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ABSTRACT 27 

Transcriptional regulatory networks (TRNs) are enriched for certain “motifs”. Motif usage is 28 

commonly interpreted in adaptationist terms, i.e. that the optimal motif evolves. But certain 29 

motifs can also evolve more easily than others. Here, we computationally evolved TRNs to 30 

produce a pulse of an effector protein. Two well-known motifs, type 1 incoherent feed-forward 31 

loops (I1FFLs) and negative feedback loops (NFBLs), evolved as the primary solutions. Which 32 

motif evolves more often depends on selection conditions, but under all conditions, either 33 

motif achieves similar performance. I1FFLs generally evolve more often than NFBLs, unless we 34 

select for a tall pulse. I1FFLs are more evolutionarily accessible early on, before the effector 35 

protein evolves high expression; when NFBLs subsequently evolve, they tend to do so from a 36 

conjugated I1FFL-NFBL genotype. In the empirical S. cerevisiae TRN, output genes of NFBLs had 37 

higher expression levels than those of I1FFLs. These results suggest that evolutionary 38 

accessibility, and not relative functionality, shapes which motifs evolve in TRNs, and does so as 39 

a function of the expression levels of particular genes. 40 

 41 

INTRODUCTION 42 

The topology of transcriptional regulatory networks (TRNs) is enriched for certain motifs (Lee et 43 

al. 2002; Milo et al. 2002; Shen-Orr et al. 2002; Mangan and Alon 2003). Many argue that these 44 

motifs are the result of adaptive evolution where the motif whose dynamical behavior best 45 

provides the beneficial function is the one that will evolve (Alon 2007). However, adaptationist 46 

claims about TRN organization have been accused of being just-so stories, with adaptive 47 

hypotheses still in need of testing against an appropriate null model of network evolution 48 
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(Wagner 2003; Artzy-Randrup et al. 2004; Mazurie et al. 2005; Kuo et al. 2006; Solé and 49 

Valverde 2006; Lynch 2007; Knabe et al. 2008; Jenkins and Stekel 2010; Tsuda and Kawata 50 

2010; Widder et al. 2012; Ruths and Nakhleh 2013; Payne and Wagner 2015). We recently 51 

generated such a null model and used it to show that coherent type 1 feed-forward loops can, 52 

as hypothesized, evolve adaptively in response to selection to filter out short spurious signals, 53 

by combining a fast signaling pathway and a slow signaling pathway with an AND gate (Xiong et 54 

al. 2019). Testing the hypothesis in this way was not merely confirmatory, but generated other 55 

insights about the existence and nature of alternative adaptive solutions, especially when slow 56 

transcriptional regulation is combined with faster response mechanisms such as post-57 

translational regulation (Xiong et al. 2019). Other network motifs and properties have not yet 58 

received similar treatment.    59 

 60 

At least three different motifs (Fig. 1A) are all capable of producing a sharp pulse of expression 61 

in response to an increase in input signal (Fig. 1B) (Basu et al. 2004; Camas et al. 2006; Çağatay 62 

et al. 2009). All depend on an effector first being rapidly activated by a signal, and later, at a 63 

slower timescale, being repressed by it. These three motifs are simple auto-repression (AR), 64 

negative feed-back loops (NFBLs), and incoherent type 1 feed-forward loops (I1FFLs) (Fig. 1A). 65 

The three motifs are topologically and functionally similar to each other, differing in whether 66 

the slow repression is effected via negative autoregulation by the effector R of itself, via 67 

negative feedback regulation of R using a specialized repressor, or via a separate negative 68 

control pathway from the input to the repressor and then the effector.  69 

 70 
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The high prevalence of I1FFLs and NFBLs in TRNs has been interpreted to occur because these 71 

two motifs are adaptations for pulse generation and closely related functions (Shoval and Alon 72 

2010; Shoval et al. 2010; Ferrell 2016; Shi et al. 2017). Both I1FFLs and NFBLs allow the steady-73 

state level of the effector, before and after the pulse, to be independent of the signal strength, 74 

a property known as chemical adaptation (Ferrell 2016; Shi et al. 2017). We note that AR is 75 

normally hypothesized to perform functions other than pulse generation (Wall et al. 2004; Alon 76 

2007), but theoretical analysis and experiments show that AR can generate pulses (Rosenfeld et 77 

al. 2002; Camas et al. 2006; Amit et al. 2007). We therefore include AR for the completeness of 78 

the study, while focusing on I1FFLs and NFBLs. 79 

 80 

Which of the motifs is likely to evolve is often explained by adaptive demands for specific 81 

properties of the pulse. For example, although both I1FFLs and NFBLs allow the amplitude of 82 

the pulse to be a function of the fold-change of the signal’s strength (Shoval et al. 2010), they 83 

do so with different functional forms (Adler et al. 2014). I1FFLs and NFBLs can also differ in their 84 

ability to filter noise in the signal (Buzi and Khammash 2016).  85 

  86 

Alternatively, non-adaptive causes might be responsible for differences in the occurrence of the 87 

three motifs. An important non-adaptive consideration is that fitness landscapes tend to have 88 

many alternative local endpoints, which might take the form either of peaks (Whitlock et al. 89 

1995) or of plateaus (van Nimwegen and Crutchfield 2000). Factors such as expression levels 90 

can change the relative accessibility of different local evolutionary endpoints, in ways that are 91 

independent of differences in their heights. Note that by “non-adaptive” explanations, we do 92 
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not mean “neutral evolution”. Instead we refer to evolutionary accessibility, encompassing 93 

both which mutations occur in a single step and which hill-climbing multi-step paths are 94 

possible. This emphasis on process as non-adaptive explanation is in contrast to adaptive 95 

explanations that consider only the optimality of the final evolutionary outcome. Whether the 96 

non-adaptive explanation of evolutionary accessibility is a plausible cause is a question that in 97 

silico evolution is ideally set up to explore. We note that I1FFLs and NFBLs differ by whether it is 98 

the signal or the effector that regulates the repressor (Fig. 1A). Intuitively, the relative ease of 99 

evolving these two possible regulatory interactions with the repressor could depend on the 100 

relative expression levels of the candidate regulators.  101 

 102 

Here we simulate TRN evolution under selection to produce a pulse, and test how subtle 103 

differences between scenarios might have both adaptive and non-adaptive effects on which 104 

motifs evolves. In particular, a highly expressed effector is more able to stimulate its repressor, 105 

and we therefore predict that this scenario should be more likely to evolve regulation via an 106 

NFBL and correspondingly less likely to evolve an I1FFL. Our simulations reject adaptationist 107 

explanations – I1FFLs and NFBLs achieve similar fitness – and confirm that NFBLs are 108 

evolutionarily more accessible than I1FFLs under this scenario, but that I1FFLs are more 109 

accessible under other scenarios where a highly expressed effector is not required. Data from 110 

real-world yeast TRNs agree with model predictions, showing that the effectors of NFBLs 111 

generally have higher expression levels than those of I1FFLs.    112 

 113 
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 114 

Figure 1. Three motifs (I1FFL, NFBL, and AR) all produce a pulse of effector E expression in 115 

response to increased signal S. (A) In all three cases, rapid and direct activation of the effector 116 

by the signal is eventually countered by a slower path of repression. The three motifs differ 117 

topologically in whether repression is by the effector itself (AR), by a specialized repressor (R) 118 

that is activated by the signal (I1FFL), or by a specialized repressor that is activated by the 119 

effector (NFBL). Regular arrow tips represent activation and ⊣ represents repression. (B) With 120 

appropriate parameters, and with a delay between transcriptional activation and protein 121 

production in the case of AR, all three motifs can induce a pulse, as the initial increase in 122 

expression as S activates E is eventually tamped down by a path of repression.   123 

 124 

MATERIALS AND METHODS 125 

Transcriptional regulation 126 

Transcription factors (TFs) bind to a given TF binding site (TFBS) according to a formula based on the 127 

biophysics of the matching of the cis-regulatory sequence to the TF’s consensus binding sequence (see 128 

Supplementary Materials/TF binding for details). Briefly, in isolation from all other TFs and TFBSs, the 129 

probability Pb that a TFBS is occupied is   130 

𝑃b =
𝐶

𝐾̂d+𝐶
  131 
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where C is the total concentration of the TF and 𝐾̂𝑑 is a version of the binding affinity Kd of the TF,  132 

rescaled to account for the fact that focal TFBSs must compete for TF with many non-specific binding 133 

sites throughout the genome. From probabilities of this form, we calculate the probability that exactly A 134 

activators and R repressors are bound to a given cis-regulatory sequence, given the possibility of 135 

physical overlap among TFBSs (see Supplementary Materials/TF occupancy).  From this, we derive four 136 

probabilities that we assume regulate gene expression: 1) the probability PA of having at least one 137 

activator bound to a gene, 2) the probability PR of having at least one repressor bound, 3) the probability 138 

PA_no_R of having no repressors and one activators bound, and the probability PnotA_no_R of having no TFs 139 

bound. 140 

  141 

We model transcriptional initiation as a two-step process whose rates depend on TF binding, and 142 

parameterize those rates with reference to nucleosome disassembly followed by transcription 143 

machinery assembly (Mao et al. 2010; Brown et al. 2013). We model a repressed state of nucleosome 144 

presence, an intermediate state of a nucleosome-free transcription start site that lacks transcription 145 

machinery, and an active state. We set the transition rate from the repressed state to the active state to 146 

 147 

𝑟Rep_to_Int = 0.92𝑃A + 0.15(1 − 𝑃A), 148 

 149 

using as bounds for our linear function 0.15 min-1 as the background rate of histone acetylation (Katan-150 

Khaykovich and Struhl 2002) (which leads to nucleosome disassembly) and 0.92 min-1 as the rate of 151 

nucleosome disassembly for the constitutively active PHO5 promoter (Brown et al. 2013).   152 

 153 

We set the transition rate from the intermediate state to the active state to 154 

 155 
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𝑟Int_to_Rep = 4.11𝑃R + 0.67(1 − 𝑃R), 156 

 157 

where 0.67 min-1 is a background histone de-acetylation rate (Katan-Khaykovich and Struhl 2002) and 158 

4.11 min-1 is chosen so as to keep a similar maximum:basal rate ratio as that of rRep_to_Int. 159 

 160 

We assume that the binding of a single repressor can prevent the transition from the intermediate state 161 

to the active state (Courey and Jia 2001). In the absence of repressors, activators facilitate the assembly 162 

of transcription machinery (Poss et al. 2013). Under these assumptions, we set the transition rate from 163 

the intermediate state to the active state to  164 

 165 

𝑟Int_to_Act = 3.3𝑃A_no_R + 0.025𝑃notA_no_R, 166 

 167 

where 3.3 min-1 is the rate of transcription machinery assembly for a constitutively active PHO5 168 

promoter (Brown et al. 2013), and 0.025 min-1 is same rate when the PHO4 activator of the PHO5 169 

promoter is knocked out. 170 

 171 

We set the transition rate rAct_to_Int from the active state to the intermediate state to be gene-specific 172 

and independent of TF binding. This is because the promoter sequence not only determines which 173 

specific TFBSs are present, but also influences non-specific components of the transcriptional machinery 174 

(Decker and Hinton 2013). See Supplementary materials/rAct_to_Int for the parameterization of rAct_to_Int. 175 

 176 

Fitness 177 

Our simulations of gene expression begin with a burn-in phase of random length, to ensure that 178 

TRNs to respond to a change in the signal, rather than evolve a timer mechanism. The level of 179 
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signal is low during the stage one burn-in, which lasts for 120 + x minutes, where x is random 180 

number drawn from an exponential distribution truncated at 30, and with an un-truncated 181 

average of 10. Fitness is assessed only on the basis of stage two, which lasts for 240 minutes, 182 

plus the last 5 minutes of stage one. We sample the effector concentration at one-minute 183 

intervals. The highest effector concentration during stage two is denoted 𝑝. 184 

 185 

The fitness of a TRN has four components: the peak level of effector, a low effector expression 186 

starting point, the speed with which effector expression rises, and the speed with which it falls. 187 

Together, these four components capture the core attributes of what it means to be a pulse, 188 

and in combination, they apply consistent selective pressure first to generate any pulse at all 189 

and later to produce a superior pulse. All four fitness components are based on the expression 190 

level of the effector. For the purpose of scoring effector concentration and hence fitness, we 191 

use the total protein level of all effector proteins, including those that have diverged, following 192 

duplication, to have different regulatory activities.  193 

 194 

Fitness component one scores the match to a pre-defined peak effector expression level:  195 

 196 

𝑓1 = 𝑒
−

(𝑙𝑜𝑔(𝑝)−𝑙𝑜𝑔(𝑝𝑜𝑝𝑡))2

𝜎2 .      (1) 197 

 198 

We set the optimal peak expression level popt to 5,000 molecules per cell, 10,000 molecules per 199 

cell, or 20,000 molecules per cell, corresponding to selection for a low, medium, or high peak 200 

level, respectively. Under the assumption that the effector is a metabolism-related protein, we 201 
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chose the number 10,000 based on the average number of PDC1 protein molecules per yeast 202 

cell (Ghaemmaghami et al. 2003). The effector also acts as TF; this kind of dual functionality is 203 

not uncommon in yeast (Gancedo and Flores 2008). We set 𝜎2 = 0.693 so that when p = 204 

0.5popt, f1 = 0.5.  205 

 206 

We set fitness component two to reward low effector expression at the end of stage one:  207 

 208 

𝑓2 = {

𝑝−𝑠1

0.9𝑝
, 𝑠1 > 0.1𝑝

1, 𝑠1 ≤ 0.1𝑝
,       (2) 209 

 210 

where s1 is the arithmetic mean of the effector level across the last 5 minutes of stage one. This 211 

is chosen as a simple piecewise-linear function, which plateaus at a maximum of 1 for values of 212 

s1 below 10% of the peak level p. 213 

 214 

We set fitness component three to reward rapid turn-on of effector: 215 

 216 

𝑓3 =  {

240−𝑡ℎ𝑎𝑙𝑓_𝑝𝑒𝑎𝑘

240−𝑡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒
, 𝑡ℎ𝑎𝑙𝑓_𝑝𝑒𝑎𝑘 > 𝑡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒

1, 𝑡ℎ𝑎𝑙𝑓_𝑝𝑒𝑎𝑘 ≤ 𝑡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒

       (3) 217 

 218 

where thalf_peak is the latest time in stage 2 at which the effector level is at 0.5(s1 + p) before the 219 

effector hits its peak, and tsaturate sets a time for which making effector response still more rapid 220 

no longer increases fitness. We set tsaturate to 60 minutes.  221 

 222 
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To select for the downward slope of a pulse, fitness component four rewards falls in the 223 

effector falls to no more than 80% of the peak level by the end of stage two: 224 

  225 

𝑓4 = {

𝑝−𝑠4

0.2𝑝
, 𝑠4 ≥ 0.8𝑝

1, 𝑠4 <  0.8𝑝
      (4) 226 

where s4 is the arithmetic mean of the effector level across the last 5 minutes of stage two. 227 

Again, we chose a piecewise-linear function. We chose the relatively high value of 80% in order 228 

to select for an inclusive category of pulses. We consider pulses that eventually return all the 229 

way down to the level that prevailed before the signal (i.e. biochemical adaptation) to be a 230 

special case.  231 

 232 

In some simulations of gene expression, we observed a peak expression level that is smaller 233 

than or equal to the effector’s expression level right before the signal increases, or is even 0. In 234 

neither of these cases do fitness components Eq. 2 and/or 4 provide a useful selection gradient 235 

toward the evolution of a pulse. For simplicity, we set the fitness of these two cases to zero.  236 

 237 

In addition to the selection described above to favor a pulse, at each point in the simulation, 238 

gene expression also incurs a cost that is proportional to the total rate of translation of all 239 

genes (see Supplementary Materials/Cost of gene expression). The estimated fitness of a TRN 240 

from one gene expression simulation is the arithmetic mean of the four components minus the 241 

cumulative cost of gene expression throughout the last 360 minutes of a simulation of gene 242 

expression. 243 

 244 
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Evolution 245 

We calculate the arithmetic mean fitness fresident of the current (“resident”) TRN across 1000 246 

replicate simulations of gene expression, and the arithmetic mean fitness fmutant of the mutant 247 

across 200 replicate simulations of gene expression. If fmutant satisfies  248 

𝑓𝑚𝑢𝑡𝑎𝑛𝑡−𝑓𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡

|𝑓𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡|
≥ 10−8,    (5) 249 

we replace the resident TRN with the mutant, and re-calculate the fitness of the new resident 250 

TRN to higher resolution using an additional 800 replicate simulations of gene expression. 251 

 252 

Because gene expression is stochastic in our simulations, estimated fitness varies among 253 

replicates, and is subject to error even after averaging across many replicates. This means that 254 

our algorithm allows neutral or slightly deleterious mutations to fix.  This is sometimes even 255 

explicit; the updated fitness that includes 800 additional simulations of the successful mutant 256 

can be lower than the fitness of the TRN it replaced.  257 

 258 

Standard origin-fixation evolutionary simulations explicitly calculate a probability of fixation for 259 

each mutation and compare it to a pseudo-random number to decide whether fixation occurs. 260 

Our model achieves a similar exploration of nearly neutral evolutionary paths by using the 261 

intrinsic uncertainty in the stochastic estimation of fitness. Our approach wastes as few 262 

beneficial mutations as possible, minimizing computation, rather than discard most beneficial 263 

mutations through the use of a fixation probability that is only around twice the selection 264 

coefficient (Haldane 1927). For example, in our simulations, we accepted 0.5 million out of 1.9 265 

million trialed mutations across 10 evolution replicates in the high-peak condition, of which 266 
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only a minority can be presumed to have achieved true fitness increases (Fig. S1). Importantly, 267 

fixation probability in our algorithm still depends on the size of the true underlying fitness 268 

difference, which controls the probability that the estimated selection coefficient in Eq. 5 will 269 

be positive.  270 

  271 

Counting network motifs  272 

We count I1FFLs and NFBLs formed by the signal, an effector gene, and a repressor gene that is 273 

different from the effector gene, with interactions between them as shown in Fig. 1A. We 274 

count ARs formed by the signal and an effector gene. We score gene A as potentially regulating 275 

gene B, i.e. creating one of the links shown in Fig. 1A, if there is a TFBS for A in the cis-276 

regulatory sequence of B. We allow genes in I1FFLs and NFBLs to self-regulate. An overlapping 277 

I1FFL in which the effector and the auxiliary TF repress each other is counted not as two I1FFLs, 278 

but rather as a different (and rarer) type of network motif. Overlapping I1FFLs evolve rarely.   279 

 280 

Given that two mismatches to an 8-bp consensus sequence still yield above-background 281 

binding, a random 8-bp sequence qualifies as a weak affinity TFBS with probability (8
2
) ×282 

0.752 × 0.256 = 0.0038. Each cis-regulatory sequence contains around 300 8-bp potential 283 

binding sites (including both orientations of a 150 bp cis-regulatory sequence), among which 284 

1.14 will on average qualify by chance as a two-mismatch TFBS for a given TF. These two-285 

mismatch TFBSs, occurring so often by chance, usually have low affinity, and therefore might 286 

have little regulatory effect. It is for this reason we refer to them above as potential regulatory 287 

interactions – our previous work has shown that motifs can appear more clearly when weak 288 
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affinity TFBSs with little regulatory effect are excluded (Xiong et al. 2019). Four types of 289 

spurious two-mismatch TFBSs can create apparent but non-functional I1FFLs and NFBLs: S → 290 

TF, E → TF, TF → E, and E → E (Fig. S2), where “TF” refers here to a transcription factor that is 291 

not an effector. Because it is computationally expensive to test whether each two-mismatch 292 

TFBS is spurious, we instead tested all cases at a time for each of the four types listed above. 293 

Specifically, we recalculate the fitness of the TRN while ignoring all 2-mismatch TFBSs of that 294 

type, across 1,000 gene expression simulations, and deem the entire set of TFBSs spurious if the 295 

recalculated fitness is at least 99% of the original fitness (see Fig. 2 legend for variations on this 296 

criterion). We ignore spurious connections while scoring network motifs.  297 

 298 

Mutations that create and destroy motifs 299 

For each evolutionary replicate, we identified the evolutionary steps at which the number of 300 

instances of a given motif changes to or from zero, which we call “motif-destroying-mutations” 301 

and “motif-creating-mutations”, respectively. We removed spurious TFBSs before scoring 302 

motifs, as described in the last section, with one modification: to save computation related to 303 

mutations that were trialed and then rejected by selection, we used only 200 gene expression 304 

simulations to determine fitness without the TFBS in question, with a threshold of 98% of 305 

original fitness. Mutations that change the expression levels of a gene and/or the binding 306 

affinity of a TF can potentially change whether a two-mismatch TFBS is “spurious” in terms of 307 

fitness effects, effectively rewiring the TRNs even if they do not create or destroy core TFBSs of 308 

the motif in question.  309 

 310 
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Expression levels of TFs in yeast TRN 311 

We used YeastMine (Balakrishnan et al. 2012) to retrieve 129 S. cerevisiae genes that have the 312 

GO term “DNA-binding transcription factor activity” or children of this GO term. We then 313 

searched Yeastract (Teixeira et al. 2006) for TFs that regulate these 129 TFs, demanding 314 

evidence from both DNA binding and gene expression. When the search found new TFs that are 315 

not included in list given by YeastMine, the new TFs were added to the list and fed to Yeastract 316 

again. We stopped the iterative search when no new TFs were found, and the final list has 203 317 

TFs. Yeastract annotates interactions between pairs of TFs as activating, repressing, or both. 318 

When annotated as “both” (i.e. likely condition-specific), we interpreted it as whichever 319 

interaction mode would be needed in order to complete a motif. We scored I1FFLs, NFBLs, and 320 

their conjugates from all combinations of three TFs out of the 203, allowing E and/or R to be 321 

self-repressing. Because the effectors of NFBLs must be activators, we excluded I1FFLs whose 322 

effectors are repressors in case there is a systematic difference in expression between 323 

activators and repressors. In total, we identified 46 NFBLs, 30 I1FFLs, and 7 I1FFL-NFBL 324 

conjugates.  325 

 326 

To assess peak expression level, we used the data of Gasch et al. (2000), who applied multiple 327 

stimuli to yeast and measured the fold-change in RNA expression of all genes relative to pre-328 

stimulus expression levels. We analyzed data on exposure to 10 stimuli: amino acid starvation, 329 

nitrogen depletion, sorbitol osmotic shock, temperature shift from 25° to 37°, diamide, 330 

hydrogen peroxide, menadione disulfate, diauxic shift, dithiothreitol, and transition to a 331 

stationary phase of growth. Following each stimulus, fold-change was recorded over several 332 
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time points. We consider an effector gene to exhibit pulse-like expression if the maximum fold-333 

increase in expression occurs prior to the last time point and has a larger magnitude than that 334 

of the maximum fold-decrease in expression; we excluded gene-stimulus combinations that do 335 

not meet this criterion from further analysis. For input and repressor genes, we did not require 336 

a pulse, but merely that the stimulus led to increased expression (measured as average fold-337 

change across time points), and that the maximum fold-increase was larger than the maximum 338 

fold-decrease. We excluded repressor-stimulus and input-stimulus combinations that failed to 339 

meet both criteria. 340 

 341 

We note that the same gene can occupy the same position within multiple motifs. For example, 342 

GAT1 is the effector in 18 NFBLs and one I1FFL, suggesting that this gene might be particularly 343 

well-suited for function within NFBLs. To compare gene expression between I1FFLs and NFBLs, 344 

we weighted the fold-change in expression of a given gene by the frequency with which that 345 

gene appears in the motif of interest, e.g. weights of 18/19 and 1/19 for GAT1’s appearance as 346 

an effector in NFBLs and I1FFLs, respectively. For I1FFL-NFBL conjugates, we assign half-weights 347 

to both I1FFLs and NFBLs.  348 

 349 

We complemented this peak-RNA-expression analysis with an analysis of the average protein 350 

levels (i.e. not peak levels), taken from PaxDB (Wang and Purisima 2005). One analysis is 351 

restricted to a March 2013 data set originally compiled by PeptideAtlas (Desiere et al. 2006) to 352 

show the abundances of peptides in S. cerevisiae pooled across 90 experiments, which include 353 

normal growth conditions and perturbed growth conditions, e.g. cell cycle arrest and metabolic 354 
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perturbation. We also used another data set “GPM, Aug, 2014” from PaxDB, which has more 355 

genes than “PeptideAtlas, March 2013” (5289 versus 4828). While we could not find a detailed 356 

description for this GPM (the Global Proteome Machine) (Craig et al. 2004) dataset, GPM 357 

generally includes data from PeptideAtlas (Craig et al. 2004), meaning that this data similarly 358 

includes both normal growth conditions and perturbed growth conditions. Weighted average 359 

protein levels were calculated with the same weighting scheme as for fold-change of gene 360 

expression.          361 

 362 

Data Availability 363 

The source code for our computational model is available at 364 

https://github.com/MaselLab/network-evolution-simulator/tree/I1_FFLs. 365 

 366 

RESULTS 367 

Model overview 368 

We used a previously described computational model to simulate the expression of genes in a 369 

TRN, parameterized by available Saccharomyces cerevisiae data (Xiong et al. 2019). Fig. S3 370 

summarizes the model, and the model parameters are summarized in Tables S1 and S2. The 371 

TRN evolves under a realistic mutational spectrum including de novo appearance of weak-372 

affinity TFBSs, and frequent gene duplication and deletion. Briefly, each gene in the TRN 373 

encodes either an activating or repressing TF, and each is regulated by a 150-bp cis-regulatory 374 

sequence accessible to TF binding. Each TF recognizes an 8-bp consensus binding sequence with 375 

a characteristic binding affinity. Binding sites with up to two mismatches are still recognized, 376 
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with each mismatch reducing binding affinity according to a thermodynamic model 377 

(Supplementary Materials/TF Binding). TFs can bind in either orientation. Each TF that binds to 378 

DNA occupies three extra base pairs upstream and downstream of the consensus sequence, 379 

making a total of 14 bp inaccessible to other TFs. The concentrations of TFs are used to 380 

calculate the probabilities that each cis-regulatory region is bound by a given number of 381 

activators and repressors (see Methods).  382 

 383 

To simulate gene expression, we assume that each gene transitions between an active 384 

chromatin state that can initiate transcription, an intermediate primed state capable of 385 

becoming either activated or repressed, and a repressed chromatin state. Most transition rates 386 

depend on whether activators and/or repressors are bound (see Methods), with the fastest 387 

transition rate to the active state occurring when at least one activator and no repressors are 388 

bound. The transcription initiation rates of mRNAs from active genes are gene-specific, and so 389 

are the degradation rates. Note that the above rates (including the transition rates between the 390 

states of genes) are expectations; exactly when a reaction (e.g. one of gene A’s mRNAs is 391 

degraded) happens is simulated stochastically using a Gillespie algorithm (Gillespie 1977). 392 

Conceptually, the algorithm allows one event to happen at a time, with the cellular state 393 

remaining unchanged between events. The waiting time between two events has an 394 

exponential distribution, with a mean specified by the total reaction rates. Once the time of an 395 

event is sampled, the algorithm randomly picks an event (e.g. degrading gene A’s mRNA) based 396 

on the reaction’s relative rate, and changes the cellular state according to the event (e.g. there 397 

is one less mRNA of gene A in cell). See Supplementary materials for details.  398 
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  399 

Each mRNA produces protein at a gene-specific translation rate. Once transcription is initiated, 400 

we simulate a delay before mRNA can be translated at full speed. The delay accounts for the 401 

completion of both transcription and the loading of ribosomes to mRNA, and is a function of 402 

gene length (Supplementary materials/Transcriptional delay and Translational delay). Because 403 

tracking the turnover of individual protein molecules with a Gillespie algorithm is 404 

computationally expensive, we calculate the turnover of proteins with ordinary differential 405 

equations (Supplementary materials/Simulation of gene expression).   406 

 407 

To select for pulse generation, we designate an input signal to the TRN, which binds to cis-408 

regulatory regions like any other TF, but whose concentration is set externally rather than being 409 

regulated by other TFs in the TRN. The input signal always activates gene expression. Signal 410 

concentration is low and constant during a burn-in phase, where genes are initialized with a 411 

repressed chromatin state, and begin with zero non-signal mRNA and protein. Then in stage 2, 412 

the signal instantly switches to a high level, and selection is applied for a TF designated to be 413 

the “effector” to exhibit pulse-like expression. High fitness depends on having low effector 414 

expression at the end of stage 1, matching a pre-defined peak effector concentration during 415 

stage 2, rapidly increasing effector level after stage 2 begins, and having a low effector level at 416 

end of stage 2. Details of the signal and fitness calculation are given in the Methods. 417 

 418 

We initialize an evolutionary simulation with a randomly generated genotype of 3 activator 419 

genes, 3 repressor genes, and an effector gene. The effector is initialized as an activator, which 420 
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makes NFBLs more accessible than ARs (although below we will explore the effects of switching 421 

this). All quantitative gene-specific parameter values, such as transcriptional rates and gene 422 

length, are randomly initialized according to empirically estimated distributions (see Table S1 423 

and Supplementary materials). 424 

 425 

We simulate five classes of mutations. Table S2 lists the corresponding mutation rates and 426 

details of the parameterization are provided in the Supplementary materials. A class-one 427 

mutation is a duplication or deletion of one gene along with its cis-regulatory sequence. The 428 

maximum number of genes is capped at four effector genes plus 21 non-effector genes 429 

(excluding the signal) to limit computational cost. Once this limit is reached, no duplication 430 

mutations are allowed. In addition, once any give gene is present in four copies, none of the 431 

copies are duplicated until one is again lost by deletion. Neither the last effector gene nor the 432 

last non-effector gene are subject to deletion. The signal is subject neither to duplication nor to 433 

deletion.  434 

 435 

Class-two mutations are single nucleotide substitutions in the cis-regulatory sequences, which 436 

can cause TFBS turnover. Mutations change one nucleotide to one of the other three 437 

nucleotides with equal probabilities.  438 

 439 

Class-three mutations change quantitative gene-specific parameters, i.e. the rate at which 440 

transcriptional bursts end, gene length, mRNA degradation rate, protein synthesis rate, protein 441 

degradation rate, and the affinity of a TF to DNA. All quantitative gene-specific parameters 442 
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except length are subjected to mutational bias, e.g. mutation tends to reduce the affinity of TF 443 

binding. In case this is insufficient to ensure the values of the mutatable parameters never go 444 

beyond reasonable limits, we also apply hard bounds (see Supplementary materials/Mutations 445 

for details).  446 

 447 

Class-four mutations convert transcription activators to repressors (or the reverse). This 448 

mutation does not apply to the input signal, i.e. the input signal is always an activator.  449 

 450 

Class-five mutations change a single nucleotide preference in a TF’s consensus binding 451 

sequence. One of the other three nucleotides is chosen for the consensus binding sequence 452 

with equal probabilities.  453 

 454 

When gene duplicates differ due only to class-three mutations, the duplicates are considered as 455 

“copies” of the same gene, encoding “protein variants”. Once a class-four or class-five mutation 456 

is applied to a gene duplicate, the duplicate becomes a new gene encoding a new protein. 457 

When scoring motifs, we require that each node be a different protein.         458 

 459 

Evolution is simulated using the revised origin-fixation model introduced by Xiong et al. (2019). 460 

Briefly, the resident genotype experiences one mutation, chosen according to the relative rates 461 

of all possible mutations. The fitness of the original resident TRN and of the mutant TRN is 462 

calculated by simulating gene expression in response to an input signal (see Methods for 463 

details). If the estimated fitness of the mutant is sufficiently high (see Methods for details), the 464 
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mutant replaces the resident genotype. Note that estimated fitnesses include stochasticity 465 

from the simulation of gene expression, which serves to introduce a form of genetic drift. If no 466 

replacement occurs, we generate a new mutant and repeat the procedure until a replacement 467 

is found. We call a replacement an evolutionary step, and end each simulation after 50,000 468 

evolutionary steps. We use the average fitness of the last 10,000 evolutionary steps to 469 

determine whether evolution has found a good solution.  470 

 471 

High peak expression level non-adaptively promotes NFBLs  472 

We evolve TRNs under selection to generate a pulse of effector expression in response to a 473 

sudden 10-fold increase in input. While any of the three network motifs can solve this 474 

challenge, a highly expressed effector is more capable of stimulating its repressor, and thus this 475 

solution should be more likely to evolve regulation via an NFBL and correspondingly less likely 476 

to evolve an I1FFL. Note that this prediction is expected on both adaptive grounds of which 477 

solution might be superior, and on non-adaptive grounds of which solution is easier for 478 

evolution to find. 479 

 480 

To test this prediction, we vary the optimal peak level of the effector (see Methods for details 481 

of fitness function). In silico evolution from a random starting point is not always successful at 482 

reaching the target phenotype, so we focus on the most evolutionarily successful simulations. 483 

We do this by dividing evolutionary replicates into three categories based on final fitness (Fig. 484 

S4). See Fig. S5 for examples of the phenotypes of the high-fitness replicates. 485 

 486 
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High-fitness solutions rarely involve AR under any of the three selection conditions, while both 487 

I1FFLs and NFBLs evolve often (Fig. 2A). As predicted, when we select for higher effector 488 

expression, we get more NFBLs and fewer I1FFLs (Fig. 2A). These NFBLs were absent from 489 

medium-fitness solutions, which instead employed I1FFLs or ARs (Fig. S9A), generally achieving 490 

lower peak effector expression than in the high-fitness solutions (Fig. S9B). While this seems to 491 

suggest that NFBLs might be adaptively superior, if we prevent one type of motif from evolving, 492 

similarly high fitness genotypes can be obtained via the other motif (Figs. 2B and S8). The 493 

reason we get more NFBLs and fewer I1FFLs with selection for higher peak effector expression 494 

is therefore not straightforward adaptive superiority of the former, but rather the relative ease 495 

of finding high-fitness solutions. 496 

 497 

 498 

Figure 2. Selection for high peak effector expression levels promotes NFBLs. (A) TRNs are 499 

evolved under selection to generate pulses in response to an input signal. Under all three 500 

selection conditions, the input signal starts with 100 molecules per cell and increases to 1,000 501 

molecules per cell to trigger a pulse. Three versions of the evolutionary simulations select for 502 

three different optimal peak effector levels of the effector: low (Popt = 5,000 molecules per cell), 503 
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medium (Popt = 10,000 molecules per cell), and high (Popt = 20,000 molecules per cell). For each 504 

high-fitness genotype (Fig. S4), we calculate the proportion of evolutionary steps that contain 505 

at least one network motif of the specified type among the last 10,000 evolutionary steps (out 506 

of a total of 50,000 evolutionary steps). When scoring for motifs, non-functional spurious TFBSs 507 

were excluded (see Methods for details, and Fig. S6 for results using different TFBSs exclusion 508 

criteria). R can be auto-regulating (not shown in circuit diagram). On rare occasions, AR co-509 

occurred with I1FFLs or overlapping I1FFLs (labelled here I1FFL + I1FFL) (Fig. S7), and these few 510 

cases were included in the scoring of I1FFL and overlapping I1FFL frequencies. (B) Preventing 511 

either NFBLs or I1FFLs from evolving does not lower the final fitness within high-fitness 512 

evolutionary simulations. Instead, genotypes obtained equally high fitness by evolving the other 513 

common motif (Fig. S8). To prevent NFBLs from evolving, we remove the TF binding activity of 514 

effectors; this also prevents the evolution of the AR auto-repression motif. To prevent I1FFLs 515 

from evolving, we ignore TFBSs for the signal in the cis-regulatory sequence of any repressors. 516 

Because this might have unintended consequences for mutations that convert repressors 517 

to/from activators, we set to zero the rate of mutations that effect this conversion. Data are 518 

shown as mean ± SE over replicates. 519 

 520 

Early bias toward I1FFLs can shift to later NFBL evolution via I1FFL-NFBL conjugates    521 

The combined frequency of the two motifs rises throughout the long period of evolution, rather 522 

than topological solutions being found early and becoming locked in and only incrementally 523 

improved on. However, the frequency of I1FFLs in particular rises prominently during the first 524 
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10,000 evolutionary steps (Fig. 3), even under selection for high peak effector levels, i.e. 525 

selection that ultimately leads to an evolutionary preference for NFBLs (Fig. 3C). 526 

 527 

 528 

Figure 3. Evolution of I1FFLs and NFBLs follow different trajectories. We score motif 529 

occurrence during different time periods along the way to the evolution of the high-fitness 530 

replicates shown in Fig. 2A. See Fig. S10 for the occurrence of other motifs during evolution. 531 

As in Fig. 2A, we calculated the proportion of evolutionary steps that contain at least one 532 

network motif of the specified type. Note that because some evolutionary replicates oscillate 533 

between motif presence and absence, given the potential for slightly deleterious mutations in 534 

our evolutionary algorithm, the fraction of evolutionary replicates that frequently show the 535 
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motif in question is higher than the probability of presence in one evolutionary step as shown 536 

here. Data are shown as mean ± SE over replicates.  537 

 538 

To further test this point, we made the early evolution of NFBLs less accessible by initializing 539 

the effector as a repressor. While this reduced the frequency of NFBLs even under selection for 540 

a high peak, those NFBLs that still evolved reached similar performance to I1FFLs (Fig. S11). This 541 

further supports early evolutionary accessibility as a key factor.  542 

 543 

The relative ease of I1FFL evolution could be because more mutations create I1FFLs and/or 544 

because mutations creating I1FFLs have higher acceptance rates. To explore this further, we 545 

characterize the mutations that create I1FFLs and/or NFBLs in TRNs that do not currently 546 

contain such a motif. I1FFL-creating mutations occur at a higher rate than NFBL-creating 547 

mutations under selection for low-peak and medium-peak expression, while NFBL-creating 548 

mutations are more common under selection for high-peak expression (Table 1). The rarity of 549 

NFBL-creating mutations becomes much more pronounced when we restrict our analysis to 550 

mutations that do not also destroy or create another motif – this tendency holds even under 551 

conditions that favor NFBLs, i.e. late in evolution under selection for high-peak expression 552 

(Table 1). Greater mutational accessibility of the I1FFL motif is clearly one of the factors 553 

favoring this motif.  554 

 555 

The early evolution of I1FFLs is also facilitated by the higher acceptance rate of I1FFL-creating 556 

mutations relative to NFBL-creating mutations, particularly during the first 10,000 evolutionary 557 
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steps (Table 1). Similarly, I1FFL-destroying mutations are accepted less often than NFBL-558 

destroying mutations are, in this case throughout the course of evolution and regardless of 559 

target peak expression (Table S4). Note that mutations that create one motif frequently destroy 560 

another, with NFBL-creating mutations more prone to this problem than I1FFL-creating 561 

mutations (Table 2). While some such disruptive mutations are accepted by our evolutionary 562 

algorithm (Table 2), acceptance rates are higher for non-disruptive mutations (Table 1). If we 563 

restrict our analysis to non-disruptive mutations, we see stronger mutation bias toward I1FFLs, 564 

and more similar acceptance rates for I1FFLs vs NFBLs (Table 1). In other words, a shortage of 565 

non-disruptive NFBL-creating mutations is an obstacle to the evolution of NFBLs. NFBL-creating 566 

mutations that destroy I1FFL-NFBL conjugates are both more common and more likely to be 567 

accepted than NFBL-creating mutations that destroy I1FFLs (Table 2). This suggests that I1FFL-568 

NFBL conjugates might be an important intermediate step in the evolution of NFBLs, rather 569 

than NFBLs evolving de novo. This makes sense; after early evolution of an I1FFL provides a 570 

partial solution to the selective challenge, the evolutionary path to an NFBL does not abandon 571 

that I1FFL solution, but instead passes through a combined I1FFL-NFBL intermediate. The 572 

evolutionary path from an early partial I1FFL solution might lead either to a superior I1FFL or to 573 

an NFBL, with the potential to achieve similarly high fitness in either case.  574 

 575 

peak 
level 

 

Evolutionary step 1 – 10,000 Evolutionary step 10,001 – 30,000 

all mutations non-disruptive mutations all mutations non-disruptive mutations 

Trialed 
Acceptan

ce rate 
Trialed 

Acceptance 
rate 

Trialed 
Acceptance 

rate 
Trialed  

Acceptance 
rate 

Low I1FFL-creating 0.049 0.171 0.0038 0.606 0.077 0.142 0.0019 0.550 
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Table 1. Summary of mutations that create I1FFLs and/or NFBLs. We identify the accepted and 576 

rejected mutations that increase the number of I1FFLs and/or NFBLs in a TRN to above zero 577 

(see Methods for details). Among these mutations, “non-disruptive mutations” are those that 578 

create the given motif but do not otherwise alter the numbers of I1FFL (when NFBLs are 579 

created), NFBLs (when I1FFLs are created), I1FFL-NFBL conjugates, overlapping I1FFLs, and 580 

auto-repressors. For each selection condition and evolutionary stage, we pooled the qualified 581 

mutations from all high-fitness replicates shown in Fig. 2A. The total numbers of mutations of 582 

the given type were normalized by dividing by the total number of mutations trialed in resident 583 

TRNs that did not already have the motif in question. The acceptance rate shown in the table is 584 

the number of accepted mutations across all replicates divided by the number of trialed 585 

mutations across all replicates. Pseudoreplication may be a concern here; if the initial TRN 586 

tends to create one motif over the other, this might be propagated at all subsequent time 587 

points for that evolutionary replicate. However, Table S3 shows that the initial mutational bias 588 

of a TRN can flip at a later stage of evolution.  589 

 590 

peak level   

Evolutionary step 1-10,000 Evolutionary step 10,001-30,000 

Destroys I-N 
conjugates 

accept. 
rate 

Destroys 
I or N 

accept. 
rate 

Destroys I-N 
conjugates 

accept. 
rate 

Destroys 
I or N 

accept. 
rate 

Low 
I1FFL-creating 0.461 0.108 0.101 0.169 0.529 0.092 0.106 0.183 

NFBL-creating 0.924 0.060 0.443 0.037 0.883 0.048 0.443 0.034 

Medium 
I1FFL-creating 0.643 0.048 0.100 0.137 0.647 0.056 0.132 0.108 

NFBL-creating 0.920 0.082 0.314 0.051 0.928 0.070 0.280 0.053 

NFBL-creating 0.026 0.078 0.00074 0.544 0.024 0.062 0.00028 0.504 

Medium 
I1FFL-creating 0.072 0.102 0.0031 0.607 0.088 0.083 0.00091 0.432 

NFBL-creating 0.043 0.097 0.00084 0.694 0.049 0.078 0.00032 0.507 

High 
I1FFL-creating 0.036 0.114 0.0017 0.546 0.039 0.063 0.00027 0.411 

NFBL-creating 0.097 0.072 0.0017 0.642 0.147 0.069 0.00026 0.476 
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High 
I1FFL-creating 0.466 0.047 0.255 0.148 0.611 0.021 0.274 0.090 

NFBL-creating 0.962 0.060 0.307 0.051 0.962 0.064 0.234 0.047 

Table 2. Most NFBL-creating mutations also destroy other motifs. A high fraction of trialed 591 

mutations that create a given motif also destroy I1FFL-NFBL conjugates, and many also destroy 592 

NFBLs (in the case of I1FFL-creating mutations) or I1FFLs (in the case of NFBL-creating 593 

mutations). Destructive mutations are accepted at significant rates. Qualified mutations are 594 

pooled across all evolutionary replicates. See Methods for details about the identification of 595 

mutations that create and/or destroy motifs.  596 

 597 

Indeed, I1FFL-NFBL conjugates (and NFBLs) are also often converted by mutation into simple 598 

I1FFLs. However, under selection for high peak effector expression, the acceptance rate of such 599 

mutations decreases over evolutionary time (Table 2). Peak effector expression increases 600 

during evolution (Fig. S12); this could drive increased preference for the now more highly 601 

expressed effector rather than the signal to control the repressor. In medium-fitness 602 

evolutionary replicates, high peak effector expression is not achieved, and NFBLs rarely evolve 603 

(Fig. S9). By the same logic, we hypothesize that strengthening the input signal should promote 604 

I1FFLs even under selection for a high effector peak. This is indeed the case, with promotion in 605 

particular of the evolution of the I1FFL-NFBL conjugate (Fig. S13).  606 

 607 

Highly expressed effectors tend to be regulated by NFBLs in yeast 608 

Next we tested our model predictions about when I1FFLs vs. NFBLs tend to evolve. We 609 

identified NFBLs, I1FFLs and I1FFL-NFBL conjugates in the TRN of S. cerevisiae, using Yeastract 610 

annotations of regulatory interactions between TFs (see Methods). Using data from Gasch et al. 611 
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(2000), we identified genes that display pulse-like expression in response to an environmental 612 

stimulus, and the peak heights of the pulses (measured as the fold-change of RNA expression 613 

levels relative to the expression level before the stimulus). In agreement with our model 614 

prediction, the effectors of NFBLs reach higher peaks than those of I1FFLs following stimulus 615 

(Fig. 4A). However, the input signals of NFBLs increase their expression more in response to 616 

stimuli than do those of I1FFLs (Fig. 4A), which disagrees with our model prediction. We note 617 

that the 46 NFBLs in our dataset involve 26 unique genes as the input signal and 8 as the 618 

effector, while the 30 I1FFLs involve 14 signals and 9 effectors. This raises the possibility that 619 

the more diverse signal inputs of the NFBLs might contain more false positive hits.    620 

 621 

We also analyzed yeast protein expression levels from PaxDB, averaged across multiple 622 

environmental conditions rather than measured in response to stimuli (see Methods). We 623 

found that effector TFs generally have higher expression in NFBLs than in I1FFLs (Fig. 4B). Note 624 

that the direction of causation is not known from the empirical data alone: when an effector 625 

already has high expression this might prompt the evolution of NFBL, or the presence of an 626 

NFBL might facilitate the evolution of high effector expression. The theoretical work presented 627 

here presents non-exclusive proof of principle in support of the former interpretation. 628 

 629 
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 630 

Figure 4. Effector TFs in yeast NFBLs have higher expression than those in I1FFLs. (A) Peak 631 

height of pulses was measured as the maximum fold-increase in RNA expression in response to 632 

one of 10 stimuli (see methods for details), for the subset of genes showing pulse-like RNA 633 

expression during the former in the RNA expression data of Gasch et al. (2000). (B) Average 634 

fold-change in signal and repressor RNA expression in response to stimuli, for the subset that 635 

showed an increase (see Methods). (C) Protein levels under normal conditions were taken from 636 

the “PeptideAtlas, March, 2013” dataset provided by PaxDB (Wang et al. 2015). A weaker result 637 

was obtained using a different dataset from PaxDB that includes a larger set of gene-638 

environment combinations (Fig. S14). For fold-change in expression, data are shown as mean ± 639 

SE over each network position across all instances of the motif. The procedure is similar for 640 

protein abundance, except the data is first log transformed. For each motif, we list the numbers 641 

n of unique gene-stimulus combinations where pulse-like expression is observed at a signal 642 

node (S), effector node E, or repressor node R. p-values come from two-tailed t-tests.  643 

 644 

DISCUSSION 645 

We selected for a pulse generator in an evolutionary simulation model and observed which TRN 646 

motifs emerged. As predicted, selecting for high peak expression level of the effector promotes 647 
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NFBLs over I1FFLs, while a strong input signal promotes I1FFLs. However, if one motif is 648 

prevented from evolving, the other motif can evolve to take its place, with no loss of peak 649 

fitness, suggesting that the preference between motifs is not adaptive in origin, i.e. is not about 650 

which motif is optimal. One predicted pattern is confirmed in the actual TRN of S. cerevisiae, 651 

where the effector’s expression level is higher in NFBLs than in I1FFLs.    652 

 653 

Both mutational accessibility (i.e. how often mutations create the given motif) and selective 654 

acceptance rates (Yampolsky and Stoltzfus 2001; Stoltzfus and McCandlish 2017; Gomez et al. 655 

2020) contribute to patterns of relative evolutionary accessibility. Note that the motif created 656 

by larger-effect beneficial mutations need not be better at generating a pulse. The latter is what 657 

is meant by an “adaptive” explanation for the dominance of I1FFL over NFBL (or the vice versa) 658 

(Gould and Lewontin 1979). A non-adaptive evolutionary explanation can include a role of 659 

selection or an increase in fitness during evolution, but emphasizes process rather than final 660 

fitness as the cause of bias in evolutionary outcomes.     661 

 662 

Usually mutational accessibility and selective acceptance rates point in the same direction, but 663 

not always:  I1FFLs are less mutationally accessible under early selection for high peak effector 664 

expression, but have a relatively high mutation acceptance rate. The higher acceptance rates 665 

for I1FFL-creating mutations do not reflect functional superiority of I1FFLs, but rather the fact 666 

that creating NFBLs frequently involves destroying other, likely functional, motifs. Avoidance of 667 

damage to existing functions has been previously noted in other discussions of the evolutionary 668 

paths taken by TRNs (Wagner 2003; Carroll 2008; Stern and Orgogozo 2009; Sorrells and 669 
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Johnson 2015). The mutational accessibility of different motifs is not static, but changes over 670 

the course of an evolutionary path (Table S3).  671 

 672 

We did not pit the performance of I1FFLs and NFBLs versus the evolutionary accessibility of the 673 

two motifs, because both motifs had indistinguishable performance in our system. We are 674 

therefore unable to answer whether the evolutionary accessibility of motifs can alter the 675 

evolutionary outcome predicted by performance of motifs. However, finding in our system that 676 

high fitness solutions can often be found one way or another is intriguing in its possible 677 

generality. 678 

 679 

We find that most NFBLs evolve not from connecting previously disconnected genes (e.g. 680 

S->E->R), but rather from uncoupling I1FFL-NFBL conjugates in favor of a pure NFBL. We 681 

simulate only relatively small TRNs, due to limitations in computational power, and this might 682 

restrict the evolutionary trajectories that are capable of generating network motifs. If 683 

simulation algorithms that scaled better with TRN size were devised, it would be interesting to 684 

explore whether network motifs would evolve via different trajectories in larger TRNs. For 685 

example, the use of the same TF for multiple regulatory purposes in real-world TRNs, which of 686 

course are larger, can constrain network evolution, requiring complex trajectories to achieve a 687 

new regulatory function (Sorrells et al. 2015). 688 

 689 

We predicted via simulations that a highly expressed effector should promote the evolution of 690 

NFBLs over I1FFLs. Strikingly, this prediction was borne out in empirical data from yeast. A 691 
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highly expressed TF can more strongly regulate its target, and/or reduce the amount of noise 692 

propagated downstream (Pedraza and van Oudenaarden 2005; Jothi et al. 2009). Once a highly 693 

expressed TF gains a TFBS in the target gene, the TFBS may also be easier to retain during 694 

evolution. Many studies on TRNs have noted a systematic difference among the expression 695 

levels of genes at topologically different positions (Herrgård et al. 2003; Yu et al. 2003; Jothi et 696 

al. 2009; Gerstein et al. 2012), and that highly expressed TFs are often regulators of multiple 697 

target genes (Jothi et al. 2009; Gerstein et al. 2012). Our findings also support the idea that the 698 

observed network motifs in TRNs are partially shaped by the expression levels of TFs. 699 

 700 
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Supplementary materials 843 

 844 
Table S1. Major model parameters(1)  845 

Parameter  Values(2) Bounds(3) References 
Length of cis-regulatory sequence 150 bp  (Yuan et al. 2005) 
Length of TF recognition sequence 8 bp  (Wunderlich and Mirny 2009) 
Length occupied by a TF on each side of recognition sequence 3 bp  (Zhu and Zhang 1999) 
Dissociation constant between TF and perfect TFBS, Kd(0)  10U(-9,-6) mole per liter(4)  (0, 10-5)  (Park et al. 2004; Nalefski et al. 2006) 
Dissociation constant between TF and non-specific DNA, Kd(3) 10-5 M  (Maerkl and Quake 2007) 
Base rate of transition from Repressed to Intermediate  0.15 min-1  (Katan-Khaykovich and Struhl 2002) 

Maximum transition rate from Repressed to Intermediate  0.92 min-1  
(Katan-Khaykovich and Struhl 2002; 

Brown et al. 2013) 
Base rate of transition from Intermediate to Repressed 0.67 min-1  (Katan-Khaykovich and Struhl 2002) 

Maximum transition rate from Intermediate to Repressed  4.11 min-1  
Chosen to give same dynamic range 

and Repressed to Intermediate 
Base rate of transition from Intermediate to Active  0.025 min-1  (Brown et al. 2013) 
Maximum transition rate from Intermediate to Active  3.3 min-1  (Brown et al. 2013) 

Transition rate from Active to Intermediate, rAct_to_Int 10N(1.27, 0.226) min-1(4) [0.59, 64.7]  
(Guillemette et al. 2005; Pelechano et 

al. 2010; Brown et al. 2013) 
Length of gene, L 10N(2.568, 0.34) codons [50, 5000]  (SGD Project) (Balakrishnan et al. 2012) 
Rate of transcription initiation, rmax_transc_init 6.75 min-1  (Brown et al. 2013) 

Speed of transcription elongation 600 codon min-1  
(Dujon 1996; Larson et al. 2011; Hocine 

et al. 2013) 

Time for transcribing UTRs and for terminating transcription 1 min  
(Dujon 1996; Larson et al. 2011; Hocine 

et al. 2013) 
Rate of mRNA degradation, rmRNA_deg 10N(-1.49, 0.267) min-1 [7.5×10-4, 0.54]  (Wang et al. 2002) 
Speed of translation elongation 330 codon min-1  (Siwiak et al. 2010) 
Translation initiation time 0.5 min  (Siwiak et al. 2010) 
Protein synthesis rate, rprotein_syn  10N(0.322, 0.416) molecule mRNA-1 min-1 [4.5×10-3, 61.4]  (Siwiak et al. 2010) 
Rate of protein degradation, rprotein_deg 10N(-1.88, 0.561) min-1 [3.0×10-6, 0.69]  (Belle et al. 2006) 
Saturation concentration of effector protein, Ne_sat 10,000 molecules cell-1  (Ghaemmaghami et al. 2003) 

Fitness cost of protein expression for a gene with L = 102.568, ctransl  2×10-6 molecules-1 min-1  
(Ghaemmaghami et al. 2003; Kafri et al. 

2016) 
Maximum number of effector gene copies 5   
Maximum number of TF gene copies, excluding the signal 19   

(1) This table is reproduced without modification from Xiong et al. (2019) under a Creative Commons 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 
(2) Parameters in bold can be altered by mutation, and the table shows the distributions from which their 
initial values are sampled. Estimation of Ne_sat is described in the Methods; estimation of the other 
parameters is described in the Supplementary Methods.  
(3) Same units as the parameter values. Parentheses mean the parameter cannot take the boundary 
values; square brackets mean it can. We also use these bounds to constrain mutation (see 
Supplementary Methods).  
(4) The uniform distribution is denoted U(min, max).  
(5) The normal distribution is denoted N(mean, SD). 846 
 847 

Table S2. Mutation rates and effect sizes(1) 848 

Mutation Relative rate  Effect of mutation(2) 

Single nucleotide substitution 5.25×10-8 per gene  

Gene deletion 1.5×10-7 per gene(3)  

Gene duplication 1.5×10-7 per gene(3)  

Mutation to consensus sequence of a TF 3.5×10-9 per gene  
Mutation to TF identity (activator vs. repressor) 3.5×10-9 per gene  

Mutation to Kd(0) 3.5×10-9 per gene k = 0.5, µ = -5(3), σ = 0.776 

Mutation to L  1.2×10-11 per codon   

Mutation to rprotein_syn   9.5×10-12 per codon k = 0.5, µ = 0.021(3), σ = 0.760 
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Mutation to rprotein_deg
 9.5×10-12 per codon k = 0.5, µ = -1.88, σ = 0.739 

Mutation to rAct_to_Int
 9.5×10-12 per codon  k = 0.5, µ = 1.57(3), σ = 0.773 

Mutation to rmRNA_deg 9.5×10-12 per codon  k = 0.5, µ = -1.19, σ = 0.396 

(1) This table is reproduced without modification from Xiong et al. (2019) under a Creative Commons 849 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 850 
(2) Mutation to these quantitative rates takes the form log10𝑥′ = log10𝑥 + Normal(𝑘(𝜇 − log10𝑥), 𝜎), 851 
where x is the original value of the rate and x’ is the value after mutation. See Supplementary Methods 852 
for details.  853 
(3) The value of this parameter is different during burn-in. See Supplementary Methods for details. 854 
 855 

 856 

Optimal 
peak 

 
 

Initial condition 25 Initial condition 31 Initial condition 79 

Evo. step 
1 - 10,000 

Evo. step 
10,001 – 20,000 

Evo. step 
1 - 5,000 

Evo. step 
5,001 – 10,000 

Evo. step 
1 - 10,000 

Evo. step 
10,001 – 20,000 

Low 

I1FFL-creating 0.050 0.217 0.680 0.067 0.051 0.586 

NFBL-creating 0.107 0.007 0.006 0.003 0.106 0.013 

Medium 

I1FFL-creating 0.065 0.075 0.811 0.365 0.105 0.047 

NFBL-creating 0.111 0.104 0.016 0.025 0.112 0.171 

High 

I1FFL-creating 0.013 0.034 0.875 0.059 0.048 0.118 

NFBL-creating 0.729 0.413 0.007 0.201 0.259 0.174 

Table S3. Mutational bias toward particular motifs can shift over the course of evolution. We focus our 857 
analysis on three random TRN initializations (conditions 25, 31, and 79) that evolved to high fitness in all 858 
three selection conditions. Under selection for high peak effector expression, all three simulations 859 
evolved NFBLs (i.e. the occurrence of NFBL > 0.5 and the occurrence of I1FFL < 0.5). Under selection for 860 
low or medium effector expression, all three evolved I1FFLs. As in Table 1, we show the number of 861 
mutations normalized by the total number of mutations trialed in resident TRNs that did not contain the 862 
motif in question. As an example of a change in mutational bias, initial condition 25 under selection for 863 
low peak effector expression initially creates NFBLs more often but later creates I1FFLs more often.   864 
 865 

 866 

 867 

peak level  
Evolutionary step 1 – 10,000 Evolutionary step 10,001 – 30,000 

Trialed Acceptance rate Trialed Acceptance rate 

Low 
I1FFL-destroying 0.100 0.072 0.065 0.051 

NFBL-destroying 0.141 0.139 0.196 0.128 

Medium 
I1FFL-destroying 0.129 0.068 0.087 0.069 

NFBL-destroying 0.157 0.108 0.125 0.108 

High 
I1FFL-destroying 0.117 0.074 0.114 0.057 

NFBL-destroying 0.086 0.120 0.063 0.124 

Table S4. Summary of mutations that remove all I1FFLs and/or NFBLs. For each selection condition, we 868 
pooled qualified mutations from all high-fitness replicates shown in Fig. 2. A mutation is classed as 869 
destroying if it eliminates all instances of the given motif. The total number of qualified mutations were 870 
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normalized by the total number of mutations trialed in resident TRNs that contained the motif of 871 
interest. The acceptance rate is the number of accepted mutations across all replicates divided by the 872 
number of trialed mutations across all replicates. 873 
  874 
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 875 

Figure S1. Evolutionary paths include slightly deleterious mutations. We pooled all accepted mutations 876 

from 10 evolutionary simulations under selection for high peak effector expression. Selection 877 

coefficients were calculated from the average fitness across 1,000 simulations of gene expression. Note 878 

while fitness is therefore biased by the 200 replicates used to decide to accept that mutation, this bias 879 

applies to both resident and mutant. We measure noise on top of the true distribution of fitness effects, 880 

suggesting that the underlying distribution is narrower than shown here. (A) Data restricted to the first 881 

1,000 evolutionary steps, during which fitness generally increases rapidly. (B) Data restricted to the last 882 

1,000 evolutionary steps, during which almost all simulations have reached a fitness plateau. 883 

 884 

 885 
Figure S2. Five scenarios in which apparent but non-functional network motifs can arise from spurious 886 

TFBSs. A TFBS containing 2 mismatches can easily appear by chance in a cis-regulatory sequence, but 887 

may be deemed spurious if it has negligible functional effect. Spurious E->E TFBSs where both “Es” 888 

represent the same effector gene give rise to apparent ARs, whereas if they represent different effector 889 

proteins, they give rise to I1FFLs.  890 
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 891 

Figure S3. Summary of the model. (A) Simulation of gene expression in a TRN that has two TF genes, 892 

one of which is the effector (cyan). Here the input signal, which is simulated as an activator, binds to the 893 

cis-regulatory sequence of the non-effector TF gene (TF binding is demonstrated in (B)) and induces 894 

gene expression. Transcription initiation is a two-step process where most of the transition rates are 895 

functions of the concentrations of activators and/or repressors (see Transcriptional regulation in the 896 

supplement). Biological processes marked by red arrow are simulated as stochastic processes, and those 897 

marked by black arrows are simulated by solving ordinary differential equations (see Simulation of gene 898 

expression in the supplement). We use the expression levels of the effector in response to a two-stage 899 

input signal to calculate the fitness (see Methods for details). The simulation of gene expression is 900 

repeated and the average fitness of the replicates is used as the fitness of the TRN (see Methods for 901 

details). The diagram of transcription and translation is revised from Xiong et al. (2019) under a Creative 902 

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). (B) A 903 

TRN goes through one of many types of mutation (see Model Overview for details) that change the size 904 

of the network, rewire the network, or change one property of a gene in the network. The zoom-in 905 

depicts turnover of TF binding sites, which can rewire the network. The purple box represents the TF 906 
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and on top of the box is the consensus binding sequence of the TF. At most two mismatches (green 907 

letters) to the consensus binding sequences can be tolerated. Point mutations in the cis-regulatory 908 

sequence of the target gene and in the consensus binding sequence of the TF can increase mismatch, 909 

causing the loss of a TF binding site. Note that the TF occupies additional sequences when binds to the 910 

DNA. (C) Evolution of TRNs is simulated as an origin-fixation process. Evolution starts with a random 911 

TRN, which is called the resident. if the mutant’s fitness is sufficiently high (see Methods for details), it 912 

replaces the resident and becomes the new resident (see Methods for details), which is defined as one 913 

evolutionary step. Otherwise, new mutants are generated until the replacement happens. The evolution 914 

is simulated for 50,000 evolutionary steps, which is generally long enough for the resident’s fitness to 915 

reach a plateau. 916 

 917 

 918 
Figure S4. Fitness distributions of genotypes evolved with different optimal peak levels of the effector. 919 
We ran 100 evolutionary simulations for the low-peak and the medium-peak conditions, and 200 for the 920 
high-peak condition. For each simulation, we calculate the fitness of the evolved genotype as the 921 
average fitness of the last 10,000 evolutionary steps. For all three selection conditions, genotypes with 922 
fitness above 0.845 are considered as high-fitness genotypes and are further analyzed in Fig. 2. We used 923 
a fitness cutoff of 0.69 to separate medium-fitness genotypes and low-fitness genotypes. 924 
  925 
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 926 
 927 
Figure S5. Phenotype of high-fitness replicates. For each selection condition, we randomly picked 5 928 
high-fitness replicates from those defined in Fig. S4. We ran 200 simulations to characterize the 929 
expression profile of the effector, as found at evolutionary step 50,000 in each replicate. Each trajectory 930 
shows the expression levels of the effector averaged across the 200 simulations, and starts after the 931 
burn-in of gene expression (see Methods for details).   932 
 933 
 934 

Figure S6. The relative occurrences of motifs do not depend strongly on the criteria for removing 935 
spurious 2-mismatch TFBSs. Results are from the same high-fitness evolutionary replicates shown in Fig. 936 
2A, where sets of TFBSs were excluded when their removal yielded fitness of at least 99% of the fitness 937 
observed in their presence. Data are shown as mean ± SE over replicates. 938 
 939 
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  940 
Figure S7. Auto-repression (AR) rarely evolves with I1FFLs or overlapping I1FFLs. In high-fitness 941 
genotypes evolved under selection for pulse generation, there were few auto-repressing effectors co-942 
occurring with other motifs, and for simplicity, they were therefore grouped in Fig. 2 with the motif with 943 
which they co-occurred. We note that when the repressor of an I1FFL-NFBL conjugate is an effector, this 944 
effector can form auto-repression. We classified such case as a stand-alone AR, because from the 945 
perspective of this effector, it is not regulated by an I1FFL, NFBL, overlapping I1FFL, or I1FFL-NFBL 946 
conjugate. Data are shown as mean ± SE over replicates. 947 
 948 
 949 
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950 
Figure S8. Fitness distributions and network occurrences of genotypes with restricted solutions under 951 
different selection conditions. (A) Each panel under low peak and medium peak selection summarized 952 
50 evolutionary simulations, and the two panels under high peak each summarize 100 evolution 953 
simulations. Under the condition where we select for a low peak and prevent NFBLs from evolving, we 954 
removed one simulation that was terminated prematurely before evolving 50,000 evolutionary steps. 955 
This particular simulation failed to find a mutant that has higher fitness than the resident phenotype 956 
even after 2,000 trials. To classify a genotype as high-fitness (red), we apply the same fitness cutoff as in 957 
Fig. S1. The average fitness of the high-fitness genotypes is shown in Fig. 3B. See legend of Fig. 2B for 958 
description of modifications to prevent the evolution of NFBLs or I1FFLs. (B) In the high-fitness 959 
genotypes, when either I1FFL or NFBL is not allowed to evolve, the other motif almost always evolves. 960 
Data are shown as mean ± SE over replicates. 961 
 962 
 963 

 964 

 965 
 966 
 967 

 968 
 969 
 970 
 971 
 972 
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Figure S9. Medium-fitness genotypes fail to achieve high peak effector expression, and primarily 973 
evolve I1FFLs and auto-repression. (A) Methods are the same as for Fig. 2A, applied here to medium-974 
fitness evolutionary replicates. (B) For each high-fitness and medium-fitness replicate shown in Fig. S4, 975 
we average the peak protein levels of the effector over 200 replicate simulations of gene expression. 976 
Data are shown as mean ± SE over replicates. 977 
 978 

Figure S10. The occurrence of all motifs during evolution. We calculated the proportion of evolutionary 979 
steps that contain at least one motif of that type. Details are the same as for Fig. 3, except here we show 980 
a broader range of motifs as shown in Fig. 2. Data are shown as mean ± SE over the high-fitness 981 
replicates.  982 
 983 
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 984 

Figure S11. Initializing the effector as a repressor facilitates the evolution of I1FFLs. We repeated 985 
evolution under selection for high peak effector expression, but initialized the effector as a repressor 986 
rather than as an activator. (A) Motif occurrence compared to the activator-initialized evolutionary 987 
conditions given in Fig. 2. Data are shown as mean ± SE over replicates. (B) Fitness of the evolved TRNs. 988 
Similar to Fig. S1, TRNs with fitness of 0.845 or higher are considered high-fitness. 989 
 990 
 991 

 992 

Figure S12. High peak effector expression evolves slowly. For each high-fitness replicate shown in Fig. 993 
2A, we average the peak protein levels of the effector over 200 replicate simulations of gene expression. 994 
Data are shown as mean ± SE over replicates. 995 
 996 
 997 

 998 
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 999 
Figure S13. A stronger signal increases I1FFL prevalence. We compared evolution under the default 1000 
signal, where signal strength increases from 100 molecules per cell to 1,000 molecules per cell, to a 1001 
stronger signal, where the signal strength increases from 1,000 molecules per cell to 10,000 molecules 1002 
per cell. (A) Occurrence of different motifs in high-fitness genotypes. (B) I1FFLs or NFBLs can yield 1003 
similar fitness under a given signal regime. Data are shown as mean ± SE over replicates. (C) Fitness 1004 
distribution of genotypes evolved with a strong signal without (leftmost) or with (middle and rightmost) 1005 
restrictions on evolution. Similarly to Figs. S1 and S3, we define high-fitness genotypes to be those with 1006 
fitness greater or equal to 0.845. 1007 
 1008 
 1009 

 1010 
Figure S14. Effectors have higher protein expression in NFBLs than in I1FFLs in S. cerevisiae across a 1011 
more comprehensive dataset. Protein expression levels are from the “GPM, Aug, 2014” dataset 1012 
provided by PaxDB (Wang et al. 2015). Data are shown as mean ± SE (of log-transformed data in the case 1013 
of protein expression) over each network position across all instances of the motif, excluding positions 1014 
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where the data are not available. For each motif type, we list the numbers of genes with available 1015 
expression level data at signal nodes, effector nodes, and repressor nodes. Statistical significance is 1016 
assessed using two-tailed t-tests.  1017 
 1018 
 1019 

  1020 
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Details of the model  1021 

 1022 
The following sections are copied from Xiong et al. (2019). Parts of the original text were rewritten or 1023 
deleted for brevity. The original article was licensed under the Creative Commons Attribution 4.0 1024 
International License, which grants free copy and modification. A copy of the license can be found at 1025 
https://creativecommons.org/licenses/by/4.0/. 1026 
 1027 
 1028 
TF binding 1029 
In our model, each gene is controlled by a 150-bp cis-regulatory region, corresponding to a typical yeast 1030 
nucleosome-free region within a promoter (Yuan et al. 2005). TFBSs can evolve in the cis-regulatory 1031 
region, and we set the length of a consensus binding sequence to be 8 bp. Assuming that only one of the 1032 
four nucleotides is a good match at each of the 8 base pairs, then the 8-bp consensus binding sequence 1033 
has an information of 16 bits, which is slightly larger than that of a typical yeast TF (13.8 1034 
bits) (Wunderlich and Mirny 2009). We assume a higher information content than seen empirically in 1035 
order to reduces the number of TFBSs within the cis-regulatory regions to a point that our 1036 
computational power can handle. We allow up to 2 mismatches in the consensus binding sites, based on 1037 
the finding that, with up to 2 mismatches in the 6-bp binding sequence, some yeast TFs can still bind 1038 
DNA at above background level (Maerkl and Quake 2007). To capture competitive binding between TFs, 1039 
we assume that two TFs cannot simultaneously occupy overlapping stretches, which we assume extend 1040 
beyond the recognition sequence to occupy a total of 14 bp (Zhu and Zhang 1999).   1041 
  1042 
We denote the dissociation constant of a TFBS with m mismatches as Kd(m). Sites with m > 3 1043 
mismatches are assumed to still bind at a background rate equal to m = 3 mismatches, with dissociation 1044 
constant Kd(3) = 10-5 mole per liter (Maerkl and Quake 2007)  for all TFs. We assume that each of the last 1045 
three base pairs makes an equal and independent additive contribution ΔGbp < 0 to the 1046 
binding energy (Benos et al. 2002). We ignore cooperativity in binding. Dissociation constants of 1047 
eukaryotic TFs for perfect TFBSs can range from 10-5 mole per liter (Park et al. 2004) to 10-11 mole per 1048 
liter (Nalefski et al. 2006). We initialize each TF with its own value of log10(Kd(0)) sampled from a uniform 1049 
distribution between -6 and -9, with mutation capable of further expanding this range, subject to Kd(0) < 1050 
10-5 mole per liter. Substituting m = 0 and m = 3 into  1051 
  1052 
∆𝐺𝑚 = −𝑅𝑇ln𝐾d(𝑚) = ∆𝐺0 − min (𝑚, 3)∆𝐺bp,    (1) 1053 

where R is the gas constant and T is temperature, we can solve for ΔGbp and ΔG0, and thus obtain Kd(1) 1054 
and Kd(2) (the dissociation constants for TFBS with one and two mismatches, respectively).   1055 
 1056 
We rescale Kd values to effective Kd values to account for the “dilution” of TFs by non-specific TF binding 1057 
sites (NSBSs) in the genome. A haploid S. cerevisiae genome is 12 Mb, 80% of which is wrapped 1058 
in nucleosomes (Lee et al. 2007), yielding approximately 106 potential NSBSs. In a yeast nucleus of 1059 
volume 3 × 10−15 liters, the NSBS concentration is of order 10-4 mole per liter. To find the concentration 1060 
of free TF [TF] in the nucleus given a total nucleic TF concentration of CTF, we consider   1061 

  1062 

𝐾d =
[binding_site][TF]

[binding_site∙TF]
,         (2) 1063 

  1064 
in the context of NSBSs, substitute [TF∙NSBS] with CTF - [TF], and solve for  1065 
  1066 
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  1067 

[TF] =
𝐾d(3)

𝐾d(3)+[NSBS]
𝐶TF =

10−5

10−5+10−4 𝐶TF ≈ 0.1𝐶TF.     (3) 1068 

  1069 
Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively small 1070 
number of specific TFBSs is not enough to significantly perturb the proportion of free TFs, and so for the 1071 

specific TFBSs with m < 3 that are of interest in our model, we simply use 𝐾̂d(𝑚) = 10𝐾d(𝑚) to account 1072 

for the reduction in the amount of available TF due to non-specific binding. We also convert 𝐾̂d from the 1073 
units of mole per liter in which Kd is estimated empirically to the more convenient molecules per 1074 

nucleus. The rescaling factor r for which 𝐾̂d (in molecule per nucleus) = r𝐾̂d (in mole per liter) is 3 ×1075 

10−15 liter per nucleus × 6.02 × 1023 molecule mole-1 = 1.8 × 109 molecule cell-1 liter mole-1. Taken 1076 

together, 𝐾̂d (molecule per nucleus) = 10rKd (mole per liter), where the factor 10 accounts for non-1077 
specific TF binding. 1078 
 1079 

  1080 
TF occupancy 1081 
Here we calculate the probability that there are A activators and R repressors bound to a given cis-1082 
regulatory region at a given moment in gene expression time. First we note that if we consider TF i 1083 
binding to TFBS j in isolation from all other TFs and TFBSs, Supplementary Equation 4 gives us the 1084 
probability of being bound: 1085 
 1086 

𝑃b(𝑗) = 1 − 𝑃u(𝑗) =
𝐶𝑖

𝐾̂d+𝐶𝑖
        (4) 1087 

 1088 

Let 𝑃𝐴,𝑅
(𝑛)

 be a term proportional (for a given value of n) to the combined probability of all binding 1089 

configurations in which exactly A activators and R repressors are bound to the first n binding sites along 1090 

the cis-regulatory sequence. We calculate 𝑃𝐴,𝑅
(𝑛)

 recursively, considering one additional TFBS at each step. 1091 

Note that if two different TFs bind to exactly the same location on a cis-regulatory region, we treat this 1092 
as two TFBSs, not as one, and treat first one and then the other in our recursive algorithm. 1093 
 1094 
Consider the case where the (n+1)th binding site belongs to an activator. The case where this activator is 1095 

not bound contributes 𝑃𝐴,𝑅
(𝑛)

𝑃u(𝑛 + 1) to 𝑃𝐴,𝑅
(𝑛+1)

. If it is bound, then we must also take into account that 1096 

the (n+1)th binding site overlaps (partially or completely) with the last 𝐻 ≥ 0 sites, and so contributes 1097 

𝑃𝐴−1,𝑅
(𝑛−𝐻)

𝑃b(𝑛 + 1) ∏ 𝑃u(𝑗)𝑛
𝑗=𝑛−𝐻+1 . Taken together, 1098 

 1099 

𝑃𝐴,𝑅
(𝑛+1)

= 𝑃𝐴,𝑅
(𝑛)

𝑃u(𝑛 + 1) + 𝑃𝐴−1,𝑅
(𝑛−𝐻)

𝑃b(𝑛 + 1) ∏ 𝑃u(𝑗).𝑛
𝑗=𝑛−𝐻+1     (5) 1100 

 1101 
Similarly, if the (n+1)th site belongs to a repressor, we have 1102 
 1103 

𝑃𝐴,𝑅
(𝑛+1)

= 𝑃𝐴,𝑅
(𝑛)

𝑃u(𝑛 + 1) + 𝑃𝐴,𝑅−1
(𝑛−𝐻)

𝑃b(𝑛 + 1) ∏ 𝑃u(𝑗).𝑛
𝑗=𝑛−𝐻+1     (6) 1104 

 1105 

By definition, 𝑃𝐴,𝑅
(𝑛)

= 0 for binding configurations that are impossible, e.g. those with negative A or 1106 

negative R. We initialize the recursion at n = 0, where the only valid binding configuration is for A = R = 0, 1107 

i.e. 𝑃0,0
(0)

= 1. At n = 1, 𝑃0,0
(1)

∝ 𝑃u(1) and if the binding site belongs to an activator 𝑃1,0
(1)

∝ 𝑃b(1); 1108 
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otherwise, 𝑃1,0
(1)

∝ 𝑃b(1). For a gene where the total number N of TFBSs is 1, 𝑃0,0
(1)

, 𝑃1,0
(1)

, and 𝑃0,1
(1)

 sum to 1109 

1 and normalization is unnecessary. For higher values of N = NAct + NRep TFBSs, where NAct and NRep are 1110 

the total numbers of activator binding sites and repressor binding sites, respectively, we normalize 𝑃𝐴,𝑅
(𝑁)

 1111 

at the end of the recursion by dividing by ∑ ∑ 𝑃𝐴,𝑅
(𝑁)𝑁Rep

𝑅=0
𝑁Act
𝐴=0  to get the probability of binding 1112 

configurations that include exactly A activators and R repressors. 1113 
 1114 
 1115 
rAct_to_Int 1116 
Transcription initiation over an interval of time rtransc_init is proportional to the proportion of time spent in 1117 
the Active state. Assuming a steady state between Repressed, Intermediate, and Active states, as a 1118 
function of current TF concentrations, we have: 1119 
 1120 

𝑟transc_init

𝑟max_transc_init
=

𝑟Int_to_Act

𝑟Int_to_Act+𝑟Act_to_Int
𝑃Int_or_Act,      (7) 1121 

 1122 
where PInt_or_Act is the probability a gene is at Intermediate or Active. We set rmax_transc_init (the rate of 1123 
transcription given 100% Active state) to 6.75 min-1, based on the corresponding rate when a model of 1124 
the PHO5 promoter is fit to data (Brown et al. 2013). In this model fit, the constitutively expressed PHO5 1125 
promoter is free of nucleosomes 80% of the time, i.e. PInt_or_Act = 0.8. We take these two values as 1126 
universal for constitutively expressed genes, and assume that variation in rAct_to_Int is responsible for 1127 
variation in rtransc_init. To identify a set of constitutively expressed genes, we identified 225 genes that 1128 
have mRNA production rate of at least 0.5 molecule min-1 from genome-wide measurements (Pelechano 1129 
et al. 2010); this threshold corresponds to low H2A.Z occupancy (Guillemette et al. 2005). We set 1130 
rtransc_init to the production rate of mRNA of these 225 genes, and solve for gene-specific rAct_to_Int from Eq. 1131 
S7. We fit the solutions to a log-normal distribution and arrive at 10N(1.27, 0.226) min-1.  1132 
 1133 
To initialize values of rAct_to_Int for each gene, we sample from this distribution. We also set lower and 1134 
upper bounds for allowable values; if either the initial sample or subsequent mutation put rAct_to_Int 1135 
beyond these bounds, we set the value of rAct_to_Int to equal to boundary value. We set the lower bound 1136 
for rAct_to_Int at 0.59 min-1, half the minimum of the values inferred from the set of 225 genes. To set an 1137 
upper bound, we use the low H2A.Z occupancy bound of rtransc_init = 0.5, which gives a solution of 32.34 1138 
min-1; we double this to set the upper bound as 64.7 min-1. 1139 
 1140 
 1141 
Transcription delay times 1142 
Yeast protein lengths fit a log-normal distribution of 10N(2.568, 0.34) amino acids (from the Saccharomyces 1143 
Genome Database (SGD Project), excluding mitochondrial proteins; YeastMine (Balakrishnan et al. 2012) 1144 
was used to query the database and to download data). We sample ORF length L from this distribution. 1145 
To constrain the values of L, we set a lower bound of 50 amino acids and an upper bound of 5,000 1146 
amino acids; the longest protein in SGD is 4910 amino acids. If either initialization or mutation put L 1147 
beyond these bounds, we set the value of L to the boundary value. 1148 
 1149 
With an mRNA elongation rate of 600 codon per min (Larson et al. 2011; Hocine et al. 2013), it takes L / 1150 
600 minutes to transcribe the ORF of an mRNA. Also including time for transcribing UTRs and for 1151 
transcription termination, and ignoring introns for simplicity, it takes 290 seconds to complete 1152 
transcription of the yeast GLT1 gene (Larson et al. 2011), whose ORF is 6.4kb. Putting the two together, 1153 
we infer that transcribing the UTRs and terminating transcription takes around 1 minute for GLT1. 1154 
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Generalizing to assume that transcribing UTRs and terminating transcription takes exactly 1 minute for 1155 
all genes, producing an mRNA from a gene of length L takes 1 + L / 600 minutes.  1156 
 1157 
 1158 
Translation delay times and rprotein_syn 1159 
We model a second delay between the completion of a transcript and the production of the first protein 1160 
from it. The delay comes from a combination of translation initiation and elongation; it ends when the 1161 
mRNA is fully loaded with ribosomes all the way through to the stop codon and the first protein is 1162 
produced. We ignore the time required for mRNA splicing; introns are rare in yeast (Dujon 1996). mRNA 1163 
transportation from nucleus to cytosol, which is likely diffusion-limited (Niño et al. 2013; Smith et al. 1164 
2015), is fast even in mammalian cells (Mor et al. 2010) let alone much smaller yeast cells, and the time 1165 
it takes is also ignored. The median time in yeast for initiating translation is 0.5 minute (Table 1 in Siwiak 1166 
et al. 2010), and the genomic average peptide elongation rate is 330 codon/min (Siwiak et al. 2010). 1167 
After an mRNA is produced, we therefore wait for 0.5 + L / 330 minutes, and then model protein 1168 
production as continuous at a gene-specific rate rprotein_syn.  1169 
 1170 
To calculate rprotein_syn, we combine the gene-specific ribosome densities D along the mRNAs and the 1171 
gene-specific peptide elongation rates E, both measured in yeast (Siwiak et al. 2010). The values of DE 1172 
across yeast genes fit the log-normal distribution 10N(0.322, 0.416) molecule mRNA-1 min-1; we initialize 1173 
rprotein_syn for each gene by sampling from this distribution. We set the lower bound for rprotein_syn at half 1174 
the minimum observed value of DE (4.5 × 10−3 molecule mRNA-1 min-1). The upper bound corresponds 1175 
to an mRNA fully occupied by rapidly moving ribosomes. Each ribosome occupies about 10 codons 1176 
(Siwiak et al. 2010), and the peptide elongation rate can be as high as 614 codon per min (Waldron et al. 1177 
1977). If ribosomes are packed closely together at 10 codons apart, a protein comes off the end of 1178 
production in the time taken to elongate 10 codons, i.e. proteins are produced at 61.4 molecules per 1179 
minute. If either initialization or mutation put rprotein_syn beyond these bounds, we set the value of 1180 
rprotein_syn to the boundary value. 1181 
 1182 
 1183 
mRNA and protein decay rates 1184 
We fit a log-normal distribution 10N(-1.49, 0.267) min-1 to yeast mRNA degradation rates (Wang et al. 2002), 1185 
and initialize the mRNA degradation rate rmRNA_deg for each gene by sampling from this distribution. We 1186 
set lower and upper bounds for rmRNA_deg at half the minimum and twice the maximum observed values 1187 
(7.5 × 10−4 min-1 and 0.54 min-1), respectively. If either initialization or mutation put rmRNA_deg beyond 1188 
these bounds, we set the value of rmRNA_deg to the boundary value. 1189 
 1190 
Expressing the estimated half-lives of yeast proteins (Belle et al. 2006) in terms of protein degradation 1191 
rates, they fit the log-normal distribution 10N(-1.88, 0.56) min-1; we initialize gene-specific protein 1192 
degradation rates rprotein_deg by sampling from this distribution. We ignore the additional reduction in 1193 
protein concentration due to dilution as the cell grows and thus increases in volume. We set lower and 1194 
upper bounds for rprotein_deg at half the minimum and twice the maximum observed degradation rate (3 ×1195 
10−6 min-1 and 0.69 min-1), respectively. If either initialization or mutation put rprotein_deg beyond these 1196 
bounds, we set the value of rprotein_deg to the boundary value.  1197 
 1198 
  1199 
Simulation of gene expression 1200 
Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm (Gillespie 1977) to 1201 
simulate stochastic transitions between Repressed, Intermediate, and Active chromatin states, and to 1202 
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simulate transcription initiation and mRNA decay events. We refer to these as “Gillespie events”. The 1203 
completion of transcription to produce a complete mRNA, and subsequent ribosomal loading onto the 1204 
mRNA, are referred to as “fixed events” (they require fixed times of 1 + L / 600 minutes and 0.5 + L / 330 1205 
minutes, respectively). Scheduled changes in the strength of the external signal are also fixed events. 1206 
Protein production and degradation are described deterministically with ODEs, and updated frequently 1207 
in order to recalculate TF concentrations and hence chromatic transition rates. Updates occur at the 1208 
time of Gillespie and fixed events, and also in between as described later below. 1209 
 1210 
The total rate of all Gillespie events is 1211 
 1212 

𝑟total = ∑ 𝑟Rep_to_Int_i + ∑ (𝑟Int_to_Rep_i + 𝑟Int_to_Act_i)
Int
𝑖=1 + ∑ (𝑟Act_to_Int_i + 𝑟transc)Act

𝑖=1 +
Rep
𝑖=11213 

∑ 𝑟mRNA_deg_i𝑁mRNA_i
𝑁copies

𝑖=1
,         (8) 1214 

 1215 
where Rep, Int, and Act are the numbers of gene copies in our haploid model that are in the Repressed, 1216 
Intermediate, and Active chromatin states, respectively, NmRNA_i is the number of completely transcribed 1217 
mRNA molecules from gene i, and Ncopies is the total number of gene copies. We only simulate 1218 
degradation of full transcribed mRNA, and not that of mRNA that are still being transcribed, because the 1219 
latter are already captured implicitly by rmax_transc_init, which is based on mRNAs that complete 1220 
transcription (Brown et al. 2013). Once an mRNA finishes transcription, it is subjected to degradation 1221 
regardless of whether ribosome loading is complete.  1222 
 1223 
The waiting time ΔtG before the next Gillespie event is  1224 
 1225 

∆𝑡G =
𝑥

𝑟total
,          (9) 1226 

 1227 
where x is random number drawn from an exponential distribution with mean 1. Which Gillespie event 1228 
takes place next is sampled only if a different update does not happen first. If a fixed event is scheduled 1229 
to happen first at ΔtF < ΔtG, we advance time by ΔtF, update the state of the cell, and calculate a new 1230 
rtotal’. Since the cellular activity has been going on with the old rate rtotal for ΔtF, the remaining “labor” 1231 
required to trigger the Gillespie event planned earlier is reduced. The new waiting time, ΔtG’, to trigger 1232 
the planned Gillespie event is 1233 
 1234 

∆𝑡G
′ =

𝑥−𝑟total∆𝑡F

𝑟total′
.         (10) 1235 

 1236 

Gene duplication creates 1n genes copies producing the same protein, where each copy i might have 1237 
diverged in their production rate rprotein_syn_i and degradation rate rprotein_deg_i. Complete proteins are 1238 
produced continuously once an mRNA molecule is fully loaded with ribosomes, which occurs 0.5 + L / 1239 
330 minutes after transcription is complete – the concentration of such molecules is denoted 1240 
NmRNA_aft_delay_i(t). The total concentration of a protein obeys: 1241 
 1242 

𝑁protein
′ (𝑡) = ∑ (𝑟protein_syn_i𝑁mRNA_aft_delay_i(𝑡) − 𝑟protein_deg_i𝑁protein_i(𝑡))𝑛

𝑖    (11) 1243 

 1244 
Protein concentrations are updated using a closed-form integral of Supplementary Equation 11 1245 
 1246 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2020.12.02.409151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.409151
http://creativecommons.org/licenses/by-nc/4.0/


60 
 

𝑁protein(𝑡1) = ∑ (
𝑟protein_syn_i𝑁mRNA_aft_delay_i

𝑟protein_deg_i
+ (𝑁protein_i(𝑡0) −𝑛

𝑖1247 

𝑟protein_syn_i𝑁mRNA_aft_delay_i

𝑟protein_deg_i
)e−𝑟protein_deg_i(𝑡1−𝑡0))       (12) 1248 

 1249 
with this expression updated every time a Gillespie or fixed event at time t1 changes the value of 1250 
NmRNA_aft_delay_i. 1251 
  1252 
In between updates, values of PA, PR, PA_no_R, and PnotA_no_R, and hence chromatin transition rates, are 1253 
calculated under the approximation of constant Nprotein. Additional updates, above and beyond fixed and 1254 
Gillespie events, are performed in order to ensure that chromatin transition rates do not change too 1255 
dramatically from one update to the next. We use a target of D = 0.01 for the amount of change 1256 
tolerated in the values of PA, PR, PA_no_R, and PnotA_no_R, in order to schedule updates after time ΔtU, which 1257 
are triggered when neither a Gillespie event nor a fixed event occurs before this time has elapsed, i.e. 1258 
when ΔtU < ΔtF and ΔtU < ΔtG.  1259 
 1260 
There is the greatest potential for large changes after an update that changes the value of NmRNA_aft_delay_i. 1261 
In this case, we solve for the time interval for which the probability that TF i would be bound to a single 1262 
perfect and non-overlapping TFBS would change by D, by choosing ΔtU > 0 that satisfies 1263 
 1264 

|
𝑁𝑖(𝑡)

𝑁𝑖(𝑡)+𝐾̂d_i(0)
−

𝑁𝑖(𝑡+∆𝑡U)

𝑁𝑖(𝑡+∆𝑡U)+𝐾̂d_i(0)
| = 𝐷.       (13) 1265 

 1266 
where the two left-hand terms are derived from Supplementary Equation 4. A solution for ΔtU may not 1267 
exist, e.g. if the concentration of TF i is decreasing but Pb_i(t) < D. In such cases, we set ΔtU to infinity. 1268 
 1269 
When the previous update does not change any NmRNA_aft_delay_i values, then we modify ΔtU adaptively. Let 1270 
d be the maximum of ΔPA, ΔPR, ΔPA_no_R, and ΔPnotA_no_R during the last update, and Δt be the advance in 1271 
time between the last two updates. We then schedule an update at 1272 
 1273 

∆𝑡U′ =
𝐷

𝑑
∆𝑡.          (14) 1274 

 1275 
After an update that changes the value of NmRNA_aft_delay_i, we use the smaller value from Supplementary 1276 
Equations 13 and 14. These additional update times are discarded and recalculated when a Gillespie or 1277 
fixed event occurs first. Supplementary Figure 12 of Xiong et al. (2019) shows that simulations rarely 1278 
exceed the target of D = 0.01, and do so only modestly. 1279 
 1280 
 1281 
Cost of gene expression 1282 
The cost of gene expression comes from some combination of the act of expression and from the 1283 
presence of the resulting gene product. Yeast cells with plasmids carrying fast-degrading GFP had as 1284 
much growth impairment as those carrying wild-type GFP (Fig. 3 of Kafri et al. 2016), suggesting that the 1285 
former cost dominates. Universal costs stemming from the act of gene expression include the 1286 
consumption of energy (Wagner 2005; Wagner 2007) and the opportunity cost of not using ribosomes 1287 
to make other gene products (Scott et al. 2014). While some costs arise from transcription (Kafri et al. 1288 
2016), we simplify our model by attributing all of the cost of expression to the act of translation. 1289 
 1290 
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Kafri et al. (2016) reported that, in rich media, the growth rate of haploid yeast is reduced by about 1% 1291 
when mCherry is expressed to about 2% of proteome. Setting the growth rate of the yeast when 1292 
mCherry is not expressed, i.e. the fitness, to one, we have the cost of gene expression equal to 0.01. 1293 
Next, we estimate the production rate of mCherry in Kafri et al. (2016) by assuming that mCherry is in 1294 
steady state between production and dilution due to cell division; fluorescent proteins tend to be stable 1295 
such that degradation can be ignored (Snapp 2009). Ghaemmaghami et al. (2003) estimated that a 1296 
haploid yeast cell contains about 5 × 107 protein molecules, 2% of which are now mCherry. Over a 90 1297 

minute cell cycle in Kafri et al. (2016), about 5 × 105 mCherry molecule per cell need to be expressed in 1298 
order to double in numbers. This yields a production rate of about 5 × 103 mCherry molecules per 1299 
minute per cell. Because the total cost of gene expression is 0.01, the cost at a protein production rate 1300 
of one mCherry molecule per minute per cell, ctransl, is 2 × 106. Long genes should be more expensive to 1301 
express than short ones; for a gene of length L, we assume its cost of expression is ctranslL / 370, where 1302 
370 is the geometric mean length of a yeast protein as described above in “Transcription delay times”. 1303 
Results using the length of mCherry instead, i.e. a slightly higher cost of expression of ctranslL / 236, are 1304 
unlikely to be significantly different. 1305 
 1306 
The overall cost of gene expression at time t, C(t) is: 1307 
 1308 

𝐶(𝑡) = 𝑐transl(∑
𝐿𝑖

102.568 𝑟transl_init_i𝑁mRNA_aft_delay_i(𝑡)
𝑁copies

𝑖=1
+1309 

∑
𝐿𝑖

102.568

𝑟transl_init_i

2
𝑁mRNA_during_delay_i(𝑡))

𝑁copies

𝑖=1
.     (15) 1310 

 1311 
The second term represents transcripts that are on average half-loaded with ribosomes, and hence 1312 
experiencing on average half the cost of translation. We integrate C(t) within segments of constant C(t) 1313 
to obtain the overall cost of gene expression during a simulation. 1314 
 1315 
Mutation 1316 
Because we use an origin-fixation approach, only the relative and not the absolute values of our 1317 
mutation rates matter. In S. cerevisiae, the rates of small indels and of single nucleotide substitutions 1318 
have been estimated as 0.2 × 10−10 per base pair and 3.3 × 10−10 per base pair, respectively (Lynch et 1319 
al. 2008). Thus, cis-regulatory sequences are primarily shaped by single nucleotide substitutions. We do 1320 
not model small indels in the cis-regulatory sequence, but increase the single nucleotide substitution up 1321 
to 3.5 × 10−10 per base pair to compensate. This corresponds to a rate of 5.25 × 10−8 per 150 bp cis-1322 
regulatory sequence. 1323 
 1324 
Lynch et al. (2008) also report a rate of gene duplication of 1.5 × 10−6 per gene and of deletion of 1.3 ×1325 
10−6 per gene (not including non-deletion-based loss of function mutations). These values turned out to 1326 
swamp the evolution of TFBSs and hence significantly slow down our simulations, so we chose values 1327 
10-fold lower, making both gene duplication and gene deletion occur at rate 1.5 × 10−7 per gene. This 1328 
preserves their numerical excess but reduces its magnitude. 1329 
 1330 
Our model contains 8 gene-specific parameters, namely L, rAct_to_Int, rprotein_deg, rprotein_syn, rmRNA_deg, the Kd(0) 1331 
of a TF, whether a TF is an activator vs. repressor, and the consensus binding sequence of a TF. We 1332 
assume mutations to L are caused by relatively neutral small indels, which we assume to be 20% of all 1333 
small indels; mutation to L therefore occurs at rate 1.2 × 10−11 per codon, i.e. 1.2 × 10−11𝐿 for a gene 1334 
of length L. For rAct_to_Int, we assume that it is altered by 10% of all the point mutations (single nucleotide 1335 
substitution and small indels) to the core promoter of a gene. The length of a core promoter is about 1336 
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100 bp and is relatively constant among genes (Roy and Singer 2015), yielding a mutation rate of rAct_to_Int 1337 
of 3.5 × 10−9 per gene.  1338 
 1339 
The remaining 6 gene-specific parameter mutation rates are parameterized with lower accuracy due to 1340 
lack to data; the principal decision is which to make dependent vs. independent of gene length. TF 1341 
binding to DNA depends on particular peptide motifs whose length is likely independent of TF length, 1342 
therefore we make mutation rates independent of gene length for mutations to Kd(0), to the consensus 1343 
binding sequence of a TF, and to the activating vs repressing identity of a TF. We set the rate of each of 1344 
the three mutation types to 3.5 × 10−9 per gene. In contrast, because the stability of an mRNA mainly 1345 
depends on its codon usage (Cheng et al. 2017) and thus more codons means more opportunities for 1346 
change, we assume the rate of mutation to rmRNA_deg does depend on gene length, as do mutations to 1347 
protein stability rprotein_deg. rprotein_syn is determined by the density of ribosomes on mRNA and the 1348 
elongation rate of ribosomes, and therefore is affected both by ribosome loading speed and by slow 1349 
spots forming queues in the mRNA. Ribosome loading often relies on the 5’UTR of mRNA (Hinnebusch 1350 
2011), and 5’UTR length is positively correlated with ORF length (Tuller et al. 2009). Slow-spots in mRNA 1351 
can be due to secondary structure or to suboptimal codons, therefore are also more likely to appear by 1352 
mutation to long mRNAs, so we assume the rate of mutation to rprotein_syn depends on gene length. We 1353 
set the mutation rates of rprotein_deg, rprotein_syn, and rmRNA_deg each to 9.5 × 10−12 per codon; in other 1354 
words, each mutation rate is 3.5 × 10−9 for a yeast gene of average length (on a log-scale) 102.568 = 370 1355 
codons.  1356 
 1357 
rAct_to_Int, rprotein_syn, Kd(0), rprotein_deg, and rmRNA_deg evolve as quantitative traits. They are assumed to have, 1358 
in the absence of selection, a log-normal stationary distribution with mean µ and standard deviation 𝜎, 1359 
with values estimated below and listed in Supplementary Table 2. Denote the values of a parameter as x 1360 
before mutation and x’ after mutation; mutation takes the form: 1361 
 1362 
log10𝑥′ = log10𝑥 + Normal(𝑘(𝜇 − log10𝑥), 𝜎),      (16) 1363 
 1364 
where k controls the speed of regressing back to the stationary distribution; we set k = 0.5 for all 5 1365 
parameters. To set values of µ, central tendency estimates of these five values (from Supplementary 1366 
Table 1) are adjusted according to our expectations about mutation bias. We assume a mutation bias 1367 
toward faster mRNA degradation rmRNA_deg, faster rAct_to_Int (Decker and Hinton 2013; Roy and Singer 1368 
2015), slower translation initiation rprotein_syn (Hinnebusch 2011), and larger Kd(0). We assume that the 1369 
observed log-normal means of rmRNA_deg, rprotein_syn, and rAct_to_Int differ by 2-fold from the mean expected 1370 
from mutational bias; for example, the mean of log10(rmRNA_deg) is -1.49, so the value of µ for rmRNA_deg is -1371 
1.49 + log10(2) = -1.19. We assume a larger bias for Kd(0), namely that mutation is likely to reduce the 1372 
affinity of a TF for a TFBS down to non-specific levels. Thus, we set µ = log10(Kd(3)) = -5 for Kd(0); note 1373 
that in this case µ is equal to one of the boundary values, which will be hit far more often than during 1374 
the evolution of other parameters. We assume that the observed central tendency estimate of protein 1375 
stability does not depart from mutational equilibrium, therefore the value of µ for rprotein_deg is the mean 1376 
of log10(rprotein_deg) = -1.88. 1377 
 1378 
The value of σ controls mutational effect size. We set the value of σ such that 1% of mutational changes 1379 
from x = 10µ go beyond the boundary values, for simplicity approximating by considering only the closer 1380 
of the two boundary values on a log scale, i.e. we solve Supplementary Equation 17 for 𝜎: 1381 
 1382 

{
𝑃(𝜇 + Normal(0, 𝜎) ≥ log10𝐵U) = 0.01, if the upper bound 𝐵U is closer 

𝑃(𝜇 + Normal(0, 𝜎) ≤ log10𝐵L) = 0.01, if the lower bound 𝐵L is closer
  (17) 1383 
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 1384 
For example, the upper and the lower bounds of rmRNA_deg are 0.54 min-1 and 7.5 × 10−4 min-1; on a log-1385 
scale, the upper bound is closer to 10µ = 10-1.19 min-1. Plugging these values in Eq. S8 and solving for σ, 1386 
we have σ = 0.396. We set the values of σ for rprotein_syn, and rprotein_deg in the same way. However for 1387 
rAct_to_Int, σ is set according to the lower bound, even though it is the more distant from 10µ, because 1388 
otherwise a stable preinitiation complex will evolve too rarely. Under this high mutational variance, 1389 
evolutionary outcomes at the two bounds are still only observed 5% of the time. For Kd(0), because its 1390 
upper bound is equal to 10µ, we set σ to 0.776, such that 1% of mutations can change the values of Kd(0) 1391 
by 100-fold or more. 1392 
 1393 
Mutant values of L, rAct_to_Int, rprotein_syn, rprotein_deg, and rmRNA_deg are constrained by the same bounds that 1394 
constrain the initial values of these parameters (see previous sections). If a mutation increases the value 1395 
of any of these 5 parameters to beyond the corresponding upper bound, we set the mutant value to the 1396 
upper bound; similarly for a mutant value that is smaller than the lower bound of the corresponding 1397 
parameter. For mutation to Kd(0), we resample if x’ ≥ Kd(3), because otherwise the mutation effectively 1398 
“deletes” the TF by reducing its affinity to non-specific levels. 1399 
 1400 
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