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Abstract

CRISPR knockout screens in hundreds of cancer cell lines have revealed a substantial number
of context-specific essential genes that, when associated with a biomarker such as lineage or
oncogenic mutation, offer candidate tumor-specific vulnerabilities for targeted therapies or novel
drug development. Data-driven analysis of knockout fitness screens also yields many other
functionally coherent modules that show emergent essentiality or, in rarer cases, the opposite
phenotype of faster proliferation. We develop a systematic approach to classify these suppressors
of proliferation, which are highly enriched for tumor suppressor genes, and define a network of
145 genes in 22 discrete modules. One surprising module contains several elements of the
glycerolipid biosynthesis pathway and operates exclusively in a subset of AML lines, which we
call Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells. The proliferation suppressor activity
of genes involved in the synthesis of saturated fatty acids, coupled with a more severe fitness
phenotype for the desaturation pathway, suggests that these cells operate at the limit of their
carrying capacity for saturated fatty acids, which we confirmed biochemically. Overexpression of
genes in this module is associated with a survival advantage in an age-matched cohort of AML
patients, suggesting the gene cluster driving an in vitro phenotype may be associated with a novel,

clinically relevant subtype.
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Introduction

Gene knockouts are a fundamental tool for geneticists, and the discovery of CRISPR-based
genome editing” and its adaptation to gene knockout screens has revolutionized mammalian
functional genomics and cancer targeting®®. Hundreds of CRISPR/Cas9 knockout screens in

cancer cell lines have revealed background-specific genetic vulnerabilities® '3

, providing guidance
for tumor-specific therapies and the development of novel targeted agents. Although lineage and
mutation state are powerful predictors of context-dependent gene essentiality, variation in cell
growth medium and environment can also drive differences in cell state, particularly among

14,15

metabolic genes''>, and targeted screening can reveal the genetic determinants of metabolic

16,17

pathway buffering

The presence and composition of metabolic and other functional modules in the cell can also be
inferred by integrative analysis of large numbers of screens. Correlated gene knockout fitness
profiles, measured across hundreds of screens, have been used to infer gene function and the
modular architecture of the human cell'®2'. Data-driven analysis of correlation networks reveals
clusters of functionally related genes whose emergent essentiality in specific cell backgrounds is
often unexplained by the underlying lineage or mutational landscape?®'. Interestingly, in a recent
study of paralogs whose functional buffering renders them systematically invisible to monogenic
CRISPR knockout screens®*%, it was shown that the majority of context-dependent essential
genes are constitutively expressed in cell lines®®. Collectively these observations suggest that
there is much unexplained variation in the genetic architecture, and emergent vulnerability, of

tumor cells.

Building human functional interaction networks from correlated gene knockout fitness profiles in
cancer cells is analogous to generating functional interaction networks from correlated genetic
interaction profiles in S. cerevisiae?*?". The fundamental difference between the two approaches
is that, in yeast, a massive screening of pairwise gene knockouts in a single yeast strain was
conducted in order to measure genetic interaction - a dual knockout phenotype more or less
severe than that expected by the combination of the two genes independently. In coessentiality
networks, CRISPR-mediated single gene knockouts are conducted across a panel of cell lines
that sample the diversity of cancer genotypes and lineages. Digenic perturbations in human cells,

a more faithful replication of the yeast approach, are possible with Cas9 and its variants, but
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16.28-34 Recently, we

80 library construction, sequencing, and positional biases can be problematic
81  showed that an engineered variant of the Cas12a endonuclease, enCas12a®, could efficiently
82  perform multiplex gene knockouts**, and we demonstrated its effectiveness in assaying synthetic
83 lethality between targeted paralogs®. These developments in principle enable researchers to
84  measure how biological networks vary across backgrounds, a powerful approach for deciphering
85  complex biology?*3¢*.
86
87  CRISPR perturbations in human cells can result in loss of function alleles that increase as well as
88 decrease in vitro proliferation rates; faster proliferation is an extreme rarity in yeast knockouts.
89 These fast-growers can complicate predictions of genetic interaction®® and confound pooled
90 chemoresistance screens®. However, there is no broadly accepted method of identifying these
91  genes from CRISPR screens. Here we describe the development of a method to systematically
92 classify genes whose knockout provides a proliferation advantage in vitro. We observe that genes
93  which confer proliferation advantage are typically tumor suppressor genes, and that they show
94  the same modularity and functional coherence as context-dependent essential genes. Moreover,
95 we discover a novel module that includes several components of the glycerolipid biosynthesis
96 pathway that slows cell proliferation in a subset of acute myeloid leukemia (AML) cell lines. We
97  show a rewired genetic interaction network using enCas12a multiplex screening, and find strong
98 genetic interactions corroborated by clinical survival data. A putative tumor-suppressive role for
99  glycerolipid biosynthesis is surprising and disconcerting, since this process is thought to be
100 required to generate biomass for tumor cell growth, and inhibitors targeting this pathway are

101 currently in clinical trials®**°.

102

103 Results

104

105 Identifying Proliferation Suppressor Signatures
106

107  We previously observed genes whose knockout leads to overrepresentation in pooled library
108  knockout screens. These genes, which we term proliferation suppressor genes (PSG), exhibit
109  positive selection in fithess screens, a phenotype opposite that of essential genes. As expected,
110  many PSG are known tumor suppressor genes; for example, TP53 and related pathway genes
111 CDKN1A, CHEK2, and TP53BP1 show positive selection in select cell lines (Figure 1a).
112  Detection of these genes as outliers is robust to the choice of CRISPR analytical method, as we
113 tested BAGEL2*'*2, CERES'?, JACKS*, and mean log fold change (LFC) of gRNA targeting each
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114  gene (Supplementary Figure 1a-d). Unlike core-essential genes, PSG are highly context-
115  specific: TP53 knockout shows positive LFC only in cell lines with wild-type TP53 (Figure 1b),
116 and PTEN knockout shows the PS phenotype only in PTEN" backgrounds (Figure 1c). These
117  observations are consistent with the knockout phenotypes of known tumor suppressor genes
118  (TSG) in cell lines: in wildtype cells, TSG knockout increases the proliferation rate in cell culture,
119  but when cell lines are derived from tumors where the TSG is already lost or non-functional, gene
120  knockout has no effect. TSG are therefore context-specific PSG, but it is not necessarily the case
121 that genes with a proliferation suppressor phenotype in vitro act as TSG in vivo; proliferation
122  suppressors are at best putative tumor suppressors in the absence of confirmatory data from
123 tumor profiling.

124

125 Though detection of PSG is possible using existing informatics pipelines, several factors
126  complicate a robust detection of these genes. There is no accepted threshold for any algorithm
127  we considered to detect PSG, since all were optimized to classify essential genes. A related
128  second issue is that cell line screens show a wide range of variance in LFC distributions, making
129  robust outlier detection challenging (Supplementary Figure 1e-f). Third, the signatures are
130  strongly background-dependent, as demonstrated by PTEN and TP53. Finally, there is no
131 consistent expectation for whether or how many putative tumor suppressor genes are present in
132  agiven cell line.

133

134  To address this gap, we developed a method to account for variability in fold-change distributions
135  between screens. Our approach uses a Gaussian mixture model (K=2) to estimate each screen’s
136  distribution of gene-level LFC scores (Figure 1a). Mixed distribution models have previously been
137  used to identify distinctions between populations of essential and nonessential fitness genes in
138  CRISPR screens*. For the K = 2 mixture model, the more negative distribution (Figure 1a, red)
139 is generally essential genes, while the higher, narrower peak around zero (Figure 1a, blue),
140 models the large population of knockouts with no fitness phenotype. We used this second model
141  to calculate a Z-score (hereafter referred to as the ‘mixed Z-score’) for all gene-level mean fold
142  changes in each cell line. This approach normalizes variance (Supplementary Figure 1e-f)
143  across LFC distributions in different cell lines, with negative Z-scores indicating essential genes
144  and positive Z-scores representing PSG phenotypes.

145

146  To evaluate the effectiveness of this mixed Z-score approach, we used COSMIC***¢ tumor

147  suppressor genes as a true positive reference set, and we combined COSMIC-defined oncogenes
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148  (removing dual-annotated tumor suppressors) with our previously-specified set of nonessential
149  genes as a true negative reference set’*’. Since there is no expectation for the presence of a
150 consistent set of PSG across cell lines, we analyzed each of the 808 cell lines from the Avana
151  2020Q4 data release independently'®*34° calculating gene-level scores on each cell line
152  individually and then combining all scores into a master list of 808 x 18k = 14.6 million gene-cell
153 line observations (Supplementary Table 1). Moreover, since there is also no expectation that all
154  COSMIC TSG would be detected cumulatively across all cell lines, we judged that traditional recall
155  metrics (e.g. percentage of the reference set recovered) were inappropriate. We therefore defined
156  recall as the total number of TSG-cell line observations. Using this evaluation scheme, the mixed
157  Z-score approach outperforms comparable methods by a substantial margin, classifying more
158 than 722 PS-cell line instances at a 10% false discovery rate (FDR) (Figure 1d). This is roughly
159  50% more putative PSG than the closest alternative, a nonparametric rank-based approach, at
160 the same FDR. BAGEL*'*?, a supervised classifier of essential genes, performed worst at TSG,
161 and the raw mean LFC approach also fared poorly, highlighting the need for variance
162 normalization across experiments. We applied this 10% FDR threshold for all subsequent
163  analyses.

164

165  Common tumor suppressor genes PTEN and TP53 were observed in ~15% of cell lines (Figure
166  1e), with other well-known TSG appearing less frequently. Among 309 COSMIC TSGs for which
167  we have fitness profiles (representing 1.7% of all 18k genes), we find that 116 (37.5%) of these
168  genes occur as proliferation suppressors at least once (Supplementary Table 2) and make up
169  24.4% of total proliferation suppressor calls (Supplementary Figure 2a-b), a 14-fold enrichment.
170  All of the known TSG hits come from just 504 of the 808 cell lines (62.4%) in which proliferation
171 suppressor hit calls were identified (Figure 1f), yet we did not observe a bias toward particular
172  tissues: in every lineage, most cell lines carried at least one PSG (Supplementary Figure 1g).
173

174  To further validate our approach, we compared the set of TSGs in our PSG hits to other molecular
175  profiling data. When identified as a proliferation suppressor, 53% of the 116 TSGs demonstrate
176  higher mean mRNA expression relative to backgrounds where the same TSG is not a proliferation
177  suppressor (Supplementary Table 2). Similarly, 96.6% of the 116 TSGs, when classified as a
178  proliferation suppressor, demonstrate lower frequency of nonsilent mutations compared to
179  backgrounds where the TSG is not a hit (Supplementary Table 2). These observations were not
180 restricted to COSMIC TSGs however, as this was the case for all PSG hit calls of genes against
181 non-PSG hit calls (Supplementary Figure 2c and 2d). Copy number comparisons did not
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182  suggest major distinctions between PSG vs non-PSG calls (Supplementary Figure 2e), however
183 there did appear to be more variation in PSG observations, possible stemming from smaller
184  grouped sample sizes. Together, these observations confirm the reliability of our method to detect
185  genes whose knockout results in faster cell proliferation, and that, analogous to essential genes,
186 these genes must be expressed and must not harbor a loss-of-function mutation in order to elicit
187  this phenotype.

188

189  We attempted to corroborate our findings using a second CRISPR dataset of 342 cell line screens

190 from Behan et al."®

, including >150 screens in the same cell lines as in the Avana data. However,
191  these screens were conducted over a shorter timeframe than the Avana screens (14 vs. 21 days),
192  giving less time for both positive and negative selection signals to appear (see Methods for a
193  detailed discussion). As a result, when we compared cell lines screened by both groups, the
194  Avana data yielded many more TSG hits (Supplementary Figure 3a). While most of these do
195  not meet our threshold for PSG in the Sanger data, hits at our 10% FDR threshold across all
196 Avana screens are strongly biased toward positive mixed Z-scores in the Sanger screens
197  (Supplementary Figure 3b), consistent with a weaker signal of positive selection as a result of
198  the shorter assays rather than a lack of robustness in the screens*.

199

200 Discovering Pathways Modulating Cell Growth with a Proliferation Suppressor Co-
201  Occurrence Network

202

203  Although known TSG act as PSG in only a subset of cell lines, we observed patterns of co-
204  occurrence among functionally related genes. PTEN co-occurs with mTOR regulators NF2%° (P <
205 3x107", Fisher’s exact test) and the TSC1/TSC2 complex (P-values both < 7x107"%)*' as well as
206  Programmed Cell Death 10 (PDCD10)*, a proposed tumor suppressor’** (Figure 2a). The p53
207  regulatory cluster (TP53, CDKN1A, CHECK2, TP53BP1) also exhibited a strong co-occurrence
208 pattern that was independent of the mTOR regulatory cluster (Figure 2a). mTOR®* and cell cycle
209  checkpoint genes®*®® have been heavily linked to cancer development, given their roles in
210  controlling cell growth and proliferation, and thus have been the focus of studies characterizing
211 patient genomic profiles to identify common pathway alterations®"%.

212

213 The modularity of mTOR regulators and TP53 regulators demonstrates pathway-level
214  proliferation suppressor activity. This reflects the concept of genes with correlated fitness profiles

215 indicating the genes operate in the same biochemical pathway or biological process'®?:590,
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216  However, the sparseness of PSG, coupled with their smaller effect sizes, renders correlation
217  networks relatively poor at identifying modules of genes with proliferation suppressor activity. In
218  order to identify such modules, we developed a PSG network (Supplementary Table 3) based
219  on statistical overrepresentation of co-occurring PSG (Figure 2b); see Methods for details. This
220 approach yields a network of 145 genes containing 462 edges in disconnected clusters; only 8
221  clusters have 3 or more genes (Figure 2c and Supplementary Figure 4c). Of these 462 edges,
222 74 (16.0%, empirical P<10*) are present in the HumanNet®' functional interaction network
223  (Supplementary Figure 4a-b),~8 fold more than expected from random sampling, indicating high
224  functional coherence between connected genes. The network recovers the PTEN and TP53
225 modules as well as the Hippo pathway, the aryl hydrocarbon receptor complex (AHR/ARNT), the
226  mTOR-repressing GATOR1 complex, the STAGA chromatin remodeling complex, JAK-STAT
227  signaling, and the gamma-secretase complex (Figure 2c, and Supplementary 4c), all of which
228 have been associated with tumor suppressor activity. The functional coherence and biological
229 relevance of the PSG co-occurrence network further validates the approach taken and establishes
230 this dataset as a resource for exploring putative tumor suppressor activity in cell lines and tumors.
231

232  Variation in Fatty Acid Metabolism in AML Cells

233

234  In addition to the known tumor suppressors, we observed a large module containing elements of
235  several fatty acid (FA) and lipid biosynthesis pathways (Figure 2c). Interestingly, while there does
236  not appear to be a strong tissue specificity signature for most clusters (Figure 2c), the fatty acid
237  metabolism cluster shows a strong enrichment for AML cell lines (P = 1.5x10™). AML, like most
238  cancers, typically relies on increased glucose consumption for energy and diversion of glycolytic
239 intermediates for the generation of biomass required for cell proliferation. Membrane biomass is
240 generated by phospholipid biosynthesis that uses fatty acids as building blocks, with FA pools
241 replenished by some combination of triglyceride catabolism, transporter-mediated uptake, and de
242  novo synthesis via the ACLY/ACACA/FASN palmitate production pathway using citrate precursor
243  diverted from the TCA cycle. Indeed, the role of lipid metabolism in AML progression is indicated
244 by changes in serum lipid content®?, in particular for long-chain saturated fatty acids that are the
245  terminal product of the FAS pipeline. Inhibition of FA synthesis is therefore an appealing

246  chemotherapeutic intervention®®*

and FASN inhibitors are currently undergoing clinical trials for
247  treatment of solid tumors and metabolic diseases*. The observation that knocking out FAS
248  pathway genes results in faster proliferation in some AML cells, and their signature as putative

249  tumor suppressor genes, is therefore very unexpected.
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250

251  To learn whether additional elements of lipid metabolism were associated with the FAS cluster,
252  we examined the differential correlation of mixed Z-scores in AML cells. We and others have
253  shown that genes with correlated gene knockout fitness profiles in CRISPR screens are likely to

254  be involved in the same biological pathway or process (“co-functional”)'®?'

, analogous to
255  correlated genetic interaction profiles in yeast?®®?°%°. Strikingly, all gene pairs within the fully
256  connected clique in the FAS cluster (containing genes FASN, ACACA, GPAT4, CHP1, GPI
257 CERS6, PCGF1, Figure 2c) had a median Pearson correlation coefficient (PCC) of 0.76 in the
258 23 AML cell lines (range 0.63-0.95, Figure 3a, red), compared to median correlation of 0.05 in
259  the remaining 785 cell lines (range -0.11-0.62, with the highest correlation between FASN and
260 ACACA, adjacent enzymes in the linear palmitate synthesis pathway; Figure 3a, gray). These
261 high differential Pearson correlation coefficients (dPCC) suggest that variation in lipid metabolism
262 is pronounced in AML cells®®.

263

264  We sought to explore whether this difference in correlation identified other genes that might give
265 insight into metabolic rewiring in AML. We first removed noisy data by filtering for high-quality
266  screens (Cohen’s D > 2.5, recall > 60%*?), leaving 659 cell lines, including 17 AML cell lines.
267  Calculating a global difference between PCC of all gene pairs in all 17 AML and in the remaining
268 642 cell lines yielded many gene pairs whose dPCC appeared indistinguishable from random
269 sampling (Supplementary Figure 5a-b). To filter these, we calculated empirical P-values for
270  each gene pair. We randomly selected 17 cell lines from the pool of all screens, calculated PCC
271  forall gene pairs in the selected and remaining lines, and calculated dPCC from these PCC values
272  (Figure 3b). We repeated this process 1,000 times to generate a null distribution of dPCC values
273  for each gene pair, against which a P-value could be computed (Figure 3c-d).

274

275 Expanding the set to a filtered list of genes whose correlation with a gene in the FAS clique
276  showed significant change in AML cells (P<0.001; see Methods) yielded a total of 106 genes,
277 including the 7 genes in the clique (Figure 3e) plus Holocarboxylase Synthetase (HLCS), which
278  biotinylates and activates acetyl-CoA-carboxylase, the protein product of ACACA, as well as
279  glycolysis pathway genes PGP and HK2. Interestingly, about half of the genes showed
280 significantly increased anticorrelation with the FAS cluster, indicating genes preferentially
281  essential where the FAS genes act as proliferation suppressors (Figure 3e). These genes include

282 fatty acid desaturase (SCD), which operates directly downstream from FASN/ACACA to generate


https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332023; this version posted August 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

283  monounsaturated fatty acid species, and Sterol Regulatory Element Binding Transcription Factor
284 1 (SREBF1), the master regulatory factor for lipid homeostasis in cells.

285

286  Clustering the AML cells lines according to these high-dPCC genes reveals two distinct subsets
287  of cells. The FAS cluster and its correlates show strong proliferation suppressor phenotype in four
288 cell lines, NB4, MV411, MOLM13, and THP1. The remaining thirteen AML cell lines show
289  negligible to weakly essential phenotypes when these genes are knocked out. The anticorrelated
290 genes, including SCD and SREBF1, show heightened essentiality in these same cell lines.
291  Together these observed shifts in gene knockout fitness indicates that this subset of AML cells
292  has a substantial metabolic rewiring. Because these cells share a genetic signature among fatty
293  acid synthesis pathway genes that is consistent with tumor suppressors, we call these cell lines
294  Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells (Figure 3e).

295

296  Cas12a-mediated Genetic Interaction Screens Confirm Rewired Lipid Metabolism

297

298  We sought to confirm whether gene knockout confers improved cell fitness, and to gather some
299 insight into why some AML cells show the FASTS phenotype and others do not. Genetic
300 interactions have provided a powerful platform for understanding cellular rewiring in model
301  organisms, and we sought to apply this approach to deciphering the FASTS phenotype. We
302 designed a CRISPR screen that measures the genetic interactions between eight selected “query
303 genes” and ~100 other genes (“array genes”). The query genes include FASN and ACACA, from
304 the cluster of proliferation-suppressor genes, as well as lipid homeostasis transcription factor
305 SREBF1, anticorrelated with the FAS cluster in the differential network analysis, and
306 uncharacterized gene c120rf49, previously implicated in lipid metabolism by coessentiality?’ and
307 a recent genetic interaction study®®. Additional query genes include control tumor suppressor
308 genes TP53 and PTEN and control context-dependent essential genes GPX4 and PSTK (Figure
309 4a). The array genes include two to three genes each from several metabolic pathways, including
310  various branches of lipid biosynthesis, glycolysis and glutaminolysis, oxphos, peroxisomal and
311 mitochondrial fatty acid oxidation. We include the query genes in the array gene set (Figure 4a)
312 to test for screen artifacts and further add control essential and nonessential genes to measure
313  overall screen efficacy (Supplementary Table 4-5).

314

315  We used the enCas12a CRISPR endonuclease system to carry out multiplex gene knockouts®.

316 We used a dual-guide enCas12a design, as described in DeWeirdt et al.®, that allows for

10
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317  construction of specific guide pairs through pooled oligonucleotide synthesis (Figure 4b). The
318 library robustly measures single knockout fitness by pairing three Cas12a crRNA per target gene

319  each with five crRNA targeting nonessential genes’*’

(n=15 constructs for single knockout
320 fitness), and efficiently assays double knockout fitness by measuring all guides targeting query-
321  array gene pairs (n=9) (Figure 4c & Supplementary Table 5). Using this efficient design and the
322  endogenous multiplexing capability of enCas12a, we were able to synthesize a library targeting
323 800 gene pairs with a single 12k oligonucleotide array.

324

325 We screened one AML cell line from the FASTS subset, MOLM13, and a second one with no FAS
326  phenotype, NOMO1, collecting samples at 14 and 21 days after transduction with a five-day
327  puromycin selection (Supplementary Table 6-7). Importantly, by comparing the mean log fold
328 change of query gene knockouts in the “A” position vs. the same genes in the “B” position of the
329  dual knockout vector, we find no positional bias in the multiplex knockout constructs (Figure 4d),
330 consistent with our previous findings®?*. Single knockout fithess measurements effectively
331  segregated known essential genes from nonessentials, confirming the efficacy of the primary
332 screens (Supplementary Figure 6). Context-dependent fithess profiles are consistent with the
333  cell genotypes, with PTEN and TSC1 showing positive selection in PTEN* NOMO1 cells and
334  TP53 being a strong PS gene in P53" MOLM13 cells. Strikingly, CHP1 and GPAT4 are the next
335 two top hits in MOLM13, confirming their proliferation suppressor phenotype (Figure 4e), while
336  neither shows a phenotype in NOMO1. Together these observations validate the enCas12a-
337  mediated multiplex perturbation platform, confirm the ability of CRISPR knockout screens to
338 detect proliferation suppressors, and corroborate the background-specific fitness enhancing
339 effects of genes from the FAS cluster.

340

341  To measure genetic interactions, we fit a linear regression for each guide between the
342  combination LFCs and the single guide LFCs, Z-scoring the residuals from this line, and
343 combining across all guides targeting the same gene pair (Supplementary Figure 6 &
344  Supplementary Table 7). Here, positive genetic interaction Z-scores reflect greater fitness than
345 expected and negative Z-scores represent lower than expected based on the single gene
346  knockouts independently, similar to the methodology applied in a recent survey of genetic
347 interactions in cancer cells using multiplex CRISPR perturbation®® (see Methods). Gene self-
348 interactions (when the same gene is in the A and B position, Figure 4d) should therefore be
349  negative for proliferation suppressors and positive for essentials (Figure 4f-g, Supplementary

350 Figure 6). Overall, genetic interaction Z-scores in the two cell lines showed moderate correlation

11
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351 (Figure 4g) and previously reported synthetic interactions between C7120rf49 and low-density
352 lipoprotein receptor LDLR'” and between SREBF1 and its paralog SREBF2'" are identified in both
353 cell lines (Supplementary Figure 6f-g).

354

355  In contrast with the interactions found in both cell lines, background-specific genetic interactions
356 reflect the genotypic and phenotypic differences between the cells. The negative interaction
357 between tumor suppressor PTEN and mTOR repressor TSC71 in PTEN" NOMO1 cells is
358  consistent with their epistatic roles in the mTOR regulatory pathway. Both genes show positive
359  knockout fitness in NOMO1 (Figure 4e) but their dual knockout does not provide an additive
360 growth effect, resulting in a suppressor interaction with a negative Z-score (Figure 4g-h).
361  Similarly, suppressor genetic interactions between ACACA and downstream proliferation
362  suppressor genes CHP1 and GPAT4 are pronounced in MOLM13 cells, consistent with epistatic
363 relationships in a linear biochemical pathway (Figure 4h). These interactions are not replicated
364  with query gene FASN, but both FASN and ACACA show negative interactions with fatty acid
365 transport gene FABP5 and positive interactions with SREBF1 and SCD, the primary desaturase
366  of long-chain saturated fatty acids. All of these interactions are absent in NOMO1, demonstrating
367  the rewiring of the lipid biosynthesis genetic interaction network between these two cell types
368  (Figure 4h).

369

370  FASTS Signature Predicts Sensitivity to Saturated Fatty Acids

371

372  The significant differences in the single- and double-knockout fithess signatures between the two
373  cell lines suggests a major rewiring of lipid metabolism in these cells. CHP1 and GPAT4 are
374  reciprocal top correlates in the Avana coessentiality network (r = 0.43, P = 2.5x10%*), strongly
375  predicting gene co-functionality?. Two recent studies characterized the role of lysophosphatidic
376  acid acyltransferase GPAT4 in adding saturated acyl moieties to glycerol 3-phosphate, generating
377  lysophosphatidic acid (LPA) and phosphatidic acid (PA), the precursors for cellular phospholipids
378 and triglycerides, and further discovered CHP1 as a key regulatory factor for GPAT4 activity®"®.
379  Within hematological cancer cell lines, the coessentiality network is significantly restructured, with
380 the ACACA/FASN module correlated with SCD in most backgrounds (r = 0.35, P < 107'®) but
381  strongly anticorrelated in 36 blood cancer cell lines (r =-0.52, P < 10, Figure 3e). The magnitude
382  of this change in correlation is ranked #8 out of 31 million gene pairs (see Methods). In contrast,
383 ACACA and FASN are weakly correlated with CHP17 in most tissues but strongly correlated in
384  AML, with underlying covariation largely driven by the PS phenotype in FASTS cells (Figure 3e).
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385  This pathway sign reversal is confirmed in the single knockout fithess observed in our screens:
386  SCD is strongly essential in MOLM13 but not in NOMO1 (Figure 4e).

387

388  Collectively these observations make a strong prediction about the metabolic processing of
389  specific lipid species. Faster proliferation upon knockout of genes related to saturated fatty acid
390 processing, coupled with increased dependency on fatty acid desaturase gene SCD (Figure 5a),
391  suggests that these cells are at or near their carrying capacity for saturated fatty acids. To test
392  this prediction, we exposed three FASTS cell lines and four other AML cell lines to various species
393  of saturated and unsaturated fatty acids. FASTS cells showed significantly increased apoptosis
394 in the presence of 200 um palmitate (Figure 5b-c) while no other species of saturated or
395 unsaturated fatty acid showed similar differential sensitivity. In addition, analysis of metabolic

396  profiles of cells in the Cancer Cell Line Encyclopedia®"®

showed that saturated acyl chains are
397  markedly overrepresented in triacylglycerol (TAG) in FASTS cells (Figure 5d), in contrast with
398 other lipid species measured (Supplementary Figure 7). Palmitate-induced lipotoxicity has been
399  studied in many contexts — and importantly, the role of GPAT4 and CHP1 in mediating lipotoxicity

400 was well described recently®” %

— but, to our knowledge, this is the first instance of a genetic
401  signature that predicts liposensitivity.

402

403  Prognostic signature for FASTS genes

404

405 To explore whether the FASTS phenotype has clinical relevance, we compared our results with
406 patient survival information from public databases. Using genetic characterization data from
407  CCLE®, we did not find any lesion which segregated FASTS cells from other CD33+ AML cells
408 (Figure 6a), so no mutation is nominated to drive a FASTS phenotype in vivo. Instead, we
409 explored whether variation in gene expression was associated with patient outcomes. We
410 included genes in the core FASTS module as well as genes with strong genetic interactions with
411 ACACA/FASN in our screen (Figure 6a). To select an appropriate cohort for genomic analysis,
412  we first considered patient age. Although AML presents across every decade of life, patients from
413  whom FASTS cell lines were derived are all under 30 years of age (sources of other AML cells
414  ranged from 6 to 68 years; Figure 6b). With this in mind, we explored data from the TARGET-
415 AML™ project, which focuses on childhood cancers (Figure 6¢). Using TARGET data, we
416  calculated hazard ratios using univariate Cox proportional-hazards modeling with continuous
417  mRNA expression values for our genes of interest as independent variables. We observed that
418  4/7 FAS genes, GPAT4, CHP1, PCGF1, and GPI, show significant, negative hazard ratios (HR),
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419  consistent with a tumor suppressor signature (Figure 6d), and that no other gene from our set
420 shows a negative HR. Indeed, when stratifying patients from the TARGET cohort with high
421  expression of GPAT4, CHP1, PCGF1, and GPI (Figure 6e), we observe significantly improved
422  survival (P-value = 0.001, Figure 6f). These findings are not replicated for GPAT4, CHP1, and
423  GPI in the TCGA™ or OHSU"® tumor genomics data sets, possibly because they sample older
424  cohorts (Polycomb group subunit PCGF1 is observed to have a HR < 1 within the OHSU cohort,
425 Supplementary Figure 8a). However, age is not generally associated with expression of genes
426  in the FAS cluster in either cell lines or tumor samples (Supplementary Figure 8).

427

428 Discussion

429

430 CRISPR screens have had a profound impact on cancer functional genomics. While research has
431 been mainly focused on essential gene phenotypes, there is still much clinically relevant biology
432  that can be uncovered by examining other phenotypes from a genetic screen. We establish a
433  methodology that can reliably identify the proliferation suppressor phenotype from whole-genome
434  CRISPR knockout genetic screens. This represents, to our knowledge, the first systematic study
435  of this phenotype in the more than 1,000 published screens®1011:1348,

436

437  The activity of proliferation suppressor genes is inherently context-dependent, rendering global
438 classification difficult. As with context-dependent essential genes, the strongest signal is attained
439  when comparing knockout phenotype with underlying mutation state. For example, wildtype and
440 mutant alleles of classic tumor suppressor examples TP53 and PTEN are present in large
441 numbers of cell lines, enabling relatively easy discrimination of PS behavior in wildtype
442  backgrounds, but most mutations are much more rare, reducing statistical power. Our model-
443 based approach enables the discovery of PS phenotype as an outlier from null-phenotype
444  knockouts. Using this approach, we recover COSMIC-annotated TSGs exhibiting the PS
445  phenotype when wildtype alleles are expressed at nominal levels.

446

447  Co-occurrence of proliferation suppressors follows the principles of modular biology, with genes
448 in the same pathway acting as proliferation suppressors in the same cell lines. We observe
449  background-specific putative tumor suppressor activity for the PTEN pathway, P53 regulation,
450 mTOR signaling, chromatin remodeling, and others. The co-occurrence network also reveals a
451 novel module associated with glycerolipid biosynthesis, which exhibits the PS phenotype in a

452  subset of AML cells. Analysis of the rewiring of the lipid metabolism coessentiality network in AML
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453  cells corroborated this discovery, and led us to define the Fatty Acid Synthesis/Tumor Suppressor
454  (FASTS) phenotype in four AML cell lines. A survey of genetic interactions, using the enCas12a
455  multiplex knockout platform, showed major network rewiring between FASTS and other AML cells
456 and revealed strong genetic interactions in FASTS cells with GPAT4, a key enzyme in the
457  processing of saturated fatty acids, and its regulator CHP1. Collectively these observations
458  suggest that FASTS cells are near some critical threshold for saturated fatty acid carrying
459  capacity, which we validated biochemically by treatment with fatty acids and bioinformatically
460 through analysis of CCLE metabolomic profiles.

461

462  Confirming the clinical relevance of an in vitro phenotype can be difficult. No obvious mutation
463  segregates FASTS cells from other AML cells, and with only four cell lines showing the FASTS
464  phenotype, we lack the statistical power to discover associations in an unbiased way. However,
465 by narrowing our search to strong hits from the differential network analyses, we found a
466  significant survival advantage in a roughly age-matched cohort for GPAT4 and CHP1
467  overexpression. This finding points to a wholly novel tumor suppressor signature for our PSG
468  module, though significant further study is necessary to determine whether this gene expression
469  signature confers a similar in vivo metabolic rewiring and sensitivity to saturated lipids.

470

471 The combination of genetic, biochemical, and clinical support for the discovery of a novel tumor
472  suppressor module has several implications. First, it provides a clinical signature that warrants
473  further research as a prognostic marker as well as a potential therapeutic target. Second, it
474  demonstrates the power of differential network analysis, and in particular differential genetic
475 interaction networks, to dissect the rewiring of molecular pathways from modular phenotypes.
476  And finally, it suggests that there still may be much to learn from data-driven analyses of large-
477  scale screen data, beyond the low-hanging fruit of lesion/vulnerability associations.

478

479

480
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Figure 1. Discovery of Proliferation Suppressor genes. (a) Fold-change distribution of a
typical CRISPR knockout screen has a long left tail of essential genes, and a small number of
genes whose knockout increases fitness (proliferation suppressor genes, “PSG”). A two-
component Gaussian mixture model (red, blue) models this distribution. (b) and (c) Fold change
of common tumor suppressors across 808 cell lines (P-values, Wilcoxon rank-sum tests). (d)
Precision vs. recall of mixed Z-score and other CRISPR analysis methods. Dashed line, 90%
precision (10% FDR). (e) Fraction of cell lines in which known tumor suppressors (green) or other
genes (blue, not defined as TSG by COSMIC) are classified as PS genes at 10% FDR. (f)
Presence of each known TSG across 808 cell lines, vs. cell genetic background. Gold, mutation
present; gray, absent. Green or blue, following color scheme in (e), gene is classified as a

proliferation suppressor.
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Figure 2. Co-occurrence of PSG. (a) Co-occurrence/mutual exclusivity of common TSG as PSG
in CRISPR screens. Brown, number of cell lines in which two genes co-occur as PSG at 10%
FDR. Blue, FDR of co-occurrence. Hierarchical clustering delineates functional modules. (b)
Pipeline for building the co-PS network. (c) Examples from the Co-PS network. Nodes are

connected by edges at FDR < 0.1%. Heatmaps indicate presence of PSG vs. cell lineage.
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Figure 3. Differential network analysis of fatty acid synthesis module. (a) Among genes in
the FAS module, Pearson correlation coefficients of shuffled Z score profiles are substantially
higher in AML cells (red) than in other cells (gray). (b) Significance testing of differential PCC
(dPCC) involves quality filtering of Avana data (n=659 cell lines, including 17 AML cell lines),
building a null distribution by randomly selecting 17 cell lines, and calculating PCC between all
gene pairs in the selected cells and the remaining cells. (c) After 1,000 repeats, a null distribution
is generated for each pair, and a two-sided P-value is calculated for the observed AML-vs-other
dPCC. (d) Volcano plot of dPCC vs. P-value for all genes in the Co-PS cluster. (e) Heatmap of
mixed Z score for 17 AML cell lines in selected genes with high |mixed Z| and high |dPCC]|.
Clustering of cell lines indicates the putative Fatty Acid Synthesis/Tumor Suppressor (FASTS)
subtype.
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552  Figure 4. Genetic interactions reveal a rewired lipid biosynthesis pathway in FASTS cells.
553 (a) Genetic interaction screen targets 8 query genes, selected from FASTS cluster and dPCC
554  analysis, and 100 array genes sampling lipid metabolism pathways, for a total of 800 pairwise
555  knockouts. (b) Library design uses a dual-guide enCa12a expression vector which targets the
556  query gene in the “A” position and array gene in the “B” position. (c) Overall library design includes
557  three crRNA/gene plus control crRNA targeting nonessential genes. Single-knockout constructs
558 (target gene paired with nonessential controls) allow accurate measurement of single knockout
559 fitness. (d) Considering single knockout fitness of query genes in the “A” and “B” position of the
560 crRNA expression vector shows no position effects in the two cell lines screened (MOLM13,
561 NOMO1). LFC, log fold change. (e) Single knockout fitness (Z-score of mean LFC) is highly
562  consistent between MOLM13 and NOMO1, but reveals background-specific PS genes. (f)
563  Enrichment among Gl for coessential and self-interacting genes. Self-interactions among genes
564  that show single knockout fitness phenotypes are expected, reflecting quality of Gl observations.
565 (g) Global comparison of MOLM13, NOMO1 genetic interaction Z scores. (h) Network view of
566 interactions in each background shows rewiring in MOLM13 FASTS cells.

567
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Figure 5. FASTS cells are sensitive to saturated FA. (a) Schematic of the fatty acid/glycerolipid
synthesis pathway. Blue, PSG in FASTS cells. Red, essential genes. Pathway analysis suggests
saturated fatty acids are a critical node. (b) Apoptosis of FASTS cells in response to media
supplemented with 200 uym fatty acids. All three cell lines show marked sensitivity to palmitate.
(c) Apoptosis of other AML cells in response to fatty acids shows no response to palmitate. (d)
Triacylglycerol (TAG) species metabolite differences. The x axis represents the median difference
of log10 normalized peak area of the metabolite in FASTS cells vs all other AML cells. The y axis

represents the number of saturated bonds present. Each dot represents a unique metabolite.
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Figure 6. Prognostic signature of FAS module. (a) Heatmap of mixed Z scores for genes
implicated in the genetic interaction network. Top, common AML lesions. (b) Mixed Z-score of
FASN in AML cell lines vs. age of patient from which cell lines were derived. Blue, FASTS cells.
(c) Age distribution of AML patients in three public tumor genomics cohorts. (d) Hazard ratios
(95% CI; univariate Cox proportional hazards test) for expression of genes in (a), using genomics
and survival data from TARGET. (e) Hierarchical clustering of gene expression in TARGET, using
the four genes with negative HR. Green, high expression cluster. Blue, others. (F) Kaplan-Meier
survival analysis of AML patients in TARGET, comparing patients in high expression cluster vs.

others.
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593  Supplementary Materials and Methods

594

595 Code Availability

596

597  Mixed Z-scoring, analysis using scoring metric, co-occurrence network, and survival analysis was
598  conducted in R version 4.0.474%. dPCC correlation analysis, including empirical calculations were
599  conducted in Python 3.8.27%, using the packages SciPy’’, NumPy’® Matplotlib”, and pandas®.

600 Code is made available at: https://github.com/hart-lab/tsg_crispr_screen_survey/. R packages

601 tidyverse®', data.table®, and knitr®*®° were used for figure generation, data manipulation, and

602 general R functions; mixtools®®, permute®’, and PRROC?® were used for data simulations

t90,91

603 present in figures and evaluation; biomaR , and org.Hs.eg.db% were used in integrating data

t93

604 types; cowplot®, ggbeeswarm®, annotate®®, RColorBrewer®, ComplexHeatmap®’, gplots®,

k103 2104

605  ggpubr®, grid’®, circlize'®, ggthemes'', ggExtra'®?, patchwork'®, and ggplot2'*, were used for

" were used for

606 figure aesthetics and generation. R packages survival'®'% and survminer'®
607  survival analysis and figure generation. Analysis related to Kaplan Meier and patient
608 stratification was done in python version 3.8.5'% using the packages pandas®, numpy’®, and

"0 and matplotlib™

609 scipy’’ for statistical functions and data manipulation, seaborn'®®, plotly
610 for figure aesthetics and generation, and lifelines'" for both statistical analysis and figure
611  generation.

612

613

614  Analysis of enCas12a multiplex genetic screens was conducted in R 4.0.0 and Python 3.8.3"'2.
615 Code for this analysis is available at https://github.com/PeterDeWeirdt/FASTS. R packages

616 tidyverse®' and tidygraph''® were used for data manipulation and ggraph'* was used for graph

617  visualization. Python packages SciPy’’, NumPy’®, Matplotlib™®, pandas®, statsmodels'',

618  plotnine'® were used for analysis and visualization. The Custom package gnt''” was used to

619 calculate genetic interaction scores and gpplot''® was used to generate point density plots.
620

621 Processing DepMap Screen and CCLE Genomics Data

622

623 Raw read count data and a map of guide RNAs were downloaded from the DepMap database

)10.:48 )'3. Avana data

624  (www.depmap.org and Project Score database (https://depmap.sanger.ac.uk/

625 version 2020q4*° was used for this analysis. To avoid genetic interaction effects, we discarded

626 sgRNAs targeting multiple protein coding genes annotated as public or update pending in The
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627 Consensus Coding Sequence (CCDS, release 22)'°

. Gene names in the guide RNA maps of
628 Avana and Project Score were updated using human gene information obtained from ncbi ftp.
629 Then, read count data for each replicate was passed through CRISPRcleanR'®° with location
630 information of sgRNAs for the Avana CRISPR library based on GENCODE'" to correct depletion
631  effects caused by copy-number amplification. Following this correction, each guide’s log. fold-
632 change was calculated. For Project Score data, we used only the gene location information of KY
633  library v1.0 which is built in CRISPRcleanR. Normalized TPM RNA-seq data, copy number data,
634 and mutation annotations for CCLE®® cells were also downloaded from DepMap. Ensembl gene
635 id in RNA-seq data was converted to gene symbol using cross reference downloaded from
636 Emsembl Biomart'?2.
637
638 Mixed Z-Score Metric
639
640 Mixed z-score metric was generated using R version 4.0.4 base stat packages’® and the
641 mixtools®® normalmixEM function. To calculate the mixed z-score, individual guide log, fold-
642 changes for each cell line were passed through the default settings of the normalmixEM function
643 to fit two distinction normal distributions. Of the 808 cell lines passed through this analysis, 805
644  cell lines were able to converge with two distinction normal distribution following 1,000 iterations.
645 The calculated mean and standard deviation of the higher (more positive) distribution were
646  recorded. Along with the uncorrected original gene logz fold-change, was used to calculate the
647  corresponding mixed z-score. The original and mixed Z-score formula is as follows:
648 Mixed Gene Z — Score = X~ Hrign

Ohigh
649  Where x is the original gene log. fold-change, uy;4, is the average of the more positive fitted
650 distribution, and a4y, is the standard deviation of the more positive fitted distribution. This metric
651  was calculated for the DepMap 2020q4*° screen set, and the Sanger’s DepMap'?® screen set for
652  Supplementary Figure 3.
653
654 Comparisons of Fithess Scoring Metrics
655
656 The following describes our comparative analysis of screening algorithms observed in
657 Supplementary Figure 1. JACKS* and BAGEL*'#?'3 software was downloaded from their
658 corresponding GitHub official distribution sites: https://github.com/felicityallen/JACKS, and
659  https://github.com/hart-lab/bagel. We ran JACKS and BAGEL with raw fold change data of
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660 DepMap 2020g4 version*®, gene guide map and replicate information. We obtained DepMap
661 202094 CERES scores from ‘dependency_score.csv’ downloaded from DepMap depository.
662 Ranking was performed per screen and based on mean log. fold-change values per gene.

663

664 We used the cancer gene census (CGC) list from COSMIC*“® to compare fitness methods that
665  can detect proliferation suppressor activity. Tumor suppressor genes (TSGs) from CGC represent
666  a gene set of well-known proliferation suppressors. We separated the CGC gene list in two gene
667  sets, genes with any tumor suppressor role in cancer representing true positive proliferation
668  suppressor observations, and genes with any oncogene role in cancer representing false
669 positives. Additionally, we added reference non-essential genes’*” to the false positive list as
670 these genes are not expected to demonstrate any phenotype. With these compiled lists, we
671 evaluated each metric’s fitness scores, to see which metric would best separate the true and false
672  positive gene lists. The R package PRROC was used for fitness scoring evaluation®#°,

673

674  Direct Proliferation Suppressor Comparisons of Avana and Sanger Screen Datasets

675

676 The CRISPRcleanR'? corrected fold-change Sanger screen set'® was pushed through identical
677  pipelines used to calculate the mixed z-score metric. Quality analysis of the mixed z-score metric
678  for both data sets was pushed using identical gene sets described in the “Comparisons of Fitness
679  Scoring Metrics” section. This analysis was restricted to only overlapping cell lines, 186 total, in
680  both datasets.

681

682 The fithess enhancement introduced by PSG knockout, relatively weak compared to severe
683  defects from essential gene knockout, often precludes detection in a shorter experiment. In the
684 example F5 cell line (Figure 1a), a 2.5-fold change over a 21-day time course corresponds to a
685 fitness increase of only ~12% for rapidly growing cells, or a doubling time decrease from 24 to 21
686  hours. In a 14-day experiment, this increased proliferation rate would result in an observed log
687  fold change of only ~1.7, within the expected noise from genes with no knockout phenotype. This
688 is explained in detail as follows:

689

690 Theoretical Fold-Change and Growth Rate Quantification: To assess hypothetical differences
691 of proliferation suppressor fithess scoring metrics based on standard sampling times of screen

10,11,13,48

692  collection taken from the Sanger and Avana databases , we calculated theoretical cell
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693  population differences of wild-type and knocked out proliferation suppressor cell lines. The
694 following formula can be used to calculate cell populations based on doubling rate per day:

695

696 Xp = X; = 2kt

697

698 In this formula X; is the final population number of cells, X; is the initial population of cells, k is
699  doubling time of the cells (in days), and tis time in days. In order to compare cells we can assume
700 that these formulas are consistent with both wild-type cells and knocked out proliferation
701 suppressor cells. With, knocked out proliferation suppressor cells the assumption is that these
702  cells would grow faster compared to wild-type conditions and thus kps > kut, Where kps is the growth
703 rate for proliferation suppressor knocked out cells, and ku: is the growth rate of wild type cells.
704  These two independent growth rates are related as:

705

706 kps = kye + Ak

707

708 Ak represents the change in growth rate resulting from genetic knockout, and is assumed to be
709  positive. The growth rate formula for wild-type and proliferation suppressor cells is thus:

710 Xy = X+ 2kwert X0 0= X; % 2(kwetbi)+t

711

712  We then solved for Ak, with Log2(Xps/Xwt) @as Logz(FC), representing the fold-change difference

713  between the cell populations at time t:

714
715 Log,FC = Log, (&>
Xwe

716

X, + 20ewe+al)st
717 Log,FC = Log, <W>
718

2 (kwe+Ak) <t

719 Log,FC = Log, (W)
720
721 Log,FC = ((kye +Ak) *xt) — (kye * 1)
722
723 Log,FC/t = ky,, + Ak — k,,;
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724

725 Log,FC/t = Ak

726

727  For a representative Log.(FC) of 2.5, which represents a sizable gain in fitness from a knocked-
728  out proliferation suppressor, and t = 21 days, representing the time in which the Avana screens

729  were sampled, we calculated Ak:

730

2.5
731 Ak = 1= 0.12
732

733  Using the calculated Ak at 0.12, we can calculate the hypothetical Log»(FC) that would be
734  expected at t = 14 days, representing the time in which the Sanger screens were sampled:
735

736 Log,FC = Ak *t
737

738 Log,FC = 0.12%14 =17
739

740  The resulting theoretical measurements demonstrate that Ak can be identical between two
741 samples, however the time in which the sample was taken will influence the ratio between the two
742  measured cell populations. Taken together, this demonstrates that samples at shorter time points
743  will demonstrate smaller quantified population size differences between wild-type and proliferation
744  suppressor knocked out cells compared to samples taken at longer time points.

745

746  Proliferation Suppressor Co-Occurrence Network

747

748  The co-occurrence network was developed based on FDR-corrected P-values from Fisher exact
749  tests of all gene by gene comparisons that were identified as a proliferation suppressor more than
750 once (584 genes total). Parallel processing, Fisher’'s exact test, Benjamini & Hochberg FDR p-
751  value adjustment were done using base R stat packages’®. Figure 2a was created with heatmap.2
752  function from the R gplots® package, with the dendrogram created through base R functions of
753  euclidean distance, and complete agglomeration methods clustering of the Fisher's exact test
754  score between gene pairs. Smaller heatmaps displayed in Figure 2c were made using the R
755  ComplexHeatmap library®”. Network visualization was completed using Cytoscape'®.

756
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757  Network creation followed the corresponding steps; 1) Identify all proliferation suppressor
758  observations at a 10% FDR threshold (Z >= 3.83). 2) Filter for gene proliferation suppressor
759  observations that occurred at least 2 or more times, selecting for a total of 584 out of 18,111
760  genes available (3.2% total available genes); 3) Create a binary (1 = proliferation suppressor, 0
761 = not proliferation suppressor) matrix of all 584 genes in all cell lines; 4) Conducted Fisher’s exact
762  test of every possible 2 x 2 contingency table of the 584 selected genes (n= 170,236 tests); and
763  5) Adjust the corresponding p-values to FDR values, using a cutoff of 0.001 (0.1% FDR) to define
764  edges. By assessing gene edges through Fisher exact-tests, we observe gene associations that
765  are based on the relative proportion of co-occurrences between two genes.

766

767

768  Proliferation Suppressor Network Enrichment

769

770  To test network enrichment of observed edges (Supplementary Figure 4a), we took 10,000
771 random samples of 462 (total number of edges in the co-occurrence network) gene pairs from the
772 170,236 available all by all gene pair Fisher’s exact test set. We then compared each sample to
773  see the frequency of gene pairs observed to have some interaction within HumanNet®', excluding
774  genetic interactions observed solely in the co-essentiality network component?' (generated from
775 the same data) to prevent circularity. Additionally, we compared our selected mixed Z-Score cutoff
776  against other various Z-Score cutoffs to ensure that we observed appropriate edge representation
777  from HumanNet (Supplementary Figure 4b). Networks were made using identical pipelines and
778  Fisher’s exact test set cutoffs with Z-Score cutoffs between 3 and 8 at 0.2 increments.

779

780 Differential Pearson Correlation Coefficient Analysis

781

782  Differential Pearson correlation coefficient (dPCC) analysis was conducted to identify genetic
783 fitness distinctions between AML cells and all other cells (Figure 3). Initial correlations (Figure
784  3a) of FAS cluster genes, PCGF1, CERS6, GPI, FASN, CHP1, GPAT4, and ACACA were
785  calculated with R version 4.0.4 base stat packages’ and plotted in ggplot2'®.

786

787  Following this observation, a follow up dPCC analysis was conducted on the FASTS cluster genes
788  to assess dPCC quality. Cell line screens with low quality (Cohen’s D < 2.5 or recall of known
789  core essential genes < 60%) were excluded, leaving 659 cell lines. Following this filtering step,

790  two gene-by-gene correlation matrices were calculated. The first correlation matrix calculated all
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791  gene by gene pairs in only the available AML cell lines (n=17). The second matrix calculated all
792  gene by gene pairs in the remaining 642 cell lines. The dPCC matrix is therefore the AML
793  correlation matrix minus the non-AML correlation matrix.

794

795  Each gene-pair has a unique joint distribution of mixed Z scores; thus, the significance of each
796  dPCC score must be calculated individually. To do this, we generated null distributions for dPCC
797  for each gene pair. We took random selections without replacement of 17 cell lines (matching the
798 n of AML cells), calculated all gene by gene pairwise correlations within this selection and within
799  the remainder, and calculated dPCC. We repeated this sampling and calculation 1,000 times to
800 generate a unique null distribution of dPCC for each gene pair and calculated an appropriate P-
801  value for the observed dPCC above (right tailed for positive dPCC, left tailed for negative dPCC).
802

803  Genes which showed signficant knockout phenotype (Jmixed Z| > 5) and AML-specific change in
804  correlation (dPCC P<0.001) with a gene in the connected clique in the co-occurrence cluster
805 (CHP1, GPAT4, ACACA, FASN, GPI, CERS6, PCGF1) were selected for further analysis (Figure
806 3e). Figure 3e was made using the R ComplexHeatmap library®’. Figure 3c-d plots were made
807 using the Python package Matplotlib™.

808

809  Cell culture for Genetic Screens

810

811  MOLM13 and NOMO1 cells screened with the Cas12a-mediated genetic interaction library at the
812  Broad Institute were obtained from the Cancer Cell Line Encyclopedia.

813

814  All cell lines were routinely tested for mycoplasma contamination and were maintained without
815 antibiotics except during screens, when the media was supplemented with 1%
816  penicillin/streptomycin. Cell lines were kept in a 37 °C humidity-controlled incubator with 5.0%
817  carbon dioxide and were maintained in exponential phase growth by passaging every 2-3 days.
818  The following media conditions and doses of polybrene, puromycin, and blasticidin, respectively,

819  were used:

820 MOLM13: RPMI + 10% FBS; 8 ug mL™"; 4 ug mL"; 8 ug mL"’
821 NOMO1: RPMI + 10% FBS; 8 yg mL™"; 1 ug mL™"; 8 ug mL™’
822

823 Pooled screens
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824

825  Cell lines stably expressing enCas12a (pRDA_174, Addgene 136476) were transduced with
826  guides cloned into the pRDA_052 vector (Addgene 136474) in two cell culture replicates at a low
827  MOI (~0.5). Transductions were performed with enough cells to achieve a representation of at
828 least 750 cells per guide construct per replicate, taking into account a 30-50% transduction
829 efficiency. Throughout the screen, cells were split at a density to maintain a representation of at
830 least 1000 cells per guide construct, and cell counts were taken at each passage to monitor
831  growth. Puromycin selection was added 2 days post-transduction and was maintained for 5 days.
832 14 days and 21 days after transduction, cells were pelleted by centrifugation, resuspended in
833  PBS, and frozen promptly for genomic DNA isolation.

834

835

836  Genomic DNA isolation and PCR

837

838  Genomic DNA (gDNA) was isolated using the KingFisher Flex Purification System with the Mag-
839 Bind® Blood & Tissue DNA HDQ Kit (Omega Bio-Tek #M6399-01) as per the manufacturer’s
840 instructions. The gDNA concentrations were quantitated by Qubit. For PCR amplification, gDNA
841  was divided into 100 yL reactions such that each well had at most 10 ug of gDNA. Per 96 well
842  plate, a master mix consisted of 144 pL of 50x Titanium Taq DNA Polymerase (Takara), 960 yL
843  of 10x Titanium Taq buffer, 768 yL of dNTP (stock at 2.5mM) provided with the enzyme, 48 pL of
844 PS5 stagger primer mix (stock at 100 uM concentration), 480 yL of DMSO, and 1.44 mL water.
845  Each well consisted of 50 yL gDNA plus water, 40 yL PCR master mix, and 10 yL of a uniquely
846  barcoded P7 primer (stock at 5 uM concentration).

847

848 PCR cycling conditions: an initial 1 min at 95 °C; followed by 30 s at 94 °C, 30s at 53 °C, 30s at
849 72°C, for 28 cycles; and a final 10 min extension at 72 °C. PCR primers were synthesized at
850 Integrated DNA Technologies (IDT). PCR products were purified with Agencourt AMPure XP
851  SPRI beads according to manufacturer’s instructions (Beckman Coulter, A63880).

852

853  Samples were sequenced on a HiSeq2500 Rapid Run flowcell (lllumina) with a custom primer of
854 sequence: 5-CTTGTGGAAAGGACGAAACACCGGTAATTTCTACTCTTGTAGAT. The first
855  nucleotide sequenced with the primer is the first nucleotide of the guide RNA, which will contain
856  a mix of all four nucleotides, and thus staggered primers are not required to maintain diversity

857  when using this approach. Reads were counted by alignment to a reference file of all possible
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858  guide RNAs present in the library. The read was then assigned to a condition (e.g. a well on the
859 PCR plate) on the basis of the 8 nt index included in the P7 primer.

860

861  Scoring Genetic Interactions

862

863  To score genetic interactions we used a custom python package, gnt'"’, available on the python
864  package index. We use log-fold changes (LFCs) as inputs to the scoring pipeline. We define y;;as
865  the observed LFC of a guide pair i, jand y;, as this pair's expected LFC. We then calculate the
866  residual y;; — 3, to generate an interaction score. To define expected LFCs, 3, we fit a linear

867  regression for each guide, i, saying
868 ﬁ:mi.x+bi,

869 where x is the LFC of each guide individually and m; and b; are the fit slope and intercept for
870 guide i (Supplementary Figure 6b). We refer to i as the anchor guide and its pairs as target
871  guides. We then Z-score residuals within each anchor guide. This approach is similar to the one
872  taken by Horlbeck et al.®.

873  To aggregate interaction scores at the gene level, we sum the z-scored residuals, z;;, for all
874  constructs i,j targeting the gene pair 1, ]/, fixing I as the anchor gene, and divide by the square
875  root of the number of constructs targeting 1,]. We repeat this calculation, fixing Jas the anchor
876  gene. We sum scores for both of these orientations and divide by /2 to arrive at a gene level Z-

877 score.
878

879  Cell Culture for Fatty Acid Response

880

881  Human cancer cell lines used at MD Anderson were obtained as follows: EOL1, MONOMACH1,
882 NB4, OCIAML3 (DSMZ); MOLM13 and NOMO1 (Fisher); MV411 (ATCC). Identities were
883  confirmed upon receipt and prior to experiments by STR typing (MDACC Characterized Cell Line
884  Core). Absence of mycoplasma was confirmed monthly (Invivogen). All cell lines were grown at
885 37°Cin 5% CO, in low attachment flasks (Greiner) and maintained at less than 1M cells mI™*. All
886  but one line were cultured in RPMI-1640 with 25 mM HEPES (Sigma) supplemented with 10%
887  FBS (Sigma), 2 mM Glutamax (Gibco), 1 mM sodium pyruvate (Gibco), 10,000 units ml™" penicillin
888  (Sigma), 10 mg ml™" streptomycin (Sigma) and 100 ug mi™* Normocin (Invitrogen). Complete
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889 medium was additionally supplemented with 0.1 mM non-essential amino acids (Gibco) for
890 MONOMACH1.

891

892  Fatty Acid Solutions

893

894  Fatty All chemicals were purchased from Sigma (St. Louis, MO). Solutions were prepared
895 according to Luo et al.'® following best practices'®. Fatty acid stock solutions were prepared in
896  100% ethanol at 50 mM for stearic acid or 200 mM for the rest. Fatty acid free bovine serum
897  albumin (FAF-BSA) was dissolved in tissue culture grade (pyrogen free) water at 1.5 mM (10%
898  wl/v), filtered using 0.1 ym PES vacuum unit (Corning) and aliquoted for storage at -20°C. Ethanol
899  stock solutions were diluted to 4 mM in FAF-BSA (molar ratio 2.7:1) and mixed gently at room
900 temperature for 2 hours to facilitate conjugation. A vehicle control was prepared by diluting 100%
901 ethanol in FAF-BSA to match the ethanol concentration in the 4 mM stearic acid solution. Vehicle
902 or 4 mM solutions were aliquoted and stored at -80°C for up to 3 months. After thawing, aliquots
903  were diluted 1:10 with complete medium to 400 uM, stored at 4°C and used within one week.
904

905

906 Apoptosis Assay

907

908 Cells were seeded 24 hr prior to treatment in 500 uL complete medium in 24-well low attachment
909 plates (Greiner) at 250,000 cells well™". Quadruplicate wells received 500 uL FA working solution
910 (400 uM) or vehicle (BSA+EtOH). Cells were treated at 200 uM for 48 hr. Treated cells were
911  transferred to a deep 96 well plate and medium was discarded after centrifugation at 500 x g for
912 5 min. Cells were washed once with 1000 yL D-PBS (Sigma). Next, cells were resuspended in
913 300 pL binding buffer containing annexin-FITC and propidium iodide according to the
914  manufacturer’s protocol (BD Biosciences) and transferred to a shallow 96 well V-bottom plate
915  (Corning). After staining for 15 min at room temperature in the dark, cells were washed once with
916 300 pL binding buffer and finally resuspended in 100 pL binding buffer. Unstained and single stain
917  controls were prepared for every cell line in a separate plate. Gates were adjusted such that 99%
918  of unstained singlets fell below each threshold. See Supplementary Figure 9 for complete gating
919  strategy. Flow cytometry data were collected using a FACSCelesta analyzer equipped with an
920 autosampler (BD Biosciences) and analyzed using FlowJo 10.5.3. Results shown are
921 representative of three independent experiments conducted with sequential passages of each
922  cellline.
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923

924

925 Metabolomics Analysis

926

927  This section describes the methods used within Figure 5d and Supplementary Figure 7.
928  Metabolomics data acquired from Supplementary table 1 of Li et al.”® For analysis, normalized
929 data (“1-clean data”) and coefficient of variation for each metabolite (“1-CV”) was used.
930  Normalized data was filtered to select only AML cells that were present in Avana 2020g4*° screen
931  set. Following filtering, the median of species present were taken, grouped by whether the
932 measurement was from a FASTS AML or other AML cell line. The difference in median,
933 representing the log ratio, was taken for each metabolite. Metabolites that had differences in
934 medians less than the coefficient of variation were omitted from the plots. Acyl group and number
935  of unsaturated bonds were obtained directly from the provided nomenclature.

936

937  AML Patient Survival Analysis

938

939 This section describes the methods used within Figure 6 and Supplementary Figure 8 & 10.
940 The results published here are in part based upon data generated by the Therapeutically
941  Applicable Research to Generate Effective Treatments (TARGET) initiative, phs000218,
942  managed by the NCI. The data used for this analysis are available at dbGaP Study Accession:

943  phs000465.v19.p8. Information about TARGET can be found at
944 http://ocg.cancer.gov/programs/target.
945

946  Genes chosen for analysis were all genes shown to have an interaction with ACACA in Figure
947  4h and FASN. Gene annotations noted in the Figure 6a heatmap include any non-silent mutation,
948  copy number loss for TP53 & KMT2A, and copy number gain for KRAS, NRAS, and FLT3. FLT3-
949  ITD annotations were included in the FLT3 annotation row bar. Mutation annotations come from
950 CCLE®®, copy number calls come from the cBioPortal'?"'?® database, and FLT-ITD annotations
951  come from the DSMZ catalogue'®.

952

953 TARGET-AML"" data including age, genetic expression (HTseq FPKM UQ) , time to event, and
954  survival event outcomes, and TCGA’? patient ages and genetic expression were downloaded
955 directly from the Xena'® database. The OHSU BeatAML" age data was directly downloaded

956 from the Vizome database, and genetic expression data was taken from the original publication.
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957  Age of patient derived cell lines were obtained from the Cellosaurus database''. Hazard ratios
958  calculated from Cox proportional hazards modeling were done using the R survival'®'% package.
959  Patient clustering stratification was done with clustering functions from the scipy package’’, using
960 Euclidean clustering and complete linkage settings. This output heatmap (Figure 6e) was created
961 using functions from the seaborn'™ package. We identified the patient cluster containing the
962  highest overall expression of CHP1, GPAT4, GPI, PCGF1 from the heatmap using the fcluster
963  function from scipy’’. Figure 6f demonstrates the resulting survival comparison of the two patient
964 clusters and was created with functions from the lifelines'"’ package, specifically,
965 KaplanMeierFitter function for the Kaplan Meier curve, and the p-value reflecting the calculated
966  logrank test of the two curves.

967

968  P-values related to schoenfeld tests calculated internally by the survminer package. For TARGET
969 data analysis, patient expression profiles were chosen from primary tumor samples, filtering out
970 samples from recurrent patients (42 such cases). Patient stratification is conducted based on
971  stratifying patient groups into lower genetic expression (patients with genetic expression below
972  the 75th percentile, n = 108), and higher genetic expression (patients with 75th percentile and
973  above, n = 37). Computed hazard ratios for all tested genes within the TARGET cohort all passed
974  the cox proportion hazards assumption (Supplementary Figure 10) by failing to reject the
975  schoenfeld test null hypothesis.

976

977  Supplementary Tables

978

979 Table S1. Mixed Distribution Model Z-Score Matrix. 808 cell line vs 18,111 gene matrix of
980 mixed Z-score derived from log fold-change fitness scores.

981

982 Table S2. COSMIC TSG PS Statistics. Statistics of 116 COSMIC TSG genes when observed
983 as a PS, vs other available data points. Includes number of times TSG is observed as a PS

984  gene (count), mean and median TPM expression when observed as a PS gene and additional

985  backgrounds (PS_Mean_Exp, Other_Mean_Exp, PS_Median_Exp, Other_Median_Exp), and

986  non-silent mutation rate as a PS gene and additional backgrounds (PS_mut, Other_mut).
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987  Additionally includes a column of fisher’s exact test comparing mutated vs non mutated
988  observations, and a Wilcox test comparing expression levels for each gene.
989
990 Table S3. PSG Co-PS network. Network of PSG co-occurrence observations related to
991 Figures 2c and S4c, including fisher test metrics (p-value and FDR).
992
993 Table S4. enCas12a Screen Gene Selection and Rationale.
994
995 Table S5. enCas12a Library Design.
996
997 Table S6. enCas12a Single Gene Knock-Out Measurements. Z-score of mean Log fold-
998 change.
999
1000 Table S7. enCas12a Double Gene Knock-Out Measurements. Calculated Log fold-change
1001  and corresponding Gl Scores for each gene pair.
1002

1003
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Figure S1. Discovery of Proliferation Suppressor genes extended. Fitness scoring
distributions of non-essential genes, and non-overlapping COSMIC defined oncogenes and tumor
suppressor genes; (a) mean log fold-change, (b) JACKS, (c) CERES, and (d) BAGEL. Selected
screen for a-d matches the screen observed in Figure 1a. (e) Distribution of mean log fold-change
of original distribution and mixed distribution . (f) Same (e) with mean standard deviation. (g) Bar

chart by cell line lineage, where at least 1 PS gene at 10% FDR cutoff identified.
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Figure S2. Proliferation Suppressor Gene Evidence. (a) Percent representation of COSMIC
TSG (green) by corresponding label-shuffled Z-score. (b) Same as (a) with log10 y-axis of number
of genes. (c) Mean TPM expression of PSG, grouped by PS observations (blue) vs every other
available observation (gray) in which PSG were not observed as a PS. P value represents the

corresponding Wilcoxon test. (d) same as (c) with mutation rate and (e) copy number.
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Figure S3. Avana vs Sanger Genetic Screens Comparison. (a) Precision vs. recall of mixed
Z-score in matching screens from Avana (red), and Sanger (black). Dashed line, 90% precision

(10% FDR). (b) Avana vs Sanger mixed Z-scores of genes identified as hits in Avana.
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Figure S4. Co-occurrence of PS genes extended. (a) Empirical comparison of Co-PS network
edges. Distribution represents random edges between genes identified in the network, and the
percentage of edges identified in HumanNet with coessentiality network removed. Black line
represents the percent of edges identified in the Kim et al. coessentiality network. Red line
indicates the actual number of edges the Co-PS contains that are observed in HumanNet with
coessentiality network removed. (b) Percent of edge coverage observed in HumanNet with
coessentiality network removed against Co-PS edge FDR < 0.1%. networks at iterative label
shuffled Z-score cutoffs. Red dot indicates actual cutoff used. (c) Remaining modules from the

Co-PS network not included in Figure 2c.
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Figure S5. Examples of high dPCC resulting from data noise. (a) EVPL vs MYCN mixed Z-
scores. Red indicates AML only observations, while gray indicates observations in all other cells.

(b) same as (a) for ATOH8 vs. KNCK13 mixed Z-scores.
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1050 Figure S6. Combinatorial screen QC. (a) Replicate correlations. (b) Example calculation of
1051 residuals. (c) Correlation between genetic interaction scores for MOLM13. (d) same as (c) for
1052 NOMO1. (e) Fraction of coessential pairs or pairs that target the same gene at different FDR
1053  cutoffs for interactions with positive z-scores. (f) Comparison with qGI scores from Aregger et al.
1054  for MOLM13. (g) Same as (f) for NOMO1.
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Figure S7. Additional metabolite comparisons. (a) Lysophosphatidylethanolamine (LPE)
species metabolite difference. The x axis represents the median difference of log10 normalized
peak area of the metabolite in FASTS cells vs all other AML cells. The y axis represents the
number of saturated bonds present. Each dot represents a unique metabolite. (b) same for
diacylglycerol (DAG), (c) lysophosphatidylcholine (LPC), (d) sphingomyelin (SM), (e) cholesterol

ester (CE), and (f) phosphatidylcholine (PC) species.
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Figure S8. Comparisons of FAS genes against age in AML patient data. Hazard ratio
calculations for FAS cluster genes in AML patient data coming from (a) OHSU - Tyner et al., and
(b) TCGA LAML. Spearman correlations of patient age against FAS gene expression in (c) OHSU,
Tyner et al., (d) TCGA LAML, and (e) GDC TARGET AML. (f) Boxplots of FAS gene expression
in FASTS AML cell lines and non-FASTS AML cell lines from CCLE. (g) Spearman correlations
of patient derived cell line age against FAS gene expression, coming from data in CCLE. ACACA

is not included in (g) as it was not found in the CCLE expression data used in prior analysis.
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1077  Figure S9. Sample flow cytometry plots. A representative flow cytometry data used to create
1078  bar graphs shown in figure 5b-c.
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Figure S10. Testing the Cox Proportional Hazards Assumption. Assessing the Cox
proportional hazards assumption with Schoenfeld tests of all genes in Figure 6d; (a) ACACA, (b)

CERSS, (c) CHP1, (d)FASN, (e) GPAT4, (f) GPI, (g) PCGF1.
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