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ABSTRACT

The functions of protein kinases have been widely studied and many kinase inhibitors have been
developed into FDA-approved therapeutics. A substantial fraction of the human kinome is nonetheless
understudied. In this perspective, members of the NIH Understudied Kinome Consortium mine publicly
available databases to assess the functionality of these understudied kinases as well as their potential to
be therapeutic targets for drug discovery campaigns. We start with a re-analysis of the kinome as a
whole and describe criteria for creating an inclusive set of 710 kinase domains as well as a curated set of
557 protein kinase like (PKL) domains. We define an understudied (‘dark’) kinome by quantifying the
public knowledge on each kinase with a PKL domain using an automatic reading machine. We find a
substantial number are essential in the Cancer Dependency Map and differentially expressed or mutated
in disease databases such as The Cancer Genome Atlas. Based on this and other data, it seems likely that

the dark kinome contains biologically important genes, a subset of which may be viable drug targets.

INTRODUCTION

Protein phosphorylation is widespread in eukaryotic cells (Cohen, 2002) and mediates many
critical events in cell fate determination, cell cycle control and signal transduction (Hunter, 1995). The
3D structures (protein folds) (Knighton et al., 1991a) and catalytic activities (Adams, 2001) of
eukaryotic protein kinases (ePKs), of which ~500 are found in humans (Manning et al., 2002), have
been intensively investigated for many years: to date, structures for over 280 unique domains and
~4,000 co-complexes have been deposited in the PDB database. The fold of ePKs is thought to have
arisen in prokaryotes (Lai et al., 2016) and evolved to include tyrosine kinases in metazoans (Darnell,
1997; Wijk and Snel, 2020), resulting in a diverse set of enzymes (Hanks and Hunter, 1995; Hanks et
al., 1988) that are often linked - in a single protein - to other catalytic domains, such as SH2 and SH3

peptide-binding domains, and other functional protein domains. In addition, 13 human proteins have two
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ePK kinase domains. An excellent recent review describes the structural properties of ePKs and the
drugs that bind them (Kanev et al., 2019).

With an accessible binding pocket and demonstrated involvement in many disease pathways,
protein kinases are attractive drug targets (Bhullar et al., 2018). Protein kinase inhibitors, and the few
activators that have been identified (e.g. AMPK activation by salicylate and A-769662 (Hawley et al.,
2012)), are diverse in mechanism and structure. These molecules include ATP-competitive inhibitors
that bind in the enzyme active site and non-competitive “allosteric” inhibitors that bind outside the
active site, small molecule PROTAC degraders whose binding to a kinase promotes ubiquitin-dependent
degradation (Jones, 2018) and antibodies that target the growth factor or ligand binding sites of receptor
kinases or that interfere with a receptor’s ability to homo or hetero-oligomerize (FAUVEL and Yasri,
2014). Kinase inhibitors have been intensively studied in human clinical trials and over 50 have been
developed into FDA-approved drugs (Kanev et al., 2019).

Despite the general importance of kinases in cellular physiology as well as their druggability and
frequent mutation in disease, a substantial subset of the kinome has been relatively little studied. This
has given rise to a project within the NIH’s Illuminating the Druggable Genome Program (IDG) (Finan
et al., 2017), to investigate the understudied “dark kinome” and determine its role in human biology and
disease. IDG has distributed a preliminary list of dark kinases based on estimates of the number of
publications describing that kinase and the presence/absence of grant (NIH R01) funding; we and others
have started to study the properties of these enzymes (Huang et al., 2018). Defining the dark kinome
necessarily involves a working definition of the full kinome and a survey of the current state of
knowledge.

Establishing the membersip of the human kinome is more subtle than might be expected. The
first human “kinome” with 514 members, defined as proteins homologous to enzymes shown

experimentally to have peptide-directed phosphotransferase activity, was put forward in a
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groundbreaking 2002 paper by Manning et al. (Manning et al., 2002). This list has subsequently been
updated via the KinHub Web resource (Eid et al., 2017a) to include 522 proteins. The kinase domain of
protein Kinase A (PKA), a hetero-oligomer of a regulatory and a catalytic subunit, was the first to be
crystalized and is often regarded as the prototype of the ePK fold (Knighton et al., 1991a, 1991b). This
fold involves two distinct lobes with an ATP-binding catalytic cleft lying between the lobes which is
characterized, at the level of primary sequence, by 12 recurrent elements with a total of ~30 highly
conserved residues (Lai et al., 2016). Of 514 proteins in the kinome from Manning et al, 478 have an
ePK fold.

Kinases have diverged in multiple ways to generate protein folds distinct in sequence and
structure from PKA including the eukaryotic like fold, the atypical fold and unrelated folds. The
eukaryotic like kinases (eLKs) are similar to ePKs in that they retain significant sequence similarity to
the N-terminal region of ePKs but differ in the substrate binding lobe. TP53RK, a regulator of p53
(TP53) (Abe et al., 2001) is an example of a serine/threonine protein kinase with an eLK fold. Kinases
with an atypical fold (aPKs) are distinct from ePKs and eLKs in that they have weak sequence similarity
to ePKs, but nevertheless adopt an ePK-like three dimensional structure. aPKs include some well-
studied protein kinases such as the DNA damage sensing ATM and ATR kinases (Abraham, 2001). The
aPK and eLK folds are not limited to protein kinases. The lipid kinase PI3K, one of the most heavily
mutated genes in breast cancer (Mukohara, 2015), also adopts an aPK fold (Kanev et al., 2019).
Similarly, the choline kinase CHKA, a key player in dysregulated choline metabolism in cancer and a
chemotherapy target, adopts the eLK fold (Glunde et al., 2011; K et al., 2016). Over 200 additional
proteins are annotated as “kinase” in UniProt. The structures of these kinases are unrelated to the protein
kinase fold and they are therefore termed uPKs (unrelated to Protein Kinases). Enzymes with
phosphotransferase activity in the uPK family include hexokinases that phosphorylate sugars, but also

protein kinases with bromodomains (e.g. BRD2, BRD3 and BRD4) as well as STK19, which displays
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peptide-directed phosphotransferase activity (Yin et al., 2019). Multiple uPK proteins, including those
with bromodomains, bind to small molecule kinase inhibitors (Ciceri et al., 2014) making it useful, from
the perspective of drug discovery, to study kinase-like proteins at the same time as kinases themselves.

While protein kinases could in principle be defined strictly as enzymes that catalyze phospho-
transfer from ATP onto serine, threonine and tyrosine, such a definition would exclude structurally and
functionally related lipid kinases and well as many of the protein families relevant to drug discovery. It
would also fail to account for a lack of functional data for a substantial number of proteins, potentially
excluding from consideration kinases that are physiologically or catalytically active but have not yet
been tested in biochemical assays. This has resulted in definitions that rely on sequence alignment and
structural data to identify closely related folds (Ciceri et al., 2014); in this definition, uPKs having
kinase activity as well as bromodomains that potently bind and are inactivated by kinase inhibitors are
often excluded. Moreover, as Hidden Markov Models (HMMs) and other ways of recognizing kinase
homology have become more sophisticated, additional proteins have been added to the kinase tree
(Briedis et al., 2008)

Kinases directed against molecules other than proteins or peptides regulate signal transduction
and other eukaryotic regulatory pathways by phosphorylating second messengers and metabolites
(Verheijen et al., 2011). These pathways often intersect with regulatory cascades controlled by protein
kinases (Mosca et al., 2012) and some metabolic kinases have been demonstrated to also have activity
against peptide or protein substrates (Lu and Hunter, 2018), challenging the conventional notion that
small molecule and peptide-directed kinases are distinct families of enzymes. One example is the
pyruvate kinase PKM2, which in addition to its well-known function in generating pyruvate from
phosphoenolpyruvate, can also phosphorylates histone H3 at T11, thereby activating transcription

downstream of EGFR-signaling (Yang et al., 2012).
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These data suggest that it would be valuable to define the kinome along multiple axes, based on
fold or sequence homology, ability to bind small molecule kinase inhibitors and extent of functional
analysis. An expansive list is most likely useful for the kinome-wide activity profiling that is a routine
part of kinase-focused drug discovery. Profiling typically involves screening compounds against panels
of recombinant enzymes (e.g. KINOMEscan (Posy et al., 2011)) or chemo-proteomics in which
competitive binding to ATP-like ligands on beads (so-called kinobeads (Klaeger et al., 2017) or
multiplexed inhibitor beads - MIBs (Cousins et al., 2018)) is assayed using mass spectrometry. In
contrast, screens for kinases that phosphorylate a specific protein sequence would logically focus on
enzymes known, or likely to have peptide-directed phosphotransferase activity. Discovery programs
might logically be directed at the understudied kinases expressed, and potentially functional, in normal
cellular physiology and in disease.

In this perspective we generate new lists for membership in the full kinome based on the
published literature and a variety of inclusion and exclusion criteria. We also re-compute membership in
the understudied dark kinome using the automatic network knowledge assembling machine INDRA
(Gyori etal., 2017). We consolidate available data on dark kinase activity and function with the goal of
determining which understudied kinase merit additional attention. Functional evidence in this context is
typically indirect, such as data from TCGA (The Cancer Genome Atlas, (Weinstein et al., 2013) on the
frequency with which a kinase is mutated in a particular type of cancer. In aggregate, the evidence
strongly suggests that the understudied kinome is likely to contain multiple enzymes worthy of in-depth
study, a subset of which may be viable therapeutic targets. All of the information in this manuscript is

available in supplementary materials and is currently being curated and released via the dark kinome

portal (https://darkkinome.org/).

RESULTS
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The composition of the human kinome

An initial list of human kinases was obtained from Manning et al. (Manning et al., 2002)
(referred to below as ‘Manning”) and a second from Eid et al.(Eid et al., 2017a) (via the Kinhub Web
resource); a list of dark kinases according to IDG was obtained from the NIH solicitation (updated in
January 2018) and a fourth list of all 684 proteins tagged as “kinases” was obtained from UniProt; this
list includes protein kinases, lipid kinases and other small molecule kinases. These lists are overlapping
but not identical (Figure 1A). For example, eight IDG dark kinases absent from Manning and Kinhub
(CSNK2A3, PIK3C2B, PIK3C2G, PIP4K2C, PI4KA, PIP5K1A, PIP5K1B, and PIP5K1C) are found in
the UniProt list. We therefore assembled a superset of 710 domains (the “extended kinome”) and used
curated alignment profiles (HMM models) and structural analysis (Kannan et al., 2007) to subdivide
domains into three primary categories: “Protein Kinase Like” (PKL), if the kinase domain was similar to
known protein kinases in sequence and 3D-structure; “Unrelated to Protein Kinase” (uPK), if the kinase
domain was distinct from known protein kinases; and “Unknown” if there was insufficient information
to decide (see methods), (Kannan et al., 2007). PKLs were further subdivided into eukaryotic protein
kinases (ePKs, discussed in the introduction), eukaryotic like kinases (eLKs) and kinases with an
atypical fold (aPKs) as previously described (Kannan and Neuwald, 2005; Kannan et al., 2007). ePKs
and eLKs share detectable sequence similarity in the ATP binding lobe and some portions of the
substrate binding lobe (up to the conserved F-helix (Kannan et al., 2007)). aPKs, on the other hand,
display no significant sequence similarity to ePKs and eLKs, but nevertheless adopt the canonical
protein kinase fold. Most aPKs lack the canonical F-helix aspartate in the substrate binding lobe, but
share structural similarities with ePKs and eLKSs in the ATP binding lobe (Figure 1B). Unfortunately,
the nomenclature used in making these distinctions is not consistent across sources. In this perspective
aPK refers to a subset of PKLs defined by fold and sequence similarity; this is distinct from the so-called

“atypical protein kinase group” (AKGs). These domains are usually depicted alongside the familiar
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Coral kinase dendogram (Metz et al., 2018) and include protein kinases such as ATM and ATR as well
as bromo-domains and TRIM proteins (see below).

As noted previously (Garrett et al., 2011; Manning et al., 2002), structural, sequence-based and
functional classifications of kinases are often ambiguous and overlapping. For example, the ATM aPK is
known to phosphorylate proteins DYRK2, MDM2, MDM4 and TP53 (Jassal et al., 2020) when
activated by DNA double-strand breaks and it is also a member of the six-protein family of
phosphatidylinositol 3-kinase-related protein kinases (PIKKSs). The PIKK family has a protein fold
significantly similar to lipid kinases in the PI3K/P14K family but PI4K2A, for example, modifies
phosphatidylinositol lipids and not proteins (Baumlova et al., 2014). Thus, even after extensive
computational analysis, some manual curation of the kinome is necessary. We have created a sortable
table enumerating all of the inclusion and exclusion criteria for individual kinases described in this
perspective; it is possible to generate a wide variety sublists from this table based on user-specific
criteria (Supplemental Table S1).

One drawback of the 710 extended kinome set is that it is substantially larger than the 525-550
domains commonly regarded as comprising the set of human protein kinases. In many cases, it is
unknown if proteins in the extended list have experimentally-validated phospho-transfer activity, and if
so whether it is directed against peptides, small molecules or both (Lu and Hunter, 2018). We therefore
created a second “curated kinome” comprising 557 domains (544 genes) that includes all 556 PKLs plus
the uPK STK19 (Supplemental Table S2); this list omits 15 uPKs found in Manning and 22 found in
Kinhub (including multiple TRIM family proteins (Reymond et al., 2001) that regulate and are regulated
by kinases (Ozato et al., 2008), but have no known intrinsic Kinase activity). The shorter list also omits
bromodomains. The curated 557-domain kinome and the Manning list are compared in Figure 1C and

Figure S1A.
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The utility of the extended kinome to drug discovery involving kinase inhibitors can be
demonstrated by re-analysis of a large-scale chemo-proteomic dataset collected using multiplexed
inhibitor beads (Klaeger et al., 2017). Overall, we found that 48 domains in the extended kinome list and
not in the curated list bound to kinobeads and eight were competed-off in the presence of a kinase
inhibitor, the criterion for activity in this assay (Figure S1B). Pyridoxal kinase (PDXK) and adenosine
kinase (ADK) were among the enzymes bound by kinase inhibitors, even though these proteins are not
conventionally considered when studying kinase inhibitor mechanism of action. Because non-protein
kinases participate in metabolic pathways and signaling networks, an expansive list including these non-
protein kinases facilitates a systemic analysis of the mechanisms of action (MoA) of kinase inhibitors.

Thus, extended and curated kinomes and their different sublists are useful in different settings.

Identifying understudied kinases

The original IDG dark kinome list was assembled using a bibliometric tool, TIN-X (Cannon et
al., 2017), that uses natural language processing (NLP) of PubMed abstracts to assess the “novelty” and
“disease importance” of a gene or protein. We have previously found that different ways of performing
bibliometric evaluation yield varying results when applied to the kinome (Huang et al., 2018). We
therefore took a complementary approach based on the computational tool INDRA (the Integrated
Network and Dynamical Reasoning Assembler), (Gyori et al., 2017; Todorov et al., 2019). INDRA uses
multiple NLP systems (McDonald et al., 2016; Valenzuela-Escarcega et al., 2017) to extract computable
statements about biological mechanism from PubMed abstracts and full text articles in PubMedCentral.
Unlike other bibliometric tools, INDRA aggregates data from multiple pathway databases (such as
BioGrid (Stark et al., 2006) and PathwayCommons (Cerami et al., 2011)) and specialized resources such
as the LINCS compound database and the Target Affinity Spectrum from the Small Molecule Suite

database (Moret et al., 2019).
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INDRA differs from simpler bibliometric tools because it is able to homogenize and
disambiguate biological entities from different sources and maximize the extraction of mechanistic
information. This is particularly important when a protein has multiple names, or its name changes over
time. For example, the dark kinase PEAK3 was originally known as C190rf35 and was recently found
to be a biologically active pseudokinase (Lopez et al., 2019). INDRA consolidates biological statements
using both PEAK3 and C190rf35 as identifiers and represents them with the now-standard HGNC name
PEAKS3. Whenever the information is available, INDRA statements are detailed with respect to
molecular mechanism and they are linked to the underlying knowledge support (the database reference
or citation). For example, the INDRA network for the WEE2 dark kinases (Figure 2A) includes
statements such as “Phosphorylation(WEE2(), CDK1())” and “Inhibition(WEE2(), CDK1()).” These
machine and human-readable assertions state that WEEZ2 is active in mediating an inhibitory
phosphorylation event on CDK1 (Figure 2A). INDRA associates each assertion with its underlying
evidence (including database identifiers or specific sentences extracted from text and their PMIDs).
INDRA also consolidates overlapping and redundant information: in many cases a single assertion has
multiple pieces of evidence (for example, three PMID citations for the phosphorylation reaction
described above). Each INDRA statement is therefore a unique biochemical mechanism of action rather
than a paper count. INDRA Statements can be visualized as networks of mechanisms comprising
proteins, small molecules and other biological entities. Thus, INDRA can be used to efficiently explore
available information on proteins and protein families.

We generated INDRA networks for all members of the curated kinome and used the number of
mechanistic statements as a quantitative measure of knowledge about each kinase; these networks can be
visualized via the NDEX service (Pratt et al., 2015). We found that prior knowledge about the curated
kinome as extracted by INDRA varied by >104 fold and was correlated with the TIN-X “novelty” score

(Pearson’s correlation coefficient=0.81). There were some cases in which the two measures were
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discordant; for example, PI4K2A has only 78 INDRA statements, but a high TIN-X novelty score of
~808. The reason for this inconsistency is still under investigation but in general, such errors reflect the
difficulty of linking common names for genes and proteins to their unique identifiers in resource such as
HGNC (this is known as the process of entity grounding); INDRA has extensive resources to correctly
ground entities and resolve ambiguities. For example, it correctly associates MEK kinase with the
HGNC name MAP2K1 and not “methyl ethyl ketone”.

To estimate the intensity of drug development for each kinase we used the Small Molecule Suite
(Moret et al., 2019), which mines diverse cheminformatic resources to determine which kinases are
bound by small molecules in a most-selective (MS) and semi-selective (SS) fashion (Figure 2C). We
also mined PHAROS (Nguyen et al., 2017), which classifies drug targets based on whether or not they
are bound by an FDA-approved drug (Tclin) or a tool compound (Tchem). The selectivity levels in the
Small Molecule Suite are assigned to target-compound interactions (rather than to compounds per se)
based on available data on the absolute binding affinity (typically obtained from enzymatic or
quantitative protein binding assays), differential “on target” affinity as compared to the “off-target
affinity” (typically obtained from a kinase profiling assay), the p-value between the distributions for
“on” and “off” targets, and “research bias”; the latter accounts for differences in available binding data.
In the absence of a bias estimate, a poorly studied compound can appear much more selective than a
well-studied one simply because few off-targets have been tested. The MS assertion is assigned to
compounds that have an absolute affinity <100 nM, an on-target Kd > 100 times lower than off target
Kd, p-value of <0.1, and research bias < 0.2 (see (Moret et al., 2019) for details). The SS assertion is
about 10-fold less strict with regard to absolute and differential affinity (see methods). We found that
kinases that were more heavily studied were more likely to have inhibitors classified as Tclin and Tchem

in PHAROS or MS or SS in Small Molecule Suite. However, a substantial number of kinases with high
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INDRA scores are bound only by relatively non-selective inhibitors and therefore represent
opportunities for development of new chemical probes.

The original NIH IDG dark kinase list encompassed approximately one-third of the kinome.
Using INDRA and TIN-X scores, we generated a new list of similar scope (schematized by the magenta
box in Figure 2A, 2B) of the 182 least-studied domains in 181 proteins in the curated kinome, of which
119 were on the original NIH list and 156 in Manning or KinHub (Figure 2D). In the analysis that
follows we use this recomputed list to define the “dark kinome”. When the distribution of dark kinases is
viewed using the standard Coral kinase dendrogram (Metz et al., 2018), an even distribution is observed
across subfamilies, with the exception that only eight tyrosine kinases are judged to be understudied
(Figure 3). In many cases light and dark kinases are intermingled on the dendrogram (e.g. the CK1
subgroup) but in some cases an entire sub-branch is dark (e.g. a branch with four TSSK and another with
three STK32 kinases; dashed red outline). In yet other cases, a well-studied kinase is closely related to a
dark kinases, SIK1 and SIK1B or WEE1 and WEE2 for example, but it is unknown whether such pairs

of isozymes are similar or redundant functionally.

Evidence for dark kinase expression and function

To consolidate existing data on the expression and possible functions of understudied kinases,
we analyzed RNAseq data for 1019 cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Nusinow et
al., 2020), proteomic data for 375 cell lines in the CCLE (Nusinow et al., 2020) and loss of function data
in the Cancer Dependency Map (DepMap). The DepMap was generated using lentivius-based RNAI or
CRISPR/Cas?9 libraries in pooled screens to identify genes that are essential in one or more of a ~1000
cell lines (Tsherniak et al., 2017).

Based on RNASeq data, non-dark and dark kinases were observed to vary substantially in

abundance across 1019 CCLE cell lines. Using the common threshold of RPKM >1 (Reads Per Kilobase
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of transcript, per Million mapped reads) (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) evidence
of expression was found in at least one cell line for 176 of 181 dark kinases (Figure 4A). Some dark
kinases were as highly expressed as well-studied light kinases: for example, NRBP1 and PAN3 and the
lipid kinases PI4KA and PIP4K2C all had maximum expression levels similar to that of the abundant
and well-studied LCK tyrosine kinase. Overall, however, dark kinases had significantly lower maximum
MRNA expression levels than well studied kinases by multiple criteria (2.1 vs 5.8 RPKM median
expression level, p-value=4.6x10-s; 36 vs 71 RPKM maximum expression level, p-value=2.2x10-16 by
Wilcoxon rank sum test). In CCLE proteomic data we observed that 367 kinases from the curated
kinome were detected at the level of at least one peptide per protein; 110 of these were dark kinases. The
difference between proteomic and mRNA data overall is likely to reflect the lower sensitivity of shotgun
proteomics, but some kinases might also be subjected to translational regulation. Analysis of DepMap
data showed that 10 dark kinases are essential in at least 1/3 of the 625 cell lines tested to date (Figure
4B; dark blue shading), and 88 kinases are essential in at least two lines (light blue shading). We
conclude that a substantial number of dark kinases are expressed in human cells lines and a subset are
required for cell growth. These data are likely to underestimate the breadth of kinase expression and
function: proteins can impact cellular physiology when expressed at low levels (not detectable by
shotgun proteomics) and genes can have important functions without necessarily resulting in growth

defects assayable by DepMap methodology.

Dark kinases in disease

To study the possible roles of dark kinases in pathophysiology, we mined associations between
diseases and either gene mutations or changes in expression. We examined The Cancer Genome Atlas
(TCGA), Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-AD) and a microarray

dataset on changes in gene expression associated with chronic obstructive pulmonary disease (COPD;
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(Rogers et al., 2019). COPD progressively impairs a patients’ ability to breathe and is the third leading
cause of death in the US. In TCGA, we compared the frequency of mutations in dark and non-dark
kinases under the assumption that the two sets of kinases are characterized by the same ratio of
passenger to driver mutations (Garraway and Lander, 2013) and we then looked for differential RNA
expression relative to matched normal tissue (Figure 5A). In common with most TCGA analysis,
mutations and differential expression were scored at the level of genes and not domains; thus, observed
mutations may affect functions other than kinase activity. We performed differential expression and
mutation frequency analyses for individual tumor types and for all cancers as a set (the PanCan set).
With respect to differential gene expression, we found that dark and light kinases are equally likely to be
over or under-expressed in both PanCan data and in data for specific types of cancer (in a Rank-sum
two-sided test with Ho = light and dark kinases have similar aberrations p=0.86) (Figure 5). For
example, in colorectal adenocarcinoma, the dark kinase MAPK4 is one of the three most highly
downregulated kinases whereas LMTK3, NEKS5 and STK3L1 represent four of the seven most high
upregulated kinases (Figure S3A). This is consistent with a report that overexpression of STK31 can
inhibit the differentiation of colorectal cancer cells. (Fok et al., 2012).

By mining PanCan, we also found that five dark kinases were among the 30 most frequently
mutated human kinases; for example, the ~3% mutation frequency of the dark MYO3A kinase is similar
to that of the oncogenic RTKs EGFR and ERBB4 (but lower than the ~12% mutation frequency for the
lipid kinase PIK3CA\) (Figure 4B). Similarly, in diffuse large B-cell lymphoma (DLBCL), the dark
kinase ITPKB, which has been reported to phosphorylate inositol 1,4,5-trisphosphate and regulate B cell
survival (Schurmans et al., 2011), is more frequently mutated than KDR (~13% vs. 8% of patient
samples, Figure S3B). Overexpression of KDR is known to promote angiogenesis and correlate with
poor patient survival (Gratzinger et al., 2010; Holmes et al., 2007; Jargensen et al., 2009). More recently

a case study reported that patients carrying an ITPKB C873F substitution mutation had Richter’s
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syndrome (which is characterized by sudden development of B cell chronic lymphocytic leukemia into a
faster-growing and more aggressive DLBCL) and clones harboring the ITPKB C873F mutation
exhibited higher growth rates (Landau et al., 2017). Recurrent mutation, over-expression and under-
expression in TCGA data is not evidence of biological significance per se, but systematic analysis of
TCGA data has been remarkably successful in identifying genes involved in cancer initiation,
progression, and drug resistance. Our analysis shows that dark kinases are nearly as likely to be mutated
or differentially expressed in human cancer as their better studied non-dark kinase homologues, making

them good candidates for future testing as oncogenes or tumor suppressors.

To explore the roles of dark kinases in other diseases, we analyzed data from the AMP-AD
program Target Discovery and Preclinical Validation (Hodes and Buckholtz, 2016)). This large program
aims to identify molecular features of AD at different disease stages. We compared mRNA expression at
the earliest stages of AD to late-stage disease in age matched samples (Figure 5C) and found that the
dark kinases ITPKB and PKN3 were among the five most upregulated kinases while NEK10 was
substantially downregulated. A similar analysis was performed for COPD, based on a study by Rogers et
al (Rogers et al., 2019) of five COPD microarray datasets from Gene Expression Omnibus (GEO) and
two COPD datasets from ArrayExpress that aimed to identify genes with significant differential
expression in COPD. By comparing the expression of genes in COPD patients to gene expression in
healthy individuals, Rogers et al. identified genes significantly up and down regulated in patients
(adjusted p-value < 0.05). We analyzed these data and found that the dark kinase PIP4K2C, which is
potentially immune regulating (Shim et al., 2016), was significantly downregulated in individuals with
COPD (adjusted p-value = 0.048). Additionally, CDC42BPB, nominally involved in cytoskeleton
organization and cell migration (Tan et al., 2008, 2011), was significantly upregulated (adjusted p-value
=0.026) (Figure 5D). In total, five dark kinases versus fifteen non-dark kinases were differentially
expressed in COPD patients. As additional data on gene expression and mutation become available for
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other diseases, it will be possible further expand the list of dark kinases potentially implicated in human

health.

A dark kinase network regulating the cell cycle

Inspection of INDRA networks revealed that dark kinases, like well-studied kinases, function in
networks of interacting kinases. One illustrative example involves control of the central regulator of cell
cycle progression, CDK1, by the dark kinases PKMYT1, WEE2, BRSK1 and NIM1K (Figure 6).
Although the homologues of some of these kinases have been well studied in fission and budding yeast,
not as much is known about the human kinases (Wu and Russell, 1993). WEEZ2, whose expression is
described to be oocyte-specific (Sang et al., 2018) (but can is also be detected in seven CCLE lines, six
from lung cancer and one from large intestine) is likely to be similar in function to the well-studied and
widely-expressed homologue WEE1,which phosphorylates CDK1 on the negative regulatory site T15
(Sang et al., 2018) whereas PKMYT1 phosphorylates CDK1 on the Y14 site to complete the inhibition
of CDK1 (Liu et al., 1997; Mueller et al., 1995). These modifications are removed by the CDC25
phosphatase, which promotes cell cycle progress from G2 into M phase (Santamaria et al., 2007).
PKMYT1 and WEEL1 are essential in nearly all cells, according to DepMap (DepMap, 2019) (although
WEE?2 is not). Upstream of WEEL1, the dark kinases BRSK1 (127 INDRA statements) and NIM1K (28
INDRA statements) and the better-studied BRSK2 (176 INDRA statements) function to regulate WEEL.
Neither PKMYT1, BRSK1 nor NIM1K have selective small molecule inhibitors described in the public
literature (Asquith et al., 2020); several WEEL1 inhibitors are in clinical development however
(Matheson et al., 2016), and these molecules are likely to inhibit WEE2 as well. It is remarkable that
enzymes so closely associated with the essential cell cycle regulator CDK1, remain relatively
understudied in humans (Wu and Russell, 1993). This is particularly true of PKMYT1 and NIM1K

which are frequently upregulated in TCGA data.
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Inhibition of dark kinases by approved drugs

Kinase inhibitors, including those in clinical development or approved as therapeutic drugs, often
bind multiple targets. We therefore asked whether dark kinases are targets of investigational and FDA-
approved small molecules by using the selectivity score (Moret et al., 2019) to mine public data for
evidence of known binding and known not-binding. We identified 13 dark kinases that may be inhibited
by approved drugs and an additional 12 dark kinases for which MS or SS inhibitors exist among
compounds that have entered human trials (although several of these are no longer in active
development). For example, the anti-cancer drug sunitinib is described in the Small Molecule Suite
database as binding to the dark kinases STK17A, PHGK1 and PHGK?2 with binding constants of 1 nM,
5.5 nM and 5.9 nM respectively (Figure 7A, Table S3) as opposed to 30 nM to 1 uM for VEGF
receptors (the KDR, FLT1 and FLT4 kinases) and 200 nM for PDGFRA, which are well established
targets for sunitinib. Follow-on biochemical and functional experiments will be required to determine if
dark kinases play a role in the therapeutic mechanisms of these and other approved drugs.

The potential for development of new compounds that inhibit dark kinases based on modification
of existing kinase inhibitors can be assessed in part by examining the structures of kinase binding
pockets using Bayes Affinity Fingerprints (BAFP)(Bender et al., 2006; Nguyen et al., 2013). In this
cheminformatics approach, each small molecule in a library is computationally decomposed into a series
of fragments using a procedure known as fingerprinting. The conditional probability of a compound
binding to a specific target (as measured experimentally in profiling or enzymatic assays) given the
presence of a chemical fragment is then calculated. Each target is thereby associated with a vector
comprising conditional probabilities for binding fragments found in the fingerprints of compounds in the
library. Subsequently, the correlation of conditional probability vectors for two proteins is used to

evaluate similarity in their binding pockets from the perspective of a chemical probe. BAFP vectors
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were obtained from a dataset of ~5 million small molecules and 3000 targets for which known binding
and non-binding data are available from activity profiling.

We found by BAFP that the majority of kinase domains fell in two clusters, each of which had
multiple dark and non-dark kinases. The close similarity of dark and non-dark kinases in “compound
binding space” suggests that many more kinase inhibitors than those described in Figure 7a may already
bind dark kinases or could be modified to do so (Figure 7B, Figure S5). For example, the clustering of
IRAKL, IRAK4, STK17B and MAP3K7 by BAFP correlation (highlighted in Figure 7B) demonstrates
that the STK17B binding pocket is likely very similar to that of IRAK1, IRAK4 and MAP3K?7 and that
compounds binding these non-dark kinases, such as lestaurtinib and tamatinib may also bind STK17B.
Based on this, it may be possible to design new chemical probes with enhanced selectivity for STK17B
by starting with the libraries derived from lestaurtinib or tamatinib.

Other useful tools for development of new small molecule probes are commercially available
activity assays and experimentally determined NMR or crystallographic protein structures. Of 181 dark
kinases 101 can currently be assayed using the popular KINOMEscan platform (Fabian et al., 2005), 91
are available as enzymatic assays (in the Reaction Biology kinase assay panel;
www.reactionbiology.com, Malvern, PA), and 74 are found in both. Since the Reaction Biology assay
measures phospho-transfer activity onto a peptide substrate, the availability of an assay provides further
evidence that at least 91 dark kinases are catalytically active. Searching the Protein Data Bank (PDB)
reveals that 53 dark kinases have at least one experimentally determined structure (for at least the kinase
domain). Haspin has 18 structures, the highest of all dark kinases, followed by PIP4K2B, CLK3, and
CSNK1G3 (14, 10, 10 structures, respectively) (Supplementary Figure S3, Table S2). Many of these
structures were determined as part of the Protein Structure Initiative (Burley et al., 2008) and its
successors but have not been subsequently discussed in the published literature. The availability of these

resources and data are summarized in Supplementary Table 1.
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DISCUSSION

In this perspective we revisit the criteria used to define membership in the human kinome. This
is not a trivial task because no single functional, structural or historical definition exists. We have
therefore assembled a table of protein domains that can be used to generate more or less expansive sets
of kinases in a data-driven manner based on criteria such as function, sequence homology, known or
predicted structure etc, (see Supplementary Table 1). The table can also be used to generate lists of
classical protein kinases, lipid kinases, nucleotide kinases etc. Creation of the master table involved
consolidating multiple overlapping kinome lists, which often use different rules. Thus, not all
assignments are unambiguous. We also note that the biochemical activities assigned to many kinase
remain provisional, particularly in the case of understudied kinases. For example, it is increasingly clear
that some kinases can phosphorylate both small molecules and proteins. The NIH IDG group intends to
maintain an updated version of Supplementary Table 1 at its website (https://darkkinome.org/).

The human kinome includes ~50 so-called “pseudokinases” that, based on sequence alignment,
lack one or more residues generally required for catalytic activity. These residues include the ATP -
binding lysine (K) within the VAIK motif, the catalytic D within the HRD motif and the magnesium
binding D within the DFG motif (Kwon et al., 2019). Many pseudokinases function in signal
transduction despite the absence of key catalytic residues. For example, the EGFR family member
ERBB3/HERS is a pseudokinase that, when bound to ERBB2/HER2, forms a high affinity receptor for
heregulin growth factors (Sliwkowski et al., 1994). ERBB3 over-expression also promotes resistance to
therapeutic ERBB2 inhibitors in breast cancer (Garrett et al., 2011). Some proteins commonly annotated
as pseudokinases have been found to have phospho-transfer activity. Haspin, for example, is annotated
as a pseudokinase in the ProKinO database because it lacks a DFG motif in the catalytic domain, but it

has been shown to phosphorylate histone H3 using a DYT motif instead (Eswaran et al., 2009; Villa et
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al., 2009). H3 phosphorylation by Haspin changes chromatin structure and mitotic outcome and is
therefore physiologically important (Dai et al., 2005). The existence of biologically active
pseudokinases, some of which may actually have phosphotransferase activity, is but one way in which
equating kinases with a specific fold, sequence similarity, or enzymatic function is inadequate.

Based on our work, the most useful definitions of the human kinome are likely to be an
expansive 710 domain “extended kinome” that broadly encompasses related sets of folds, sequences and
biological functions. This list will be relevant to machine learning, chemoproteomics, small molecule
profiling and genomic studies in which an expansive view of the kinome is advantageous. As one
example of such a list we generated a set of 557 “curated kinase” domains that is most similar in spirit to
the original definition of the kinome generated by Manning (Manning et al., 2002) nearly two decades
ago. This list is most useful in the study of kinases as a family of genes with related biochemistry and
cellular function. The computational analysis in this perspective focuses on this curated kinase set.

The amount public knowledge on specific kinases spans at least four orders of magnitude when
measured by the number of unique causal and mechanistic statements that can be extracted using
INDRA, a text mining and knowledge assembly software. Unsurprisingly, famous drug targets such as
EFGR and cytosolic kinases such as mTOR have high INDRA scores but other kinases are little studied,
even ones for which high resolution structures and commercial assays exist: CLK3 and WNK3, for
example, both have crystal structures and available as recombinant protein on Reaction Biology and
DiscoverX kinase panel. In general, we find that INDRA correlates well with more conventional
bibliometric measures, (Huang et al., 2018)(Cannon et al., 2017) and also with whether or not a domain
has been successfully targeted with selective or clinical grade small molecules. Following the lead of the
NIH IDG program, we have defined the understudied dark kinome as the least-studied one-third of all
kinase domains. These domains have ~14 fold fewer INDRA statements on average than well-studied

kinases and are much less likely to have small molecule ligands.
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In the course of preparing this perspective we repeatedly ran into the challenge of correctly
associating kinases described in the literature with their canonical (HGNC or UniProt) names. Many
kinases have multiple names, often several common ones such as MEK1 or MAPKK1 as well as a
standardized one such as MAP2K1 (HGNC:6840). In many cases, the name space changes over time
(e.g. PEAKS3 instead of C190rf35 (Lopez et al., 2019)). Humans find it arduous to make these
associations across a vast literature and, even after extensive human training, tools based on state of the
art NLP such as INDRA cannot correctly ground all named entities. We have also observed that many of
the regulatory sites on kinases are mis-numbered, either because residue number changed over time or
confusion over isoforms and even species (Bachman et al., 2019). This leads to the problem of
“unknown knowns” — namely facts that have been established (or data that have been collected) but are
no longer findable by the community. One of the tasks of the IDG group is therefore to identify such
sources of “lost” information and correctly associate them with systematic knowledge repositories. In
the specific case of the dark kinome described here, we welcome information on data we might have
missed on specific kinases.

We find that at least 175 of the least studied kinases as defined above, are expressed in CCLE
cell lines (the largest available cell line panel analyzed to date) when measured by protein or by mMRNA
expression (and in many case, by both). We also find that half of all dark kinases are essential in two of
more of the 625 cell lines annotated in the DepMap (Tsherniak et al., 2017) and 10 are essential in at
least two-thirds of DepMap lines. In addition, 27 kinases are among the top ten most mutated kinase in
one or more cancer types annotated in TCGA and several others are differentially expressed in disease
databases for Alzheimer’s Disease or COPD. These largely indirect findings suggests that a substantial
subset of dark kinases are functional in normal physiology and in disease. This information is of

immediate use in studying protein phosphorylation networks and it sets the stage for studies using
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genetic and chemical tools to understand dark kinase function. Based on available evidence, the

possibility exists that some dark kinases may also be valuable as therapeutic targets.
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METHODS

Classification of the “extended kinome” and defining the “curated kinome”

To obtain a list of kinases from UniProt all human proteins annotated to have kinase activity were
extracted and filtered based on (i) interaction with ADP/ATP; (ii) presence of a kinase domain; 3)
membership in a kinase family (lists of kinase domains and kinase families are available in
supplementary material). To identify human kinase sequences that belong to the Protein Kinase Like
(PKL) fold, 710 sequences annotated as “kinase” in UniProt were first subjected to a similarity search
against well curated ePK profiles to identify and separate out the 8 canonical ePK groups(Eswaran et al.,
2009; Manning et al., 2002; Talevich et al., 2011). eLKs were identified based on detectable sequence
similarity with one or more of the ePK sequences. Sequences that share no detectable sequence
similarity to ePKs were classified as aPKs. For predicted aPKSs, crystal structures of the protein itself or
of the closest homolog were inspected manually to check if the kinase domain adopts a canonical ePK
fold. Additional support for this classification was obtained by calculating a Hidden Markov Model
(HMM)-based distance score between the Pfam domains(Huo et al., 2017) and the presence/absence of
key structural features distinguishing ePKs, eLKs and aPKs, as described previously(Kannan and
Neuwald, 2005; Kannan et al., 2007). A subset of sequences that satisfied none of the above criteria i.e.
no detectable sequence similarity to ePKs, no clear kinase function and no homologous crystal
structures, were grouped into the unknown protein kinase category (UPKs). All kinases annotated to
have a PKL fold were included in the curated kinome. STK19 was also included in the curated kinome
despite its uPK fold since it is known to be serine/threonine kinase active against peptide substrates(Yin

etal., 2019).
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Curation of INDRA statements and generation of INDRA networks

INDRA uses natural language processing (NLP) to extract mechanistic information from literature as
well as databases and represents them in a standardized format as previously described(Gyori et al.,
2017). In the present study, mechanistic statements for each kinase were obtained from INDRA with the
script ‘get_kinase_interaction.py’. The number of INDRA statements were counted for each kinase.
Regulatory networks were generated by first assembling a mechanistic model for each kinase with the
INDRA assembler.cx module and uploading the model to NDex (python scripts to assemble INDRA

statements and assemble mechanistic networks are available on the Github repository

Small molecule selectivity calculations

The specificity of small molecules was calculated according to the selectivity score(Moret et al., 2019),
which uses multiple parameters to assess selectivity: (i) the absolute affinity for the ‘on’ target; ii) the
differential affinity between the ‘on’ and ‘off” targets of each kinase; (iii) the p-value of the difference
between the distributions of ‘on’ and ‘off” targets; (iv) the research bias — a score indicating how broadly
a compound has been tested for off-targets. The selectivity score was divided in four tiers; Most
Selective (MS), Semi Selective (SS), Polyselective (PS) and Unknown (UN). MS levels are defined as
an absolute affinity of Kd <100 nM (at least two measurements) ; a differential affinity of 100 (i.e. the
affinity of the compound for the ‘on’ target is 100 times greater than for the ‘off” targets), a p-value <
0.1 and a research bias <0.2; SS levels are defined as an absolute affinity of Kd<1 uM (at least 4
measurements), a differential affinity of 10, a p-value <0.1 and research bias <0.2; PS levels are defined

as an absolute affinity Kd< 9000 nM, differential affinity of 1 (e.g. equal affinity for ‘on’ and ‘off’
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targets) and research bias <0.2; UN levels are defined as an absolute affinity Kd< 9000 nM and

differential affinity of 1.

CCLE analysis

The data RNA dataset ‘CCLE_RNAseq_genes_rpkm_20180929.gct.gz” was downloaded from the
CCLE portal (https://portals.broadinstitute.org/ccle/data) and analyzed with the script
“analyzing_CCLE_data.r”. The maximum expression value over all cell lines was calculated and plotted
(Figure 3A). Genes were considered ‘expressed’ if the maximum RPKM was >1. The mass
spectrometry dataset ‘protein_quant current normalized.csv’ was downloaded from the DepMap portal

(https://depmap.org/portal/download/) and analyzed with the script “analyzing_ CCLE_data.r”. Proteins

for which one or more peptides were detected in this dataset were considered to be expressed.

Determination of Essential Kinases through Dependency Map

The preprocessed results of genome-wide CRISPR knockout screens were obtained from the DepMap
19Q4 Public data release (https://depmap.org/portal/download/). The results of the screens were
processed as described by Dempster et al(Dempster et al., 2019). For each kinase, cell lines with a
CERES score >0.5 were classified as dependent and the number of dependent cell lines for each kinase

was then tallied.

TCGA analysis

TCGA PanCan gene expression and mutation frequency data was obtained from cBioPortal(Cerami et
al., 2012; Gao et al., 2013). To identify kinases with abnormal expression in tumors, tumor types with at
least 10 paired normal tissue samples were analyzed. For each kinase, the fold change of its median

expression in either all tumor tissues (general PanCan analysis) or the individual tumor tissue over its
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median expression in the paired healthy tissues was calculated. P-value from Wilcoxon-Mann-Whitney
two-sided test was calculated based on the distributions of gene expression in tumor and healthy tissues
in each tumor type. Adjusted p-values were calculated using the Benjamini-Hochberg procedure. To

identify kinases heavily mutated in cancer, the number of patient samples with mutation or gene fusion

was counted and normalized to the total number of patient samples (10953 samples).

AMP-AD analysis

Preprocessed count matrices of AMP-AD consortium RNA-seq data were downloaded from the AMP-
AD Synapse directory([CSL STYLE ERROR: reference with no printed form.]). In summary, these
counts were derived from raw reads using the STAR aligner(Dobin et al., 2013) and the Gencode v24
human genome annotation. In our analysis, we included all Alzheimer’s disease (AD) patients from the
Mount Sinai VA Medical Center Brain Bank (MSBB) and the Religious Orders Study and Memory and
Aging Project (ROSMAP) study(Mostafavi et al., 2018) for which RNA-seq data from post-mortem
brain was available and their age at death and Braak stage were known. Differential expression analysis
was performed using the R package DESeq2(Love et al., 2014). We fitted a generalized linear model to
the expression of each gene using the Braak stage as independent variable and adjusted for age at death
and study batch effect by including them as covariates. We used the Wald test implemented in DESeq?2
to extract differentially expressed genes between early (Braak stages 1 and 2) and late (5 and 6) AD

cases. Effect sizes were moderated using the R package apeglm(Zhu et al., 2019).

COPD differential expression analysis

Preprocessed dataset combining 5 datasets from GEO and 2 from ArrayExpress was downloaded from
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175. Data was preprocessed as described in Rogers et al(Rogers et al., 2019). Raw expression data was
processed by generalized least squares (GLS) weighted models to account for heterogeneity between
datasets. A Likelihood Ratio Test was used to identify differentially expressed genes. Genes with
significant (adjusted p-value <0.5) differential expression in COPD versus healthy individuals and that
are within the two-tailed 10% and 90% quantile were identified as genes of interest. Relative expression
of these differentially expressed genes was calculated as the effect size of the GLS estimates of the

individuals with COPD and healthy individuals.

FIGURE LEGENDS

Figure 1 — Composition of the human kinome.

(A) Venn diagram showing the overlap in domains curated as being a kinase depending on the sources.
KinHub (purple) refers to a list of kinases described by Eid et al.(Eid et al., 2017b) and accessible via
http://kinhub.org/kinases.html; Manning (red) refers to the gene list prepared by Manning et al. in
2002(Manning et al., 2002); Uniprot kinase activity (green) refers to a list of genes annotated as having
kinase activity in the Uniprot database(2019) (see methods and Table S1); Dark Kinome (yellow) refers
to a list of 168 understudied kinases as defined by the NIH solicitation for the IDG program and listed in
Supplementary Table S1 . (B) Schematic workflow showing how kinases are classified based on
kinase three dimensional fold and sequence alignment: PKL — the protein kinase like fold most similar
to that of the canonical PKA kinase; uPK — folds unrelated to protein kinases — but with significant
sequence homology and known to encompass kinases against non-protein substrates as well as a limited
number of protein kinases. PKLs are further subclassified into eukaryotic Protein Kinases (PKSs),
eukaryotic Like Kinases (eLKs) and Atypical Kinases (AKs) based on structural properties and
sequence alignment. HMM refers to a Hidden Markov Model used to perform classification; see

methods for details. (C) Pie chart showing the breakdown of 710 domains in the extended human
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kinome or the 557 domains in the curated kinome as defined in the current work. Subfamilies of kinases
(as conventionally defined)(Manning et al., 2002) are denoted by the white dotted lines: CAMK —
Calcium and Calmodulin regulated kinases; TK — Tyrosine kinase; TKL — Tyrosine Kinase like’ ACG —
named after the initials for kinases within the group PKA, PKC and PKG; CMGC — named after the
initials of some members; CK1 — cell kinase group; AKG — atypical protein kinase group. Legend
below lists some exemplary kinases from each category. Full details can be found in Supplementary

Table S1.

Figure 2 — The composition of the dark kinome.

(A) Hlustrative and simplified INDRA network automatically assembled for the WEE2 kinase. The table
to the right shows the evidence extracted by INDRA for a single interaction (the bold arrow linking
Wee2 and CDK1). An interactive version of this graph and a complete set of evidence can be found on
NDex (http://ndexbio.org). (B, C) Comparison of number of INDRA statements (X-axis) and TIN-X
novelty score(Cannon et al., 2017) (Y-axis) for all domains in the curated human kinome. The number
of INDRA statements correlates with TIN-X novelty score a Pearson’s correlation coefficient of r =
0.81. The bottom third of domains having the least knowledge according to both INDRA and TIN-X are
highlighted in pink and constitutes the dark kinome as defined in this manuscript. In panel B the Pharos
target designation (solid colors) and IDG status (shape) are shown; in panel C, the fill color represents
the maximum selectivity of a small molecule compound known to bind to each kinase. See text for

details.

Figure 3 — Dark kinases on the Coral kinase dendogram
Kinases from the curated kinome are visualized on the Coral kinase dendrogram(Metz et al., 2018). The

recomputed dark kinome is shown in blue and non-dark kinases are shown in yellow. The atypical
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kinase group (AGC; denoted by a blue dashed line) as previously defined by Manning and KinHub lies
to the right of the dendogram; this set includes multiple genes that are not considered to be members of
the curated kinase family as described in this paper (labelled in gray). The 46 kinases in the curated

kinome but not on the Coral dendrogram are listed separately to the right and organized by protein fold.

Red dashed lines denote regions of the dendogram in which all kinases are dark.

Figure 4 — Evidence for dark kinase expression and function.

(A) Maximum expression level (RPKM value) for each gene in the dark kinome list across 1039 cell
lines curated in the CCLE database(Barretina et al., 2012). Dark kinases are colored in purple, non-dark
kinases in orange. Dotted line indicates a RPKM threshold of 1, above which genes were designated as
“expressed” based on an established metric.(Kryuchkova-Mostacci and Robinson-Rechavi, 2017) (B)
Number of cell lines for which the Dependency Map(Tsherniak et al., 2017) score indicates essentiality
(using the recommended Post-Ceres(Meyers et al., 2017) value of < -0.5). Dark kinases are colored in
purple, non-dark kinases in orange; HGNC symbols for genes essential in all cells in the Dependency
Map are shown. Blue shading denotes genes essential in one-third or more of cell lines and yellow

denotes genes essential in two or more lines.

Figure 5 — Dark Kinases in diseases

Data on differential expression, mutation, amplification or deletion of genes containing domains from
the curated human kinome in disease databases. Dark kinases are colored in purple, non-dark kinases in
orange. (A) Pan-cancer (PanCan) differential mMRNA expression for both the dark and the non-dark
kinases based on data in TCGA and accessed via c-BioPortal.(Cerami et al., 2012) No significant
difference between the dark and light kinome was observed with respect to the frequency of differential

expression relative to matched normal tissue. HGNC symbols and cancer type abbreviations for
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selected outlier genes and diseases are shown. BRCA - Breast invasive carcinoma; KIRC - Kidney renal
clear cell carcinoma; LUSC - Lung squamous cell carcinoma; UCEC - Uterine Corpus Endometrial
Carcinoma. (B) Mutation frequency for most frequently mutated kinases in PanCan. Dark kinases are
shown in solid color; non-dark kinase in transparent color. Fusion-mutations are shown in magenta.
HGNC symbols are displayed next to each bar with bold denoting dark kinases. (C) Differential gene
expression in early versus late stage Alzheimer’s disease. Samples were aged matched prior to
calculation of differential expression values. HGNC symbols are shown for outliers displayed. (D)
Relative gene expression levels in COPD versus healthy individuals. Kinases are sorted by their relative
expression. HGNC symbols are displayed next to each bar with purple denoting dark kinases and orange

denoting non-dark Kinases.

Figure 6 — A dark kinase network regulating the cell cycle

(A) A partial network (left) and statement table (right) for proteins interacting with PKMYT1 according
to the INDRA database. The source ‘literature’ is denoted by ‘L’. (B) INDRA network for CDK1
showing interacting dark kinases. Black arrows denote protein modifications; blue lines denote complex
formation; red arrows denote inhibition; green arrows denote activation. (C) INDRA network for WEE1
showing interacting dark kinases. Color code is the same as in panel B. (D) Manually curated signaling
network based on known regulatory mechanisms for PKMYT1, CDK1 and WEEL. The network
comprises four dark kinases (BRSK1, NIM1K, WEE2 and PKMYT1), three non-dark kinases (BRSK2,

WEEL1, CDK1), and the protein phosphatase CDC25.

Figure 7 — Inhibition of dark kinases by clinical grade compounds and approved drugs
(A) Kinase inhibitors in clinical development and FDA-approved small molecule therapeutics targeting

dark kinases for which binding is scored as most selective (MS) or semi selective (SS) based on literature
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data curated in CHEMBL. Eighteen dark kinases are targeted in total. (B) Clustering of dark kinases by
Bayes Affinity Fingerprint (BAFP) — a measure of the shape of binding pocket. Dark lines in the margin
denote dark kinases. A blowup of BAFP values for four kinases (red box), one of which is dark
(STK17B) , is shown below.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1 related to Figure 1 - Kinase domains in the standard list

(A) Pie chart of kinases in the Manning and Kinhub lists divided into kinase groups as conventionally
defined. Letter coding explanation can be found of main figure legend 1C. (B) Number of compounds
that target dark kinases as determined in a recent large-scale chemoproteomic assay(Klaeger et al.,

2017).

Figure S2 related to Figure 2 - INDRA network for WEE2
A partial network (upper panel) and statement table (lower panel) generated by INDRA for the dark

kinase WEE2. Table contains full quotes from literature.

Figure S3 related to Figure 5 - Differential mMRNA expression of kinases in selected TCGA
datasets

(A) Differential mMRNA expression for both the dark and the non-dark kinases in colon adenocarcinoma
(COAD) based on data in TCGA and accessed via c-BioPortal.82. HGNC symbols and cancer type
abbreviations for selected outlier genes. (B) Depicted is the alteration frequency in lymphoid neoplasm
diffuse large B-cell lymphoma (DLBCL) for dark kinases (darks bars) and non-dark kinases (light bars).

Both fusion (magenta) and mutations (black/grey) are indicated.

Figure S4 related to Figure 6 - Kinase domains with high resolution structures
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Number of structures of the kinase domain in Protein Data Bank (PDB) for both non-dark kinases
(orange) and dark kinases (purple) sorted in descending order. Top dark kinases with high number of

kinase domain structures are labeled.

Figure S5 related to Figure 6 — Clustering of kinases by binding pocket based on BAFP and
mapped to the Coral dendogram

(A) BAFP clusters visualized on the Coral kinase dendrogram. (B) The nine labelled BAFP clusters
(denoted by color and labelled 1-9) projected on one Coral kinase dendrogram. Dark kinases in each

cluster are colored black.

FOOTNOTES FOR SUPPLEMENTARY TABLES

Supplementary Table 1 — The extended kinome

This table describes available information about the 710 kinase domains in the extended kinome. Each
domain is annotated with the following pieces of information: gene_id (NCBI gene ID); UniProtEntry
(Uniprot ID, Uniprot Entry name and domain index if the kinase contains multiple kinase domains)
Entry (the unique and stable short-form Uniprot ID as a number); Entry name (Mnemonic identifier to
UniprotKB entry); Gene names (names of genes encoding this protein as obtained from Uniprot),
Protein names (full name of the protein provided by UniProt), HGNC ID, HGNC_name (the official
gene symbol approved by HGNC), Approved name (the full gene name approved by HGNC), IDG_dark
(value of 0 or 1 denoting whether dark in the original NIH list), Kinhub (value of 0 or 1 denoting
whether the domain is on the Kinhub list), Manning (value of 0 or 1 denoting whether domain is on the
Manning list), Group (membership to one of the ten kinase groups), Family (membership in the kinase
families), Uniprot_kinaseactivity (value of 0 or 1 denoting whether domain is on the curated UniProt

kinase list), PfamDomain, DomainStart (first residue number of the kinase domain according to
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UniProt), DomainEnd (last residue number of the kinase domain according to UniProt), ProKinO (value
of 0 or 1 denoting wehther the domain is in ProKinO), New_Annotation (further classification of the
protein fold as ePK, eLK, Atypical, Unrelated to Protein Kinase or Unknown), Fold (primary
classification of the protein fold: protein kinase like — PKL -, unrelated, UPK or unknown),
Pseudokinase? (Yes or No annotation to whether the kinase is a pseudokinase according to ProKinO),
Annotation_Score (number to reflect the amount of aggregated information from multiple databases),

INDRA _network (URL of the interactive INDRA network on NDEX).

Supplementary Table 2 — The curated kinome

A table describing data about the 556 kinase domains in the curated kinome with a PKL fold (plus
STK19). Each domain is annotated with all information in Supplementary Table 1 about its identifiers
(NCBI gene_id, HGNC identifiers, and UniProt identifiers), inclusion and exclusion criteria based on
different kinase lists (Manning, KinHub, kinase group and kinase family according to KinHub, curated
UniProt kinase list, NIH dark kinase, ProKinO, pseudokinase), protein fold, and the URL for its INDRA
network on NDEX. Each kinase domain also has the following additional annoations: (i) amount of
existing information (n_indra_statement: number of INDRA statements; TIN-X_Score; tdl (target
development level from Pharos); (ii) whether the kinase is dark (stat_dark_num: value of 0 or 1 denoting
whether a kinase is dark based on number of INDRA statement and TIN-X_Score); (iii) PDB structures
(PDBID: PDB IDs for any structures of the kinase domain; num_pdb: the total number of pdb structures
of the kinase domain); (iv) number of MS/SS compounds (num_MSSS _cmpd); (v) availability of
commercial activity assays (rb_name: the name of the kinase on Reaction Biology

(http://www.reactionbiology.com); rb_variants: the phosphorylated form or protein complex available

for assay on Reaction Biology; kinomescan_name: the name of the kinase on DiscoverX

(https://www.discoverx.com/home); kinomescan_variants: the phosphorylated form or protein complex
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available for assay on the DiscoverX kinase panel; commercial_assay: value of 0 or 1 denoting whether
a Reaction Biology or KinomeScan assay is available); (vi) biological relevance and disease
implications (num_dep: number of dependent cell lines on DepMap; AMPAD: value of 0 or 1 denoting
whether the kinase is differentially expressed in Alzheimer patients; TCGA: value of 0 or 1 denoting
whether the kinase is differentially expressed in any cancer type, among the top 10 most frequently
mutated kinases in any cancer type, or among the top 20 most frequently mutated kinases of all cancers;

COPD: value of 0 or 1 denoting whether the kinase is differentially expressed in COPD patients).

Supplementary Table 3 — Clinical compounds targeting dark kinases

A table with the affinity values of compounds in clinical development (phase 1-3) or approved drugs
that have been shown to target dark kinases based on available data in Small Molecule Suite
(http://smallmoleculesuite.org). The compounds are annotated with IC50_Q1 (the affinity value per dark
kinase), HGNC_symbol (official HGNC symbol of dark kinase), compound_max_phase (the latest stage
of clinical development), compound_first_approval (year of first approval if compound is an approved

therapeutic), compound_chembl_id (ChEMBL identifier of compound).
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FIGURE 4

a. RNA expression levels (CCLE cell lines)
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a. Clinical kinase inhibitors potentially binding dark kinases
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