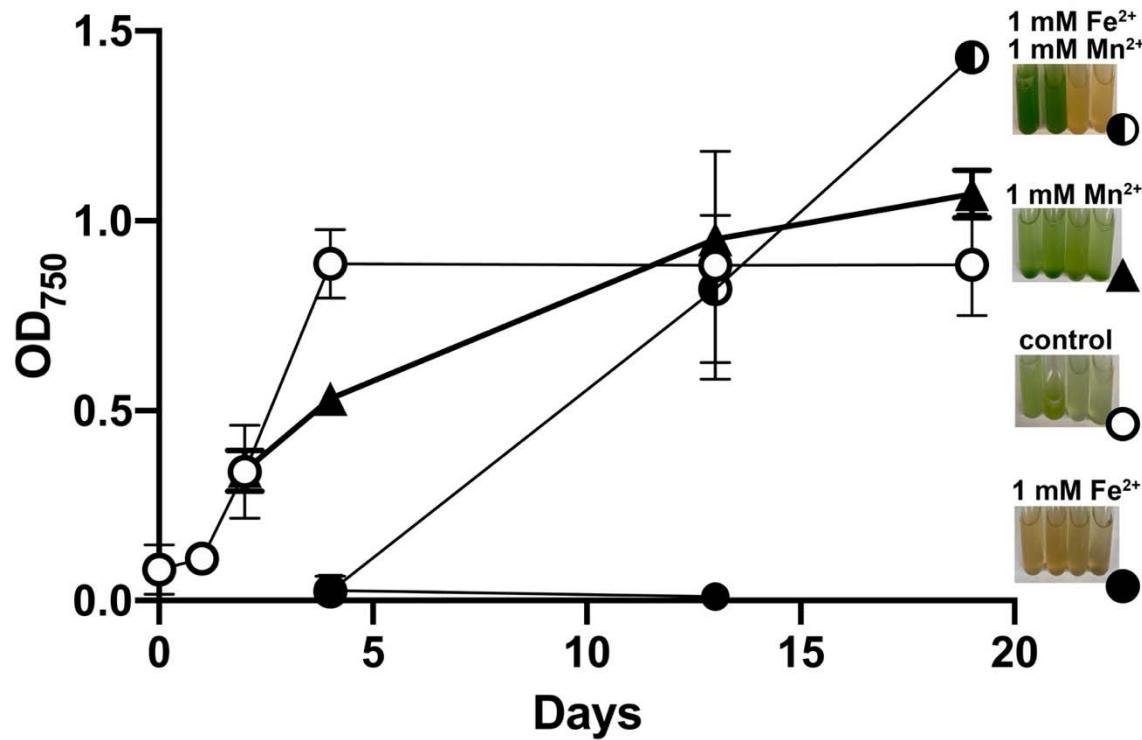

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

345


346 **Figure 1. Growth of *Synechococcus* PCC 7002 in mono- or co-culture with *Shewanella* spp.**
347 **with varying Fe^{2+} .** Co-cultures are: A) none, B) *Shewanella baltica* OS-155, C) *Shewanella*
348 *algae* MN-01, D) *Shewanella loihica* PV-4, E) *Shewanella algae* BrY, F) *Shewanella oneidensis*
349 MR-1. Error bars represent the standard error of the mean ($n=3$).

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

350
351 **Figure 2. Growth of *Shewanella* spp. with varying H_2O_2 .** A) *Shewanella baltica* OS-155, B)
352 *Shewanella algae* MN-01, C) *Shewanella loihica* PV-4, D) *Shewanella algae* BrY, E)
353 *Shewanella oneidensis* MR-1. Error bars represent the standard error of the mean (n=3 for all
354 except *S. baltica* OS-155, n=2). H_2O_2 was added at the four-hour timepoint.


Microbial helpers allow cyanobacteria to thrive in ferruginous waters

355
356 **Figure 3. H_2O_2 peroxide scavenging capacity of *Shewanella* spp. shown as the first order**
357 **rate constant plotted versus initial H_2O_2 concentration.** No change in H_2O_2 was observed in
358 the abiotic control.

359

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

360

361 **Figure 4. Growth of *Synechococcus* sp. PCC 7002 in monoculture with 1 mM Fe²⁺ and/or 1**
362 **mM Mn²⁺.** Controls had background levels of ~140 μ M Fe²⁺ and ~220 μ M Mn²⁺. The growth
363 curve for the 1 mM Fe²⁺ + 1 mM Mn²⁺ treatment is shown for the two replicates (out of four) that
364 grew. Photos were taken on day 13.

365

366

367

368

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

369 Supplemental tables

370 **Table S1. Cyanobacterial genomes containing MnKat, KatE, or KatG.** Appended as separate
371 spreadsheet.

372

373 **Table S2. Proteins that are present in *Shewanella algae* MN-01 and *Shewanella baltica*
374 OS155 and are not present in *Shewanella oneidensis* MR-1, *Shewanella algae* BrY, and
375 *Shewanella loihica* PV-4.** Appended as separate spreadsheet.

376

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

377 References

378

379 Aguirre, J. D., & Culotta, V. C. (2012). Battles with iron: manganese in oxidative stress protection.
380 Journal of Biological Chemistry, 287, 13541-13548.

381 Anjem, A., Varghese, S., & Imlay, J. A. (2009). Manganese import is a key element of the OxyR
382 response to hydrogen peroxide in *Escherichia coli*. Molecular Microbiology, 72, 844-858.

383 Archibald, F. S., & Fridovich, I. (1982). The scavenging of superoxide radical by manganous complexes:
384 in vitro. Archives of Biochemistry and Biophysics, 214, 452-463.

385 Ballal, A., Chakravarty, D., Bihani, S. C., & Banerjee, M. (2020). Gazing into the remarkable world of
386 non-heme catalases through the window of the cyanobacterial Mn-catalase 'KatB'. Free Radical
387 Biology and Medicine, 160, 480-487.

388 Banerjee, M., Ballal, A., & Apte, S. K. (2012). Mn \square catalase (Alr0998) protects the photosynthetic,
389 nitrogen \square fixing cyanobacterium *Anabaena* PCC7120 from oxidative stress. Environmental
390 Microbiology, 14, 2891-2900.

391 Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the
392 National Academy of Sciences, 115, 6506-6511.

393 Barnese, K., Gralla, E. B., Valentine, J. S., & Cabelli, D. E. (2012). Biologically relevant mechanism for
394 catalytic superoxide removal by simple manganese compounds. Proceedings of the National
395 Academy of Sciences, 109, 6892-6897.

396 Battistuzzi, F. U., Feijao, A., & Hedges, S. B. (2004). A genomic timescale of prokaryote evolution:
397 insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC
398 Evolutionary Biology, 4.

399 Beliaev, A. S., Romine, M. F., Serres, M., Bernstein, H. C., Linggi, B. E., Markillie, L. M., Isern, N. G.,
400 Chrisler, W. B., Kucek, L. A., Hill, E. A., Pinchuk, G. E., Bryant, D. A., Wiley, H. S.,
401 Fredrickson, J. K., & Konopka, A. (2014). Inference of interactions in cyanobacterial–
402 heterotrophic co-cultures via transcriptome sequencing. The ISME Journal, 8, 2243-2255.

403 Ben Said, S., & Or, D. (2017). Synthetic microbial ecology: engineering habitats for modular consortia.
404 Frontiers in Microbiology, 8, 1125.

405 Bernroitner, M., Zamocky, M., Furtmüller, P. G., Peschek, G. A., & Obinger, C. (2009). Occurrence,
406 phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. Journal of
407 Experimental Botany, 60, 423-440.

408 Bihani, S. C., Chakravarty, D., & Ballal, A. (2016). KatB, a cyanobacterial Mn-catalase with unique
409 active site configuration: Implications for enzyme function. Free Radical Biology and Medicine,
410 93, 118-129.

411 Biller, S. J., Coe, A., & Chisholm, S. W. (2016). Torn apart and reunited: impact of a heterotroph on the
412 transcriptome of *Prochlorococcus*. The ISME Journal, 10, 2831-2843.

413 Blank, C. E., & Sanchez-Baracaldo, P. (2010). Timing of morphological and ecological innovations in the
414 cyanobacteria - a key to understanding the rise in atmospheric oxygen. Geobiology, 8, 1-23.

415 Braakman, R., Follows, M. J., & Chisholm, S. W. (2017). Metabolic evolution and the self-organization
416 of ecosystems. Proceedings of the National Academy of Sciences, 114, E3091-E3100.

417 Brown, I. I., Bryant, D. A., Casamatta, D., Thomas-Kepra, K. L., Sarkisova, S. A., Shen, G., Graham, J.
418 E., Boyd, E. S., Peters, J. W., & Garrison, D. H. (2010). Polyphasic characterization of a
419 thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits.
420 Applied and Environmental Microbiology, 76, 6664-6672.

421 Brown, I. I., Mummey, D., & Cooksey, K. E. (2005). A novel cyanobacterium exhibiting an elevated
422 tolerance for iron. FEMS Microbiology Ecology, 52, 307-314.

423 Canfield, D. E. (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual
424 Review of Earth and Planetary Sciences, 33, 1-36.

425 Canfield, D. E., Rosing, M. T., & Bjerrum, C. (2006). Early anaerobic metabolisms. Philosophical
426 Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1819-1836.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

427 Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W., & Larkum, A. W. (2019). Early Archean origin
428 of Photosystem II. *Geobiology*, 17, 127-150.

429 Catling, D. C., Zahnle, K. J., & McKay, C. P. (2001). Biogenic methane, hydrogen escape, and the
430 irreversible oxidation of early Earth. *Science*, 293, 839-843.

431 Cavalier-Smith, T. (2006a). Cell evolution and Earth history: stasis and revolution. *Philosophical
432 Transactions of the Royal Society of London. Series B, Biological Sciences*, 361, 969-1006.

433 Cavalier-Smith, T. (2006b). Rooting the tree of life by transition analyses. *Biology Direct*, 1, 19.

434 Chakravarty, D., Banerjee, M., Bihani, S. C., & Ballal, A. (2016). A salt-inducible Mn-catalase (KatB)
435 protects cyanobacterium from oxidative stress. *Plant Physiology*, 170, 761-773.

436 Chen, H., Xu, G., Zhao, Y., Tian, B., Lu, H., Yu, X., Xu, Z., Ying, N., Hu, S., & Hua, Y. (2008). A novel
437 OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in *Deinococcus
438 radiodurans*. *PLoS ONE*, 3, e1602.

439 Chen, M.-Y., Teng, W.-K., Zhao, L., Hu, C.-X., Zhou, Y.-K., Han, B.-P., Song, L.-R., & Shu, W.-S.
440 (2020). Comparative genomics reveals insights into cyanobacterial evolution and habitat
441 adaptation. *The ISME Journal*, 1-17.

442 Cheton, P. L., & Archibald, F. S. (1988). Manganese complexes and the generation and scavenging of
443 hydroxyl free radicals. *Free Radical Biology and Medicine*, 5, 325-333.

444 Chisholm, S. W. (2017). Prochlorococcus. *Current Biology*, 27, R447-R448.

445 Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J., & Scanlan, D. J. (2017). Nutrient recycling
446 facilitates long-term stability of marine microbial phototroph–heterotroph interactions. *Nature
447 Microbiology*, 2, 17100.

448 Corno, G., Villiger, J., & Pernthaler, J. (2013). Coaggregation in a microbial predator–prey system affects
449 competition and trophic transfer efficiency. *Ecology*, 94, 870-881.

450 Cremer, J., Melbinger, A., Wienand, K., Henriquez, T., Jung, H., & Frey, E. (2019). Cooperation in
451 microbial populations: theory and experimental model systems. *Journal of Molecular Biology*,
452 431, 4599-4644.

453 Daly, M. J., Gaidamakova, E. K., Matrosova, V., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M.,
454 Omelchenko, M., Kostandarithes, H. M., & Makarova, K. (2004). Accumulation of Mn (II) in
455 *Deinococcus radiodurans* facilitates gamma-radiation resistance. *Science*, 306, 1025-1028.

456 Derry, L. A. (2015). Causes and consequences of mid-Proterozoic anoxia. *Geophysical Research Letters*,
457 42, 8538-8546.

458 Drever, J. (1974). Geochemical model for the origin of Precambrian banded iron formations. *GSA
459 Bulletin*, 85, 1099-1106.

460 Fischer, W. W., Hemp, J., & Valentine, J. S. (2016). How did life survive Earth's great oxygenation?
461 *Current Opinion in Chemical Biology*, 31, 166-178.

462 Goldenfeld, N., & Woese, C. (2011). Life is physics: Evolution as a collective phenomenon far from
463 equilibrium. *Annual Review of Condensed Matter Physics*, 2, 375-399.

464 Hajam, I. A., Dar, P. A., Shahnawaz, I., Jaume, J. C., & Lee, J. H. (2017). Bacterial flagellin—a potent
465 immunomodulatory agent. *Experimental & Molecular Medicine*, 49, e373-e373.

466 Hamilton, T. L. (2019). The trouble with oxygen: The ecophysiology of extant phototrophs and
467 implications for the evolution of oxygenic photosynthesis. *Free Radical Biology and Medicine*,
468 140, 233-249.

469 Hamilton, T. L., Bryant, D. A., & Macalady, J. L. (2016). The role of biology in planetary evolution:
470 cyanobacterial primary production in low-oxygen Proterozoic oceans. *Environmental
471 Microbiology*, 18, 325-340.

472 Hanaoka, Y., Takebe, F., Nodasaka, Y., Hara, I., Matsuyama, H., & Yumoto, I. (2013). Growth-
473 dependent catalase localization in *Exiguobacterium oxidotolerans* T-2-2T reflected by catalase
474 activity of cells. *PLoS ONE*, 8, e76862.

475 Hansel, C. M. (2017). Manganese in marine microbiology. In: *Advances in Microbial Physiology*.
476 Elsevier, pp. 37-83.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

477 Hansel, C. M., & Diaz, J. M. (2020). Production of extracellular reactive oxygen species by marine biota.
478 Annual Review of Marine Science, 13.

479 Haqq-Misra, J., Kasting, J. F., & Lee, S. (2011). Availability of O₂ and H₂O₂ on pre-photosynthetic
480 Earth. Astrobiology, 11, 293-302.

481 Hernandez, M. E., Kappler, A., & Newman, D. K. (2004). Phenazines and Other Redox-Active
482 Antibiotics Promote Microbial Mineral Reduction. Applied and Environmental Microbiology, 70,
483 921-928.

484 Herrmann, A. J., & Gehring, M. M. (2019). An investigation into the effects of increasing salinity on
485 photosynthesis in freshwater unicellular cyanobacteria during the late Archaean. Geobiology, 17,
486 343-359.

487 Hill, E. A., Chrisler, W. B., Beliaev, A. S., & Bernstein, H. C. (2017). A flexible microbial co-culture
488 platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.
489 Bioresource Technology, 228, 250-256.

490 Holland, H. D. (1973). The Oceans; A Possible Source of Iron in Iron-Formations. Economic Geology,
491 68, 1169-1172.

492 Holland, H. D. (1984). The chemical evolution of the atmosphere and oceans, Princeton University Press.

493 Holland, H. D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geochimica et
494 Cosmochimica Acta, 66, 3811-3826.

495 Holland, H. D. (2009). Why the atmosphere became oxygenated: A proposal. Geochimica et
496 Cosmochimica Acta, 73, 5241-5255.

497 Horsburgh, M. J., Wharton, S. J., Karavolos, M., & Foster, S. J. (2002). Manganese: elemental defence
498 for a life with oxygen. Trends in Microbiology, 10, 496-501.

499 Imlay, J. A. (2003). Pathways of oxidative damage. Annual Reviews in Microbiology, 57, 395-418.

500 Imlay, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of
501 Biochemistry, 77, 755-776.

502 Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress:
503 lessons from a model bacterium. Nature Reviews Microbiology, 11, 443-454.

504 Ionescu, D., Buchmann, B., Heim, C., Häusler, S., De Beer, D., & Polerecky, L. (2014). Oxygenic
505 photosynthesis as a protection mechanism for cyanobacteria against iron-encrustation in
506 environments with high Fe²⁺ concentrations. Frontiers in Microbiology, 5, 459.

507 Jiang, Y., Dong, Y., Luo, Q., Li, N., Wu, G., & Gao, H. (2014). Protection from oxidative stress relies
508 mainly on derepression of OxyR-dependent KatB and Dps in *Shewanella oneidensis*. Journal of
509 Bacteriology, 196, 445-458.

510 Johnson, J. E., Webb, S. M., Ma, C., & Fischer, W. W. (2016). Manganese mineralogy and diagenesis in
511 the sedimentary rock record. Geochimica et Cosmochimica Acta, 173, 210-231.

512 Johnston, D. T., Wolfe-Simon, F., Pearson, A., & Knoll, A. H. (2009). Anoxygenic photosynthesis
513 modulated Proterozoic oxygen and sustained Earth's middle age. Proceedings of the National
514 Academy of Sciences, 106, 16925-16929.

515 Kehres, D. G., Janakiraman, A., Slauch, J. M., & Maguire, M. E. (2002). Regulation of *Salmonella*
516 *enterica* serovar Typhimurium *mntH* transcription by H₂O₂, Fe²⁺, and Mn²⁺. Journal of
517 Bacteriology, 184, 3151-3158.

518 Kendall, B., Reinhard, C. T., Lyons, T. W., Kaufman, A. J., Poulton, S. W., & Anbar, A. D. (2010).
519 Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3, 647-652.

520 Khademian, M., & Imlay, J. A. (2020). How microbes evolved to tolerate oxygen. Trends in
521 Microbiology.

522 Klotz, M. G., & Loewen, P. C. (2003). The molecular evolution of catalatic hydroperoxidases: evidence
523 for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota.
524 Molecular Biology and Evolution, 20, 1098-1112.

525 Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T., Shu, D., Li,
526 Y., & Han, J. (2008). Evolution of the composition of seawater through geologic time, and its
527 influence on the evolution of life. Gondwana Research, 14, 159-174.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

528 Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., Pecoits, E., Lyons, T. W., Mojzsis, S. J., Rouxel, O.
529 J., Barley, M. E., Rosiere, C., Fralick, P. W., Kump, L. R., & Bekker, A. (2011). Aerobic
530 bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. *Nature*, 478,
531 369-373.

532 Lalonde, S. V., & Konhauser, K. O. (2015). Benthic perspective on Earth's oldest evidence for oxygenic
533 photosynthesis. *Proceedings of the National Academy of Sciences*, 112, 995-1000.

534 Latifi, A., Ruiz, M., & Zhang, C.-C. (2009). Oxidative stress in cyanobacteria. *FEMS Microbiology
535 Reviews*, 33, 258-278.

536 Latour, J.-M. (2015). Manganese, the stress reliever. *Metalomics*, 7, 25-28.

537 Lee, Yeung, L. Y., Mckenzie, N. R., Yokoyama, Y., Ozaki, K., & Lenardic, A. (2016). Two-step rise of
538 atmospheric oxygen linked to the growth of continents. *Nature Geoscience*, 9, 417.

539 Li, H., Singh, A. K., Mcintyre, L. M., & Sherman, L. A. (2004). Differential gene expression in response
540 to hydrogen peroxide and the putative PerR regulon of *Synechocystis* sp. strain PCC 6803.
541 *Journal of Bacteriology*, 186, 3331-3345.

542 Liu, W., Hao, J., Elzinga, E. J., Piotrowiak, P., Nanda, V., Yee, N., & Falkowski, P. G. (2020). Anoxic
543 photogeochemical oxidation of manganese carbonate yields manganese oxide. *Proceedings of the
544 National Academy of Sciences*, 117, 22698-22704.

545 Luo, G., Ono, S., Beukes, N. J., Wang, D. T., Xie, S., & Summons, R. E. (2016). Rapid oxygenation of
546 Earth's atmosphere 2.33 billion years ago. *Science Advances*, 2, e1600134.

547 Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth's early ocean and
548 atmosphere. *Nature*, 506, 307-315.

549 Martin, W. F., Bryant, D. A., & Beatty, J. T. (2018). A physiological perspective on the origin and
550 evolution of photosynthesis. *FEMS Microbiology Reviews*, 42, 205-231.

551 Mishra, S., & Imlay, J. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
552 *Archives of Biochemistry and Biophysics*, 525, 145-160.

553 Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M., & Zinser, E. R. (2011). Dependence of the
554 cyanobacterium *Prochlorococcus* on hydrogen peroxide scavenging microbes for growth at the
555 ocean's surface. *PLoS ONE*, 6, e16805.

556 Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I., & Zinser, E. R. (2008). Facilitation of robust
557 growth of *Prochlorococcus* colonies and dilute liquid cultures by "helper" heterotrophic bacteria.
558 *Applied and Environmental Microbiology*, 74, 4530-4534.

559 Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide
560 as the sole electron acceptor. *Science*, 240, 1319-1321.

561 Olson, S. L., Kump, L. R., & Kasting, J. F. (2013). Quantifying the areal extent and dissolved oxygen
562 concentrations of Archean oxygen oases. *Chemical Geology*, 362, 35-43.

563 Ossa Ossa, F., Hofmann, A., Wille, M., Spangenberg, J. E., Bekker, A., Poulton, S. W., Eickmann, B., &
564 Schoenberg, R. (2018). Aerobic iron and manganese cycling in a redox-stratified Mesoarchean
565 epicontinental sea. *Earth and Planetary Science Letters*, 500, 28-40.

566 Ozaki, K., Thompson, K. J., Simister, R. L., Crowe, S. A., & Reinhard, C. T. (2019). Anoxygenic
567 photosynthesis and the delayed oxygenation of Earth's atmosphere. *Nature Communications*, 10,
568 3026.

569 Özkaya, Ö., Xavier, K. B., Dionisio, F., & Balbontín, R. (2017). Maintenance of microbial cooperation
570 mediated by public goods in single- and multiple-trait scenarios. *Journal of Bacteriology*, 199,
571 e00297-00217.

572 Papp-Wallace, K. M., & Maguire, M. E. (2006). Manganese transport and the role of manganese in
573 virulence. *Annual Reviews in Microbiology*, 60, 187-209.

574 Partensky, F., & Garczarek, L. (2010). *Prochlorococcus*: advantages and limits of minimalism. *Annual
575 Review of Marine Science*, 2, 305-331.

576 Planavsky, N. J., Asael, D., Hofmann, A., Reinhard, C. T., Lalonde, S. V., Knudsen, A., Wang, X., Ossa
577 Ossa, F., Pecoits, E., Smith, A. J. B., Beukes, N. J., Bekker, A., Johnson, T. M., Konhauser, K.

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

578 O., Lyons, T. W., & Rouxel, O. J. (2014). Evidence for oxygenic photosynthesis half a billion
579 years before the Great Oxidation Event. *Nature Geoscience*, 7, 283-286.

580 Reinhard, C. T., Lalonde, S. V., & Lyons, T. W. (2013a). Oxidative sulfide dissolution on the early Earth.
581 *Chemical Geology*, 362, 44-55.

582 Reinhard, C. T., Planavsky, N. J., & Lyons, T. W. (2013b). Long-term sedimentary recycling of rare
583 sulphur isotope anomalies. *Nature*, 497, 100-103.

584 Rodríguez Amor, D., & Dal Bello, M. (2019). Bottom-up approaches to synthetic cooperation in
585 microbial communities. *Life*, 9, 22.

586 Sánchez-Baracaldo, P. (2015). Origin of marine planktonic cyanobacteria. *Scientific Reports*, 5, 17418.

587 Sánchez-Baracaldo, P., & Cardona, T. (2020). On the origin of oxygenic photosynthesis and
588 Cyanobacteria. *New Phytologist*, 225, 1440-1446.

589 Sekar, R., Shin, H. D., & Dichristina, T. J. (2016). Direct conversion of cellulose and hemicellulose to
590 fermentable sugars by a microbially-driven Fenton reaction. *Bioresource Technology*, 218, 1133-
591 1139.

592 Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A., & Keren, N. (2009). The mechanism of
593 iron homeostasis in the unicellular cyanobacterium *Synechocystis* sp. PCC 6803 and its
594 relationship to oxidative stress. *Plant Physiology*, 150, 2045-2056.

595 Smethurst, D. G., Kovalev, N., Mckenzie, E. R., Pestov, D. G., & Shcherbik, N. (2020). Iron-mediated
596 degradation of ribosomes under oxidative stress is attenuated by manganese. *Journal of
597 Biological Chemistry*, 295, 17200-17214.

598 Sobota, J. M., & Imlay, J. A. (2011). Iron enzyme ribulose-5-phosphate 3-epimerase in *Escherichia coli* is
599 rapidly damaged by hydrogen peroxide but can be protected by manganese. *Proceedings of the
600 National Academy of Sciences*, 108, 5402-5407.

601 Song, H., Jiang, G., Poulton, S. W., Wignall, P. B., Tong, J., Song, H., An, Z., Chu, D., Tian, L., She, Z.,
602 & Wang, C. (2017). The onset of widespread marine red beds and the evolution of ferruginous
603 oceans. *Nature Communications*, 8, 399.

604 Stadtman, E., Berlett, B., & Chock, P. (1990). Manganese-dependent disproportionation of hydrogen
605 peroxide in bicarbonate buffer. *Proceedings of the National Academy of Sciences*, 87, 384-388.

606 Stevens Jr., S. E., Patterson, C. O. P., & Myers, J. (1973). The production of hydrogen peroxide by blue-
607 green algae: a survey. *Journal of Phycology*, 9, 427-430.

608 Swanner, E. D., Młoszewska, A. M., Cirpka, O. A., Schoenberg, R., Konhauser, K. O., & Kappler, A.
609 (2015a). Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity.
610 *Nature Geoscience*, 8, 126-130.

611 Swanner, E. D., Wu, W., Hao, L., Wüstner, M. L., Obst, M., Moran, D. M., Mcilvin, M. R., Saito, M. A.,
612 & Kappler, A. (2015b). Physiology, Fe(II) oxidation, and Fe mineral formation by a marine
613 planktonic cyanobacterium grown under ferruginous conditions. *Frontiers in Earth Science*, 3.

614 Wan, F., Kong, L., & Gao, H. (2018). Defining the binding determinants of *Shewanella oneidensis* OxyR:
615 implications for the link between the contracted OxyR regulon and adaptation. *Journal of
616 Biological Chemistry*, 293, 4085-4096.

617 Wang, Y., & Newman, D. K. (2008). Redox reactions of phenazine antibiotics with ferric (hydr)oxides
618 and molecular oxygen. *Environmental Science & Technology*, 42, 2380-2386.

619 Ward, L. M., Idei, A., Nakagawa, M., Ueno, Y., Fischer, W. W., & Mcglynn, S. E. (2019). Geochemical
620 and metagenomic characterization of Jinata Onsen, a Proterozoic-analog hot spring, reveals novel
621 microbial diversity including iron-tolerant phototrophs and thermophilic lithotrophs. *Microbes
622 and Environments*, ME19017.

623 Ward, L. M., Idei, A., Terajima, S., Kakegawa, T., Fischer, W. W., & Mcglynn, S. E. (2017). Microbial
624 diversity and iron oxidation at Okuoku-hachikuro Onsen, a Japanese hot spring analog of
625 Precambrian iron formations. *Geobiology*, 15, 817-835.

626 Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., &
627 Foster, L. J. (2010). PSORTb 3.0: improved protein subcellular localization prediction with

Microbial helpers allow cyanobacteria to thrive in ferruginous waters

628 refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics,
629 26, 1608-1615.

630 Zamocky, M., Furtmuller, P. G., & Obinger, C. (2008). Evolution of catalases from bacteria to humans.
631 Antioxidants & Redox Signaling, 10, 1527-1548.

632 Zamocky, M., Gasselhuber, B., Furtmuller, P. G., & Obinger, C. (2012). Molecular evolution of hydrogen
633 peroxide degrading enzymes. Archives of Biochemistry and Biophysics, 525, 131-144.

634 Zhou, M., Diwu, Z., Panchuk-Voloshina, N., & Haugland, R. P. (1997). A stable nonfluorescent
635 derivative of resorufin for the fluorometric determination of trace hydrogen peroxide:
636 applications in detecting the activity of phagocyte NADPH oxidase and other oxidases.
637 Analytical Biochemistry, 253, 162-168.

638 Zinser, E. R. (2018a). Cross-protection from hydrogen peroxide by helper microbes: the impacts on the
639 cyanobacterium *Prochlorococcus* and other beneficiaries in marine communities. Environmental
640 Microbiology Reports, 10, 399-411.

641 Zinser, E. R. (2018b). The microbial contribution to reactive oxygen species dynamics in marine
642 ecosystems. Environmental Microbiology Reports, 10, 412-427.

643

644