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ABSTRACT
Transcriptional regulatory networks (TRNs) are enriched for certain “motifs”. Motif usage is
commonly interpreted in adaptationist terms, i.e. that the optimal motif evolves. But certain
motifs can also evolve more easily than others. Here, we computationally evolved TRNs to
produce a pulse of an effector protein. Two well-known motifs, type 1 incoherent feed-forward
loops (I11FFLs) and negative feedback loops (NFBLs), evolved as the primary solutions. Which
motif evolves more often depends on selection conditions, but under all conditions, either
motif achieves similar performance. I1FFLs generally evolve more often than NFBLs, unless we
select for a tall pulse. I1FFLs are more evolutionarily accessible early on, before the effector
protein evolves high expression; when NFBLs subsequently evolve, they tend to do so from a
conjugated I1FFL-NFBL genotype. In the empirical S. cerevisiae TRN, output genes of NFBLs had
higher expression levels than those of I1FFLs. These results suggest that evolutionary
accessibility, and not relative functionality, shapes which motifs evolve in TRNs, and does so as

a function of the expression levels of particular genes.

INTRODUCTION
The topology of transcriptional regulatory networks (TRNs) is enriched for certain motifs (Lee et
al. 2002; Milo et al. 2002; Shen-Orr et al. 2002; Mangan and Alon 2003). Many argue that these
motifs are the result of adaptive evolution where the motif whose dynamical behavior best
provides the beneficial function is the one that will evolve (Alon 2007). However, adaptationist
claims about TRN organization have been accused of being just-so stories, with adaptive

hypotheses still in need of testing against an appropriate null model of network evolution
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(Wagner 2003; Artzy-Randrup et al. 2004; Mazurie et al. 2005; Kuo et al. 2006; Solé and
Valverde 2006; Lynch 2007; Knabe et al. 2008; Jenkins and Stekel 2010; Tsuda and Kawata
2010; Widder et al. 2012; Ruths and Nakhleh 2013; Payne and Wagner 2015). We recently
generated such a null model and used it to show that coherent type 1 feed-forward loops can,
as hypothesized, evolve adaptively in response to selection to filter out short spurious signals,
by combining a fast signaling pathway and a slow signaling pathway with an AND gate (Xiong et
al. 2019). Testing the hypothesis in this way was not merely confirmatory, but generated other
insights about the existence and nature of alternative adaptive solutions, especially when slow
transcriptional regulation is combined with faster response mechanisms such as post-
translational regulation (Xiong et al. 2019). Other network motifs and properties have not yet

received similar treatment.

At least three different motifs (Fig. 1A) are all capable of producing a sharp pulse of expression
in response to an increase in input signal (Fig. 1B) (Basu et al. 2004; Camas et al. 2006; Cagatay
et al. 2009). All depend on an effector first being rapidly activated by a signal, and later, at a
slower timescale, being repressed by it. These three motifs are simple auto-repression (AR),
negative feed-back loops (NFBLs), and incoherent type 1 feed-forward loops (I1FFLs) (Fig. 1A).
The three motifs are topologically and functionally similar to each other, differing in whether
the slow repression is effected via negative autoregulation by the effector R of itself, via
negative feedback regulation of R using a specialized repressor, or via a separate negative

control pathway from the input to the repressor and then the effector.
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The high prevalence of I11FFLs and NFBLs in TRNs has been interpreted to occur because these
two motifs are adaptations for pulse generation and closely related functions (Shoval and Alon
2010; Shoval et al. 2010; Ferrell 2016; Shi et al. 2017). Both I1FFLs and NFBLs allow the steady-
state level of the effector, before and after the pulse, to be independent of the signal strength,
a property known as chemical adaptation (Ferrell 2016; Shi et al. 2017). We note that AR is
normally hypothesized to perform functions other than pulse generation (Wall et al. 2004; Alon
2007), but theoretical analysis and experiments show that AR can generate pulses (Rosenfeld et
al. 2002; Camas et al. 2006; Amit et al. 2007). We therefore include AR for the completeness of

the study, while focusing on I1FFLs and NFBLs.

Which of the motifs is likely to evolve is often explained by adaptive demands for specific
properties of the pulse. For example, although both I11FFLs and NFBLs allow the amplitude of
the pulse to be a function of the fold-change of the signal’s strength (Shoval et al. 2010), they
do so with different functional forms (Adler et al. 2014). I1FFLs and NFBLs can also differ in their

ability to filter noise in the signal (Buzi and Khammash 2016).

Alternatively, non-adaptive causes might be responsible for differences in the occurrence of the
three motifs. An important non-adaptive consideration is that fitness landscapes tend to have
many alternative local endpoints, which might take the form either of peaks (Whitlock et al.
1995) or of plateaus (van Nimwegen and Crutchfield 2000). Factors such as expression levels
can change the relative accessibility of different local evolutionary endpoints, in ways that are

independent of differences in their heights. Note that by “non-adaptive” explanations, we do
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93  not mean “neutral evolution”. Instead we refer to evolutionary accessibility, encompassing
94  both which mutations occur in a single step and which hill-climbing multi-step paths are
95  possible. This emphasis on process as non-adaptive explanation is in contrast to adaptive
96 explanations that consider only the optimality of the final evolutionary outcome. Whether the
97 non-adaptive explanation of evolutionary accessibility is a plausible cause is a question that in
98  silico evolution is ideally set up to explore. We note that I1FFLs and NFBLs differ by whether it is
99 the signal or the effector that regulates the repressor (Fig. 1A). Intuitively, the relative ease of
100 evolving these two possible regulatory interactions with the repressor could depend on the
101  relative expression levels of the candidate regulators.
102
103  Here we simulate TRN evolution under selection to produce a pulse, and test how subtle
104  differences between scenarios might have both adaptive and non-adaptive effects on which
105 motifs evolves. In particular, a highly expressed effector is more able to stimulate its repressor,
106  and we therefore predict that this scenario should be more likely to evolve regulation via an
107  NFBL and correspondingly less likely to evolve an I1FFL. Our simulations reject adaptationist
108  explanations — I1FFLs and NFBLs achieve similar fitness —and confirm that NFBLs are
109  evolutionarily more accessible than I1FFLs under this scenario, but that I11FFLs are more
110  accessible under other scenarios where a highly expressed effector is not required. Data from
111 real-world yeast TRNs agree with model predictions, showing that the effectors of NFBLs
112 generally have higher expression levels than those of I1FFLs.

113
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115  Figure 1. Three motifs (I1FFL, NFBL, and AR) all produce a pulse of effector E expression in
116  response to increased signal S. (A) In all three cases, rapid and direct activation of the effector
117 by the signal is eventually countered by a slower path of repression. The three motifs differ
118  topologically in whether repression is by the effector itself (AR), by a specialized repressor (R)
119  thatis activated by the signal (I11FFL), or by a specialized repressor that is activated by the

120  effector (NFBL). Regular arrow tips represent activation and - represents repression. (B) With
121  appropriate parameters, and with a delay between transcriptional activation and protein

122 production in the case of AR, all three motifs can induce a pulse, as the initial increase in

123 expression as S activates E is eventually tamped down by a path of repression.

124

125 MATERIALS AND METHODS

126  Transcriptional regulation

127  Transcription factors (TFs) bind to a given TF binding site (TFBS) according to a formula based on the
128 biophysics of the matching of the cis-regulatory sequence to the TF’s consensus binding sequence (see

129  Supplementary Materials/TF binding for details). Briefly, in isolation from all other TFs and TFBSs, the

130 probability P,that a TFBS is occupied is

c
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where Cis the total concentration of the TF and I?d is a version of the binding affinity Kyof the TF,
rescaled to account for the fact that focal TFBSs must compete for TF with many non-specific binding
sites throughout the genome. From probabilities of this form, we calculate the probability that exactly A
activators and R repressors are bound to a given cis-regulatory sequence, given the possibility of
physical overlap among TFBSs (see Supplementary Materials/TF occupancy). From this, we derive four
probabilities that we assume regulate gene expression: 1) the probability P4 of having at least one
activator bound to a gene, 2) the probability Pz of having at least one repressor bound, 3) the probability
Pa no_r Of having no repressors and one activators bound, and the probability Pnota_no_r Of having no TFs

bound.

We model transcriptional initiation as a two-step process whose rates depend on TF binding, and
parameterize those rates with reference to nucleosome disassembly followed by transcription
machinery assembly (Mao et al. 2010; Brown et al. 2013). We model a repressed state of nucleosome
presence, an intermediate state of a nucleosome-free transcription start site that lacks transcription

machinery, and an active state. We set the transition rate from the repressed state to the active state to

TRep_to_Int = 0.92P, + 0.15(1 — Py),

using as bounds for our linear function 0.15 min™ as the background rate of histone acetylation (Katan-

Khaykovich and Struhl 2002) (which leads to nucleosome disassembly) and 0.92 min! as the rate of

nucleosome disassembly for the constitutively active PHO5 promoter (Brown et al. 2013).

We set the transition rate from the intermediate state to the active state to
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TInt_to_Rep — 4.11Pg + 0.67(1 — PR),

where 0.67 min is a background histone de-acetylation rate (Katan-Khaykovich and Struhl 2002) and

4.11 minis chosen so as to keep a similar maximum:basal rate ratio as that of rgep_to_int.

We assume that the binding of a single repressor can prevent the transition from the intermediate state
to the active state (Courey and Jia 2001). In the absence of repressors, activators facilitate the assembly
of transcription machinery (Poss et al. 2013). Under these assumptions, we set the transition rate from

the intermediate state to the active state to

Nnt_to_Act = 3-3PA_n0_R + O-OZSPnOtA_no_Rf

where 3.3 mintis the rate of transcription machinery assembly for a constitutively active PHO5
promoter (Brown et al. 2013), and 0.025 minis same rate when the PHO4 activator of the PHO5

promoter is knocked out.

We set the transition rate ract to_int from the active state to the intermediate state to be gene-specific
and independent of TF binding. This is because the promoter sequence not only determines which
specific TFBSs are present, but also influences non-specific components of the transcriptional machinery

(Decker and Hinton 2013). See Supplementary materials/ract to_int for the parameterization of rac to_int.

Fitness
Our simulations of gene expression begin with a burn-in phase of random length, to ensure that

TRNs to respond to a change in the signal, rather than evolve a timer mechanism. The level of
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180  signal is low during the stage one burn-in, which lasts for 120 + x minutes, where x is random
181  number drawn from an exponential distribution truncated at 30, and with an un-truncated

182  average of 10. Fitness is assessed only on the basis of stage two, which lasts for 240 minutes,
183  plus the last 5 minutes of stage one. We sample the effector concentration at one-minute

184  intervals. The highest effector concentration during stage two is denoted p.

185

186  The fitness of a TRN has four components: the peak level of effector, a low effector expression
187  starting point, the speed with which effector expression rises, and the speed with which it falls.
188  Together, these four components capture the core attributes of what it means to be a pulse,
189  and in combination, they apply consistent selective pressure first to generate any pulse at all
190 and later to produce a superior pulse. All four fitness components are based on the expression
191 level of the effector. For the purpose of scoring effector concentration and hence fitness, we
192  use the total protein level of all effector proteins, including those that have diverged, following
193  duplication, to have different regulatory activities.

194

195  Fitness component one scores the match to a pre-defined peak effector expression level:

196

(log(P)~log(Popt))?
197 fi=e a2 . (1)
198

199  We set the optimal peak expression level pop:to 5,000 molecules per cell, 10,000 molecules per
200 cell, or 20,000 molecules per cell, corresponding to selection for a low, medium, or high peak

201 level, respectively. Under the assumption that the effector is a metabolism-related protein, we

10
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202  chose the number 10,000 based on the average number of PDC1 protein molecules per yeast
203  cell (Ghaemmaghami et al. 2003). The effector also acts as TF; this kind of dual functionality is
204  not uncommon in yeast (Gancedo and Flores 2008). We set 02 = 0.693 so that when p =

205  0.5popt, f1=0.5.

206

207  We set fitness component two to reward low effector expression at the end of stage one:

208
P31 s, > 0.1p
209 fo =109 , (2)
1, S1 < Olp
210

211 where szis the arithmetic mean of the effector level across the last 5 minutes of stage one. This
212  is chosen as a simple piecewise-linear function, which plateaus at a maximum of 1 for values of
213  s;below 10% of the peak level p.

214

215  We set fitness component three to reward rapid turn-on of effector:

216

24'0_th.alf_peak
217 f3 = 240-tsaturate
1: thalf_peak < tsaturate

’ thalf_peak > tsaturate

(3)

218

219  where thai peakis the latest time in stage 2 at which the effector level is at 0.5(s; + p) before the
220  effector hits its peak, and tsqrurate S€ts a time for which making effector response still more rapid
221  no longerincreases fitness. We set tsaturate to 60 minutes.

222

11
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223 To select for the downward slope of a pulse, fithess component four rewards falls in the

224 effector falls to no more than 80% of the peak level by the end of stage two:

225
P—Sy
P=Ss ¢, >08
226 fo= {O-ZP 4 P (4)
1,5, < 0.8p

227  where s4is the arithmetic mean of the effector level across the last 5 minutes of stage two.

228  Again, we chose a piecewise-linear function. We chose the relatively high value of 80% in order
229  to select for an inclusive category of pulses. We consider pulses that eventually return all the
230 way down to the level that prevailed before the signal (i.e. biochemical adaptation) to be a

231  special case.

232

233  In some simulations of gene expression, we observed a peak expression level that is smaller
234  than or equal to the effector’s expression level right before the signal increases, or is even 0. In
235  neither of these cases do fitness components Eq. 2 and/or 4 provide a useful selection gradient
236  toward the evolution of a pulse. For simplicity, we set the fitness of these two cases to zero.
237

238 In addition to the selection described above to favor a pulse, at each point in the simulation,
239  gene expression also incurs a cost that is proportional to the total rate of translation of all

240  genes (see Supplementary Materials/Cost of gene expression). The estimated fitness of a TRN
241  from one gene expression simulation is the arithmetic mean of the four components minus the
242  cumulative cost of gene expression throughout the last 360 minutes of a simulation of gene
243  expression.

244

12
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Evolution
We calculate the arithmetic mean fitness fresigen: Of the current (“resident”) TRN across 1000
replicate simulations of gene expression, and the arithmetic mean fitness fmutant of the mutant

across 200 replicate simulations of gene expression. If fmutant satisfies

fmutant—fresident > 10—8’ (5)

|fresident|

we replace the resident TRN with the mutant, and re-calculate the fitness of the new resident

TRN to higher resolution using an additional 800 replicate simulations of gene expression.

Because gene expression is stochastic in our simulations, estimated fitness varies among
replicates, and is subject to error even after averaging across many replicates. This means that
our algorithm allows neutral or slightly deleterious mutations to fix. This is sometimes even
explicit; the updated fitness that includes 800 additional simulations of the successful mutant

can be lower than the fitness of the TRN it replaced.

Standard origin-fixation evolutionary simulations explicitly calculate a probability of fixation for
each mutation and compare it to a pseudo-random number to decide whether fixation occurs.
Our model achieves a similar exploration of nearly neutral evolutionary paths by using the
intrinsic uncertainty in the stochastic estimation of fitness. Our approach wastes as few
beneficial mutations as possible, minimizing computation, rather than discard most beneficial
mutations through the use of a fixation probability that is only around twice the selection
coefficient (Haldane 1927). For example, in our simulations, we accepted 0.5 million out of 1.9

million trialed mutations across 10 evolution replicates in the high-peak condition, of which

13
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only a minority can be presumed to have achieved true fitness increases (Fig. S1). Importantly,
fixation probability in our algorithm still depends on the size of the true underlying fitness
difference, which controls the probability that the estimated selection coefficient in Eq. 5 will

be positive.

Counting network motifs

We count I1FFLs and NFBLs formed by the signal, an effector gene, and a repressor gene that is
different from the effector gene, with interactions between them as shown in Fig. 1A. We
count ARs formed by the signal and an effector gene. We score gene A as potentially regulating
gene B, i.e. creating one of the links shown in Fig. 1A, if there is a TFBS for A in the cis-
regulatory sequence of B. We allow genes in I1FFLs and NFBLs to self-regulate. An overlapping
I1FFL in which the effector and the auxiliary TF repress each other is counted not as two I1FFLs,

but rather as a different (and rarer) type of network motif. Overlapping I1FFLs evolve rarely.

Given that two mismatches to an 8-bp consensus sequence still yield above-background
binding, a random 8-bp sequence qualifies as a weak affinity TFBS with probability (2) X

0.75% x 0.25° = 0.0038. Each cis-regulatory sequence contains around 300 8-bp potential
binding sites (including both orientations of a 150 bp cis-regulatory sequence), among which
1.14 will on average qualify by chance as a two-mismatch TFBS for a given TF. These two-
mismatch TFBSs, occurring so often by chance, usually have low affinity, and therefore might
have little regulatory effect. It is for this reason we refer to them above as potential regulatory

interactions — our previous work has shown that motifs can appear more clearly when weak

14
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affinity TFBSs with little regulatory effect are excluded (Xiong et al. 2019). Four types of
spurious two-mismatch TFBSs can create apparent but non-functional I11FFLs and NFBLs: S =
TF, E > TF, TF = E, and E - E (Fig. S2), where “TF” refers here to a transcription factor that is
not an effector. Because it is computationally expensive to test whether each two-mismatch
TFBS is spurious, we instead tested all cases at a time for each of the four types listed above.
Specifically, we recalculate the fitness of the TRN while ignoring all 2-mismatch TFBSs of that
type, across 1,000 gene expression simulations, and deem the entire set of TFBSs spurious if the
recalculated fitness is at least 99% of the original fitness (see Fig. 2 legend for variations on this

criterion). We ignore spurious connections while scoring network motifs.

Mutations that create and destroy motifs

For each evolutionary replicate, we identified the evolutionary steps at which the number of
instances of a given motif changes to or from zero, which we call “motif-destroying-mutations”
and “motif-creating-mutations”, respectively. We removed spurious TFBSs before scoring
motifs, as described in the last section, with one modification: to save computation related to
mutations that were trialed and then rejected by selection, we used only 200 gene expression
simulations to determine fitness without the TFBS in question, with a threshold of 98% of
original fitness. Mutations that change the expression levels of a gene and/or the binding
affinity of a TF can potentially change whether a two-mismatch TFBS is “spurious” in terms of
fitness effects, effectively rewiring the TRNs even if they do not create or destroy core TFBSs of

the motif in question.
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Expression levels of TFs in yeast TRN

We used YeastMine (Balakrishnan et al. 2012) to retrieve 129 S. cerevisiae genes that have the
GO term “DNA-binding transcription factor activity” or children of this GO term. We then
searched Yeastract (Teixeira et al. 2006) for TFs that regulate these 129 TFs, demanding
evidence from both DNA binding and gene expression. When the search found new TFs that are
not included in list given by YeastMine, the new TFs were added to the list and fed to Yeastract
again. We stopped the iterative search when no new TFs were found, and the final list has 203
TFs. Yeastract annotates interactions between pairs of TFs as activating, repressing, or both.
When annotated as “both” (i.e. likely condition-specific), we interpreted it as whichever
interaction mode would be needed in order to complete a motif. We scored I1FFLs, NFBLs, and
their conjugates from all combinations of three TFs out of the 203, allowing E and/or R to be
self-repressing. Because the effectors of NFBLs must be activators, we excluded I1FFLs whose
effectors are repressors in case there is a systematic difference in expression between
activators and repressors. In total, we identified 46 NFBLs, 30 I1FFLs, and 7 I1FFL-NFBL

conjugates.

To assess peak expression level, we used the data of Gasch et al. (2000), who applied multiple
stimuli to yeast and measured the fold-change in RNA expression of all genes relative to pre-
stimulus expression levels. We analyzed data on exposure to 10 stimuli: amino acid starvation,
nitrogen depletion, sorbitol osmotic shock, temperature shift from 25° to 37°, diamide,
hydrogen peroxide, menadione disulfate, diauxic shift, dithiothreitol, and transition to a

stationary phase of growth. Following each stimulus, fold-change was recorded over several
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time points. We consider an effector gene to exhibit pulse-like expression if the maximum fold-
increase in expression occurs prior to the last time point and has a larger magnitude than that
of the maximum fold-decrease in expression; we excluded gene-stimulus combinations that do
not meet this criterion from further analysis. For input and repressor genes, we did not require
a pulse, but merely that the stimulus led to increased expression (measured as average fold-
change across time points), and that the maximum fold-increase was larger than the maximum
fold-decrease. We excluded repressor-stimulus and input-stimulus combinations that failed to

meet both criteria.

We note that the same gene can occupy the same position within multiple motifs. For example,
GAT1 is the effector in 18 NFBLs and one I1FFL, suggesting that this gene might be particularly
well-suited for function within NFBLs. To compare gene expression between I11FFLs and NFBLs,
we weighted the fold-change in expression of a given gene by the frequency with which that
gene appears in the motif of interest, e.g. weights of 18/19 and 1/19 for GAT1’s appearance as
an effector in NFBLs and I1FFLs, respectively. For ILIFFL-NFBL conjugates, we assign half-weights

to both 11FFLs and NFBLs.

We complemented this peak-RNA-expression analysis with an analysis of the average protein
levels (i.e. not peak levels), taken from PaxDB (Wang and Purisima 2005). One analysis is
restricted to a March 2013 data set originally compiled by PeptideAtlas (Desiere et al. 2006) to
show the abundances of peptides in S. cerevisiae pooled across 90 experiments, which include

normal growth conditions and perturbed growth conditions, e.g. cell cycle arrest and metabolic
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perturbation. We also used another data set “GPM, Aug, 2014” from PaxDB, which has more
genes than “PeptideAtlas, March 2013” (5289 versus 4828). While we could not find a detailed
description for this GPM (the Global Proteome Machine) (Craig et al. 2004) dataset, GPM
generally includes data from PeptideAtlas (Craig et al. 2004), meaning that this data similarly
includes both normal growth conditions and perturbed growth conditions. Weighted average
protein levels were calculated with the same weighting scheme as for fold-change of gene

expression.

Data Availability
The source code for our computational model is available at

https://github.com/MaselLab/network-evolution-simulator/tree/I1 FFLs.

RESULTS
Model overview
We used a previously described computational model to simulate the expression of genesin a
TRN, parameterized by available Saccharomyces cerevisiae data (Xiong et al. 2019). Fig. S3
summarizes the model, and the model parameters are summarized in Tables S1 and S2. The
TRN evolves under a realistic mutational spectrum including de novo appearance of weak-
affinity TFBSs, and frequent gene duplication and deletion. Briefly, each gene in the TRN
encodes either an activating or repressing TF, and each is regulated by a 150-bp cis-regulatory
sequence accessible to TF binding. Each TF recognizes an 8-bp consensus binding sequence with

a characteristic binding affinity. Binding sites with up to two mismatches are still recognized,
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with each mismatch reducing binding affinity according to a thermodynamic model
(Supplementary Materials/TF Binding). TFs can bind in either orientation. Each TF that binds to
DNA occupies three extra base pairs upstream and downstream of the consensus sequence,
making a total of 14 bp inaccessible to other TFs. The concentrations of TFs are used to
calculate the probabilities that each cis-regulatory region is bound by a given number of

activators and repressors (see Methods).

To simulate gene expression, we assume that each gene transitions between an active
chromatin state that can initiate transcription, an intermediate primed state capable of
becoming either activated or repressed, and a repressed chromatin state. Most transition rates
depend on whether activators and/or repressors are bound (see Methods), with the fastest
transition rate to the active state occurring when at least one activator and no repressors are
bound. The transcription initiation rates of mRNAs from active genes are gene-specific, and so
are the degradation rates. Note that the above rates (including the transition rates between the
states of genes) are expectations; exactly when a reaction (e.g. one of gene A’s mRNAs is
degraded) happens is simulated stochastically using a Gillespie algorithm (Gillespie 1977).
Conceptually, the algorithm allows one event to happen at a time, with the cellular state
remaining unchanged between events. The waiting time between two events has an
exponential distribution, with a mean specified by the total reaction rates. Once the time of an
event is sampled, the algorithm randomly picks an event (e.g. degrading gene A’s mRNA) based
on the reaction’s relative rate, and changes the cellular state according to the event (e.g. there

is one less mMRNA of gene A in cell). See Supplementary materials for details.
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Each mRNA produces protein at a gene-specific translation rate. Once transcription is initiated,
we simulate a delay before mRNA can be translated at full speed. The delay accounts for the
completion of both transcription and the loading of ribosomes to mRNA, and is a function of
gene length (Supplementary materials/Transcriptional delay and Translational delay). Because
tracking the turnover of individual protein molecules with a Gillespie algorithm is
computationally expensive, we calculate the turnover of proteins with ordinary differential

equations (Supplementary materials/Simulation of gene expression).

To select for pulse generation, we designate an input signal to the TRN, which binds to cis-
regulatory regions like any other TF, but whose concentration is set externally rather than being
regulated by other TFs in the TRN. The input signal always activates gene expression. Signal
concentration is low and constant during a burn-in phase, where genes are initialized with a
repressed chromatin state, and begin with zero non-signal mMRNA and protein. Then in stage 2,
the signal instantly switches to a high level, and selection is applied for a TF designated to be
the “effector” to exhibit pulse-like expression. High fitness depends on having low effector
expression at the end of stage 1, matching a pre-defined peak effector concentration during
stage 2, rapidly increasing effector level after stage 2 begins, and having a low effector level at

end of stage 2. Details of the signal and fitness calculation are given in the Methods.

We initialize an evolutionary simulation with a randomly generated genotype of 3 activator

genes, 3 repressor genes, and an effector gene. The effector is initialized as an activator, which
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makes NFBLs more accessible than ARs (although below we will explore the effects of switching
this). All quantitative gene-specific parameter values, such as transcriptional rates and gene
length, are randomly initialized according to empirically estimated distributions (see Table S1

and Supplementary materials).

We simulate five classes of mutations. Table S2 lists the corresponding mutation rates and
details of the parameterization are provided in the Supplementary materials. A class-one
mutation is a duplication or deletion of one gene along with its cis-regulatory sequence. The
maximum number of genes is capped at four effector genes plus 21 non-effector genes
(excluding the signal) to limit computational cost. Once this limit is reached, no duplication
mutations are allowed. In addition, once any give gene is present in four copies, none of the
copies are duplicated until one is again lost by deletion. Neither the last effector gene nor the
last non-effector gene are subject to deletion. The signal is subject neither to duplication nor to

deletion.

Class-two mutations are single nucleotide substitutions in the cis-regulatory sequences, which
can cause TFBS turnover. Mutations change one nucleotide to one of the other three

nucleotides with equal probabilities.

Class-three mutations change quantitative gene-specific parameters, i.e. the rate at which
transcriptional bursts end, gene length, mRNA degradation rate, protein synthesis rate, protein

degradation rate, and the affinity of a TF to DNA. All quantitative gene-specific parameters
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except length are subjected to mutational bias, e.g. mutation tends to reduce the affinity of TF
binding. In case this is insufficient to ensure the values of the mutatable parameters never go
beyond reasonable limits, we also apply hard bounds (see Supplementary materials/Mutations

for details).

Class-four mutations convert transcription activators to repressors (or the reverse). This

mutation does not apply to the input signal, i.e. the input signal is always an activator.

Class-five mutations change a single nucleotide preference in a TF’'s consensus binding
sequence. One of the other three nucleotides is chosen for the consensus binding sequence

with equal probabilities.

When gene duplicates differ due only to class-three mutations, the duplicates are considered as
“copies” of the same gene, encoding “protein variants”. Once a class-four or class-five mutation
is applied to a gene duplicate, the duplicate becomes a new gene encoding a new protein.

When scoring motifs, we require that each node be a different protein.

Evolution is simulated using the revised origin-fixation model introduced by Xiong et al. (2019).
Briefly, the resident genotype experiences one mutation, chosen according to the relative rates
of all possible mutations. The fitness of the original resident TRN and of the mutant TRN is
calculated by simulating gene expression in response to an input signal (see Methods for

details). If the estimated fitness of the mutant is sufficiently high (see Methods for details), the
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mutant replaces the resident genotype. Note that estimated fitnesses include stochasticity
from the simulation of gene expression, which serves to introduce a form of genetic drift. If no
replacement occurs, we generate a new mutant and repeat the procedure until a replacement
is found. We call a replacement an evolutionary step, and end each simulation after 50,000
evolutionary steps. We use the average fitness of the last 10,000 evolutionary steps to

determine whether evolution has found a good solution.

High peak expression level non-adaptively promotes NFBLs

We evolve TRNs under selection to generate a pulse of effector expression in response to a
sudden 10-fold increase in input. While any of the three network motifs can solve this
challenge, a highly expressed effector is more capable of stimulating its repressor, and thus this
solution should be more likely to evolve regulation via an NFBL and correspondingly less likely
to evolve an I1FFL. Note that this prediction is expected on both adaptive grounds of which
solution might be superior, and on non-adaptive grounds of which solution is easier for

evolution to find.

To test this prediction, we vary the optimal peak level of the effector (see Methods for details
of fitness function). In silico evolution from a random starting point is not always successful at
reaching the target phenotype, so we focus on the most evolutionarily successful simulations.
We do this by dividing evolutionary replicates into three categories based on final fitness (Fig.

S4). See Fig. S5 for examples of the phenotypes of the high-fitness replicates.
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487  High-fitness solutions rarely involve AR under any of the three selection conditions, while both
488  I1FFLs and NFBLs evolve often (Fig. 2A). As predicted, when we select for higher effector

489  expression, we get more NFBLs and fewer I1FFLs (Fig. 2A). These NFBLs were absent from

490 medium-fitness solutions, which instead employed I1FFLs or ARs (Fig. S9A), generally achieving
491 lower peak effector expression than in the high-fitness solutions (Fig. S9B). While this seems to
492  suggest that NFBLs might be adaptively superior, if we prevent one type of motif from evolving,
493  similarly high fitness genotypes can be obtained via the other motif (Figs. 2B and S8). The

494  reason we get more NFBLs and fewer I1FFLs with selection for higher peak effector expression
495 is therefore not straightforward adaptive superiority of the former, but rather the relative ease

496  of finding high-fitness solutions.

497
498
B
Low peak, n =43 M No restriction
M Medium peak, n = 22 M I1FFL cannot evolve
M High peak, n = 14 NFBL cannot evolve

-

1= n=43n=15n=23 n=22n=6 n=11 n=14n=7 n=6
==

P
——

Fitness

Probability of presence
o
(3]

R

MFFL  MFFL+MFFL MFFL+NFBL NFBL AR alone 2
X4

o o
? ? o & W
® & & ®

499  Figure 2. Selection for high peak effector expression levels promotes NFBLs. (A) TRNs are

o

500 evolved under selection to generate pulses in response to an input signal. Under all three
501 selection conditions, the input signal starts with 100 molecules per cell and increases to 1,000
502 molecules per cell to trigger a pulse. Three versions of the evolutionary simulations select for

503 three different optimal peak effector levels of the effector: low (Pop: = 5,000 molecules per cell),
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medium (Pop: = 10,000 molecules per cell), and high (Pop:= 20,000 molecules per cell). For each
high-fitness genotype (Fig. S4), we calculate the proportion of evolutionary steps that contain
at least one network motif of the specified type among the last 10,000 evolutionary steps (out
of a total of 50,000 evolutionary steps). When scoring for motifs, non-functional spurious TFBSs
were excluded (see Methods for details, and Fig. S6 for results using different TFBSs exclusion
criteria). R can be auto-regulating (not shown in circuit diagram). On rare occasions, AR co-
occurred with I1FFLs or overlapping I1FFLs (labelled here I1FFL + I1FFL) (Fig. S7), and these few
cases were included in the scoring of I1FFL and overlapping I1FFL frequencies. (B) Preventing
either NFBLs or I1FFLs from evolving does not lower the final fitness within high-fitness
evolutionary simulations. Instead, genotypes obtained equally high fitness by evolving the other
common motif (Fig. $8). To prevent NFBLs from evolving, we remove the TF binding activity of
effectors; this also prevents the evolution of the AR auto-repression motif. To prevent I1FFLs
from evolving, we ignore TFBSs for the signal in the cis-regulatory sequence of any repressors.
Because this might have unintended consequences for mutations that convert repressors
to/from activators, we set to zero the rate of mutations that effect this conversion. Data are

shown as mean + SE over replicates.

Early bias toward I1FFLs can shift to later NFBL evolution via I1FFL-NFBL conjugates
The combined frequency of the two motifs rises throughout the long period of evolution, rather
than topological solutions being found early and becoming locked in and only incrementally

improved on. However, the frequency of I1FFLs in particular rises prominently during the first
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525 10,000 evolutionary steps (Fig. 3), even under selection for high peak effector levels, i.e.
526  selection that ultimately leads to an evolutionary preference for NFBLs (Fig. 3C).
527
A 1 Selection for low peak B 1 Selection for medium peak
. —o—MFFL . —o—MFFL
g —6—NFBL - e —6—NFBL
g 2
= =
505 505
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529  Figure 3. Evolution of I1FFLs and NFBLs follow different trajectories. We score motif
530 occurrence during different time periods along the way to the evolution of the high-fitness
531 replicates shown in Fig. 2A. See Fig. $10 for the occurrence of other motifs during evolution.
532  Asin Fig. 2A, we calculated the proportion of evolutionary steps that contain at least one
533  network motif of the specified type. Note that because some evolutionary replicates oscillate
534  between motif presence and absence, given the potential for slightly deleterious mutations in
535  our evolutionary algorithm, the fraction of evolutionary replicates that frequently show the
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motif in question is higher than the probability of presence in one evolutionary step as shown

here. Data are shown as mean + SE over replicates.

To further test this point, we made the early evolution of NFBLs less accessible by initializing
the effector as a repressor. While this reduced the frequency of NFBLs even under selection for
a high peak, those NFBLs that still evolved reached similar performance to I1FFLs (Fig. S11). This

further supports early evolutionary accessibility as a key factor.

The relative ease of I1FFL evolution could be because more mutations create |1FFLs and/or
because mutations creating I1FFLs have higher acceptance rates. To explore this further, we
characterize the mutations that create 11FFLs and/or NFBLs in TRNs that do not currently
contain such a motif. I1FFL-creating mutations occur at a higher rate than NFBL-creating
mutations under selection for low-peak and medium-peak expression, while NFBL-creating
mutations are more common under selection for high-peak expression (Table 1). The rarity of
NFBL-creating mutations becomes much more pronounced when we restrict our analysis to
mutations that do not also destroy or create another motif — this tendency holds even under
conditions that favor NFBLs, i.e. late in evolution under selection for high-peak expression
(Table 1). Greater mutational accessibility of the I1FFL motif is clearly one of the factors

favoring this motif.

The early evolution of I1FFLs is also facilitated by the higher acceptance rate of I1FFL-creating

mutations relative to NFBL-creating mutations, particularly during the first 10,000 evolutionary
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558  steps (Table 1). Similarly, I1FFL-destroying mutations are accepted less often than NFBL-

559  destroying mutations are, in this case throughout the course of evolution and regardless of

560 target peak expression (Table S4). Note that mutations that create one motif frequently destroy

561 another, with NFBL-creating mutations more prone to this problem than I1FFL-creating

562  mutations (Table 2). While some such disruptive mutations are accepted by our evolutionary

563  algorithm (Table 2), acceptance rates are higher for non-disruptive mutations (Table 1). If we

564  restrict our analysis to non-disruptive mutations, we see stronger mutation bias toward I1FFLs,

565 and more similar acceptance rates for I11FFLs vs NFBLs (Table 1). In other words, a shortage of

566  non-disruptive NFBL-creating mutations is an obstacle to the evolution of NFBLs. NFBL-creating

567  mutations that destroy I1FFL-NFBL conjugates are both more common and more likely to be

568 accepted than NFBL-creating mutations that destroy I1FFLs (Table 2). This suggests that I1FFL-

569  NFBL conjugates might be an important intermediate step in the evolution of NFBLs, rather

570 than NFBLs evolving de novo. This makes sense; after early evolution of an I1FFL provides a

571  partial solution to the selective challenge, the evolutionary path to an NFBL does not abandon

572  that I1FFL solution, but instead passes through a combined I1FFL-NFBL intermediate. The

573  evolutionary path from an early partial I1FFL solution might lead either to a superior I1FFL or to

574  an NFBL, with the potential to achieve similarly high fitness in either case.

575
Evolutionary step 1 - 10,000 Evolutionary step 10,001 - 30,000

reiaeli all mutations non-disruptive mutations all mutations non-disruptive mutations

Trialed Acceptan Trialed Acceptance Trialed Acceptance Trialed Acceptance

ce rate rate rate rate

Low I1FFL-creating | 0.049 0.171 0.0038 0.606 0.077 0.142 0.0019 0.550
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NFBL-creating | 0.026 0.078 0.00074 0.544 0.024 0.062 0.00028 0.504
Medi I1FFL-creating | 0.072 0.102 0.0031 0.607 0.088 0.083 0.00091 0.432
eaium
NFBL-creating | 0.043 0.097 0.00084 0.694 0.049 0.078 0.00032 0.507
Hich I1FFL-creating | 0.036 0.114 0.0017 0.546 0.039 0.063 0.00027 0.411
1
B | NFBL-creating | 0.097  0.072 0.0017 0.642 0.147 0069 | 000026  0.476
576  Table 1. Summary of mutations that create I1FFLs and/or NFBLs. We identify the accepted and
577  rejected mutations that increase the number of I1FFLs and/or NFBLs in a TRN to above zero
578 (see Methods for details). Among these mutations, “non-disruptive mutations” are those that
579  create the given motif but do not otherwise alter the numbers of I1FFL (when NFBLs are
580 created), NFBLs (when I1FFLs are created), I1FFL-NFBL conjugates, overlapping I1FFLs, and
581  auto-repressors. For each selection condition and evolutionary stage, we pooled the qualified
582  mutations from all high-fitness replicates shown in Fig. 2A. The total numbers of mutations of
583 the given type were normalized by dividing by the total number of mutations trialed in resident
584  TRNs that did not already have the motif in question. The acceptance rate shown in the table is
585 the number of accepted mutations across all replicates divided by the number of trialed
586  mutations across all replicates. Pseudoreplication may be a concern here; if the initial TRN
587 tends to create one motif over the other, this might be propagated at all subsequent time
588  points for that evolutionary replicate. However, Table S3 shows that the initial mutational bias
589 of a TRN can flip at a later stage of evolution.
590
Evolutionary step 1-10,000 Evolutionary step 10,001-30,000
peak level
Destroys I-N  accept. | Destroys accept. | Destroys I-N accept. Destroys accept.
conjugates rate lorN rate conjugates rate lorN rate
I1FFL-creating 0.461 0.108 0.101 0.169 0.529 0.092 0.106 0.183
Low
NFBL-creating 0.924 0.060 0.443 0.037 0.883 0.048 0.443 0.034
Medi I1FFL-creating 0.643 0.048 0.100 0.137 0.647 0.056 0.132 0.108
eaium
NFBL-creating 0.920 0.082 0.314 0.051 0.928 0.070 0.280 0.053
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I1FFLcreating |  0.466 0047 | 0255 0148 | 0.611 0021 | 0274 0.090

High
NFBL-creating |  0.962 0060 | 0307 0051 | 0962 0064 | 0234 0.047
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Table 2. Most NFBL-creating mutations also destroy other motifs. A high fraction of trialed
mutations that create a given motif also destroy I1FFL-NFBL conjugates, and many also destroy
NFBLs (in the case of I1FFL-creating mutations) or I1FFLs (in the case of NFBL-creating
mutations). Destructive mutations are accepted at significant rates. Qualified mutations are
pooled across all evolutionary replicates. See Methods for details about the identification of

mutations that create and/or destroy motifs.

Indeed, 11FFL-NFBL conjugates (and NFBLs) are also often converted by mutation into simple
I1FFLs. However, under selection for high peak effector expression, the acceptance rate of such
mutations decreases over evolutionary time (Table 2). Peak effector expression increases
during evolution (Fig. $12); this could drive increased preference for the now more highly
expressed effector rather than the signal to control the repressor. In medium-fitness
evolutionary replicates, high peak effector expression is not achieved, and NFBLs rarely evolve
(Fig. S9). By the same logic, we hypothesize that strengthening the input signal should promote
I1FFLs even under selection for a high effector peak. This is indeed the case, with promotion in

particular of the evolution of the I1FFL-NFBL conjugate (Fig. S13).

Highly expressed effectors tend to be regulated by NFBLs in yeast
Next we tested our model predictions about when I1FFLs vs. NFBLs tend to evolve. We
identified NFBLs, I1FFLs and I1FFL-NFBL conjugates in the TRN of S. cerevisiae, using Yeastract

annotations of regulatory interactions between TFs (see Methods). Using data from Gasch et al.
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612  (2000), we identified genes that display pulse-like expression in response to an environmental
613  stimulus, and the peak heights of the pulses (measured as the fold-change of RNA expression
614 levels relative to the expression level before the stimulus). In agreement with our model

615  prediction, the effectors of NFBLs reach higher peaks than those of I1FFLs following stimulus
616  (Fig. 4A). However, the input signals of NFBLs increase their expression more in response to
617  stimuli than do those of I11FFLs (Fig. 4A), which disagrees with our model prediction. We note
618 that the 46 NFBLs in our dataset involve 26 unique genes as the input signal and 8 as the

619  effector, while the 30 I1FFLs involve 14 signals and 9 effectors. This raises the possibility that
620 the more diverse signal inputs of the NFBLs might contain more false positive hits.

621

622  We also analyzed yeast protein expression levels from PaxDB, averaged across multiple

623  environmental conditions rather than measured in response to stimuli (see Methods). We

624  found that effector TFs generally have higher expression in NFBLs than in I1FFLs (Fig. 4B). Note
625 that the direction of causation is not known from the empirical data alone: when an effector
626  already has high expression this might prompt the evolution of NFBL, or the presence of an
627  NFBL might facilitate the evolution of high effector expression. The theoretical work presented
628  here presents non-exclusive proof of principle in support of the former interpretation.

629
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Figure 4. Effector TFs in yeast NFBLs have higher expression than those in I11FFLs. (A) Peak
height of pulses was measured as the maximum fold-increase in RNA expression in response to
one of 10 stimuli (see methods for details), for the subset of genes showing pulse-like RNA
expression during the former in the RNA expression data of Gasch et al. (2000). (B) Average
fold-change in signal and repressor RNA expression in response to stimuli, for the subset that
showed an increase (see Methods). (C) Protein levels under normal conditions were taken from
the “PeptideAtlas, March, 2013” dataset provided by PaxDB (Wang et al. 2015). A weaker result
was obtained using a different dataset from PaxDB that includes a larger set of gene-
environment combinations (Fig. S14). For fold-change in expression, data are shown as mean *
SE over each network position across all instances of the motif. The procedure is similar for
protein abundance, except the data is first log transformed. For each motif, we list the numbers
n of unique gene-stimulus combinations where pulse-like expression is observed at a signal

node (S), effector node E, or repressor node R. p-values come from two-tailed t-tests.

DISCUSSION
We selected for a pulse generator in an evolutionary simulation model and observed which TRN

motifs emerged. As predicted, selecting for high peak expression level of the effector promotes
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648  NFBLs over I1FFLs, while a strong input signal promotes I1FFLs. However, if one motif is

649  prevented from evolving, the other motif can evolve to take its place, with no loss of peak

650 fitness, suggesting that the preference between motifs is not adaptive in origin, i.e. is not about
651  which motif is optimal. One predicted pattern is confirmed in the actual TRN of S. cerevisiae,
652  where the effector’s expression level is higher in NFBLs than in I1FFLs.

653

654  Both mutational accessibility (i.e. how often mutations create the given motif) and selective
655  acceptance rates (Yampolsky and Stoltzfus 2001; Stoltzfus and McCandlish 2017; Gomez et al.
656  2020) contribute to patterns of relative evolutionary accessibility. Note that the motif created
657 by larger-effect beneficial mutations need not be better at generating a pulse. The latter is what
658 is meant by an “adaptive” explanation for the dominance of I1FFL over NFBL (or the vice versa)
659  (Gould and Lewontin 1979). A non-adaptive evolutionary explanation can include a role of

660  selection or anincrease in fitness during evolution, but emphasizes process rather than final
661 fitness as the cause of bias in evolutionary outcomes.

662

663  Usually mutational accessibility and selective acceptance rates point in the same direction, but
664  not always: I1FFLs are less mutationally accessible under early selection for high peak effector
665  expression, but have a relatively high mutation acceptance rate. The higher acceptance rates
666  for I1FFL-creating mutations do not reflect functional superiority of I1FFLs, but rather the fact
667  that creating NFBLs frequently involves destroying other, likely functional, motifs. Avoidance of
668  damage to existing functions has been previously noted in other discussions of the evolutionary

669  paths taken by TRNs (Wagner 2003; Carroll 2008; Stern and Orgogozo 2009; Sorrells and
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670  Johnson 2015). The mutational accessibility of different motifs is not static, but changes over
671  the course of an evolutionary path (Table S3).

672

673  We did not pit the performance of I1FFLs and NFBLs versus the evolutionary accessibility of the
674  two motifs, because both motifs had indistinguishable performance in our system. We are

675 therefore unable to answer whether the evolutionary accessibility of motifs can alter the

676  evolutionary outcome predicted by performance of motifs. However, finding in our system that
677  high fitness solutions can often be found one way or another is intriguing in its possible

678  generality.

679

680  We find that most NFBLs evolve not from connecting previously disconnected genes (e.g.

681  S->E->R), but rather from uncoupling I1FFL-NFBL conjugates in favor of a pure NFBL. We

682  simulate only relatively small TRNs, due to limitations in computational power, and this might
683  restrict the evolutionary trajectories that are capable of generating network motifs. If

684  simulation algorithms that scaled better with TRN size were devised, it would be interesting to
685  explore whether network motifs would evolve via different trajectories in larger TRNs. For

686  example, the use of the same TF for multiple regulatory purposes in real-world TRNs, which of
687  course are larger, can constrain network evolution, requiring complex trajectories to achieve a
688  new regulatory function (Sorrells et al. 2015).

689

690 We predicted via simulations that a highly expressed effector should promote the evolution of

691  NFBLs over I1FFLs. Strikingly, this prediction was borne out in empirical data from yeast. A
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highly expressed TF can more strongly regulate its target, and/or reduce the amount of noise
propagated downstream (Pedraza and van Oudenaarden 2005; Jothi et al. 2009). Once a highly
expressed TF gains a TFBS in the target gene, the TFBS may also be easier to retain during
evolution. Many studies on TRNs have noted a systematic difference among the expression
levels of genes at topologically different positions (Herrgard et al. 2003; Yu et al. 2003; Jothi et
al. 2009; Gerstein et al. 2012), and that highly expressed TFs are often regulators of multiple
target genes (Jothi et al. 2009; Gerstein et al. 2012). Our findings also support the idea that the

observed network motifs in TRNs are partially shaped by the expression levels of TFs.
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843  Supplementary materials

844
845 Table S1. Major model parameters®
Parameter Values®? Bounds® References

Length of cis-regulatory sequence 150 bp (Yuan et al. 2005)
Length of TF recognition sequence 8 bp (Wunderlich and Mirny 2009)
Length occupied by a TF on each side of recognition sequence 3 bp (Zhu and Zhang 1999)
Dissociation constant between TF and perfect TFBS, K4(0) 10U+°-8) mole per liter® (0,109) (Park et al. 2004; Nalefski et al. 2006)
Dissociation constant between TF and non-specific DNA, Ka(3) 10°M (Maerkl and Quake 2007)
Base rate of transition from Repressed to Intermediate 0.15 min? (Katan-Khaykovich and Struhl 2002)
Maximum transition rate from Repressed to Intermediate 0.92 min*? (Katan-Khaykovich and Struhl 2002;

Brown et al. 2013)
Base rate of transition from Intermediate to Repressed 0.67 min? (Katan-Khaykovich and Struhl 2002)
Chosen to give same dynamic range

Maximum transition rate from Intermediate to Repressed 4.11 min?t .
and Repressed to Intermediate
Base rate of transition from Intermediate to Active 0.025 min* (Brown et al. 2013)
Maximum transition rate from Intermediate to Active 3.3 min? (Brown et al. 2013)
- ) . . (Guillemette et al. 2005; Pelechano et
N(1.27, 0.226) -1(4)

Transition rate from Active to Intermediate, ract_to_int 10' min [0.59, 64.7] al. 2010; Brown et al. 2013)
Length of gene, L 10QN(2:568,0.34) codons [50, 5000] (SGD Project) (Balakrishnan et al. 2012)
Rate of transcription initiation, rmax_transc_init 6.75 min? (Brown et al. 2013)

L . . (Dujon 1996; Larson et al. 2011; Hocine

-1

Speed of transcription elongation 600 codon min etal. 2013)
Time for transcribing UTRs and for terminating transcription 1 min (Dujon 1996; L:trzfnzgtlzl). 2011; Hocine
Rate of mMRNA degradation, rmrna_deg 1QN(-1.49,0.267) pjp-1 [7.5%10%, 0.54] (Wang et al. 2002)
Speed of translation elongation 330 codon min (Siwiak et al. 2010)
Translation initiation time 0.5 min (Siwiak et al. 2010)
Protein synthesis rate, rprotein_syn 10M0:322,0416) molecule mRNA™ min [4.5%1073, 61.4] (Siwiak et al. 2010)
Rate of protein degradation, rprotein_deg 1QN(-1.88,0.561) pjp-1 [3.0x10°¢, 0.69] (Belle et al. 2006)
Saturation concentration of effector protein, Ne_sat 10,000 molecules cell* (Ghaemmaghami et al. 2003)
Fitness cost of protein expression for a gene with L = 1025, ctrans 2x10° molecules min‘! (Ghaemmagham|2e[z)t1asl). 2003; Kafri et al.
Maximum number of effector gene copies 5
Maximum number of TF gene copies, excluding the signal 19

) This table is reproduced without modification from Xiong et al. (2019) under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
2 parameters in bold can be altered by mutation, and the table shows the distributions from which their
initial values are sampled. Estimation of N. st is described in the Methods; estimation of the other
parameters is described in the Supplementary Methods.
) Same units as the parameter values. Parentheses mean the parameter cannot take the boundary
values; square brackets mean it can. We also use these bounds to constrain mutation (see
Supplementary Methods).
) The uniform distribution is denoted U(min, max).

846  © The normal distribution is denoted N(mean, SD).

847
848 Table S2. Mutation rates and effect sizes™”)
Mutation Relative rate Effect of mutation®
Single nucleotide substitution 5.25%10%per gene
Gene deletion 1.5%107 per gene®
Gene duplication 1.5%107 per gene®
Mutation to consensus sequence of a TF 3.5x10° per gene
Mutation to TF identity (activator vs. repressor) 3.5x10° per gene
Mutation to K4(0) 3.5x10°per gene k=0.5u=-5® 0=0.776
Mutation to L 1.2x10 per codon
Mutation to rprotein_syn 9.5%1072 per codon k=0.5,u=0.021%, 6 =0.760
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Mutation to rprotein_deg
Mutation to ract_to_int
Mutation to rmrna_deg

9.5x10?per codon k=0.5,u=-1.88,0=0.739
9.5x10"?per codon k=0.5u=157% 0=0.773
9.5%10*? per codon k=0.5,u=-1.19,0=0.396

849  WThis table is reproduced without modification from Xiong et al. (2019) under a Creative Commons
850  Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
851 @ Mutation to these quantitative rates takes the form log,ox’ = log;ox + Normal(k(u — log;0x), o),
852 where x is the original value of the rate and x’ is the value after mutation. See Supplementary Methods
853  for details.
854  ® The value of this parameter is different during burn-in. See Supplementary Methods for details.
855
856
. Initial condition 25 Initial condition 31 Initial condition 79
Optimal
peak Evo. step Evo. step Evo. step Evo. step Evo. step Evo. step
1-10,000 10,001 - 20,000 1-5,000 5,001 -10,000 1-10,000 10,001 - 20,000
I11FFL-creating 0.050 0.217 0.680 0.067 0.051 0.586
Low
NFBL-creating 0.107 0.007 0.006 0.003 0.106 0.013
I11FFL-creating 0.065 0.075 0.811 0.365 0.105 0.047
Medium
NFBL-creating 0.111 0.104 0.016 0.025 0.112 0.171
I11FFL-creating 0.013 0.034 0.875 0.059 0.048 0.118
High
NFBL-creating 0.729 0.413 0.007 0.201 0.259 0.174
857  Table S3. Mutational bias toward particular motifs can shift over the course of evolution. We focus our
858  analysis on three random TRN initializations (conditions 25, 31, and 79) that evolved to high fitness in all
859  three selection conditions. Under selection for high peak effector expression, all three simulations
860  evolved NFBLs (i.e. the occurrence of NFBL > 0.5 and the occurrence of I1FFL < 0.5). Under selection for
861 low or medium effector expression, all three evolved I1FFLs. As in Table 1, we show the number of
862 mutations normalized by the total number of mutations trialed in resident TRNs that did not contain the
863 motif in question. As an example of a change in mutational bias, initial condition 25 under selection for
864  low peak effector expression initially creates NFBLs more often but later creates I1FFLs more often.
865
866
867
Evolutionary step 1 - 10,000 Evolutionary step 10,001 - 30,000
peak level - -
Trialed Acceptance rate Trialed Acceptance rate
Low I1FFL-destroying 0.100 0.072 0.065 0.051
NFBL-destroying 0.141 0.139 0.196 0.128
. I1FFL-destroying 0.129 0.068 0.087 0.069
Medium .
NFBL-destroying 0.157 0.108 0.125 0.108
High I1FFL-destroying 0.117 0.074 0.114 0.057
NFBL-destroying 0.086 0.120 0.063 0.124
868 Table S4. Summary of mutations that remove all I1FFLs and/or NFBLs. For each selection condition, we
869 pooled qualified mutations from all high-fitness replicates shown in Fig. 2. A mutation is classed as
870  destroying if it eliminates all instances of the given motif. The total number of qualified mutations were
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871 normalized by the total number of mutations trialed in resident TRNs that contained the motif of

872 interest. The acceptance rate is the number of accepted mutations across all replicates divided by the
873 number of trialed mutations across all replicates.

874
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876 Figure S1. Evolutionary paths include slightly deleterious mutations. We pooled all accepted mutations
877  from 10 evolutionary simulations under selection for high peak effector expression. Selection

878  coefficients were calculated from the average fitness across 1,000 simulations of gene expression. Note
879  while fitness is therefore biased by the 200 replicates used to decide to accept that mutation, this bias
880  applies to both resident and mutant. We measure noise on top of the true distribution of fitness effects,
881  suggesting that the underlying distribution is narrower than shown here. (A) Data restricted to the first
882 1,000 evolutionary steps, during which fitness generally increases rapidly. (B) Data restricted to the last
883 1,000 evolutionary steps, during which almost all simulations have reached a fitness plateau.

884

Type of spurious TFBS: S->TF E->TF TF->E E->E E->E
885

886 Figure S2. Five scenarios in which apparent but non-functional network motifs can arise from spurious
887  TFBSs. A TFBS containing 2 mismatches can easily appear by chance in a cis-regulatory sequence, but
888  may be deemed spurious if it has negligible functional effect. Spurious E->E TFBSs where both “Es”

889  represent the same effector gene give rise to apparent ARs, whereas if they represent different effector
890 proteins, they give rise to I11FFLs.
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Figure S3. Summary of the model. (A) Simulation of gene expression in a TRN that has two TF genes,
one of which is the effector (cyan). Here the input signal, which is simulated as an activator, binds to the
cis-regulatory sequence of the non-effector TF gene (TF binding is demonstrated in (B)) and induces
gene expression. Transcription initiation is a two-step process where most of the transition rates are
functions of the concentrations of activators and/or repressors (see Transcriptional regulation in the
supplement). Biological processes marked by red arrow are simulated as stochastic processes, and those
marked by black arrows are simulated by solving ordinary differential equations (see Simulation of gene
expression in the supplement). We use the expression levels of the effector in response to a two-stage
input signal to calculate the fitness (see Methods for details). The simulation of gene expression is
repeated and the average fitness of the replicates is used as the fitness of the TRN (see Methods for
details). The diagram of transcription and translation is revised from Xiong et al. (2019) under a Creative
Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). (B) A

46

TRN goes through one of many types of mutation (see Model Overview for details) that change the size
of the network, rewire the network, or change one property of a gene in the network. The zoom-in
depicts turnover of TF binding sites, which can rewire the network. The purple box represents the TF
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and on top of the box is the consensus binding sequence of the TF. At most two mismatches (green
letters) to the consensus binding sequences can be tolerated. Point mutations in the cis-regulatory
sequence of the target gene and in the consensus binding sequence of the TF can increase mismatch,
causing the loss of a TF binding site. Note that the TF occupies additional sequences when binds to the
DNA. (C) Evolution of TRNs is simulated as an origin-fixation process. Evolution starts with a random
TRN, which is called the resident. if the mutant’s fitness is sufficiently high (see Methods for details), it
replaces the resident and becomes the new resident (see Methods for details), which is defined as one
evolutionary step. Otherwise, new mutants are generated until the replacement happens. The evolution
is simulated for 50,000 evolutionary steps, which is generally long enough for the resident’s fitness to
reach a plateau.
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Figure S4. Fitness distributions of genotypes evolved with different optimal peak levels of the effector.
We ran 100 evolutionary simulations for the low-peak and the medium-peak conditions, and 200 for the
high-peak condition. For each simulation, we calculate the fitness of the evolved genotype as the
average fitness of the last 10,000 evolutionary steps. For all three selection conditions, genotypes with
fitness above 0.845 are considered as high-fitness genotypes and are further analyzed in Fig. 2. We used
a fitness cutoff of 0.69 to separate medium-fitness genotypes and low-fitness genotypes.
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Figure S5. Phenotype of high-fitness replicates. For each selection condition, we randomly picked 5
high-fitness replicates from those defined in Fig. S4. We ran 200 simulations to characterize the
expression profile of the effector, as found at evolutionary step 50,000 in each replicate. Each trajectory
shows the expression levels of the effector averaged across the 200 simulations, and starts after the
burn-in of gene expression (see Methods for details).
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Figure S6. The relative occurrences of motifs do not depend strongly on the criteria for removing
spurious 2-mismatch TFBSs. Results are from the same high-fitness evolutionary replicates shown in Fig.
2A, where sets of TFBSs were excluded when their removal yielded fitness of at least 99% of the fitness
observed in their presence. Data are shown as mean * SE over replicates.
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941 Figure S7. Auto-repression (AR) rarely evolves with I1FFLs or overlapping I1FFLs. In high-fitness

942  genotypes evolved under selection for pulse generation, there were few auto-repressing effectors co-
943  occurring with other motifs, and for simplicity, they were therefore grouped in Fig. 2 with the motif with
944  which they co-occurred. We note that when the repressor of an I1FFL-NFBL conjugate is an effector, this
945 effector can form auto-repression. We classified such case as a stand-alone AR, because from the

946  perspective of this effector, it is not regulated by an I1FFL, NFBL, overlapping I1FFL, or I1FFL-NFBL

947 conjugate. Data are shown as mean + SE over replicates.

948

949
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Figure S8. Fitness distributions and network occurrences of genotypes with restricted solutions under
different selection conditions. (A) Each panel under low peak and medium peak selection summarized
50 evolutionary simulations, and the two panels under high peak each summarize 100 evolution
simulations. Under the condition where we select for a low peak and prevent NFBLs from evolving, we
removed one simulation that was terminated prematurely before evolving 50,000 evolutionary steps.
This particular simulation failed to find a mutant that has higher fitness than the resident phenotype
even after 2,000 trials. To classify a genotype as high-fitness (red), we apply the same fitness cutoff as in
Fig. S1. The average fitness of the high-fitness genotypes is shown in Fig. 3B. See legend of Fig. 2B for
description of modifications to prevent the evolution of NFBLs or I1FFLs. (B) In the high-fitness
genotypes, when either I1FFL or NFBL is not allowed to evolve, the other motif almost always evolves.
Data are shown as mean + SE over replicates.
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973 Figure S9. Medium-fitness genotypes fail to achieve high peak effector expression, and primarily
974  evolve I1FFLs and auto-repression. (A) Methods are the same as for Fig. 2A, applied here to medium-
975  fitness evolutionary replicates. (B) For each high-fitness and medium-fitness replicate shown in Fig. S4,
976  we average the peak protein levels of the effector over 200 replicate simulations of gene expression.
977 Data are shown as mean * SE over replicates.
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979  Figure S10. The occurrence of all motifs during evolution. We calculated the proportion of evolutionary
980  steps that contain at least one motif of that type. Details are the same as for Fig. 3, except here we show
981  abroader range of motifs as shown in Fig. 2. Data are shown as mean + SE over the high-fitness

982 replicates.
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985 Figure S11. Initializing the effector as a repressor facilitates the evolution of I11FFLs. We repeated

986  evolution under selection for high peak effector expression, but initialized the effector as a repressor
987 rather than as an activator. (A) Motif occurrence compared to the activator-initialized evolutionary
988  conditions given in Fig. 2. Data are shown as mean * SE over replicates. (B) Fitness of the evolved TRNs.
989 Similar to Fig. S1, TRNs with fitness of 0.845 or higher are considered high-fitness.
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993 Figure S12. High peak effector expression evolves slowly. For each high-fitness replicate shown in Fig.

994  2A, we average the peak protein levels of the effector over 200 replicate simulations of gene expression.

995 Data are shown as mean + SE over replicates.
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999
1000  Figure S13. A stronger signal increases I1FFL prevalence. We compared evolution under the default

1001  signal, where signal strength increases from 100 molecules per cell to 1,000 molecules per cell, to a
1002  stronger signal, where the signal strength increases from 1,000 molecules per cell to 10,000 molecules
1003 per cell. (A) Occurrence of different motifs in high-fitness genotypes. (B) I1FFLs or NFBLs can yield

1004 similar fitness under a given signal regime. Data are shown as mean * SE over replicates. (C) Fitness
1005  distribution of genotypes evolved with a strong signal without (leftmost) or with (middle and rightmost)
1006  restrictions on evolution. Similarly to Figs. S1 and S3, we define high-fitness genotypes to be those with
1007  fitness greater or equal to 0.845.
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1011 Figure S14. Effectors have higher protein expression in NFBLs than in I1FFLs in S. cerevisiae across a
1012 more comprehensive dataset. Protein expression levels are from the “GPM, Aug, 2014” dataset

1013 provided by PaxDB (Wang et al. 2015). Data are shown as mean * SE (of log-transformed data in the case
1014  of protein expression) over each network position across all instances of the motif, excluding positions
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1015 where the data are not available. For each motif type, we list the numbers of genes with available
1016 expression level data at signal nodes, effector nodes, and repressor nodes. Statistical significance is
1017 assessed using two-tailed t-tests.
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Details of the model

The following sections are copied from Xiong et al. (2019). Parts of the original text were rewritten or
deleted for brevity. The original article was licensed under the Creative Commons Attribution 4.0
International License, which grants free copy and modification. A copy of the license can be found at
https://creativecommons.org/licenses/by/4.0/.

TF binding

In our model, each gene is controlled by a 150-bp cis-regulatory region, corresponding to a typical yeast
nucleosome-free region within a promoter (Yuan et al. 2005). TFBSs can evolve in the cis-regulatory
region, and we set the length of a consensus binding sequence to be 8 bp. Assuming that only one of the
four nucleotides is a good match at each of the 8 base pairs, then the 8-bp consensus binding sequence
has an information of 16 bits, which is slightly larger than that of a typical yeast TF (13.8

bits) (Wunderlich and Mirny 2009). We assume a higher information content than seen empirically in
order to reduces the number of TFBSs within the cis-regulatory regions to a point that our
computational power can handle. We allow up to 2 mismatches in the consensus binding sites, based on
the finding that, with up to 2 mismatches in the 6-bp binding sequence, some yeast TFs can still bind
DNA at above background level (Maerkl and Quake 2007). To capture competitive binding between TFs,
we assume that two TFs cannot simultaneously occupy overlapping stretches, which we assume extend
beyond the recognition sequence to occupy a total of 14 bp (Zhu and Zhang 1999).

We denote the dissociation constant of a TFBS with m mismatches as Kq(m). Sites with m > 3
mismatches are assumed to still bind at a background rate equal to m = 3 mismatches, with dissociation
constant Kq4(3) = 10° mole per liter (Maerkl and Quake 2007) for all TFs. We assume that each of the last
three base pairs makes an equal and independent additive contribution AGy, < 0 to the

binding energy (Benos et al. 2002). We ignore cooperativity in binding. Dissociation constants of
eukaryotic TFs for perfect TFBSs can range from 10° mole per liter (Park et al. 2004) to 10" mole per
liter (Nalefski et al. 2006). We initialize each TF with its own value of logio(K4(0)) sampled from a uniform
distribution between -6 and -9, with mutation capable of further expanding this range, subject to K4(0) <
10 mole per liter. Substituting m = 0 and m = 3 into

AG,, = —RTInKq(m) = AG, — min(m, 3)AGy,p, (1)

where R is the gas constant and T is temperature, we can solve for AGy, and AGy, and thus obtain Ky(1)
and K4(2) (the dissociation constants for TFBS with one and two mismatches, respectively).

We rescale Ky values to effective Ky values to account for the “dilution” of TFs by non-specific TF binding
sites (NSBSs) in the genome. A haploid S. cerevisiae genome is 12 Mb, 80% of which is wrapped

in nucleosomes (Lee et al. 2007), yielding approximately 108 potential NSBSs. In a yeast nucleus of
volume 3 x 10715 liters, the NSBS concentration is of order 10 mole per liter. To find the concentration
of free TF [TF] in the nucleus given a total nucleic TF concentration of Crr, we consider

__[binding_site][TF]

Kq = [binding_site-TF]’

(2)

in the context of NSBSs, substitute [TF-NSBS] with Crs- [TF], and solve for
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1067

_ Kq(3) 1075 -
1068 [ﬂﬂ—zﬁﬁmﬁa1y—§F:EIQT~OJQp (3)
1069

1070  Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively small
1071 number of specific TFBSs is not enough to significantly perturb the proportion of free TFs, and so for the
1072  specific TFBSs with m < 3 that are of interest in our model, we simply use K;(m) = 10K4(m) to account
1073  for the reduction in the amount of available TF due to non-specific binding. We also convert K4 from the
1074 units of mole per liter in which Ky is estimated empirically to the more convenient molecules per

1075 nucleus. The rescaling factor r for which K4 (in molecule per nucleus) = rKy (in mole per liter) is 3 X
1076  1071% liter per nucleus X 6.02 X 10%3 molecule mole™ = 1.8 x 10° molecule cell* liter mole™. Taken
1077  together, I?d (molecule per nucleus) = 10rKy4 (mole per liter), where the factor 10 accounts for non-
1078 specific TF binding.

1079

1080

1081 TF occupancy

1082 Here we calculate the probability that there are A activators and R repressors bound to a given cis-

1083 regulatory region at a given moment in gene expression time. First we note that if we consider TF j

1084 binding to TFBS j in isolation from all other TFs and TFBSs, Supplementary Equation 4 gives us the

1085 probability of being bound:

1086

. , Ci
1087 P()=1-R() =7 (4)
1088

1089 Let 134(’2) be a term proportional (for a given value of n) to the combined probability of all binding
1090 configurations in which exactly A activators and R repressors are bound to the first n binding sites along
1091  the cis-regulatory sequence. We calculate PA(";) recursively, considering one additional TFBS at each step.

1092 Note that if two different TFs bind to exactly the same location on a cis-regulatory region, we treat this

1093 as two TFBSs, not as one, and treat first one and then the other in our recursive algorithm.

1094

1095  Consider the case where the (n+1)" binding site belongs to an activator. The case where this activator is
1096  not bound contributes Rq(’T,;)Pu(n +1)to PA(";H). If it is bound, then we must also take into account that
1097  the (n+1)" binding site overlaps (partially or completely) with the last H > 0 sites, and so contributes

1098 Rq(fl_,g)Pb (n+ D) [Tj=n-p+1 Pa()- Taken together,

1099
1 -H .
1100 PR = PP+ 1) + BITR P (1 + D) [T es P (D). (5)
1101
1102 Similarly, if the (n+1)™ site belongs to a repressor, we have
1103
1 -H .
1104 PR = PP+ 1) + PO P+ D) T pes P (D). (6)
1105

1106 By definition, 134(,7;) = 0 for binding configurations that are impossible, e.g. those with negative A or
1107  negative R. We initialize the recursion at n = 0, where the only valid binding configuration is for A=R =0,
1108 i.e. Po(,(())) =1.Atn=1, PO(,(l)) x P,(1) and if the binding site belongs to an activator Pl(’(l)) x Py (1);
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otherwise, Pﬁ)) « P,(1). For a gene where the total number N of TFBSs is 1, POE(I)), Pl(})), and Po(j) sum to

1 and normalization is unnecessary. For higher values of N = Nact + Nrep TFBSs, where Nactand Ngepare

the total numbers of activator binding sites and repressor binding sites, respectively, we normalize Pﬁ;)

at the end of the recursion by dividing by Zgigt Zgi;p 34(,11\21) to get the probability of binding

configurations that include exactly A activators and R repressors.

rAct_to_Int

Transcription initiation over an interval of time riransc_init is proportional to the proportion of time spent in
the Active state. Assuming a steady state between Repressed, Intermediate, and Active states, as a
function of current TF concentrations, we have:

Ttransc_init  __ TInt_to_Act

- PInt or_Acts (7)
Tmax_transc_init TInt_to_ActtTAct_to_Int -

where Pt or actis the probability a gene is at Intermediate or Active. We set rmax_transc_init (the rate of
transcription given 100% Active state) to 6.75 min, based on the corresponding rate when a model of
the PHO5 promoter is fit to data (Brown et al. 2013). In this model fit, the constitutively expressed PHO5
promoter is free of nucleosomes 80% of the time, i.e. Pint_or act= 0.8. We take these two values as
universal for constitutively expressed genes, and assume that variation in rac to_int is responsible for
variation in riansc_init. TO identify a set of constitutively expressed genes, we identified 225 genes that
have mRNA production rate of at least 0.5 molecule min™ from genome-wide measurements (Pelechano
et al. 2010); this threshold corresponds to low H2A.Z occupancy (Guillemette et al. 2005). We set
I'ransc_init t0 the production rate of mRNA of these 225 genes, and solve for gene-specific ract to_int from Eq.
S7. We fit the solutions to a log-normal distribution and arrive at 10N*27:0-228) mjnt,

To initialize values of rac_to_int for each gene, we sample from this distribution. We also set lower and
upper bounds for allowable values; if either the initial sample or subsequent mutation put rac_to_int
beyond these bounds, we set the value of rac t_int to equal to boundary value. We set the lower bound
for ract_to_ntat 0.59 min’t, half the minimum of the values inferred from the set of 225 genes. To set an
upper bound, we use the low H2A.Z occupancy bound of Firansc_init = 0.5, which gives a solution of 32.34
min’t; we double this to set the upper bound as 64.7 min™.

Transcription delay times

Yeast protein lengths fit a log-normal distribution of 10N2-%8 9349 amino acids (from the Saccharomyces
Genome Database (SGD Project), excluding mitochondrial proteins; YeastMine (Balakrishnan et al. 2012)
was used to query the database and to download data). We sample ORF length L from this distribution.
To constrain the values of L, we set a lower bound of 50 amino acids and an upper bound of 5,000
amino acids; the longest protein in SGD is 4910 amino acids. If either initialization or mutation put L
beyond these bounds, we set the value of L to the boundary value.

With an mRNA elongation rate of 600 codon per min (Larson et al. 2011; Hocine et al. 2013), it takes L /
600 minutes to transcribe the ORF of an mRNA. Also including time for transcribing UTRs and for
transcription termination, and ignoring introns for simplicity, it takes 290 seconds to complete
transcription of the yeast GLT1 gene (Larson et al. 2011), whose ORF is 6.4kb. Putting the two together,
we infer that transcribing the UTRs and terminating transcription takes around 1 minute for GLT1.
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Generalizing to assume that transcribing UTRs and terminating transcription takes exactly 1 minute for
all genes, producing an mRNA from a gene of length L takes 1 + L/ 600 minutes.

Translation delay times and rprotein_syn

We model a second delay between the completion of a transcript and the production of the first protein
from it. The delay comes from a combination of translation initiation and elongation; it ends when the
mRNA is fully loaded with ribosomes all the way through to the stop codon and the first protein is
produced. We ignore the time required for mRNA splicing; introns are rare in yeast (Dujon 1996). mRNA
transportation from nucleus to cytosol, which is likely diffusion-limited (Nifio et al. 2013; Smith et al.
2015), is fast even in mammalian cells (Mor et al. 2010) let alone much smaller yeast cells, and the time
it takes is also ignored. The median time in yeast for initiating translation is 0.5 minute (Table 1 in Siwiak
et al. 2010), and the genomic average peptide elongation rate is 330 codon/min (Siwiak et al. 2010).
After an mRNA is produced, we therefore wait for 0.5 + L / 330 minutes, and then model protein
production as continuous at a gene-specific rate rorotein_syn.

To calculate rprotein_syn, We combine the gene-specific ribosome densities D along the mRNAs and the
gene-specific peptide elongation rates E, both measured in yeast (Siwiak et al. 2010). The values of DE
across yeast genes fit the log-normal distribution 10M©322.0416) mglecule mRNA™ mint; we initialize
I'orotein_syn fOr €ach gene by sampling from this distribution. We set the lower bound for ryrotein_syn at half
the minimum observed value of DE (4.5 x 10~3 molecule mRNA™ min). The upper bound corresponds
to an mRNA fully occupied by rapidly moving ribosomes. Each ribosome occupies about 10 codons
(Siwiak et al. 2010), and the peptide elongation rate can be as high as 614 codon per min (Waldron et al.
1977). If ribosomes are packed closely together at 10 codons apart, a protein comes off the end of
production in the time taken to elongate 10 codons, i.e. proteins are produced at 61.4 molecules per
minute. If either initialization or mutation put rprotein_syn beyond these bounds, we set the value of
I'orotein_syn t0 the boundary value.

mRNA and protein decay rates

We fit a log-normal distribution 10N14% 9267 min-to yeast mRNA degradation rates (Wang et al. 2002),
and initialize the mRNA degradation rate rmrna_deg fOr each gene by sampling from this distribution. We
set lower and upper bounds for rmrna_deg at half the minimum and twice the maximum observed values
(7.5 x 10™* min"* and 0.54 min™), respectively. If either initialization or mutation put rmgxa_deg beyond
these bounds, we set the value of rmrna_deg to the boundary value.

Expressing the estimated half-lives of yeast proteins (Belle et al. 2006) in terms of protein degradation
rates, they fit the log-normal distribution 10N188 056 min1: we initialize gene-specific protein
degradation rates rprotein_deg by sampling from this distribution. We ignore the additional reduction in
protein concentration due to dilution as the cell grows and thus increases in volume. We set lower and
upper bounds for rprotein_deg at half the minimum and twice the maximum observed degradation rate (3 X
107° min* and 0.69 min), respectively. If either initialization or mutation put rprotein_deg beyond these
bounds, we set the value of rprotein_deg to the boundary value.

Simulation of gene expression
Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm (Gillespie 1977) to
simulate stochastic transitions between Repressed, Intermediate, and Active chromatin states, and to
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1203 simulate transcription initiation and mRNA decay events. We refer to these as “Gillespie events”. The
1204 completion of transcription to produce a complete mRNA, and subsequent ribosomal loading onto the
1205 mMRNA, are referred to as “fixed events” (they require fixed times of 1 + L / 600 minutes and 0.5 + L / 330
1206 minutes, respectively). Scheduled changes in the strength of the external signal are also fixed events.
1207 Protein production and degradation are described deterministically with ODEs, and updated frequently
1208  in order to recalculate TF concentrations and hence chromatic transition rates. Updates occur at the
1209 time of Gillespie and fixed events, and also in between as described later below.

1210

1211  The total rate of all Gillespie events is

1212
1213 Trora = Yol n 4 Yt (o e D + YA, i+ Tiranse) +
total i=1 "Rep_to_Int_i i=1\"Int_to_Rep_i Int_to_Act_i i=1\Act_to_Int_i transc
N .
1214 ¥, 77" TmrNA_deg iVmRNA i » (8)
1215

1216  where Rep, Int, and Act are the numbers of gene copies in our haploid model that are in the Repressed,
1217 Intermediate, and Active chromatin states, respectively, Nmrna_i is the number of completely transcribed
1218  mRNA molecules from gene i, and Ncpies is the total number of gene copies. We only simulate

1219 degradation of full transcribed mRNA, and not that of mRNA that are still being transcribed, because the
1220 latter are already captured implicitly by rmax_transc_init, Which is based on mRNAs that complete

1221  transcription (Brown et al. 2013). Once an mRNA finishes transcription, it is subjected to degradation
1222 regardless of whether ribosome loading is complete.

1223

1224  The waiting time Ats before the next Gillespie event is

1225

1226 Atg = —, (9)
T'total

1227

1228  where x is random number drawn from an exponential distribution with mean 1. Which Gillespie event
1229  takes place next is sampled only if a different update does not happen first. If a fixed event is scheduled
1230 to happen first at At < Atg, we advance time by Atg, update the state of the cell, and calculate a new
1231  rwtal’. Since the cellular activity has been going on with the old rate rita for Atg, the remaining “labor”
1232 required to trigger the Gillespie event planned earlier is reduced. The new waiting time, Atg’, to trigger
1233 the planned Gillespie event is

1234

1235 Atg' = Tt (10)
total

1236

1237  Gene duplication creates N > 1genes copies producing the same protein, where each copy i might have
1238  diverged in their production rate rprotein_syn_i and degradation rate rprotein_deg_i. Complete proteins are
1239  produced continuously once an mRNA molecule is fully loaded with ribosomes, which occurs 0.5 + L /
1240 330 minutes after transcription is complete — the concentration of such molecules is denoted

1241 Nmrna aft_delay_i(t). The total concentration of a protein obeys:

1242

1243 Np;rotein(t) = Z?(rprotein_syn_iNmRNA_aft_delay_i(t) - rprotein_deg_inrotein_i(t)) (11)

1244

1245 Protein concentrations are updated using a closed-form integral of Supplementary Equation 11

1246
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Tprotein_syn_iVmRNA aft_delay_i
Nprotein(tl) = Z?( P iyn l m é == + (Nprotein_i(to) -
protein_deg_i

Tprotein_syn_iNmRNA_aft_delay_i) e_rprotein_deg_i (t1 —to)) ( 12)
Tprotein_deg_i

with this expression updated every time a Gillespie or fixed event at time t; changes the value of

NmRNA_aft_deIay_i-

In between updates, values of Pa, Pr, Pa_no_r, and Pnota_no_r, and hence chromatin transition rates, are
calculated under the approximation of constant Nyrotein. Additional updates, above and beyond fixed and
Gillespie events, are performed in order to ensure that chromatin transition rates do not change too
dramatically from one update to the next. We use a target of D = 0.01 for the amount of change
tolerated in the values of Pa, Pg, Pa_no_r, @and Pnota_no_g, in Order to schedule updates after time Aty, which
are triggered when neither a Gillespie event nor a fixed event occurs before this time has elapsed, i.e.
when Aty < At and Aty < Ate.

There is the greatest potential for large changes after an update that changes the value of Nmgna_aft_delay i-
In this case, we solve for the time interval for which the probability that TF i would be bound to a single
perfect and non-overlapping TFBS would change by D, by choosing Aty > 0 that satisfies

N;i(t) _ N;(t+Aty) _
Ni()+Kqi(0)  Ni(t+Aty)+Kqi(0) =D. (13)

where the two left-hand terms are derived from Supplementary Equation 4. A solution for Aty may not
exist, e.g. if the concentration of TF i is decreasing but Py, i(t) < D. In such cases, we set Aty to infinity.

When the previous update does not change any Nmgrna_aft_delay_i Values, then we modify Aty adaptively. Let
dbe the maximum of APa, APr, APa_no_r, and AProta_no_r during the last update, and At be the advance in
time between the last two updates. We then schedule an update at

Aty' = gAt. (14)

After an update that changes the value of Nmgna_aft_delay i, We use the smaller value from Supplementary
Equations 13 and 14. These additional update times are discarded and recalculated when a Gillespie or
fixed event occurs first. Supplementary Figure 12 of Xiong et al. (2019) shows that simulations rarely
exceed the target of D = 0.01, and do so only modestly.

Cost of gene expression

The cost of gene expression comes from some combination of the act of expression and from the
presence of the resulting gene product. Yeast cells with plasmids carrying fast-degrading GFP had as
much growth impairment as those carrying wild-type GFP (Fig. 3 of Kafri et al. 2016), suggesting that the
former cost dominates. Universal costs stemming from the act of gene expression include the
consumption of energy (Wagner 2005; Wagner 2007) and the opportunity cost of not using ribosomes
to make other gene products (Scott et al. 2014). While some costs arise from transcription (Kafri et al.
2016), we simplify our model by attributing all of the cost of expression to the act of translation.
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Kafri et al. (2016) reported that, in rich media, the growth rate of haploid yeast is reduced by about 1%
when mCherry is expressed to about 2% of proteome. Setting the growth rate of the yeast when
mCherry is not expressed, i.e. the fitness, to one, we have the cost of gene expression equal to 0.01.
Next, we estimate the production rate of mCherry in Kafri et al. (2016) by assuming that mCherry is in
steady state between production and dilution due to cell division; fluorescent proteins tend to be stable
such that degradation can be ignored (Snapp 2009). Ghaemmaghami et al. (2003) estimated that a
haploid yeast cell contains about 5 X 107 protein molecules, 2% of which are now mCherry. Over a 90
minute cell cycle in Kafri et al. (2016), about 5 X 10> mCherry molecule per cell need to be expressed in
order to double in numbers. This yields a production rate of about 5 X 102 mCherry molecules per
minute per cell. Because the total cost of gene expression is 0.01, the cost at a protein production rate
of one mCherry molecule per minute per cell, Cyans), is 2 X 10°. Long genes should be more expensive to
express than short ones; for a gene of length L, we assume its cost of expression is cansil / 370, where
370 is the geometric mean length of a yeast protein as described above in “Transcription delay times”.
Results using the length of mCherry instead, i.e. a slightly higher cost of expression of cansil / 236, are
unlikely to be significantly different.

The overall cost of gene expression at time t, C(t) is:

_ Ncopies  Li
C) = Ctransl(zi=1 102568 rtransl_init_iNmRNA_aft_delay_i(t) +

Ncopi Li _TtransLiniti
Zizc;)ples 102.lsss ransz - 1NmRNA_during_delay_i(t))- (15)

The second term represents transcripts that are on average half-loaded with ribosomes, and hence
experiencing on average half the cost of translation. We integrate C(t) within segments of constant C(t)
to obtain the overall cost of gene expression during a simulation.

Mutation

Because we use an origin-fixation approach, only the relative and not the absolute values of our
mutation rates matter. In S. cerevisiae, the rates of small indels and of single nucleotide substitutions
have been estimated as 0.2 X 10710 per base pair and 3.3 X 10719 per base pair, respectively (Lynch et
al. 2008). Thus, cis-regulatory sequences are primarily shaped by single nucleotide substitutions. We do
not model small indels in the cis-regulatory sequence, but increase the single nucleotide substitution up
to 3.5 X 10710 per base pair to compensate. This corresponds to a rate of 5.25 x 10™8 per 150 bp cis-
regulatory sequence.

Lynch et al. (2008) also report a rate of gene duplication of 1.5 x 10~° per gene and of deletion of 1.3 x
107° per gene (not including non-deletion-based loss of function mutations). These values turned out to
swamp the evolution of TFBSs and hence significantly slow down our simulations, so we chose values
10-fold lower, making both gene duplication and gene deletion occur at rate 1.5 X 10~7 per gene. This
preserves their numerical excess but reduces its magnitude.

Our model contains 8 gene-specific parameters, namely L, ract to_int, 'protein_deg, Fprotein_syn, FmrNA_deg, the Ka(0)
of a TF, whether a TF is an activator vs. repressor, and the consensus binding sequence of a TF. We
assume mutations to L are caused by relatively neutral small indels, which we assume to be 20% of all
small indels; mutation to L therefore occurs at rate 1.2 X 10~ per codon, i.e. 1.2 X 10~ 1L for a gene
of length L. For ract_to_int, we assume that it is altered by 10% of all the point mutations (single nucleotide
substitution and small indels) to the core promoter of a gene. The length of a core promoter is about
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100 bp and is relatively constant among genes (Roy and Singer 2015), yielding a mutation rate of ract to_int
of 3.5 x 10~? per gene.

The remaining 6 gene-specific parameter mutation rates are parameterized with lower accuracy due to
lack to data; the principal decision is which to make dependent vs. independent of gene length. TF
binding to DNA depends on particular peptide motifs whose length is likely independent of TF length,
therefore we make mutation rates independent of gene length for mutations to K4(0), to the consensus
binding sequence of a TF, and to the activating vs repressing identity of a TF. We set the rate of each of
the three mutation types to 3.5 x 10~° per gene. In contrast, because the stability of an mRNA mainly
depends on its codon usage (Cheng et al. 2017) and thus more codons means more opportunities for
change, we assume the rate of mutation to rmsna_deg does depend on gene length, as do mutations to
protein stability rorotein_deg- protein_syn is determined by the density of ribosomes on mRNA and the
elongation rate of ribosomes, and therefore is affected both by ribosome loading speed and by slow
spots forming queues in the mRNA. Ribosome loading often relies on the 5’UTR of mRNA (Hinnebusch
2011), and 5’UTR length is positively correlated with ORF length (Tuller et al. 2009). Slow-spots in mRNA
can be due to secondary structure or to suboptimal codons, therefore are also more likely to appear by
mutation to long MRNAs, so we assume the rate of mutation to ryrotein_syn depends on gene length. We
set the mutation rates of rprotein_deg, protein_syn, aNd Fmrna_deg €ach to 9.5 X 1012 per codon; in other
words, each mutation rate is 3.5 X 10~ for a yeast gene of average length (on a log-scale) 10%°% = 370
codons.

I'act_to_int, Fprotein_syn, Kd(0), Forotein_deg, AN rmrna_deg €VOlVE as quantitative traits. They are assumed to have,
in the absence of selection, a log-normal stationary distribution with mean u and standard deviation o,
with values estimated below and listed in Supplementary Table 2. Denote the values of a parameter as x
before mutation and x” after mutation; mutation takes the form:

logi9x" = logqox + Normal(k(u — logy0x), 0), (16)

where k controls the speed of regressing back to the stationary distribution; we set k= 0.5 for all 5
parameters. To set values of i, central tendency estimates of these five values (from Supplementary
Table 1) are adjusted according to our expectations about mutation bias. We assume a mutation bias
toward faster mRNA degradation rmgna_deg, faster ract t_int (Decker and Hinton 2013; Roy and Singer
2015), slower translation initiation ryrotein_syn (Hinnebusch 2011), and larger K4(0). We assume that the
observed log-normal means of rmrna_deg, I'protein_syn, AN ract_to_int differ by 2-fold from the mean expected
from mutational bias; for example, the mean of logio(rmrna_deg) is -1.49, so the value of u for rmra_degis -
1.49 + logio(2) = -1.19. We assume a larger bias for K4(0), namely that mutation is likely to reduce the
affinity of a TF for a TFBS down to non-specific levels. Thus, we set u = logio(K4(3)) = -5 for K4(0); note
that in this case u is equal to one of the boundary values, which will be hit far more often than during
the evolution of other parameters. We assume that the observed central tendency estimate of protein
stability does not depart from mutational equilibrium, therefore the value of u for rorotein_deg is the mean
of logio(rprotein_deg) = -1.88.

The value of o controls mutational effect size. We set the value of o such that 1% of mutational changes

from x = 10% go beyond the boundary values, for simplicity approximating by considering only the closer

of the two boundary values on a log scale, i.e. we solve Supplementary Equation 17 for o:

{P(u + Normal(0, ) = log;¢By) = 0.01, if the upper bound By is closer (17)
P(u + Normal(0,0) < log,yB;) = 0.01, if the lower bound By, is closer
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For example, the upper and the lower bounds of rmgna_degare 0.54 minand 7.5 X 10™* min%; on a log-
scale, the upper bound is closer to 10# = 103 min. Plugging these values in Eq. S8 and solving for g,
we have 0 =0.396. We set the values of g for rprotein_syn, aNd Fprotein_deg iN the same way. However for
I'act_to_int, O is set according to the lower bound, even though it is the more distant from 10%, because
otherwise a stable preinitiation complex will evolve too rarely. Under this high mutational variance,
evolutionary outcomes at the two bounds are still only observed 5% of the time. For K4(0), because its
upper bound is equal to 10%, we set o to 0.776, such that 1% of mutations can change the values of K4(0)
by 100-fold or more.

Mutant values of L, ract_to_int, Forotein_syn, lprotein_deg, aNd rmrna_deg are constrained by the same bounds that
constrain the initial values of these parameters (see previous sections). If a mutation increases the value
of any of these 5 parameters to beyond the corresponding upper bound, we set the mutant value to the
upper bound; similarly for a mutant value that is smaller than the lower bound of the corresponding
parameter. For mutation to K4(0), we resample if x’ > K4(3), because otherwise the mutation effectively
“deletes” the TF by reducing its affinity to non-specific levels.
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