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Abstract

Motivation: Droplet based single cell RNA-seq (dscRNA-seq) data is being generated at an
unprecedented pace, and the accurate estimation of gene level abundances for each cell is a crucial first
step in most dscRNA-seq analyses. When preprocessing the raw dscRNA-seq data to generate a count
matrix, care must be taken to account for the potentially large number of multi-mapping locations per
read. The sparsity of dscRNA-seq data, and the strong 3’ sampling bias, makes it difficult to disambiguate
cases where there is no uniquely mapping read to any of the candidate target genes.

Results: We introduce a Bayesian framework for information sharing across cells within a sample, or
across multiple modalities of data using the same sample, to improve gene quantification estimates for
dscRNA-seq data. We use an anchor-based approach to connect cells with similar gene expression
patterns, and learn informative, empirical priors which we provide to alevin’s gene multi-mapping resolution
algorithm. This improves the quantification estimates for genes with no uniquely mapping reads (i.e. when
there is no unique intra-cellular information). We show our new model improves the per cell gene level
estimates and provides a principled framework for information sharing across multiple modalities. We test
our method on a combination of simulated and real datasets under various setups.

Availability: The information sharing model is included in alevin and is implemented in C++14. It is
available as open-source software, under GPL v3, at hitps:/github.com/COMBINE-lab/salmon as of
version 1.1.0.

Contact: asrivastava@cs.stonybrook.edu, rob@cs.umd.edu

1 Introduction of these pipelines use complete alignment of the reads to the reference,
such as alevin (Srivastava et al., 2019), STARsolo (Dobin, 2019), Cell-
Ranger (Zheng et al., 2017) and Hera-T (Tran et al., 2019) whereas others
use lightweight mapping methods, such as bustools (Melsted et al., 2019).
To the best of our knowledge, each method, except alevin, discards reads
that multi-map between genes. To date, such approaches validate accuracy
by demonstrating near-perfect correlation to estimates from Cell-Ranger.

In alevin, Srivastava et al. (2019) propose a novel framework for

RNA sequencing, with subsequent gene and transcript quantification, has
been an important tool for exploring genome-wide expression patterns
using both bulk and single-cell experiments. With recent advancements
in single-cell transcriptomic sequencing technologies, various droplet-
based RNA sequencing (dscRNA-seq) methods (Macosko et al., 2015;
Klein et al., 2015; Zheng et al., 2017) have gained popularity due to their
ability to generate data with higher quantitative accuracy, sensitivity, and
throughput than previous approaches. These dscRNA-seq protocols have
a unique output where each read is associated with a cell barcode, to

generating accurate gene-expression estimates for each cell given the read
sequences from a dscRNA-seq experiment. It is shown how discarding

facilitate separation of information between individual cells, and a unique gene multi-mapping reads, as is typically done by other existing dscRNA-

molecular identifier (UMI) tag, that allows detecting and deduplicating
PCR amplified molecules. Multiple preprocessing pipelines exist that use

seq quantification pipelines, can lead to biased and inaccurate expression
estimates for certain genes and gene families. Subsequently, it is also
demonstrated that alevin reduces this bias by providing a framework
for assigning multi-mapping reads to genes rather than discarding them.
Specifically, after a UMI resolution and deduplication phase (which
assigns multi-mapping UMISs on the basis of parsimony), UMIs are placed
into gene-level equivalence classes, associating each UMI with the set

varying algorithms and methodologies to perform cell barcode correction
and whitelisting, read alignment or mapping, and UMI deduplication,
to eventually provide gene quantification estimates for each cell. Some
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Fig. 1: Alevin categorizes the quantification estimates based on their confidence into three tiers. Here we assume two transcript ¢1 and t2 coming from
two genes g1 and go respectively. The toy example shows three tiers (from left to right) based on the mapping of the reads. Tier 1 estimates are from gene
unique equivalence classes, tier 2 estimates are the cases where any gene in the equivalence class has unique evidence and finally tier 3 when no gene in

the equivalence class has uniquely mapping reads.

of genes to which it maps. Ambiguous reads that belong to equivalence
classes with more than one gene label are probabilistically-assigned using
an expectation-maximization (EM) algorithm. The EM algorithm works by
integrating information from reads that are confidently assigned to a single
gene, either as a result of the parsimony-based UMI resolution algorithm
or because this was the only gene to which the underlying read aligns.
This information helps to disambiguate reads that belong to multi-gene
equivalence classes, and it is shown, through various analyses, that the
framework provides better gene expression estimates than approaches that
discard multi-mapping reads.

However, in situations where there is no unique evidence to
disambiguate and assign a read among genes from its equivalence class
with some confidence, the optimization method used by alevin uniformly
divides the read count across all genes from the single equivalence class.
This set of genes is then labeled as tier 3 in the alevin output. Genes within a
cell that have some unique evidence, or share equivalence class with genes
that do, are labeled as tier 2. Hence, tier 2 genes are assigned read counts
with some level of confidence by the EM algorithm. Finally, tier 1 contains
genes that have reads uniquely assigned to them at the UMI deduplication
step, and hence their count can be estimated with the greatest confidence by
the EM algorithm. This method of equivalence class and tier assignment
is further detailed in Figure 1. In this study, we focus on genes labeled
as tier 3, and propose an approach for improving the accuracy of their
quantification, instead of uniformly dividing read counts between them.

Our proposed model works by sharing information, either across
closely-related cells within the sample, or derived in some other fashion
from the assay, such as in the case of spatial transcriptomics data. This
information is integrated into the inference algorithm by introducing
empirical Bayesian priors, and we show that the proposed Bayesian
framework improves gene abundance estimates for tier 3 genes under
various metrics, based on tests using simulated and real datasets in different
setups. The idea of sharing information across data modalities, using an
empirical prior, has been previously considered in the context of bulk RNA-
seq (Liu et al., 2016). Relatedly, the idea of sharing information across
samples has also been applied in the context of imputation for various
types of sparse genomic datasets, such as SNP genotyping and GWAS
studies (Chou et al., 2016; Visscher et al., 2017). However, for single-cell
quantification data, most imputation methods rely on intrinsic properties
of the data due the absence of an external reference and work only post
hoc on already generated gene count matrices (Tang et al., 2018; Huang
et al., 2018; Wang et al., 2019; Li and Li, 2018; Miao et al., 2019; Chen
and Zhou, 2018; Gong et al., 2018; Van Dijk et al., 2018; Wagner et al.,
2017; Talwar et al., 2018; Eraslan et al., 2019; Arisdakessian et al., 2019;
Amodio et al.,2019; Deng et al.,2019; Lopez et al.,2018; Linderman et al.,

2018; Mongia et al., 2019; Zhang and Zhang, 2018). Therefore, they do
not have access to either the information contained in, or the constraints
imposed by, the UMI-to-gene mappings. Our approach, on the other hand,
utilizes shared information directly in the quantification phase to improve
UMI assignment and resolution of multi-mapping reads. Furthermore, this
information is used only in the form of an empirical prior, and the resulting
quantification estimates are still strictly constrained by the observed data.
Hence, the likelihood of inducing globally significant false signals, as
has been reported in the case of some single-cell RNA-seq imputation
methods (Andrews and Hemberg, 2018), is small.

2 Methods
2.1 Bayesian framework

After UMI deduplication, alevin models the read assignment problem as
an optimization problem and iteratively assigns the ambiguous reads to
potential candidates in a manner that maximizes (at least locally, within
a cell) the joint likelihood. However, it cannot utilize the confidence
information from neighboring cells, or from cells of the same type.
Since a high level of sparsity is an inherent property of contemporary
dscRNA-seq experiments (Hicks et al., 2018), and due to the random
process of capturing RNA molecules, in expectation, sampling can exhibit
considerable variation across cells. Hence, we expect cells in an experiment
to fall into categories of specific cell-types, and for cells of the same type
to share similar expression patterns (Stuart et al., 2019). However, for
a specific gene, we do not expect that the molecules originating from
the gene will be uniformly captured and sampled equally well across
all cells of the type. Therefore, sharing confidence in the expression
estimates across cells can be particularly effective in improving cell-level
expression estimation. Similarly, we expect information from other assays,
using either the same cells or even the same cell-type, to exhibit highly
correlated gene abundances. We integrate this information using Bayesian
priors by changing our optimization algorithm from an expectation
maximization (EM) algorithm to a Variational Bayesian optimization
algorithm (VBEM) (Nariai et al., 2013) with an informative prior for low-
information genes, i.e. genes assigned to tier 3. This is a variant of the same
collapsed Variational Bayesian estimation method used in Salmon (Patro
et al., 2017) for bulk RNA-seq abundance estimation.

Similar to Salmon’s VBEM, we aim to quantify the expression, given
a set of known genes G and a set of gene-level equivalence classes &
with their associated UMIs. Each equivalence class is labeled with a
set of genes and has an associated set of UMIs, such that each UMI
is attributed to at least one read that multi-maps only across the set of
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genes in the equivalence class. Here the set of UMIs are taken after
appropriate deduplication using alevin’s graph-based UMI deduplication
algorithm (Srivastava et al., 2019). We use the VBEM algorithm to
allow sharing quantification information across cells via the use of priors.
Specifically, we define the gene-UMI count assignment matrix as Z,
where, based on &, zij = 1if UMI j is derived from gene i. We also
define the probability of generating a molecule from a particular gene
according to the probability vector p (analogous to the nucleotide fraction
in a typical bulk RNA-seq probabilistic model (Li and Dewey, 2011)).
Hence, we can write the probability of observing a set of deduplicated
UMIs U as follows:

N M
Pr{u|2,G} = [ D_Prigilp} - Priujlgi,zi; =1} (1)
j=1i=1

where || = N is the number of total molecules in the experiment
(i.e. the number of deduplicated UMIs ) and |G| = M is the number of
genes.

In this study, we take a variational Bayesian approach to gene-
expression estimation. Therefore, instead of seeking the maximum-
likelihood estimates, we infer (through variational approximation) the
posterior distribution of p. This posterior distribution can be defined as:

Pr{plt, G} = 3 Pr{U|G, 2} - Pr{Z|p} - Pr{p} (@)
Z

where both Pr{i/|G, Z} and Pr{Z|p} can be estimated via a
variational approach (Hensman et al., 2015). While numerous methods for
expression estimation from bulk RNA-seq data have previously adopted
a variational Bayesian approach (Nariai et al, 2013, 2014; Hensman
et al., 2015; Patro et al., 2017), they have all made use of uniform

Cell Type A P

or uninformative priors. The novelty of our method comes from both
adopting this approach in the single-cell context, and from setting the
prior for p, in an informative, data-driven, and cell-specific manner.
We expect that, subject to careful selection, information in a single-cell
sequencing experiment can be meaningfully shared between distinct but
related cells. Note that our method aims to accurately assign reads to the
genes to which they map, and does not alter the expression level of genes
with zero expression in the data, as may be the case with imputation-
based approaches. We explain below how information from related cells,
both within a sample and across assays, can be shared, and show how
this principle can be applied under various scenarios to improve gene
quantification accuracy.

2.2 Anchoring to obtain informative priors

Cells of the same type within a sample share similar expression
patterns (Stuart et al., 2019). However, due to both biological variability
and, crucially, to the low capture rate and random sampling process in
single-cell sequencing experiments, even cells of the same type do not
always exhibit near-identical global gene expression profiles. This means
that a given gene from two cells of the same cell-type within a sample
could have varying expression estimates, and could be assigned different
tiers in individual cells by the alevin algorithm. Specifically, a gene may be
assigned tier 3 in one cell and tier 1 or 2 in the other, based on the specific
sequenced reads and UMIs observed, and their mapping patterns. For
example, if all of the reads arising from the gene come from an ambiguous
region shared with other genes, then this gene will be assigned tier 3.
Whereas if this gene, in another cell of the same type, has sequenced
reads coming from a unique region, then it will be assigned as tier 1
(we have strong evidence of its existence in the cell). Hence, cells of
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Fig. 2: Motivation: Given two cells of similar cell type A, we select two reverse transcribed RNA molecules from Gene A, with unique Cell Barcodes
(CBs) and Unique Molecular Identifiers (UMIs). Since the fragmentation of a molecule happens at random, the molecule from the first cell (on the top) is
fragmented from a region uniquely identifiable for gene A while the molecule from the second cell (on the bottom) comes from sequence similar region
of gene B. Top cell then has high confidence, tier 1 abundance estimate for gene A, while the bottom cell has a tier 3 estimate. Assuming the global
expression profiles of these cells are similar, our proposed Bayesian model shares this information across cells to improve the quantification estimates for
the second cell.
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Fig. 3: (a) The distribution of number of genes against the fraction of cells
that have tier 3 assignment for these genes. For example, there are around
1000 genes that are assigned tier 3 in 0.1-0.2 fraction of the total number of
cells. (b) The percentage of cells assigning each tier to the genes, showing
that the degree of confidence in the quantification estimates varies across
cells even for a single gene. Note that both these plots are made using 7484
genes that have been assigned tier 3 in at least one cell.

the same type can potentially have different confidence levels in their
gene estimates, irrespective of the associated count. This variation can be
used to improve quantification of tier 3 genes. This scenario is depicted
in Figure 2, which details how this information can play an instrumental
role while quantifying these genes.

To first verify that it is possible to gain information in this way, we
look at the fraction of cells that assign a particular gene to tier 3 out of the
total number of cells where the gene is expressed. This is because priors
will be informative only when obtained from cells where the gene has
uniquely mapping reads (tier 1) or is influenced by reads mapping uniquely
to genes sharing an equivalence class (tier 2). To do this analysis, we
quantify the human PBMC 4k dataset (10x Genomics, 2017), using alevin
supplemented with the whitelist output by Cell-Ranger. This experiment
contains a total of 4340 whitelisted cells. The results of this analysis,
shown in Figure 3, suggest that most genes are assigned tier 3 in less
than 10% of the cells and, therefore, estimates from the other cells can be
informative. For the 7484 genes that were assigned tier 3 in at least one
cell, 37.1% are assigned tier 1 and 51.9% are tier 2 in other cells where the
gene is expressed. Hence, the varying degree of confidence in expression
estimates across cells can be leveraged in an informative way to improve
tier 3 estimates. Note that all analyses henceforth are done using the 10x
PBMC 4k dataset, except where mentioned.

Based on these results, we can see that genes relegated to tier 3 in
a given cell frequently have unique evidence in other cells within the
same sample. To take advantage of this property, the next step is finding
“neighboring” cells that might be useful for sharing this information
to disambiguate read assignment between tier 3 genes. We only use
information from cells with a similar global expression profile within
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Fig. 4: Ratio of cells matched in each iteration of the Seurat anchoring
algorithm, splitting the dataset into 2 random, equal sets in each iteration.

the sample. To find similar cells for sharing this evidence, we use
Seurat’s (Stuart et al., 2019) cellular barcode anchoring scheme that defines
a framework to connect two experiments based on the similarity in the
gene expression patterns of the cells” assayed in the two experiments. The
algorithm works by calculating the £2 distance across datasets, generating
two distance matrices and then defines anchors as cells that are neighbors
under both distance measures. The full algorithm implemented in Seurat
is more involved, and includes various scoring metrics and parameters.
Although initially intended for matching cells across samples, we use this
anchoring algorithm to connect cells within the sample, in order to define
cell-specific priors as input for our Bayesian algorithm.

To generate cell barcode anchors, we first quantify the sample using
the standard alevin algorithm (henceforth referred to as EM), and divide
the quantification estimates for all cells into two equal sets. We then run
the Seurat anchoring algorithm on these sets, treating the two subsets as
two separate samples. In order to identify anchors for a larger number of
cells, we repeat the anchoring step multiple times, randomly dividing the
quantifications into two equal groups each time. We repeat the anchoring
step 30 times for all experiments in this manuscript, as we observe on the
simulated data that the gain after 30 iterations is small ( Figure 4). We filter
the anchors based on the score output by Seurat, using only anchors with a
score greater than 0.5. In a typical single-cell experiment, this is expected
to find anchors for about 80% of the cells. The prior for a cell is then defined
as the expression estimates, using the original EM based alevin run, of the
cell assigned as the anchor. However, this process can eventually assign
multiple anchors for a single cell. To compensate for this, we calculate
the prior by taking the average of the expression estimates from all the
anchors. This prior is used to optimize the quantification estimates of tier
3 genes with multi-mapping reads in the alevin pipeline, while keeping the
prior uniform for tier 1 and 2 genes.

3 Results
3.1 Improved estimates using intra-sample information

To test the hypothesis that combining the Bayesian framework with priors
obtained from the anchoring procedure described in Section 2.2 can lead to
improved quantification estimates for tier 3 genes, we devised two separate
experiments. We detail these two setups below, one relying on simulated
data, and the other relying on experimental data with “equivalence class
knockout”.

3.1.1 Simulated data

To analyze the improvements in gene quantification estimates on
simulated data, we use the empirical dscRNA-seq data simulation tool
Minnow (Sarkar et al., 2019). Minnow models various features and
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Fig. 5: (a) Comparison of the cell-wise Spearman correlation of tier 3 genes quantified using Cell-Ranger, EM based alevin, and VBEM based alevin on
simulated experiment. (b) Ratio of tier 3 genes in each cell (these are genes that may be impacted by the priors, leading to increased correlation with the

truth).

protocols involved in the generation of dscRNA-seq data, like PCR
amplification and sequencing errors, to generate fastq files with the reads
and the true cell-by-gene count matrix. We use Minnow to simulate a
dscRNA-seq experiment with 4340 cells and ~20 million UMIs using
alevin (EM-based) quantifications on the 10x PBMC dataset as input. We
then compared the quantification estimates against the truth, predicted on
the simulated data using alevin, with and without priors, and Cell-Ranger.
The priors from VBEM based alevin were generated, as explained above,
using the Seurat anchoring algorithm iteratively.

The results from this analysis are presented in Figure 5(a), where
VBEM represents quantification estimates using priors and EM signifies
the quantification estimates without priors. We calculate the Spearman
correlation between each method and the ground truth provided by
Minnow, focusing on genes assigned tier 3 in individual cells by alevin.
While the fraction of expressed genes assigned tier 3 in each cell is low, as
shown in Figure 5(b), improvement in the accuracy of the gene abundance
estimates is significant across hundreds of cells and shows that using
informative priors, even from within a sample, can improve quantification.
The result also shows that the correlation between estimates from Cell-
Ranger and truth is much lower. This is expected since these genes will have
a high number of multi-mapping reads that will be discarded, not just when
using Cell-Ranger but also when using other dscRNA-seq quantification
methods.

3.1.2 Experimental data with knockouts

To test that our proposed VBEM method, given informative priors, can
improve the accuracy of experimental data quantification, we performed
an experiment that we refer to as equivalence class knockout (KO). Alevin’s
pipeline for dscRNA-seq quantification has multiple phases. After the
initial phase of cell barcode whitelisting and read mapping, alevin outputs
an intermediate file. This file contains details of the transcript equivalence
classes, including the associated cell barcodes and UMI counts. These
equivalence classes are similar to the gene-level equivalence classes
explained before, except that the class labels are transcripts that share
UMIs after the deduplication step. We observe, that a majority of the genes
assigned to tier 1 and 2 after UMI deduplication are the ones associated
with transcript equivalence classes of size 1 (labeled by a single transcript).
In order to increase ambiguity in this data, we can remove all the transcript-
unique equivalence classes from the intermediate file, with the expectation

that this knockout will result in a number of genes migrating from tier 1
and 2 to tier 3, as demonstrated in Figure 6(a). In essence, by doing this,
we are removing some of the read evidence that will eventually lead to
high confidence gene abundance estimates in tiers 1 and 2. The impact
of this on the distribution of tier 3 genes in the PBMC dataset is shown
in Figure 6(b). This shows that the knockout process results in an increased
number of genes that are assigned tier 3 across all cells. Note that the KO
dataset will also have a smaller number of UMISs, because of the removal
of unique equivalence classes from the intermediate file, but this will not
impact our comparative analysis, as explained below. Also, note that we
only knock out here equivalence classes that are transcript-unique, and
that there will still be a considerable number of gene-unique equivalence
classes after parsimonious UMI deduplication has taken place.

In order to ensure that we have cells with high confidence quantification
estimates to provide our KO cells with an informative prior, we did not
perform the knockout procedure on the complete PBMC dataset. Instead,
we took the alevin quantification estimates on the PBMC dataset, which
has 4340 cells, and divided it into two sets containing equal numbers of
cell barcodes. One of these sets, A, is our test set from which we knockout
unique equivalence classes and the other set, B, is used to generate priors.
Iteratively using the Seurat anchoring algorithm as before, we first find
anchors for set A in set B, then obtain priors from set B and run the alevin
VBEM quantification method. We also quantify the KO set A using the
EM-based alevin method. These steps are outlined in Figure 6(c). Observe
that there can be a bias in the tier assignment of genes that are anchors
for tier 3 genes in the KO experiment. This is because we are removing
equivalence classes only in set A. Hence, the ratio of anchor genes in
set B that are assigned tier 1 and 2 in KO may be higher than in the
real dataset. This can amplify the accuracy of the VBEM method in the
knockout experiment, but will also reflect the actual gain possible for this
methodology under varying circumstances, such as in samples with higher
read depth. Note that we can not run Cell-Ranger on this dataset because it
utilizes the intermediate file output by alevin, which can not be processed
directly. However, we expect similar results as those observed in simulated
data, since multi-mapping genes are not quantified by Cell-Ranger.

In our comparison between the two methods, we find the Spearman
correlation for each cell between the original, EM based alevin estimates
of the cells in set A and the estimates using the KO set A under each method.
Because the original set A has more high confidence tier 1 and 2 genes, we
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Fig. 6: (a) A toy example explaining the knockout experiment. We use the equivalence classes from an alevin (EM based) run on the full PBMC dataset
and remove all the transcript-unique equivalence classes to generate a knockout (KO) sample. In the example, assume each gene has a single transcript.
(b) The distribution of number of genes against the fraction of cells that have tier 3 assignment for these genes both in the original dataset and the knockout

dataset, with a shift towards more tier 3 assignments and increased ambiguity. (c) In the knockout framework, to validate the improved Bayesian approach,
we designed the following pipeline. We quantify the full human PBMC dataset (4340 cells) cells and randomly divide the experiment in two equal parts
(A and B). We knockout unique equivalence classes in set A (2170) cells and repeat the quantification step to generate EM based estimates. In parallel,

we also quantify set A knockout dataset using Bayesian priors. These priors are learnt from set B, without the knockouts, and quantified initially using the
EM approach. This gives us the VBEM estimates on set A for comparison. (d) Comparison of the cell-wise Spearman correlation for tier 3 genes from
EM based alevin with VBEM based, prior enhanced alevin on real data with knockouts (removal of unique equivalence classes). This shows improved

estimates under VBEM, with a higher correlation against the initial dataset, without knockouts.

expect the estimates to be of higher accuracy. The results from this analysis
are presented in Figure 6(d), which shows that the cell-wise correlations of
the VBEM predicted abundances on the KO dataset are higher compared
to the original estimates than are the EM estimates on the KO dataset. Note
that these correlations are calculated for genes that are assigned tier 3 in the
KO set A, since those are the only genes impacted by the priors. This test
shows that utilizing the anchoring procedure and extracting informative
priors, combined with using a VBEM based quantification procedure, can
lead to higher accuracy in abundance estimation.

Itis also interesting to note that the anchoring scheme finds high scoring
anchors between set A and set B for only 934 cells. The effect of this limited
anchoring shows up in the correlation histogram as a bimodal distribution
in the VBEM correlation values, signifying that, as expected, only some

of the cells — those for which we were able to find an anchor in the set B
— have improved correlation with the original quantification estimates.

3.1.3 Information sharing does not affect rare cell types

A common concern when sharing information across cells in single-cell
RNA sequencing analysis is that it may contribute to loss of heterogeneity
among the quantified cells (Huang et al., 2018; Andrews and Hemberg,
2018), removing not only technical “noise”, but also important biological
variability that leads to the detection of important features, such as rare cell
types . To test the hypothesis that the proposed Bayesian framework does
not “over-regularize” and lose rare cell types in downstream processing, we
perform the following experiment. We use the human PBMC dataset with
10k cells (10x Genomics, 2018) and quantify the cells with both the EM and
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Fig. 7: We perform cell clustering using Seurat on PBMC 10k dataset quantified using the EM (left) and VBEM (right) approaches in alevin and color

the cells based on their cell type annotation generated using marker genes.

VBEM-based approaches, where, for the VBEM-based approach we use
the same procedure of generating priors as discussed in Section 3.1.1. Next,
we perform Seurat (Satija et al., 2015) based clustering on the estimates
generated from both the approaches separately and compare the clusters.

In Figure 7, we show the 2D UMAP embeddings of the clustered data,
colored by cell-type annotations generated using marker genes, as detailed
in the Seurat pipeline (Stuart et al., 2019). We observe that the clusters
with relatively smaller number of cells, such as pDC, Megakaryocytes and
Dendritic cell, are not lost by the Bayesian correction method. In Table 1,
we show that the number of cells is almost always preserved in the most
abundant cluster of each cell type across the two quantification approaches.
We also observe that CD14+ Monocytes and CD8 effector cell types are
divided into two subclusters when quantified with EM while they are
correctly identified as one in case of VBEM.

3.2 Improved estimates using multi-modal information

3.2.1 Spatial Transcriptomics Data

Advancements in spatial transcriptomics (ST) have enabled scientists
to relate cells with their location within a tissue. Specifically, it has
been shown how combining ST with gene expression profiling in cancer
data helps understand multiple components of tumor progression and
therapy outcomes (Thrane ef al., 2018). 10x Genomics Visium is another
interesting assay that provides higher resolution and throughput for spatial
gene expression analysis. We use the open dataset provided by 10x
Genomics of the fresh frozen mouse brain tissue with 2698 spots in the
tissue and process the raw reads through the alevin framework to generate
a gene count matrix for each spot.

To test the Bayesian framework of alevin, we simulate 2698 cells
using the gene count matrix generated by processing the mouse brain
ST visium data from 10x Genomics (2019). We first run EM based
alevin on the simulated data and use the spatial 2D coordinates from
the ST data to learn the prior, i.e. for each cell we use the nearest 8

| | Cell Type / # cells EM VBEM | |
CD16+ Monocytes 318 322
CD8 effector 222 + 144 358
CD4 Naive 1015 1021
Megakaryocytes 49 49
NK cell 517 522
CD14+ Monocytes | 1758 + 1211 2962
pDC 68 68
CDS8 Naive 333 331
B cell progenitor 455 453
Dendritic cell 74 74
CD4 Memory 1428 1416
Double negative T cell 587 583
pre-B cell 916 925

Table 1. The number of cells observed across various cell types is similar
when clustering is performed on EM and VBEM based quantification estimates,
suggesting that the information sharing approach does not eliminate meaningful
heterogeneity in gene expression between cells. The annotations are generated
using Seurat’s marker gene analysis.

cells and their mean gene expression from the EM estimates to generate
the prior matrix. Then, we provide alevin with the prior matrix to re-
quantify the simulated data using the Bayesian method to generate VBEM
based estimates. In Figure 8 we show the cell-wise Spearman correlation
of tier 3 gene estimates for both EM and VBEM based methods. We
observe a global shift in the VBEM quantified data, reflecting the increased
accuracy obtained using informative priors from cells located spatially
close together. This result is particularly interesting, as it suggests that
the empirical Bayesian framework we have introduced is modular and
flexible, in that the generation of an informative prior is not tied to a
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Fig. 8: Comparison of the cell-wise Spearman correlation of tier 3 genes
quantified using EM based alevin and VBEM based alevin on spatial
transcriptomics data.

specific procedure (e.g. the Seurat-based anchoring). Rather, the prior can
be informed by data in the same sample, by assay-specific information
(nearby or differential cell clusters in spatial data as also shown by Aijo
et al. (2019)) and, perhaps, even across distinct modalities (e.g. between
ATAC-seq and RNA-seq for cells assayed with both protocols in the same
sample).

4 Discussion and Conclusion

In this work, we improve upon our previously proposed alevin pipeline
for quantification of dscRNA-seq data. The existing alevin pipeline uses a
maximum likelihood based procedure after the UMI deduplication phase
to accurately resolve multi-mapping reads, which are typically discarded
by other methods. While this approach uses unique read evidence from
within a cell to optimize read assignment, it uniformly divides read counts
where no unique evidence is available. The set of genes with this uniformly
divided distribution are assigned tier 3 by in the alevin output. Our proposed
method uses a Bayesian framework to improve tier 3 gene quantification.

This method works by sharing high confidence quantification
information between cells. Information is shared only across cells that
have similar gene expression profiles (or which are spatially proximate in
the case of spatial transcriptomics data), but the exact expression estimates
vary due to sparsity and uneven RNA capture in single-cell sequencing
protocols. We show that, under several different experimental setups, our
information-sharing framework consistently improves tier 3 dscRNA-seq
quantification estimates. This approach is especially useful for highly
ambiguous estimates where there is no intra-cellular unique information
available to accurately quantify the genes, but where simply discarding
the multi-mapping reads would lead to the loss of potentially important
biological information.

While we have focused on tier 3 genes in this study, this information
sharing model can be extended further to improve the UMI deduplication
procedure as well, before the construction of equivalence classes. For
example, instead of basing UMI deduplication on the principle of
parsimony in alevin, priors can be used to drive deduplication. This
can lead to improvements in abundance estimates for all genes in the
reference. Similarly, with advances in single-cell sequencing protocols,
this framework can be extended to incorporate priors from different
technologies. For example, as we have demonstrated, spatial data can
be useful for setting the prior in the proposed alevin framework. This
improves accuracy by relying not on similar gene expression profiles, but
cells that are in close proximity in physical space. Further, one can imagine

that other assays, like paired single-cell ATAC-Seq and RNA-seq, would
allow useful information sharing within the same sample but across data
types and modalities. We believe this framework has the potential to open
a new direction of enabling multi-modal information sharing to improve
quantification of single-cell data.
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Resources

The pipeline to replicate the analysis canbe foundatht tps://github.
com/COMBINE-lab/alevin-paper—pipeline/tree/master/
bayesian_alevin. We used the gencode 28 reference for human and
gencode mm10 for the mouse references. We use Seurat version 3.0.2 and
cellranger version 3.1 with the following commands:

1. index: cellranger mkref ——genome=ref ——fasta=genome.fa

——genes=genes.gtf ——nthreads=16
2. quantification: cellranger count ——id=cellranger ——fastqs=fastqs
——localcores=20 ——localmem=120 ——transcriptome=ref
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