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Abstract

The Great Oxidation Event (GOE) was a rapid accumulation of oxygen in the atmosphere as a
result of the photosynthetic activity of cyanobacteria. This accumulation reflected the
pervasiveness of O, on the planet’s surface, indicating that cyanobacteria had become
ecologically successful in Archean oceans. Micromolar concentrations of Fe** in Archean oceans
would have reacted with hydrogen peroxide, a byproduct of oxygenic photosynthesis, to produce
hydroxyl radicals, which cause cdlular damage. Yet cyanobacteria colonized Archean oceans
extensively enough to oxygenate the atmosphere, which likely required protection mechanisms
against the negative impacts of hydroxyl radical production in Fe**-rich seas. We identify several
factors that could have acted to protect early cyanobacteria from the impacts of hydroxyl radical
production and hypothesize that microbial cooperation may have played an important role in
protecting cyanobacteria from Fe** toxicity before the GOE. We found that several strains of
facultative anaerobic heterotrophic bacteria (Shewanella) with ROS defense mechanisms
increase the fitness of cyanobacteria (Synechococcus) in ferruginous waters. Shewanella species
with manganese transporters provided the most protection. Our results suggest that a tightly
regulated response to prevent Fe** toxicity could have been important for the colonization of
ancient ferruginous oceans, particularly in the presence of high manganese concentrations, and
may expand the upper bound for tolerable Fe** concentrations for cyanobacteria
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I ntroduction

Earth’'s first biogeochemical cycles were driven by anaerobic microorganisms (Canfield
et al., 2006; Martin et a., 2018). At around 2.3 Ga, the Great Oxidation Event (GOE) resulted in
the initial oxygenation of the atmosphere and surficial biosphere, which ultimately led to the
modern dominance of aerobic organisms on Earth’s surface (Bar-On et al., 2018; Luo et .,
2016). Although biological O, production was a prerequisite for the GOE (Hagg-Misra et al.,
2011; Holland, 2002), oxygenic photosynthesis may have emerged in cyanobacteria hundreds of
millions of years prior to the initial accumulation of O, in Earth’s atmosphere (Cardona et al.,
2019; Lalonde and Konhauser, 2015; Ossa Ossa et al., 2018; Planavsky et al., 2014). The delay
between the emergence of cyanobacterial O, production and O, accumulation in the atmosphere
may have been modulated by geophysical drivers (Catling et al., 2001; Holland, 2009; Lee et al.,
2016), but may also reflect the time required for metabolic innovations to appear in early
cyanobacteria or for the emergence of ecological linkages with other microbes facilitating the
success of cyanobacteria (Blank and Sanchez-Baracaldo, 2010; Johnston et al., 2009; Lyons et
a., 2014; Ozaki et al., 2019). Understanding how cyanobacteria cooperated with other microbes
to colonize the Earth’ s surface is thus essential to understand the ecology and tempo of the GOE.

The emergence of oxygenic photosynthesis in cyanobacteria occurred in the Archean
(Chisholm, 2017; Kendall et al., 2010; Konhauser et al., 2011; Lalonde and Konhauser, 2015;
Lyons et al., 2014; Olson et al., 2013; Planavsky et al., 2014; Reinhard et a., 2013b). The
metabolic expansion of cyanobacteria before the GOE may reflect their transition from land to
Fe’*-rich Archean oceans (Herrmann and Gehringer, 2019). This transition would have been
physiologically challenging due to Fe** toxicity from its reactions with reactive oxygen species
(ROS) produced during photosynthesis (Swanner et al., 2015a). Archean oceans likely contained
tens to hundreds of micromolar Fe** within the ocean interior (Canfield, 2005; Derry, 2015;
Drever, 1974; Holland, 1973; Song et al., 2017), which would have reacted rapidly in the surface
ocean with O, produced from photosynthesis and any hydrogen peroxide (H2O,) from
photochemical reactions between O, and dissolved organic matter, as well as enzymes like
superoxide dismutase (Hansel and Diaz, 2020; Zinser, 2018b). This Fe**-driven reaction, known
as the Fenton reaction, produces hydroxyl radicals (-OH; Eq. 1):

H,0, + Fe”* > Fe** + OH + -OH (Eq. 1)
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Hydroxyl radicals cause cellular damage, especially to DNA (Imlay, 2003; Imlay, 2008).
Toxicity of Fe** may have prevented cyanobacteria from extensively colonizing Archean oceans
(Swanner et a., 2015a). Y et, cyanobacteria must have colonized vast areas of the ocean in order
to oxygenate the atmosphere. This paradox can be resolved by considering that anti-oxidants
such as elevated dissolved manganese (Mn*") and ancient Mn-based catalases may have
protected ancient cyanobacteria against ROS toxicity (Fischer et al., 2016).

Here, we test the hypothesis that heterotrophic microbial “helpers’ may have protected
cyanobacteria from ROS produced by Fenton chemistry in Archean oceans, thereby increasing
cyanobacterial fitness and enabling their ecological success. Such microbial cooperation is
common among modern cyanobacteria and heterotrophic proteobacteria (Christie-Oleza et al.,
2017; Morris et al., 2011; Morris et al., 2008; Zinser, 2018a), whose intimate relationship is
evidenced by extensive horizontal gene transfer (Ben Said and Or, 2017; Braakman et al., 2017,
Goldenfeld and Woese, 2011). At the time of the GOE, many bacteria lineages, including
Proteobacteria, had already diversified (Battistuzzi et al., 2004; Cavalier-Smith, 2006a; Cavalier-
Smith, 2006b), which would have increased the phenotypic pool available for cooperation.
Including microbial cooperation as an ecological mechanism in models of early Earth’'s
ecological history might provide a more realistic picture of the ancient interactions that
ultimately led to the GOE.

We explored whether the presence of “helper” heterotrophic proteobacteria leads to
increased fitness of cyanobacteria in ferruginous conditions. For a model cyanobacterium, we
chose Synechococcus sp. PCC 7002 (hereafter Synechococcus), which was previously shown to
experience Fe** toxicity at >100 pM Fe** associated with increased intracellular ROS production
(Swanner et al., 2015a). As potential “helper” bacteria, we chose Shewanella, facultative
anaerobic gammaproteobacteria that can survive O, intrusions in the presence of high Fe** using
diverse H,O,-scavenging enzymes (Jiang et a., 2014; Mishra and Imlay, 2012; Sekar et al.,
2016). Experimental conditions simulated a pre-GOE illuminated ferruginous surface ocean
overlain by a CO,- and Ha-rich anoxic atmosphere. We found that several Shewanella species
allowed Synechococcus to grow in ferruginous conditions that significantly impaired growth of
Synechococcus monocultures. The “helper” Shewanella strains al contained the ability to
actively uptake dissolved manganese (Mn?*) via the natural resistance-associated macrophage
protein (NRAMP) family MntH Mn®" transporter, a strategy that has previously been shown to
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97  correlate with ROS survival (Daly et al., 2004). Our results stress the importance of considering
98 microbia cooperation and aternative ROS strategies, such as manganese protection, in models
99  of early Earth microbial ecology.

100
101 Results
102 Cyanobacteria growth is impaired in ferruginous conditions and is restored in the

103 presence of some proteobacteria. We found that Synechococcus growth in the presence of
104 devated Fe** improved (to a varying degree) in the presence of all Shewanella spp. tested. In
105  monoculture, Synechococcus had similar growth rate and yield at 25 and 500 uM Fe**, but a
106  longer lag period at 500 uM Fe** (~2 days) than at 25 pM Fe** (~1 day; Fig. 1A). At 1000 pM
107  Fe**, Synechococcus growth was significantly impaired in monoculture, reaching only 10% the
108  cell density of cultures with 25 and 500 uM Fe** (Fig. 1A). In contrast, Synechococcus growth
109 was minimally suppressed in the presence of high Fe** when grown in co-culture with
110 Shewandlla baltica OS-155, although the initial lag period was extended (Fig. 1B). In the
111  presence of Shewanella algae MN-01 (Fig. 1C) and Shewanella loihica PV-4 (Fig. 1D),
112 Synechococcus growth was slightly suppressed at 500 and 1000 pM Fe**. Other than an extended
113 lag phase, Shewanella algae BrY (Fig. 1E) and Shewanella oneidenss MR-1 (Fig. 1F) had
114 minimal influence on Synechococcus growth, compared to the monoculture (Fig. 1A), in al three
115 Fe** treatments. Although difficult to quantify due to spectral interference of Fe(lll) oxide
116  particles, Shewanella cell numbers declined throughout the experiment (data not shown).

117 The best proteobacterial helpers are the least H,O, sendtive, and the best H,0,
118  scavengers. We measured growth and H,O, scavenging rates of Shewanella spp. in the presence
119  of varying H,O,. S baltica OS-155 was the least sensitive to H,O, (Fig. 2A). S algae MN-01
120 (Fig. 2B), S loihica PV-4 (Fig. 2C), and S. algae BrY (Fig. 2D) were moderately sensitive to
121 H,0,. S oneidenss MR-01 was the most sensitive to H,O, (Fig. 2D). Along with being most
122  H,0O; tolerant, S algae MN-01 and S baltica OS-155 had the highest rates of H,O, scavenging
123  activity, followed by S. algae BrY (Fig. 3). S loihica PV-4 and S. oneidensis MR-1 had the
124 lowest H,O, scavenging rates (Fig. 3).

125 Manganese may protect cyanobacteria from Fe** toxicity. To test whether Mn?* can
126  protect cyanobacteria from Fe?* toxicity, we grew Synechococcus PCC 7002 (four replicates per
127  treatment) under anoxic conditions with the addition of 1 mM Fe** and/or 1 mM Mn*. Cells
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128  with 1 mM Mn®* grew similarly to the controls (Fig. 4). The A+ medium contained background
129  concentrations of ~140 uM Fe*" and ~220 M Mn?". No growth occurred with 1 mM Fe**. Red
130  Fe(Ill) oxide particles indicated that Fe** had been oxidized and precipitated, as observed by
131  Swanner et a. (2015b). Treatments with 1 mM Fe®* and 1 mM Mn?* resembled 1 mM Fe**
132 treatments for approximately the first week. Between 4-13 days, two out of four of the Fe*" and
133 Mn* treatments grew to maximal OD7so. These results show that 1 mM Mn*" is not toxic to
134  cyanobacteria and may in fact aid in the survival of cyanobacteria Fe®* toxicity, after an
135 acclimation period. The mechanism that rescued growth of two out of four of the cultures to
136  grow in the presence of high Fe?* after an extended lag phase remains unknown.

137 The best proteobacterial helpers encode additional genes for H,O, degradation.
138 Synechococcus PCC 7002’ s susceptibility to Fe?* toxicity is consistent with the limited number
139 of catalase genes in its genome; it encodes cytoplasmic KatG but not periplasmic Katk (Table
140  1). Without KatE to scavenge H,0; in the periplasm, H,0, can react with Fe** to generate -OH
141 intracelularly (Eqg. 1). Like Synechococcus PCC 7002, most marine cyanobacteria are KatE-
142 negative; a BLAST search of cyanobacterial genomes in NCBI recovered KatE catalase
143  homologs almost exclusively in freshwater and soil cyanobacteria (Table S1).

144 To identify genes in Shewanella tha may have helped alleviate Fe** toxicity to
145  Synechococcus, we compared the genomes of the Shewanella strains in our experiments.
146  Notably, several Shewanella spp. contained catalases predicted to have multiple cellular
147 locations, as previously observed for other microbial catalases (Hanaoka et a., 2013). Overall,
148 the genomic inventory of catalase and peroxidase proteins was generally similar between the
149 more protective and less protective species (Table 1), suggesting (an)other mechanism(s) for
150 ROS survival. We found 52 proteins in the best helpers (OS-155 and MN-01) that were not
151 present in the other Shewanella strains, including genes for flagella, phenazine biosynthesis, and
152  trangporters (Table S3). Flagella may be involved in the ROS-stress response in eukaryotes
153 (Haam et a., 2017), but their connection to ROS protection in bacteria, if any, is unknown.
154  Phenazines are known to produce oxidative stress (Imlay, 2013), and can also mediate
155  extracdlular redox transfers (Hernandez et al., 2004; Wang and Newman, 2008), but are unlikely
156 to be responsible for the protective effect because Synechococcus PCC 7002 also possesses the
157  phzF genefor phenazine synthesis.
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158 The high H,0, sensitivity of S. oneidenss MR-1, which contains a sSimilar repertoire of
159  H,O,-scavenging enzymes as less H,O,-sensitive Shewanella spp., is thought to be due to its
160 inability to actively transport and accumulate intracellular Mn?* (Daly et al., 2004; Jiang et al.,
161 2014). We surmised that differences in ROS scavenging rates between Shewanella strains may
162  be due to differences in acquisition of Mn*". We found MntH Mn?* transporters in the genomes
163  of the three top Shewanella helpers. OS-155, MN-01, and PV-4 (Table 1). Shewanella BrY and
164 MR-1 lacked characterized Mn?* transporters. Synechococcus PCC 7002 contained genes for the
165 ATP-binding cassette (ABC) family Mn?" transporters MntABCD and SitABCD transporter
166 instead of MntH.

167

168 Discussion

169 The rise of O, and ROS from oxygenic photosynthesis would have severely stressed
170  dtrictly anaerobic microbes (Khademian and Imlay, 2020), resulting in what was perhaps Earth’s
171 first mass extinction. Experiments demonstrating that catalase-negative cyanobacteria
172 (Synechococcus PCC 7002) grew poorly in >100 uM Fe** led to the idea that Fe'-rich oceans
173  would have slowed cyanobacterial colonization of the ocean surface and possibly delayed global
174  oxygenation (Swanner et al., 2015a). Our study confirms the previous finding that
175  Synechococcus PCC 7002, originally isolated from marine mud, has impaired growth when Fe**
176  was 180 pM and higher. We show that this Fe?* toxicity can be alleviated by some strains of
177  “helper” Shewanella spp., with the best protection afforded by Shewanella strains possessing the
178 most varied sets of ROS-defense pathways (e.g. catalases, MntH transporters) and the highest
179 rates of H,O, degradation. Likely, this protection was afforded by Shewanella scavenging H2O,
180 prior toitsreaction with Fe**, thereby decreasing the production of damaging hydroxy! radicals.
181 Thus, our findings align with previous findings (Brown et al., 2010; Ward et al., 2019)
182 that cyanobacterial colonization of early oceans would not have been hampered by micromolar
183  Fe** concentrations, if Mn*"-transporting and H,O,-scavenging genes were present within the
184 microbial communa gene pool. Early marine cyanobacteria, like modern terrestria
185  cyanobacteria, likely had myriad protections against Fe** and/or may have benefitted from the
186  presence of co-existing “helper” bacteria to cope with the harmful byproducts produced by their
187 own metabolism in a ferruginous ocean, which would have later been lost due to genome
188  streamlining in marine cyanobacteria.
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189 Catalase-based protection. The ubiquity of catalase genes in the genomes of al the
190 Shewanella strains we studied suggests that catalase accounts for the background protection
191 provided by al Shewanella spp. tested. The enhanced protection provided by Shewanella spp.
192  with similar catalase inventories implies that a mechanism other than catalase was likely at play,
193 presumably at the level of gene expression. This process may also be related to the centralized
194  regulation of H,O,-related genes in Shewanella spp. In S. oneldensis MR-1, the transcriptional
195 regulator OxyR is key for suppression of Fenton chemistry by derepression of KatE and Dps
196 (Jiang et al., 2014; Wan et al., 2018) whereas H,0O,-based regulation is performed by multiple
197 regulators (including PerR) in Synechococcus PCC 7002 and other cyanobacteria (Latifi et al.,
198  2009).

199 A protective effect of proteobacterial catalase has previously been observed for the
200 marine cyanobacterium Prochlorococcus, which grows in symbioss with the
201  gammaproteobacterium Alteromonas (Biller et al., 2016; Morriset a., 2011; Morris et al., 2008).
202  (For more examples of microbe-microbe H,O, protection, see review by Zinser (2018a).) Yet,
203  unlike those long-lived catalase-based symbioses, the presence of Shewanella in our co-cultures
204  was ultimately transient. A transient cooperative interaction can be a natural consequence of the
205 dynamics of public goods between microbial groups (Corno et al., 2013; Rodriguez Amor and
206 Dal Bedlo, 2019), when the members of the population that provide the extracellular “public
207 good” are at a fitness disadvantage by providing a costly product that nonproducers use (Cremer
208 et al., 2019; Ozkaya et al., 2017). In our system, Synechococcus gained the fitness advantage of
209 protection from Fe** toxicity at the expense of Shewanella, whose population was eliminated
210 from the system as Synechococcus grew. Indeed, previous attempts to co-culture Shewanella
211  with cyanobacteria with ~15 pM Fe®*, resulted in cyanobacterial dominance, with Shewanella’s
212  growth yield compromised by the presence of Synechococcus sp. 7002 even in the presence of
213  organic carbon (Beliaev et al., 2014).

214 Thus, our co-culture experiments illustrate that cyanobacteria can benefit from the
215  presence of “helper” proteobacteria under ferruginous conditions. This protection may have been
216  one of the ways that cyanobacteria were able to cope with the harmful byproducts produced by
217  their own metabolism as they incipiently colonized a ferruginous ocean, which would have no
218  longer been necessary once cyanobacteriaincreased in numbers and seawater Fe** concentrations
219  dropped. The precise levels of dissolved O, prevailing on different spatial scales in the surface
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220  ocean prior to the GOE are not fully known. However, there is theoretical evidence to suggest
221 that dissolved O, would have been locally more than sufficient to support aerobic bacterial
222  respiration (Olson et al., 2013; Reinhard et al., 2013a).

223 Manganese to the rescue. One of the genes regulated by OxyR is the Mn®" transporter
224  MntH, which is used for accumulation of intracellular manganese (Mn*") as a potent ROS
225  detoxification method (Anjem et al., 2009; Chen et al., 2008; Kehres et al., 2002). Unlike Fe*,
226 Mn?" does not undergo Fenton-type reactions. Instead, Mn®*" has strong antioxidant properties
227 (Cheton and Archibald, 1988) and is highly effective at protecting against H,O.-induced
228 oxidative stress through multiple mechanisms (Aguirre and Culotta, 2012; Hansel, 2017;
229  Horsburgh et al., 2002; Latour, 2015; Papp-Wallace and Maguire, 2006). Mn**-carbonate and
230 Mn?-phosphate complexes can chemically disproportionate H,O, (Archibald and Fridovich,
231 1982; Barnese et al., 2012; Stadtman et a., 1990). Mn**-containing catalase, a very ancient
232  member of the ferritin superfamily, detoxifies H,O, (Klotz and Loewen, 2003; Zamocky et al.,
233 2008). Under H,0; stress, OxyR facilitates Mn?* replacement of Fe*" in ROS-sensitive enzymes,
234  preventing their inactivation by Fenton chemistry (Anjem et al., 2009; Smethurst et al., 2020;
235 Sobotaand Imlay, 2011).

236 MntH transporters were found in the most protective Shewanella strains, but not in
237  Synechococcus PCC 7002 (which instead encodes two ABC-type Mn®* transporters) nor in the
238 less protective Shewanella spp. (Table S1). In monocultures, the rescued growth of
239  Synechococcus PCC 7002 in two out of four of high Fe** treatments with Mn?* was likely related
240  tothe antioxidant properties of Mn?*, although the details of the protective mechanism, chemical
241 or enzymatic, await further study. Our findings generally support the hypothesis that elevated
242  seawater Mn*" in early Earth environments (~5-120 pM; Holland, 1984; Johnson et al., 2016;
243  Komiyaet al., 2008; Liu et al., 2020) played arole in protecting marine cyanobacteria from Fe**
244 toxicity (Fischer et al., 2016).

245 Modern microbial models for ancient physiologies. The choice of a mode
246  cyanobacterium for physiological experiments applicable to the Precambrian oceans is of great
247  importance (Hamilton, 2019; Hamilton et al., 2016). Many terrestrial cyanobacteria thrive under
248  the 10-100 pM Fe** concentrations predicted for Archean oceans (Brown et al., 2005; lonescu et
249 ., 2014; Ward et al., 2019; Ward et a., 2017) and either possess multiple catalases (T able S1)

250 and/or have novel defense mechanisms such as intracellular iron precipitation (Brown et al.,
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251  2010). In contrast, modern marine cyanobacteria (e.g. Prochlorococcus) tend to be genetically
252  streamlined for specific modern oceanographic provinces (Partensky and Garczarek, 2010),
253  which are extremely Fe?*-poor compared to modern terrestrial and ancient ecosystems.

254 The closest modern descendants of the ancestral cyanobacteria that evolved into modern
255 marine plankton cyanobacteria are filamentous non-heterocystous Synechococcales (Sanchez-
256  Baracaldo, 2015; Sanchez! |Baracaldo and Cardona, 2020). KatG was likely present in ancestors
257 of marine cyanobacteria (Bernroitner et al., 2009; Zamocky et al., 2012), whereas KatE was
258 likely horizontally transferred from Proteobacteria and Planctomycetes to some cyanobacterial
259  linages (e.g. Nostocales, Zamocky et al., 2012). Synechococcus PCC 7002 lacks Mn?**-catal ase,
260 whichiswidespread in terrestrial cyanobacteria (Ballal et a., 2020; Banerjee et al., 2012; Bihani
261 et al., 2016; Chakravarty et al., 2016; Chen et al., 2020) (Table S1) and was likely present in
262  early cyanobacterial lineages (Klotz and Loewen, 2003; Zamocky et al., 2012).

263 Previous genetic studies of Fe**-induced oxidative stress have studied cyanobacteria that
264  cannot cope with high Fe** and H»0,, e.g. Synechocystis PCC 6803 (Li et al., 2004; Shcolnick et
265 al., 2009) in monoculture. In nature, ROS and O, cycling are communal processes. Thus, models
266 that include shared mechanisms of survival are important to consder on the early Earth,
267 particularly as gene pools were more limited and were in the process of expansion. We advocate
268  for future studies on more deeply branching cyanobacterial species with additional ROS defense
269 mechanisms and encourage more explicit incorporation of microbial interactions in large-scale

270  models of biogeochemical cycling on the ancient Earth.

271
272 Materialsand Methods
273 Bacterial strains. Synechococcus sp. PCC 7002 was ordered from the Pasteur Culture

274  collection of Cyanobacteria. Shewanella oneidensis MR-1 and Shewanella algae BrY were kind
275 gifts from the lab of Dr. Thomas DiChrigtina (Georgia Institute of Technology). Shewanella
276 loihica PV-4 was akind gift from Dr. Jeffrey Gralnick (University of Minnesota).

277 Experimental setup and growth conditions. Synechococcus sp. PCC 7002 was grown in
278  serum bottles containing modified A+ medium (Stevens Jr. et a., 1973) with 10 g L™ NaCl,
279  TRIS buffer (pH 7.2), and 10 MM NH,4" as the nitrogen source. Shewanella spp. were grown
280 overnight in lysogeny broth (LB, 10 g L™* NaCl, 10g L™ tryptone, 5g L™ yeast extract) and

281 transferred into serum bottles containing modified A+ medium with amino acids (20 mg L™ L-

10
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282  serine, 20 mg L™ L-arginine, and 20 mg L™ L-glutamic acid), 20 mM lactate as electron donor,
283 and 20 mM fumarate as electron acceptor. Bottles were flushed with 90% N./10% CO, and
284  opened inside an anoxic chamber (5% CO./4% H,/91% N,). Cultures were washed with anoxic
285 A+ medium and combined at optical density of 600 nm (ODego) = 0.01. Co-cultures were grown
286 intriplicate in 10 mL-well tissue culture plates inside the anoxic chamber (5% CO,/4% H»/91%
287  Njy). Cultures were mixed daily by gentle pipetting ~50% of the volume three times in order to
288  resuspend cells and particulate Fe(l11) oxides; if not mixed regularly, PCC 7002 would grow at
289  the bottom of the well. Light was provided with a fluorescent light in a 12:12 light:dark timer-
290 controlled cycle. FeCl, was added at afinal concentration of 25, 500, or 1000 uM.

291 Cyanobacterial quantification by flow cytometry. Cell numbers of Synechococcus sp.
292 PCC 7002 were quantified in an LSR Fortessa flow cytometer using FACSDiva™ (BD
293 Biosciences, CA). At each time point, 200 uL of culture was loaded into a 96-well plate inside
294  the anoxic chamber, covered in parafilm to minimize Fe** oxidation, transported to the
295  cytometer, and mixed twice in the cytometer. Samples (10 uL) were injected and run at a rate of
296 0.5 pL s*. Cyanobacteria were detected by phycocyanin/chlorophyll autofluorescence using blue
297 (488 nm) and yellow-green lasers (561 nm) measured at 655-684 nm (Hill et al., 2017).
298  Optimization and calibration of the quantification parameters were achieved using yellow-green
299 1 um microspheres (441/485 ex/em; Polysciences, PA). Live cyanobacteria were also quantified
300 using Syto9 using FITC filters. Events above the thresholds of PerCP and FITC were considered
301 live cyanobacteria. Propidium iodide could not be used to identify “dead’ cyanobacteria, as the
302 emission spectra overlapped with that of their autofluorescence. Due to spectral overlap with iron
303 particles, Shewanella cells could not be accurately quantified by cytometry.

304 H,0, resistance assays. Six Shewanella strains were incubated in 96-well plates with
305 minimal M1 media (Myers and Nealson, 1988) with lactate (10 mM) or acetate (10 mM) as
306 €eectron donor under oxic conditions. Growth was monitored periodically (every 1-2 hours) by
307 ODegyo in a spectrophotometer with plate-reading capacity (Tecan, Switzerland). Hydrogen
308 peroxide was added after an initial period of growth for 4 hours, a a final concentration of 10,
309 25,50, 100, or 250 uM, after which growth continued to be monitored.

310 H,0O, scavenging assays. We compared the abilities of the Shewanella spp. to remove
311  H»0O, from their environment in cell suspensions. Strains were seeded in lysogeny broth (LB, 10
312 g L'NaCl, 10g L™tryptone, 5g L™*yeast extract, Sigma-Aldrich)a 30°C with shaking
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313 overnight, harvested by centrifugation at 12,300 x g, washed, and transferred into minimal M1
314 medium amended with 20 mM lactate at ODgyo = 0.02. Cells were incubated at 30°C with
315 shaking until harvestingat mid-log phase (ODey = 0.15-0.35), washed twice with minimal
316  medium, then inoculated at ODgyo = 0.05 into a 24-well plate holding 2 mL minimal M1 medium
317 amended with 20 mM lactate and various concentrations of H,O, (0-5000 uM). Samples were
318 collected every 3-5 minutes and analyzed immediately for exogenous H,O; using the resorufin-
319 horseradish peroxidase colorimetric assay (Zhou et al., 1997). Plates were incubated under oxic
320 conditions a room temperature with shaking for the duration of the experiment (30-200
321  min). H,O, disappearance followed an exponential decay (Eq. 2).First-order apparent rate
322  constants (k) were obtained by plotting the data as shown in Eq. 3, where k is the slope of the
323  graph with In[H20x(t=0/H202¢=r)] 0N the y-axis and time on the x-axis.

324 H2O0z(t=n) = H202(=0) € (Eq. 2)
325 |n[H202(t=0)/ HzOz(tzn)] =kt (Eq 3)
326 Unique proteins. Proteins present in Shewanella algae MN-01 and Shewanella baltica

327 0OS155 and absent in Shewanella algae BrY, Shewanella oneidensis MR-1, and Shewanella
328 loihica PV-4 were identified using the Protein Families tool in PATRIC using three protein
329 family databases. PATRIC cross-genus families (PGfams), PATRIC genus-specific families
330 (PLfams), and FIGfam.

331 Synechococcus monoculture experiments. To determine the influence of 1 mM Mn®* on
332  Synechococcus PCC 7002 growth with and without 1 mM Fe**, Synechococcus was grown in
333 modified A+ medium containing 82 mM bicarbonate in Hungate tubes with bromobutyl rubber
334  stoppers containing 95% N2/5% H, headspace with constant shaking at 200 rpm under constant
335 light. Growth was determined by measurement of optical density at 750 nm (OD7so).
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336 Table 1. Locus tags of ROS response proteins in the bacterial species in this study. None
337 contained Mn-catalase or Ni-superoxide dismutase. “—” indicates no homolog in genome.
338 OxyR: hydrogen peroxide inducible gene activator; KatG: catalase-peroxidase (clade 1); KatE:
339 periplasmic catalase (clade 3); AhpC: akyl hydroperoxide reductase; Dps/MrgA: DNA-binding
340 ferritin-like protein; BtuE: glutathione peroxidase; SitA and MntA: ABC-type Mn?* transporters;
341  MntH: NRAMP-type MntH Mn*" transporter. KatG cellular localization based on PSORTb (Yu
342 etd., 2010): C: cytoplasmic; U: unknown.
343
OxyR
Species L ocus or Dps/
pr efix PerR KatG KatE AhpC MrgA BtuE MntA SitA MntH
Synecho- SYN
coccus PCC
PCC 7002 7002 A 1836  2422° — 0558 0031 0117 1734 2501 —
Shewanella
baltica
0S155 Shal 1181 0875° 0894 0849 3285 1384 — — 0678
Shewanella
algae 15815 RS07 .
M N-01 AMR44 05180 20550° 04925 RS11285 720 08935 —_ 05235
Shewanella
loihica
PV-4 Shew 1035 0709 3190 0792 — 2741 — — 2965
Shewanella
oneidensis 0725" 1563
MR-1 SO 1328  4405° 1070 0958 1158 3349 — — —
Shewanella
algae RS11
BrY BFS86 05230 17460 16195 00635 070 19140 — — —
344
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Figure 1. Growth of Synechococcus PCC 7002 in mono- or co-culture with Shewanella spp.
with varying Fe?*. Co-cultures are: A) none, B) Shewanella baltica 0S-155, C) Shewanella
algae MN-01, D) Shewanella loihica PV-4, E) Shewanella algae BrY, F) Shewanella oneidensis
MR-1. Error bars represent the standard error of the mean (n=3).
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351 Figure 2. Growth of Shewanella spp. with varying H>0,. A) Shewanella baltica OS-155, B)

352 Shewanedla algae MN-01, C) Shewanella loihica PV-4, D) Shewanella algae BrY, E)
353 Shewanella oneidensis MR-1. Error bars represent the standard error of the mean (n=3 for all
354  except S baltica OS-155, n=2). H,O, was added at the four-hour timepoint.
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356 Figure 3. H,O, peroxide scavenging capacity of Shewanella spp. shown asthefirst order
357 rateconstant plotted versusinitial H,O, concentration. No change in H,O, was observed in
358 theabiotic control.

359

16


https://doi.org/10.1101/2020.05.08.085001
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.085001; this version posted January 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Microbial helpersallow cyanobacteriato thrivein ferruginous waters

1.5+

0D750

|
0 5 10 15

Days

360

361 Figure4. Growth of Synechococcus sp. PCC 7002 in monoculturewith 1 mM Fe** and/or 1
362 mM Mn*. Controls had background levels of ~140 pM Fe** and ~220 yM Mn?*. The growth
363 curvefor thel mM Fe*" + 1 mM Mn? treatment is shown for the two replicates (out of four) that
364  grew. Photos were taken on day 13.
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369 Supplemental tables

370 Table S1. Cyanobacterial genomes containing MnKat, KatE, or KatG. Appended as separate
371  spreadshest.

372

373 Table S2. Proteinsthat are present in Shewanella algae MN-01 and Shewanella baltica

374 OS155 and are not present in Shewanella oneidensis MR-1, Shewanella algae BrY, and

375 Shewanellaloihica PV-4. Appended as separate spreadsheet.

376
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