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Abstract 
Mutational signatures are patterns of somatic alterations in the genome caused by carcinogenic 
exposures or aberrant cellular processes. To provide a comprehensive workflow for 
preprocessing, analysis, and visualization of mutational signatures we created the Mutational 
Signature Comprehensive Analysis Toolkit (musicatk) package. musicatk enables users to 
select different schemas for counting mutation types and easily combine count tables from 
different schemas. Multiple distinct methods are available to deconvolute signatures and 
exposures or to predict exposures in individual samples given a pre-existing set of signatures.  
Additional exploratory features include the ability to compare signatures to the COSMIC 
database, embed tumors in two dimensions with UMAP, cluster tumors into subgroups based 
on exposure frequencies, identify differentially active exposures between tumor subgroups and 
plot exposure distributions across user-defined annotations such as tumor type. Overall, 
musicatk will enable users to gain novel insights into the patterns of mutational signature 
observed in cancer cohorts. 
 
Introduction 
Somatic mutations to the genome can be caused by exposure to environmental carcinogens or 
aberrant cellular processes1,2. A “mutational signature” is a specific pattern of mutation types 
caused by a particular mutational process. The set of mutations observed in a single tumor 
genome can be the result of multiple mutational processes active during the course of tumor 
development. Therefore, deconvolution is needed to determine which signatures are present 
across a group of tumor genomes as well as the level of each signature in each individual 
tumor. Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium 
characterized a large cohort of whole-exome and whole-genome samples with single-base-
substitution (SBS), doublet-base-substitution (DBS), and small insertion-and-deletion (INDEL) 
mutational schemas using NMF-based methods3. While some software packages have been 
previously developed to perform mutational signature inference, they cannot quantify the latest 
set of mutation schema from COSMIC3. These packages also lack functionality for 
comprehensive exploratory analysis or have limited functionality for predicting exposures to pre-
defined signatures in new samples3–9. The musicatk package provides functionality to 
streamline the steps of mutational inference and has several additional features to enhance 
exploratory analysis beyond what is available in other packages (Supplementary Table 1). We 
provide an overview of this functionality and present an exploratory analysis of tumors from The 
Cancer Genome Atlas (TCGA). 
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Methods 
 
Importing and processing of mutations 
 
The major steps of mutational signature inference are 1) importing the variants, 2) building and 
combining count tables based on different types of mutation schema, 3) performing discovery 
and/or prediction of signatures and exposures, and 4) using visualization for exploratory 
analysis of the results (Figure 1). For the first step, the musicatk package has functions to read 
mutations from various input formats. Mutation Annotation Formats (MAFs) are read from files 
or from the R object MAF created by the maftools package. Variant Call Formats (VCFs) can be 
read from files or R classes defined in the VariantAnnotation package. Additionally, variant 
information stored in a data.frame or data.table can also be used as input. To streamline the 
processing of variants, mutation profiles from multiple tumors in different formats can be 
automatically read and combined into the musica object (Supplementary Figure 1).  
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Figure 1. Overview of workflow for mutational signature discovery/prediction, visualization and analysis A) Workflow allows
for loading and combining data from multiple sources, de-novo discovery of signature and exposures, and prediction of exposures
from existing signatures. B) The same sample exposures are plotted (subset to top samples), proportional exposures (signature
exposures sum to 1), split up by tumor type, and split up by signature. C) Additional visualizations include the ability to plot samples
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in two dimensions using UMAP. In the UMAP, tumors can be colored by annotations such as tumor type or levels of exposure for 
each signature. Heatmaps can be used to show the relatively levels of signature exposures in each sample along with sample 
annotations. D) Downstream analysis tools include automated comparison to COSMIC signatures, clustering of tumors by exposure 
with K-means, and differential analysis of exposures between groups of tumors.  

 

 

We also include functions that automatically parse different types of mutation motifs from each 
tumor genome and create count tables that are used in downstream analysis. Tables that can 
be calculated by musicatk include SBS into 96 motifs, SBS with transcription strand orientation 
into 192 motifs, SBS with replication strand orientation into 192 motifs, DBS into 78 motifs, and 
INDELs into 83 motifs. Custom mutation count tables can also be defined by the user and 
added to the object. Importantly, multiple tables can be concatenated to create composite 
mutation schema tables. For example, users can combine the SBS-96 motif, DBS-78 motif, and 
INDEL-83 tables and perform downstream analyses, similar to process that was used to create 
the PCAWG Composite signatures3.  
 
Discovery of mutational signatures 
 
Deconvolution is the process of decomposing a matrix of mutation counts per tumor into a 
matrix of signatures and exposures. The Signature matrix contains the probability of each 
mutation motif in each signature and the Exposure matrix contains the estimated level of each 
exposure in each tumor sample. musicatk supports both Latent Dirichlet Allocation (LDA)10 from 
the topicmodels package and Non-Negative Matrix Factorization (NMF)11 from the NMF 
package. Both algorithms can be applied to any count table. One challenging aspect of 
mutational signature discovery is determining the appropriate number of signatures (i.e., the 
value of K). To facilitate the comparison of models with different choices of K, musicatk provides 
a wrapper that allows users to apply deconvolution algorithms with different values of K and 
then compare the results with metrics such as reconstruction error (NMF and LDA), log-
likelihood (LDA), or perplexity (LDA).  
 
Prediction of mutational signatures 
 
Prediction of exposures for existing signatures can be performed on any count table given that 
the mutation motif schema is the same. We include wrappers for tools such as deconstructSigs 
and decompTumor2Sig4,8. We also implement a Bayesian algorithm based on LDA where 
exposures are estimated using a fixed set of signatures (Supplementary File 1). To allow for 
prediction using previously defined signatures from the COSMIC database3, we include objects 
for COSMIC V2 signatures (SBS-96 motif schema) and COSMIC V3 signatures (SBS-96, DBS-
78, and INDEL-83 motif schemas). One challenge in the prediction of existing signatures in new 
tumors is that not all signatures will be present in the new dataset. Including non-active 
signatures may cause additional noise in the estimates for signatures that are present within the 
dataset. Since signatures that are present in moderate levels across many tumors or highly 
present in a small number of tumors are more likely to be active in the dataset3, we 
implemented a two-step procedure to choose the subset of active signatures within a dataset. In 
the first step, exposures are estimated using all signatures and active signatures are chosen if 
they pass a threshold in a minimum number of samples (e.g. have an exposure of at least 0.1 in 
at least 30% of samples or an exposure of 0.7 in at least 2 samples). In the second-step, 
signatures are estimated using only the active signatures. Users can perform the 2-step 
prediction within subgroups of tumors supplying a categorical annotation such as tumor type. 
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Visualization 
 
Visualization of mutational signatures and tumor exposures is an important for characterization 
of mutational processes active in a cohort of tumors. Barplot functions can be used to show the 
probability of each motifs in each signature and the composition of exposures in each sample. 
Exposure barplots can be sorted by overall mutation count, one or more exposures, or sample 
name (Figure 1B). Exposure barplots can be subsetted to show the samples with the highest 
total mutation counts or exposure levels. Exposures barplots can further be grouped by a 
sample annotation such as tumor type or by signature. The distributions of exposures can be 
displayed with box and/or violin plots and grouped by sample annotations. To view relationships 
between tumors in two dimensions, the Uniform Manifold Approximation and Projections 
(UMAPs)12 algorithm can be used with normalized signature exposures (Figure 1C). The UMAP 
can be colored by annotations (e.g., tumor type) or the levels of each exposure. Finally, 
exposures can be viewed in a heatmap along with sample annotations and arranged by 
hierarchical clustering. 
 
Down-stream analyses 
 
Functionality is provided for correlating sets of signatures between different signature result 
objects. This can be used to easily perform comparisons to COSMIC V2 and V3 signatures 
(Figure 1D). musicatk provides clustering using multiple distance metrics (Cosine, Euclidean, 
Manhattan, Jaccard, Canberra) in order to group samples based on exposure. These can be 
plotted on top of a UMAP (Figure 1D). The ComplexHeatmap package is used to plot heatmaps 
showing the relative levels of exposures in samples along with annotations (Figure 1C). K-
means can be applied to exposures to cluster tumors into groups. Metrics such as silhouette 
width and total within some of squares (wss) generated from the factoextra package can be 
used to identify the optimal number of clusters. Differential analysis can be used to identify 
exposures that are significantly higher or lower between groups of tumors. Differential methods 
include Wilcoxon rank-sum test for 2-group comparisons as well as Kruskal-Wallis and Negative 
Binomial Generalized Linear Models (GLMs) for multi-group comparisons (Figure 1D). 
 
 
Results 
 
Single-base substitutions (SBS) 
 
We applied the LDA-based prediction method to predict COSMIC v3 SBS signatures in a Pan-
Cancer dataset from TCGA. 39 of the 65 signatures were found to be active in at least one 
tumor type. A UMAP plot was generated to explore the patterns of signatures across tumors 
(Figure 2A). Some signatures were present in nearly half of samples, some in a few tumor 
types, some in single tumor types, and some in subsets of multiple tumor types (Figure 2, 
Supplementary Figure 2). For example, APOBEC signatures (SBS2 and SBS13) were present 
in a subset of tumors BRCA, CESC, BLCA, and HNSC, and distantly in a subset of LUAD and 
LUSC tumors. In general, both APOBEC signatures were present in the same samples. The 
only exceptions were disjoint subsets of BRCA samples with either SBS2 or SBS13. UCEC 
samples are split into three groups. The bottom samples are clustered separately because of 
their exposure to the SBS39 signature (unknown origin). The small top cluster includes samples 
from a few other tumor types including COAD and is defined by high levels of the POLE 
signature (SBS10 a/b). The left cluster has high levels of a defective DNA mismatch repair 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2020.11.17.385864doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.385864
http://creativecommons.org/licenses/by-nc-nd/4.0/


signature (SBS44). Two other MMR signatures, SBS15 and SBS21 could distinguish subsets of 
COAD and STAD tumors which also had higher levels of a third MMR signature, SBS6.  
 
Double-base substitutions (DBS) 
 
11 of 11 COSMIC v3 DBS signatures were active in TCGA samples. Examining the DBS UMAP 
showed that DBS2 (tobacco smoke) is active in two of the 3 major clusters, representing ACC, 
LUAD, LUSC, HNSC, KIRP, LIHC, BLCA, ESCA, and MESO (Figure 2B, Supplementary 
Figure 3). DBS1 (UV light exposure) is found only in the SARC/SKCM cluster. DBS10 
(defective DNA mismatch repair) is predominantly found in tumors from READ, PAAD, UCEC, 
and STAD and active in different sets of tumors from DBS1 and DBS2. DBS7 is also caused by 
defective DNA mismatch repair and mostly active in different sets of tumors from DBS10. The 
remaining signatures are present in mixed subsets of tumor types. 
 
Insertions and deletions (INDELs) 
 
All 17 COSMIC v3 INDEL signatures were predicted to be active in TCGA samples (Figure 2C, 
Supplementary Figure 4).  ID3 (tobacco smoking) was predominantly active in tumors from 
LUAD and LUSC. ID6 (defective DNA repair) was highly active in a distinct subset of samples 
containing mix of tumor types such as BRCA, OV, and STAD. High levels of ID10 (unknown 
etiology) defined a unique group of samples that were enriched for tumors from THCA and 
SARC. A distinct group of mixed tumor types was defined by different levels of activity for ID2 
(defective DNA replication) and ID7 (defective DNA mismatch repair) suggesting that these 
aberrant processes may often co-occur. 
 
In conclusion, the musicatk package provides a comprehensive set of preprocessing utilities, 
access to several discovery and prediction tools, and functions for downstream analysis of the 
patterns of mutational signatures in a cohort of tumors.  
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Figure 2. UMAPs of TCGA sample exposure to COSMIC v3 signatures. A UMAP was generated with the uwot package using
the exposures predicted from LDA for different mutation types. The left plot is colored by the tumor type while the right plot is
colored by exposure levels of each signature (red being high and blue being low). A) Examples of Single Base Substitution (SBS)
exposures include SBS2, SBS6, SBS10a, SBS44 representing APOBEC, MMR, POLE, and MMR, respectively. B) Examples of
Double Base Substitution (DBS) exposures include DBS1, DBS2, DBS7, DBS10 representing UV, tobacco, MMR, and MMR,
respectively. C) Examples of small Insertion and Deletion (INDEL) exposures include ID2, ID6, ID7, ID10 representing spillage
during DNA replication, homologous recombination-based DNA damage repair, MMR, and unknown etiology, respectively. 
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Supplementary Table 1. Comparison of features across mutational signature packages. 

 

  

musicatk Signature
Analyzer

SigProfiler deconstruct
Sigs

Signature
Estimation

Mutational
Patterns

YAPSA decomp
Tumor2Sig

Sigfit

Input

VCF � � �

MAF �

data.frame/table �

Mutation counts file � � � � � � � �

Inference
de novo discovery � � � � � �

Prediction � � � � � � �

Motifs

snv96 � � � � � � � � �

snv192-transcript strand � � � �

snv192-replication strand � �

dbs � � �

indel � � � � �

Combine Features � �

Custom Features � �

Additional
Features

Compare COSMIC v2 � � � � �

Compare COSMIC v3 � �

Discovery by annotation �

Prediction by annotation �

Plot by annotation � �

UMAP �

Heatmap � � �

Clustering � � �

Differential Abundance �
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Supplementary Figure 1. Overview of the class structure in the musicatk package. This 
musica class is used as the main object for building count tables (SBS96, DBS78, IND83, 
SBS192, etc.) and for storing count tables for all variant classes. A musica object is used as 
input into the discovery or prediction functions. A mustica_result object is output from discover 
and prediction functions and used to store the variant tables along with the estimated signatures 
and exposures matrices. Existing signatures contained in a mustica_result object can be used 
to predict exposures in a new dataset. Result objects are available for COSMIC v2 and 
COSMIC v3 signatures in the package. User-generated mustica_result objects are used as 
input into all down-stream plotting and analysis functions. 
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Supplementary Figure 2. UMAP colored by the predicted exposures from COSMIC v3 
SBS signature.  
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Supplementary Figure 3. UMAP colored by the predicted exposures from COSMIC v3 
DBS signatures.  
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Supplementary Figure 4. UMAP colored by the predicted exposures from COSMIC v3 
INDEL signatures.  
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