

1 *Main Title:*

2 **5'XP sRNA-seq: Efficient Identification of Transcripts With
3 and Without 5' Phosphorylation Reveals Evolutionary
4 Conserved Small RNA**

5

6 *Short title:*

7 **5'XP sRNA-seq Reveals Evolutionary Conserved Small
8 RNA**

9

10

11 *Authors:*

12 Unn Kugelberg ^{a,#}, Daniel Nätt ^{a,#,*}, Signe Skog ^a, Claudia Kutter ^b, Anita Öst ^{a,*}

13

14

15 *Affiliations:*

16 ^a Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linkoping,
17 Sweden

18

19 ^b Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory,
20 Karolinska Institute, 171 77, Stockholm

21

22 * Correspondence to: anita.ost@liu.se, Tel: +46-10-1033190
23 daniel.natt@liu.se, Tel: +46-70-6532087

24

25 # Equal contribution

26

27 **ABSTRACT**

28 Small RNA (sRNA) sequencing has been critical for our understanding of many
29 cellular processes, including gene regulation. Nonetheless, the varying biochemical
30 properties of sRNA, such as 5' nucleotide modifications, makes many sRNA
31 subspecies incompatible with common protocols for sRNA sequencing. Here we
32 describe 5XP-seq that outlines a novel strategy that solves this problem. By tagging
33 5'P sRNA during library preparation, 5XP-seq combines an open approach that
34 includes all types of 5'-terminal modifications (5'X), with a selective approach for 5-
35 phosphorylated sRNA (5'P). We show that 5XP-seq not only enriches
36 phosphorylated miRNA and piRNA but successfully discriminates these sRNA from
37 all other sRNA species. We further demonstrate the importance of this strategy by
38 successful inter-species validation of sRNAs that would have otherwise failed,
39 including human to insect translation of several tRNA (tRFs) and rRNA (rRFs)
40 fragments. By combining 5' insensitive library strategies with 5' sensitive tagging, we
41 have solved an intrinsic bias in modern sRNA sequencing that will help us reveal the
42 true complexity and the evolutionary significance of the sRNA world.

43

44 **BACKGROUND**

45 High-throughput RNA-sequencing techniques have revolutionized our understanding
46 of various small noncoding RNA (sRNA) species, typically with an arbitrarily defined
47 length of less than 200 nucleotides. Numerous studies have provided insight into the
48 indispensable functions of sRNAs in regulating cellular processes, such as cell
49 development, differentiation and proliferation under physiologically normal and
50 pathological conditions [1, 2]. In addition to well-characterized micro (miRNA), small
51 interfering (siRNA) and PIWI-interacting RNAs (piRNA)[3, 4], new sRNA species
52 deriving from transfer (tRNA), ribosomal (rRNA) [5], small nucleolar (snoRNA), vault
53 (V RNA) and Y RNA [6] exists in many cell types including the transcriptionally
54 dormant sperm [7]. These fragments are not just by-products of pervasive
55 transcription or random RNA degradation but are precisely engineered to exert
56 specialized regulatory functions. For example, specific fragments generated from
57 tRNAs (tsRNA) have been implicated in translational control and cell growth [8]. The
58 regulatory repertoire of sRNA in general, and tsRNA specifically, is expanded by the
59 addition of small molecular modifications including methylations and

60 pseudouridylation. Such modifications effect RNA stability, three-dimensional
61 structure, cellular location and interactions with proteins [9-11].

62

63 A major limitation when exploring the sRNA world is the biased enrichment of
64 different sRNA species introduced during library preparation that are caused by
65 diverse chemical modifications at the 5'- and 3'- ends of RNA. Hydroxyl (OH) or
66 phosphate (P) groups can be found either in the 3'- or 5'-end depending on the
67 processing pathway, while a 2',3'-cyclic phosphate (cP) group is only present on the
68 3'-end [12]. In addition, sRNAs can have multiple types of 5'-caps such as mGpppC,
69 7mGpppG, GpppG, GpppA, and 7mGpppA in human cells [13] or NAD+ [14] and 3'-
70 dephospho-CoA, succinyl-dephospho-CoA and acetyl-dephospho-CoA in bacteria
71 [15].

72

73 Most high-throughput sequencing methods require the ligation of sequencing-
74 compatible adapters first to a hydroxyl-group at the 3'-end (3'-OH) and then to a
75 phosphate group at the 5'-end (5'-P) of the sRNA molecule. These chemical
76 reactions therefore select for sRNA containing these very specific terminal
77 modifications, that are subsequently PCR amplified and finally detected during
78 sequencing.

79

80 Here, we describe 5'XP sRNA-seq, a novel sequencing method with a unique
81 tagging system that allows the detection of both sRNA with a 5'-P (typically miRNA
82 and piRNA) and sRNA with alternative 5' terminal groups. We show that this method
83 increases specificity towards miRNA and piRNA when compared to a commonly
84 used strategy, while simultaneously allowing for additional fragments to be detected
85 in the same library. Overall, we show that 5'XP sRNA-seq is an adequate strategy for
86 tackling critical biases commonly prevalent in standard next generation sRNA library
87 preparations.

88

89 **RESULTS**

90 **5'P, 5'X and 5'XP sRNA-seq employ distinct library preparation strategies**

91 5'-P and 3'-OH dependent ligations amplify some sRNA species, including piRNA
92 and miRNA, but will exclude functional sRNA species without a 5'-P. We refer to this

93 ligation strategy as 5'-P dependent sRNA-seq (from here on: 5P-seq). This should
94 not be mistaken for 5'-P dependent methods recently developed for long RNA
95 sequencing [16-18]. It has been shown that the 5'P-ligation is sensitive to secondary
96 structures of the RNA, which further restricts capturing a broad range of sRNA
97 species (for review see [19]). To include highly structured RNA species without 5'-P
98 ends, strategies have been developed in which the 5' adapter is not ligated to the
99 RNA but is added later to the cDNA [20, 21]. We here refer to such methods as 5'
100 inclusive sRNA-seq (5X-seq). Building on these two approaches we developed 5'XP
101 sRNA-seq (5XP-seq). In this method, the first adapter is ligated to the 3' end and a
102 11-nt long oligo is ligated to the 5' end of sRNA, which allows efficient tagging of
103 RNAs with 5'-P. Then, after reverse transcription of the RNA ligation product, a
104 sequencing-compatible adapter is ligated to the corresponding 3' end of all cDNA
105 (Fig 1, Supplementary Fig. 1). Through this approach sRNA with 5'-P and 5'-X can
106 be sequenced in the same library and then bioinformatically discerned based on the
107 presence or absence of the 5' oligonucleotide tag.

108

109 **5P and 5X sRNA-seq generate libraries with substantially different sRNA
110 content**

111 To better understand how 5P and 5X sRNA-seq vary in their enrichment for different
112 RNA species, we first compared libraries generated using a popular commercial 5P-
113 seq kit (NEBNext Multiplex Small RNA Library prep kit for Illumina; New England
114 Biolabs) and an adaptation of published 5X-seq protocols [20-23]. For comparative
115 reasons, we modified the 5X-seq protocol to work with the reverse transcriptase of
116 the 5P-seq kit. We extracted total RNA from a pool of 50 *Drosophila* embryos, 0.5-2.5
117 hours old, which was used as input for all sequencing library preparations. Each
118 preparation used only 30 ng of total RNA that equals to one third of the RNA
119 extracted from one single drosophila embryo, rendering the protocols highly efficient.
120 We adopted sequence-based counting of the reads, for which statistical units are
121 based on counts per sequence and not counts per feature (see methods for details).
122 An annotated count table normalized against total library sizes as counts per million
123 (cpm) are presented in Supplementary Table 1. Raw data is available at Sequence
124 Read Archive under the accession number PRJNA658107.

125

126 Library stats for the 5P- and 5X-type libraries using single end sequencing for 75
127 cycles are found in Table 1. Data from 5P-seq libraries were in accordance with our
128 previous observations using this kit. To better validate the 5X-seq protocol, we
129 generated a second batch of 5X-seq using independent embryos (Batch B).
130 Focusing on intermediately-to-strongly expressed sRNA (>10 cpm), 5P-seq resulted
131 in more alignments against miRNA and piRNA, and less alignments against rRNA
132 and tRNA, when compared to 5X-seq (Fig 2). This result was similar for both
133 cumulative counts (Fig 2A) and relative fold changes (Fig 2B), indicating a general
134 trend across most sRNA. This difference is expected since miRNA and piRNA are
135 commonly 5' phosphorylated and should be preferably enriched by 5P-seq, while
136 tRNA and rRNA show more diversity in the 5'-end and should preferably be caught
137 by 5X-seq. When not allowing mismatches in the annotation 5X-seq annotated better
138 to the references than 5P-seq (light grey Fig 2A-B). The advantage for applying
139 sequence-based counting is that mismatches in the alignments between sequenced
140 reads and small RNA reference sequences only affect the annotation without
141 changing the raw count table, which is often the case for feature-based counting.
142 Allowing up to 3 mismatches when annotating sequences against small RNA
143 references removed nearly all sequences with no annotation in 5P-seq (light grey Fig
144 2C-D). Since libraries were generated from the same RNA pool, this indicates that
145 5P-seq may have suffered from misreading during cDNA-synthesis possibly by
146 interference from RNA-modifications. Removing sequences mapping to rRNAs,
147 however, also removed this difference (Supplementary Fig 2).

148
149 While the majority of sRNA identified by 5X-seq were also present in 5P-seq libraries,
150 some sRNAs were completely absent in one or the other library, which resulted in a
151 more than 20-fold change (Fig 2B and 2D; Supplementary Table 1). This indicates
152 substantial differences in the composition of sRNA species identified by the two
153 different library strategies. Therefore, studies that have applied only 5P-based sRNA-
154 seq strategies may have misinterpreted the proportions of small RNA present in their
155 samples.

156
157 **5XP sRNA-seq distinguishes piRNA and miRNA**
158 To preserve sequence diversity given the observed biases described above, in
159 parallel to the 5P and 5X-seq libraries, we generated 5XP-seq libraries using the

160 same two pools of RNA from *Drosophila* embryos (Batch A and B). Table 1
161 summarizes the general properties of 5XP-seq after being sorted into the two sub-
162 libraries, either containing (5P-tag) and not containing (5X-notag) the 5' oligo tag. In
163 theory, 5P-tag and 5X-notag of 5XP-seq would correspond to the 5P-seq and 5X-seq
164 libraries, respectively.

165

166 Similar to the difference observed between 5P- and 5X-seq, 5XP-seq had more
167 specificity towards miRNA and piRNA in the 5P-tag sub-libraries, than in the 5X-
168 notag sub-libraries (Table 1). In fact, sRNA diversity was highly similar between 5X-
169 notag sub-libraries and regular 5X libraries prepared without tagging 5'-P (Table 1).
170 In support, expression levels of 5X-seq and 5X-notag cohered strongly, both by
171 correlation and unsupervised clustering (Fig 3A).

172

173 In contrast, we determined higher specificity (~ 2-fold) of miRNA and piRNA species
174 in 5P-tag sub-libraries when compared to regular 5P-seq libraries (Table 1). This
175 indicates that ligating a short oligonucleotide tag at the 5'-terminal—as performed in
176 5XP-seq—captures 5'-P sRNAs more efficiently when compared to the long 5'
177 adapter ligation used in regular 5P-seq. Nonetheless, the 5P-tag sub-libraries only
178 contributed with 10% to 20% of the total library sizes in 5XP-seq (Table 1) and
179 correlated poorly with regular 5P-seq (Fig 3A). This led to two possible explanations.
180 First, 5'-P sRNA may constitute a smaller proportion of the total sRNA population.
181 Secondly, 5XP-seq may suffer from inefficient ligation of the 5' oligo tag. In support
182 of the former, a saturation analysis showed that the 5P-tag sub-libraries were equally
183 saturated to the other libraries. Thus, irrespective of library-type, increasing the
184 sequencing depths would result in little gain in identifying new sRNA specimens from
185 the sRNA population targeted by each method (Supplementary Fig 3).

186

187 To further test the hypothesis that the 5P-tag sub-library of 5XP-seq targets a smaller
188 and possibly more specific population of 5'-P sRNAs, we characterized each library
189 type in more details. Size distribution of different sRNA species confirmed a sharp
190 peak at 22 nt in 5P-tag sub-libraries, while the other library strategies showed more
191 diversity (Fig 3B). The peak at 22nt is the typical size of miRNA. However, we
192 detected that that many sequences of 22nt also mapped to rRNAs. Therefore, we
193 extracted miRNA and piRNA that are known 5'-P subspecies for further comparison.

194 Both the 5P-tag sub-libraries and regular 5P libraries were enriched with a sharp
195 22-23 nt miRNA peak, and a broader 22-29 nt piRNA peak (left panel Fig 3C).
196 However, the 5P-tag sub-libraries of 5XP-seq had fewer non-canonical piRNA
197 fragments that were shorter than 21 nt and showed a higher proportion of canonical
198 piRNA with uridine bias at their first nucleotide (middle panel Fig 3C; [24]).
199 Interestingly, the first nucleotide uridine bias was also observed in miRNA (right
200 panel Fig 3C), which could indicate a new subspecies of miRNA in early drosophila
201 embryos.

202

203 A combination of a lower proportion of unannotated small RNA (light grey in Fig 3B
204 and 2A), as well as a smaller target population of sRNA (Supplementary Fig 3) and
205 more canonical piRNA profiles (Fig 3C), altogether indicated that the 5P-tag sub-
206 library of 5XP-seq enriches for 5'-P RNA better than regular 5P-seq. The low
207 correlation in the expression profiles observed between these two strategies (Fig 3A)
208 was also rescued (Fig 3D) after noise from less studied subspecies of sRNA was
209 reduced by analyzing miRNAs only, which represent the most well-characterized 5'-P
210 sRNA species.

211

212 **Library strategies are defined by opposite terminal enrichments of small rRNA**
213 Loss of peak integrity of rRNA subunits is often used as an indicator of RNA
214 degradation in studies of long RNA, often referred to as the RNA integrity number
215 (RIN). While a similar measurement is lacking for sRNA, all our libraries showed very
216 sharp peaks indicating specifically processed rRNA with high sRNA integrity (Fig 4A-
217 B).

218

219 The 5P-tag sub-libraries in 5XP-seq were dominated by a peak centered at 22 nt (Fig
220 3B), which primarily contained an rRNA fragment (rRF) originating from the 5'-end of
221 18S rRNA subunit (Fig 4A). While this rRF is not classified as a miRNA in mirBase,
222 recent findings in Zebrafish show that it may interact with Argonaute proteins in a
223 miRNA-like matter [5, 25]. Low detection of this rRF in regular 5P-seq (Fig 4B) would
224 have been overlooked in other studies. Nonetheless, unlike 5X-type libraries that
225 showed very similar rRF profiles, 5P-type libraries were at first dissimilar (Fig 4A-B).
226 A more detailed view on the rRNA subunits revealed, however, that most peaks were
227 present in both the 5P-tag and regular 5P libraries but varied in detection level (Fig

228 4C-E). Together this indicates that the 5' RNA ligation strategy—by either using long
229 or short oligos/adapters—severely affects the enrichment of specific rRF, which could
230 make cross-study validation challenging.

231

232 We also noticed a 5' bias in 5P-type and a 3' bias in 5X-type libraries (Fig 4A-B), and
233 therefore classified each fragment by their 5' start or 3' end of a mature rRNA
234 subunit. This confirmed that rRFs generated from the 5' terminals were enriched in
235 5P-seq, while rRFs deriving from the 3' terminals were enriched in 5X-seq (Fig 4F).
236 Importantly, 5XP-seq contained rRFs originating from both the 5' and 3' terminal but
237 kept them separated in the 5P-tag and 5X-notag sub-libraries, respectively. These
238 differences indicate that 5P-type libraries lose sRNA primarily at the 3' end, possibly
239 as a consequence of interference with RNA-modifications during reverse
240 transcription. Interestingly, 5' rRF bias has recently been reported in humans using
241 an independent 5P-seq kit {Nätt, 2020 #2760; Hua, 2019 #2565}.

242

243 **Coverage of small tRNA fragments strongly depends on library preparation 244 strategy.**

245 Like rRFs, tRNA derived sRNA (tRFs) can also originate from the 5' or 3' terminal. In
246 addition, internal (i') fragments, which neither start nor end in the terminals of full-
247 length tRNA have been described [26, 27]. We used these classifications as an
248 independent confirmation of the differences in 5' and 3' affinities between the 5P-
249 and 5X-type libraries that we observed in sRNA derived from rRNA. As expected, 5P-
250 seq had a clear 5' preference, while 5X-seq progressively increased towards the 3'
251 terminal (Fig 5A). Similar to the rRFs, 5XP-seq contained tRFs originating from both
252 the 5' and 3' terminal and successfully separated them into the two sub-libraries.

253

254 In addition to 5', i' and 3' stratification, we classified each tRF according to the
255 isodecoder of the mature tRNA in order to better understand the possible biases in
256 the tRF coverage introduced by different library strategies. This enables an overview
257 of tRF subtypes, such as tRNA derived stress-induced small RNA (tiRNA) that are
258 generated by angiogenin dependent anticodon cleavage of specific isodecoders
259 resulting in tRNA halves [28], as well as the recently discovered nuclear internal T-
260 loop tRFs (nitRNA) [7]. As expected, 5X-notag sub-libraries generated primarily i'
261 and 3' fragments that was strongly replicated by regular 5X-seq, but poorly replicated

262 by 5P-seq (Fig 5B). Again, while the most covered tRFs in the 5P-tag sub-libraries of
263 5XP-seq showed similarities to regular 5P-seq, we found more variability on the
264 isodecoder level (Fig 5C). In highly abundant isodecoders, there were also an
265 enrichment of sRNA species derived from the 5' end of tRNAs but this was less
266 pronounced in less abundant isodecoders.

267

268 In line with the rRNA analysis, more in-depth analysis of a selection of tRNA
269 isodecoders showed that most tRFs were detected by each method but detection
270 levels varied greatly across methods. For example, the 5P-tag sub-library was
271 superior in detecting both the 5' and 3' halves generated by angiogenin-mediated
272 cleavage of AspGUC, which generates a known tiRNA (Fig 5D). In another confirmed
273 tiRNA originating from GlyGCC, the 5'-half was detected in both 5P-tag and regular
274 5P libraries (Fig 5E). At the 3'-end a short fragment generated by T-loop cleavage
275 were detected in the 5P-tag, 5X-notag and regular 5X libraries but to a much lesser
276 degree in regular 5P libraries (Fig 5E). LysCUU has previously been shown to
277 generate many different tRFs [7, 29]. This was confirmed by 5X-notag, regular 5X
278 and regular 5P, but to a lesser degree in 5P-tag libraries (Fig 5F). Interestingly,
279 primarily 5X-notag and regular 5X libraries detected a weakly expressed long T-loop
280 internal tRFs comparable to the nitRNA that was recently detected in human sperm
281 [7]. Similarly, 5X-notag and regular 5X, but not 5P-tag and regular 5P, detected a
282 short nitRNA in ArgCCU generated by cleavage in the T- and anticodon- loops that
283 was almost identical to the one previously reported in human sperm [7].

284

285 Together these findings show that the choice between 5P-sensitive and 5P-
286 insensitive methods are critical when studying tRFs using sequencing. Thus, using a
287 method that conserves the diversity of both phosphorylated and non-phosphorylated
288 sRNA—like 5XP sRNA-seq—is highly desirable.

289

290 **DISCUSSION**

291 Here we presented a novel method—5XP sRNA-seq—that sequences sRNA with
292 and without 5' phosphorylation (5'-P) using the same library. Our protocol was
293 optimized for low starting material which makes it attractive for use with precious
294 samples. By ligating a short 5'-P oligonucleotide tag, we demonstrated that 5'-P
295 sRNAs can be separated from other sRNAs in the downstream analysis. We reported

296 multiple examples in which a one-sided approach would have had severe
297 consequences for the interpretation and cross-validation of sRNA experiments. We
298 also provided evidence that ligating a short oligonucleotide tag enhances the
299 recovery of 5'-P sRNAs, such as piRNA and miRNA.

300

301 It has become increasingly clear that the 5' terminal of RNA is subject to diverse
302 modifications. As this is the start site for transcription, it means that if the first
303 molecule is a nucleotide, it will initially have a triphosphate. If transcribed by RNA
304 polymerase II, to become for example mRNA, a cap consisting of modified guanine
305 (G) nucleotide is first added to the initial nucleotide during transcription. Primary
306 piRNAs are also transcribed by RNA polymerase II and receive a similar cap. These
307 5' caps regulate the stability and determine the downstream fate of the transcript.
308 The process of generating sRNAs from longer precursors by nuclease digestion will
309 result in either -P or -OH terminals, depending on the nuclease. Intriguingly, it was
310 recently shown that sRNAs are capped as well, indicating that not all caps are added
311 during transcription but rather after the cleavage to shorter transcripts [13, 30]. In
312 addition to the guanine-based caps, recent discoveries show that the sRNA may
313 have other types of 5'-caps.

314

315 First reported in bacteria, and suggested to be an alternative to the eukaryotic m⁷G
316 cap, 5' NAD caps have now been demonstrated in several species including humans
317 (see review: [31]). Interestingly, NAD⁺, as well as NADH and dpCoA, can be
318 incorporated into RNA during transcription initiation, thus serving as non-canonical
319 initiating nucleotides [32]. In human cells, the amount of RNA with 5'-NAD caps
320 change in response to shifting cellular NAD concentrations [33], while data from
321 Arabidopsis shows enrichment of NAD-caps for transcripts involved in redox
322 responses [31]. These two findings, together with the fact that NAD+/NADH is one of
323 the most important intracellular redox pairs, suggests that NAD-capping of RNA may
324 regulate gene expression as a function of the cell's redox state. Moreover, members
325 of the NUDIX hydrolase superfamily have been shown to remove not only 5'-NAD,
326 but also 5'-FAD and 5'-CoA, indicating that metabolite-containing 5' caps might be a
327 more widespread phenomenon than previously thought [34]. Whether NAD or other
328 metabolic 5'-caps are used to regulate sRNA, however, is yet to be discovered.

329

330 These recent findings demonstrate the urge to develop new sequencing methods
331 that not only include 5' modifications other than phosphate, but also correctly identify
332 each modification in downstream analyses. By using RNA ligases with specificity
333 toward different 5' terminals together with unique oligonucleotide tags, 5'XP sRNA-
334 seq is a first step towards a more holistic sequencing approach. By tagging 5'-P in
335 this way, our data suggest that 5'-P sRNAs constitute only 10-20% of the total pool of
336 sRNA in drosophila embryos. Therefore, up to 90% of sRNA species may have
337 previously escaped our attention since most commercial kits are based on 5'-P
338 dependent adapter ligation. Using 5'XP sRNA-seq on RNA from *Drosophila*
339 embryos, we discovered several new sRNA species without 5'-P, including cross-
340 species validation of a zebrafish 5'-rRF from the 18S rRNA subunit [25], and nitRNA
341 derived from internal tRNA T-loop cleavage, previously described only in human
342 sperm [7].

343

344 **CONCLUSION**

345 By combining 5' insensitive library strategies with 5' sensitive tagging, we have
346 demonstrated an innovative strategy for solving an intrinsic bias in modern sRNA
347 sequencing. Our results represent an important step towards a new generation in
348 sRNA sequencing that can explore the complete world of sRNAs in single low-input
349 experiments. Future technologies will be aimed at further expanding the number of
350 specific terminal RNA modifications that can be identified by genome-wide
351 sequencing approaches. We anticipate discovering a rich repertoire of functional
352 RNA modifications that will greatly expand our understanding of how genomes are
353 regulated.

354

355

356 **Methods**

357

358 **Experimental Methods**

359 **Reagents and Oligos**

360 Many of the reagents used in 5XP-seq are included in the NEBNext Multiplex Small
361 RNA Library prep kit for Illumina (New England Biolabs), and are referred to as 'NEB-
362 kit' below. Since we used lower input (30 ng) than the recommended 100 ng total
363 RNA, we diluted the 3'SR Adapter, 5'SR Adapter, and SR RT Primer 1:2 in nuclease
364 free H₂O. The SR Primer and all Index Primers used for amplification, were used in
365 original concentrations.

366

367 Custom oligos not included in the NEB-kit were all HPLC-purified:
368 5P-tag RNA oligo (long: 5'-UGGCAACGAUC-3'; short: 5'-UGGGAUC-3'; both 3.75
369 μM).

370

371 R1R DNA Adapter (5' Phos-GAT CGT CGG ACT GTA GAA CTC TGA ACG TGT
372 AG-SpcC3 3'; 100 μM). Adenylation of R1R was done using 5' DNA Adenylation kit
373 (New England Biolabs) according to manufacturer's instructions and cleaned with
374 Oligo Clean & Concentrator (Zymo Research) as described here [23]. Oligos was
375 eluted and diluted with nuclease-free water to 10 μM.

376

377 Illumina multiplex PCR primer (5' -AAT GAT ACG GCG ACC ACC GAG ATC TAC
378 ACG TTC AGA GTT CTA CAG TCC GAC GAT C- 3'; 10 μM)

379

380 Since *Drosophila melanogaster* expresses large amounts of 2S rRNA in the same
381 size as many sRNA, we blocked this transcript by adding anti-sense oligos at the 5'
382 RNA ligation (First), and at the cDNA ligation steps (Second). For species with less
383 2S rRNA, these blocking oligos can be exchanged for nuclease-free H₂O or custom
384 oligos targeting other transcripts that may occupy a large amount of the sequencing
385 capacity.

386

387 First 2SrRNA block oligo (5'-TAC AAC CCT CAA CCA TAT GTA GTC CAA GCA-
388 SpcC3 3'; 10 μ M) [35].

389

390 Second LNA 2SrRNA block oligo (5'- TGC-**TTG**-GAC-**TAC**-ATA-**TGG**-**TTG**-AGG-
391 **GTT**-GTA-SpcC3 3'; 10 μ M, where bold letter indicate LNA incorporation).

392

393 **RNA Extraction from Drosophila Embryos**

394 RNA was isolated from *Drosophila melanogaster* (W1118) embryos 0.5-2.5h of age.
395 Embryos were decolorized in pools of 50 embryos using sodium hypochlorite 3.5%
396 (RECTAPUR) and washed extensively with RNase free H₂O. RNA was isolated
397 using the miRNeasy Micro kit (Qiagen) according to manufacturer's instructions. In
398 brief, 500 μ l Qiazol (Qiagen) was added to the embryos and homogenized for 2 min
399 at 40 Hz using a Tissue Lyser LT (Qiagen) and 5 mm stainless steel beads (Qiagen).
400 Phase separation was done by mixing 100 μ l of Chloroform followed by centrifugation
401 at 12000xg for 15 min in 4°C. RNA was then collected by columns, washed and
402 eluted in 14 μ l nuclease free H₂O. RNA integrity was confirmed by Bioanalyzer
403 (Agilent) and concentrations were determined by Nanodrop (ThermoFisher).

404

405 **5'XP sRNA-seq Library Preparation**

406 A side-by-side comparison of the workflows of the different methods used in this
407 study is available in Supplementary Fig 1.

408

409 The 5'XP sRNA-seq method includes the following steps:

410 i.	Ligation of 3' RNA adapter	18.5 h	Proceed immediately (over-night)
411 ii.	Ligation of 5' RNA tag	2.5 h	Proceed immediately
412 iii.	cDNA synthesis	2.5 h	Pause point
413 iv.	Ligation of 5' cDNA adapter	3.0 h	Pause point
414 v.	Barcoding & Amplification	1.5 h	Pause point
415 vi.	Size selection	>12 h	Pause point (over-night)
416 vii.	Pooling barcoded samples	3 h	Pause point

417

418 In detail, the 3' adapter was first ligated using 0.5 μ l of 3'SR Adapter for Illumina
419 (NEB-kit) added to 30 ng of input RNA diluted in 3.0 μ l nuclease free H₂O. Samples
420 were heated to 70°C for 2 min and immediately cooled on ice. A mix of 5 μ l 3' Ligation

421 Reaction Buffer 2x (NEB-kit) and 1.5 μ l of 3' Ligation Enzyme Mix (NEB-kit) were
422 added and incubated for 18 h at 16°C over-night. A 2S rRNA blocking oligo was
423 added simultaneous to hybridization of the reverse transcription primer by adding a
424 mix of 0.5 μ l of First 2SrRNA block oligo, 0.5 μ l of SR RT primer (NEB-kit) and 1.75
425 μ l of nuclease-free water to each sample followed by incubation at 90°C for 30 s,
426 65°C for 5 min, 37°C for 15 min, and finally 25°C for 15 min. 5'-tagging was then
427 performed by adding 0.5 μ l 5P-tag RNA oligo (denatured at 70°C for 2 min), 0.5 μ l
428 5' Ligation Reaction Buffer (NEB-kit) and 1.25 μ l of 5' Ligation Enzyme Mix (NEB-kit)
429 followed by a 1 h incubation at 25°C. To synthesis cDNA, a mix of 4 μ l First strand
430 Synthesis Reaction Buffer (NEB-kit), 0.5 μ l Murine RNase Inhibitor (NEB-kit) and 0.5
431 μ l ProtoScript II RT (NEB-kit) was added to each sample, and incubated first at 50°C
432 for 1 h, and then at 70°C for 15 min. Enzymatic inactivation and hydrolysis of RNA
433 was done by incubating samples at 95°C for 3 min with 17.5 μ l nuclease-free water,
434 10 μ l 0.5M EDTA and 2.5 μ l 5M NaOH. After room temperature equilibration pH was
435 lowered by adding 1 μ l 5M HCl. Samples were then cleaned using Oligo Clean &
436 Concentrator kit (Zymo Research) according to manufacturer's recommendation but
437 with an extra wash in 250 μ l DNA wash buffer (Zymo Research) and cDNA elution in
438 11 μ l of nuclease-free water. Ligation of pre-adenylated R1R adapter with 2S RNA
439 blocking was done by adding 10 μ l of cDNA, 2 μ l 10x NEBuffer 1 (New England
440 Biolabs), 2 μ l 50 mM MnCl₂, 2 μ l Thermostable 5' App ligase (New England Biolabs),
441 4 μ l 10 μ M pre-adenylated R1R Adapter, and 0.5 μ l 10 μ M Second LNA 2SrRNA
442 block oligo, followed by 2 h incubation at 65°C. Ligated cDNA samples were cleaned
443 and eluted in 24 μ l Elution Buffer (Qiagen) using Oligo Clean & Concentrator (Zymo
444 Research) according to manufacturer's instructions. Clean samples were amplified
445 by adding 25 μ l 2x Phusion High-Fidelity PCR master mix (ThermoFisher), 1 μ l 10
446 μ M Illumina Multiplex Primer, 1 μ l 10 μ M Illumina barcode (NEB-kit) to 23 μ l of cDNA,
447 and incubated in a thermocycle at 98°C for 5 s, followed by 15 cycles of 98°C for 5 s,
448 60°C for 10 sec, 72°C for 30s, ending with 72°C for 1 min. Amplified libraries were
449 cleaned using Agencourt AMPure XP (Beckman Coulter), and size selected for 130-
450 200 nt fragments on a pre-casted 6% polyacrylamide Novex TBE gel (Invitrogen).
451 Gel extraction was done using Gel breaker tubes (IST Engineering Inc) in DNA Gel
452 Elution Buffer (NEB-kit). Disintegrated gels were incubated at 37°C for 1h on a
453 shaker, quickly frozen for 15 min at -80°C, followed by another incubation for 1 h.
454 Remaining gel debris were removed by Spin-X 0.45 μ m centrifuge tubes. The

455 libraries were precipitated overnight at -80°C by adding 1 µl of GlycoBlue (Invitrogen)
456 as co-precipitant, 0.1 times the volume of Acetate 3M (pH 5.5), and three times the
457 volume of 100% ethanol. Library concentrations were estimated using QuantiFluor
458 ONE ds DNAsystem on a Quantus fluorometer (Promega). Pooled libraries were
459 sequenced on NextSeq 500 with NextSeq 500/550 High Output Kit v2.5, 75 cycles
460 (Illumina).

461

462 **5'P sRNA-seq Library Preparation**

463 Library preparation was done with NEBNext Multiplex Small RNA Library prep kit for
464 Illumina (New England Biolabs) according to the manufactures instructions except for
465 downscaling all samples to half volume and using 30 ng of input RNA (100 ng
466 recommended) with an appropriate 1:2 dilution of all adapters. This corresponds to
467 the 5XP-seq preparation as above, but with the following changes:

468

469 In Step [ii.], 5' RNA ligation was performed using 0.5 µl 5' SR Adapater (NEB-kit)
470 instead of the 5P RNA oligo.

471

472 In Steps [iii-iv.], clean up of cDNA, ligation of the 5' DNA adapter and the Second
473 LNA 2SrRNA oligo block was not performed. The cDNA reaction mix was
474 immediately amplified according to kit protocol.

475

476 In Step [v.], 20 µl cDNA reaction mix was amplified by adding 25 µl of Long Amp Taq
477 2x Master Mix (NEB-kit), 1.25 µl SR primer for Illumina (NEB-kit), 2.5 µl nuclease-free
478 H₂O, 1.25 µl 10 µM Illumina barcode (NEB-kit) and incubated, starting with 94°C for
479 30 s, followed by 15 cycles of 94°C for 15 sec, 62°C for 30 sec, 70°C for 15 sec,
480 ending with 70°C for 2 min.

481

482 **5'X sRNA-seq Library Preparation**

483 5X-seq library preparation was identical to 5XP-seq library preparation, except for the
484 following adjustments:

485

486 In Steps [ii-iii.], 5' RNA ligation of the 5P-tag RNA oligo and the First 2SrRNA block
487 was not performed. The cDNA reaction mix was therefore compensated by adding
488 0.5 µl 5'Ligation Reaction Buffer 10x (NEB-kit) and 1.75 µl nuclease-free H₂O.

489

490 **Computational Methods**

491 **Quality Control and Pre-processing**

492 Raw fastq data files have been deposited in Sequence Read Archive under the
493 accession number PRJNA658107. All libraries passed Illumina's default quality
494 control. Demultiplexed fastq files were downloaded from BaseSpace using
495 BaseMount (Illumina) and lanes were merged for each sample. For all library-types
496 the 3' adapters were trimmed using Cutadapt 2.3 [36] with following input: -a
497 AGATCGGAAGAGCACACGTCTGAAGTCACAT --discard-untrimmed --
498 nextseq-trim=20 -O 5 -m 5. This specifically trims nextseq type sequences between
499 5-70 nt with at least 5 nt of the 3' adapter present in the 3' end and discarding all
500 other sequences. For 5XP-seq libraries we reloaded the trimmed sequences into
501 Cutadapt using the following input: -g TGGCAACGATC -m 5 --untrimmed-output.
502 This saves sequences with or without the 5'-tag in separate fastq output files. All
503 trimmed fastq files were quality filtered using fastq_quality_filter -q 20 -p 80 -v
504 available in the FASTX Toolkit 0.0.14 (https://github.com/agordon/fastx_toolkit),
505 which only retain sequences with PHRED score > 20 in more than 80% of
506 nucleotides. The integrity of trimmed and quality filtered fastq files were further
507 verified using FastQC 0.11.9 (<https://github.com/s-andrews/FastQC>).

508

509 **Sequence Counting, Filtering and Annotation**

510 Data was summarized over counts of unique sequences across all samples. Tools
511 for such sequence-based approaches are available—such as Sports and MintMap
512 [26, 37]—and may be contrasted against feature-based counting approaches, where
513 sequences are counted over genomic features—such as the genomic coordinates of
514 miRNA and piRNA. One benefit of unique sequence-based approaches is that the
515 sequence of the original read is maintained during counting, which is often lost du
516 initial mismatch allowance in feature-based approaches. Here we counted unique
517 sequences in trimmed fastq files using customized scripts in R 3.4.4 [38]. For parallel
518 and efficient large data processing, foreach 1.5.0 [39] and the data.table [40]
519 packages were used. Reading and processing fastq-files were done using the
520 ShortRead package [41]. Prior to normalization, noise was reduced by only including
521 sequences with at least 5 counts in 100% of samples within a given method (5P-seq,
522 5X-seq, 5XP-seq etc). This dataset contained 330 971 unique small RNA sequences

523 with mean total counts per sample of 8 993 458. Normalized counts in reads per
524 million (rpm) were generated by dividing the individual sequence counts (reads) with
525 the total sequence counts for each sample. For some analysis that targeted highly
526 abundant sRNAs we further reduced the data by only including sequences with at
527 least 10 rpm in 100% of the samples within a given method included in the analysis.
528 Some critical values of the datasets are available in Table 1.

529

530 Sequence annotation was performed by mapping unique sequences against small
531 RNA sequence reference databases using bowtie 1.2.2 [42]. This was done in
532 cycles, where each cycle allowed one additional mismatch, from 0 to 3 mismatches.
533 A sequence was only destined for another bowtie annotation cycle if it failed to align
534 to any of the databases in the previous cycle. Fasta reference sequence files were
535 attained from the following databases: miRNA = miRbase and Ensembl, tRNA =
536 GtRNAdb (nuclear) and Ensembl (mitochondrial), rRNA = Ensembl (both nuclear and
537 mitochondrial), piRNA = pirBase, Other sncRNA = Ensembl. We used dm6 versions
538 across all databases. To resolve multimapping issues when sequences matched
539 multiple databases within the same mismatch category, we applied the following
540 hierarchy miRNA > Mt_tRNA > tRNA > MT_rRNA > rRNA > piRNA > other sncRNA.
541 A sequence mapped to miRNA with 1 mismatch and piRNA with 0 mismatch, would
542 therefore annotate as piRNA, while if both had 0 mismatch it would annotate as
543 miRNA.

544

545 **Statistical Methods and Visualization**

546 All statistical analysis was done in R 3.4.4 [38]. Data visualization was primarily done
547 using the ggplot2 package in R [43] and finalized using Inkscape 0.92. For fitting the
548 saturation plots we used non-linear least square regression with an asymptotic self-
549 starter (r functions: nls and SSasymp). For hierarchical clustering and correlation
550 plots we used the corrplot package [44]. For tRNA/rRNA coverage we used custom
551 scripts wrapped around the vmatchPattern function in the Biostrings package [45]. A
552 version of this script has been published [7] and are available here:

553 https://github.com/Danis102/Natt_et_al_2019_Human_Sperm_Rapid_Response_to_Diet/blob/master/S1_Text.R. Reference sequences were obtained from GtRNAdb
555 (tRNA) and Ensembl (rRNA). GtRNAdb ss-files were used to map tRNA loops.

556

557 Future scripts for 5'XP sRNA-seq will be posted here: <https://github.com/Danis102/>.

558

559

560 **ACKNOWLEDGEMENTS**

561 The study was supported by grants from The Swedish Research Council
562 (201503141; <https://www.vr.se/english.html>; received by AÖ), Knut and Alice
563 Wallenberg Foundation (Wallenberg Academy Fellow, 2015.0165; <https://kaw.wallenberg.org/wallenberg-academy-fellows>; received by AÖ), Ragnar
564 Söderberg (Fellow in Medicine 2015; <https://agnarsoderbergsstiftelse.se>; received
566 by AÖ). The funders had no role in study design, data collection and analysis,
567 decision to publish, or preparation of the manuscript.

568 References

569

570 1. Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive
571 transcription and novel small RNAs. *Nat Rev Genet.* 2009;10(12):833-44. doi:
572 10.1038/nrg2683. PubMed PMID: 19920851.

573 2. Wery M, Kwapisz M, Morillon A. Noncoding RNAs in gene regulation. *Wiley
574 Interdiscip Rev Syst Biol Med.* 2011;3(6):728-38. Epub 2011/03/04. doi: 10.1002/wsbm.148.
575 PubMed PMID: 21381218.

576 3. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. *Nat Rev
577 Genet.* 2009;10(2):94-108. doi: 10.1038/nrg2504. PubMed PMID: 19148191; PubMed Central
578 PMCID: PMCPMC2724769.

579 4. Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion
580 to preserve mammalian genome integrity. *Nature Communications.* 2017;8(1):1411. doi:
581 10.1038/s41467-017-01049-7.

582 5. Lambert M, Benmoussa A, Provost P. Small Non-Coding RNAs Derived from
583 Eukaryotic Ribosomal RNA. *Non-Coding RNA.* 2019;5(1):16. PubMed PMID:
584 doi:10.3390/ncrna5010016.

585 6. Tuck AC, Tollervey D. RNA in pieces. *Trends Genet.* 2011;27(10):422-32. Epub
586 2011/07/06. doi: 10.1016/j.tig.2011.06.001. PubMed PMID: 21741109.

587 7. Nätt D, Kugelberg U, Casas E, Nedstrand E, Zalavary S, Henriksson P, et al. Human
588 sperm displays rapid responses to diet. *PLOS Biology.* 2019;17(12):e3000559. doi:
589 10.1371/journal.pbio.3000559.

590 8. Shi J, Zhang Y, Zhou T, Chen Q. tsRNAs: The Swiss Army Knife for Translational
591 Regulation. *Trends Biochem Sci.* 2019;44(3):185-9. Epub 2018/10/10. doi:
592 10.1016/j.tibs.2018.09.007. PubMed PMID: 30297206; PubMed Central PMCID:
593 PMCPMC6379142.

594 9. Wu R, Jiang D, Wang Y, Wang X. N (6)-Methyladenosine (m(6)A) Methylation in
595 mRNA with A Dynamic and Reversible Epigenetic Modification. *Mol Biotechnol.*
596 2016;58(7):450-9. doi: 10.1007/s12033-016-9947-9. PubMed PMID: 27179969.

597 10. Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation.
598 *Trends Genet.* 2013;29(2):108-15. Epub 2012/12/04. doi: 10.1016/j.tig.2012.11.003. PubMed
599 PMID: 23218460; PubMed Central PMCID: PMCPMC3558665.

600 11. El Yacoubi B, Bailly M, de Crécy-Lagard V. Biosynthesis and function of
601 posttranscriptional modifications of transfer RNAs. *Annu Rev Genet.* 2012;46:69-95. Epub
602 2012/08/16. doi: 10.1146/annurev-genet-110711-155641. PubMed PMID: 22905870.

603 12. Shigematsu M, Kawamura T, Kirino Y. Generation of 2',3'-Cyclic Phosphate-
604 Containing RNAs as a Hidden Layer of the Transcriptome. *Front Genet.* 2018;9:562. Epub
605 2018/11/27. doi: 10.3389/fgene.2018.00562. PubMed PMID: 30538719; PubMed Central
606 PMCID: PMCPMC6277466.

607 13. Abdelhamid RF, Plessy C, Yamauchi Y, Taoka M, de Hoon M, Gingeras TR, et al.
608 Multiplicity of 5' cap structures present on short RNAs. *PLoS One.* 2014;9(7):e102895. Epub
609 2014/07/31. doi: 10.1371/journal.pone.0102895. PubMed PMID: 25079783; PubMed Central
610 PMCID: PMCPMC4117478.

611 14. Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR. LC/MS analysis of cellular RNA
612 reveals NAD-linked RNA. *Nat Chem Biol.* 2009;5(12):879-81. Epub 2009/10/11. doi:

613 10.1038/ncembio.235. PubMed PMID: 19820715; PubMed Central PMCID:
614 PMCPMC2842606.

615 15. Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR. A chemical screen for
616 biological small molecule-RNA conjugates reveals CoA-linked RNA. *Proc Natl Acad Sci U S A.*
617 2009;106(19):7768-73. Epub 2009/04/28. doi: 10.1073/pnas.0900528106. PubMed PMID:
618 19416889; PubMed Central PMCID: PMCPMC2674394.

619 16. Zhang Y, Pelechano V. High-throughput 5'P sequencing reveals environmental
620 regulated ribosome stalls at termination level. *bioRxiv.* 2020:2020.06.22.165134. doi:
621 10.1101/2020.06.22.165134.

622 17. Nersisyan L, Ropat M, Pelechano V. Improved computational analysis of ribosome
623 dynamics from 5'P degradome data using fivepeseq. *bioRxiv.* 2020:2020.01.22.915421. doi:
624 10.1101/2020.01.22.915421.

625 18. Attaf-Bouabdallah N, Cervera-Marzal I, Dong C, Gil L, Renand A, Spinelli L, et al.
626 FB5P-seq: FACS-based 5-prime end single-cell RNAseq for integrative analysis of
627 transcriptome and antigen receptor repertoire in B and T cells. *bioRxiv.* 2019:795575. doi:
628 10.1101/795575.

629 19. Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS. Biases in small RNA deep
630 sequencing data. *Nucleic Acids Res.* 2014;42(3):1414-26. Epub 2013/11/05. doi:
631 10.1093/nar/gkt1021. PubMed PMID: 24198247; PubMed Central PMCID: PMCPMC3919602.

632 20. Pak J, Fire A. Distinct populations of primary and secondary effectors during RNAi
633 in *C. elegans*. *Science.* 2007;315(5809):241-4. Epub 2006/11/23. doi:
634 10.1126/science.1132839. PubMed PMID: 17124291.

635 21. Munafó DB, Robb GB. Optimization of enzymatic reaction conditions for generating
636 representative pools of cDNA from small RNA. *Rna.* 2010;16(12):2537-52. Epub 2010/10/06.
637 doi: 10.1261/rna.2242610. PubMed PMID: 20921270; PubMed Central PMCID:
638 PMCPMC2995414.

639 22. Xu H, Yao J, Wu DC, Lambowitz AM. Improved TGIRT-seq methods for
640 comprehensive transcriptome profiling with decreased adapter dimer formation and bias
641 correction. *Sci Rep.* 2019;9(1):7953. Epub 2019/05/28. doi: 10.1038/s41598-019-44457-z.
642 PubMed PMID: 31138886; PubMed Central PMCID: PMCPMC6538698.

643 23. Qin Y, Yao J, Wu DC, Nottingham RM, Mohr S, Hunicke-Smith S, et al. High-
644 throughput sequencing of human plasma RNA by using thermostable group II intron reverse
645 transcriptases. *RNA.* 2016;22(1):111-28. Epub 2015/11/09. doi: 10.1261/rna.054809.115.
646 PubMed PMID: 26554030; PubMed Central PMCID: PMCPMC4691826.

647 24. Homolka D, Pandey Radha R, Goriaux C, Brasset E, Vaury C, Sachidanandam R, et
648 al. PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis.
649 *Cell Reports.* 2015;12(3):418-28. doi: 10.1016/j.celrep.2015.06.030.

650 25. Locati MD, Pagano JFB, Abdullah F, Ensink WA, van Olst M, van Leeuwen S, et al.
651 Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish
652 development. *Genome.* 2018;61(5):371-8. Epub 2018/02/09. doi: 10.1139/gen-2017-0202.
653 PubMed PMID: 29425468.

654 26. Loher P, Telonis AG, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear
655 and mitochondrial tRNA fragments from short RNA-seq data. *Scientific reports.* 2017;7:41184-
656 . doi: 10.1038/srep41184. PubMed PMID: 28220888.

657 27. Nätt D, Öst A. Male reproductive health and intergenerational metabolic responses
658 from a small RNA perspective. *J Intern Med.* 2020. Epub 2020/05/16. doi:
659 10.1111/joim.13096. PubMed PMID: 32415866.

660 28. Lyons SM, Fay MM, Akiyama Y, Anderson PJ, Ivanov P. RNA biology of angiogenin: 661 Current state and perspectives. *RNA Biology*. 2017;14(2):171-8. doi: 662 10.1080/15476286.2016.1272746.

663 29. Zhou J, Liu S, Chen Y, Fu Y, Silver AJ, Hill MS, et al. Identification of two novel 664 functional tRNA-derived fragments induced in response to respiratory syncytial virus 665 infection. *J Gen Virol*. 2017;98(7):1600-10. Epub 2017/07/15. doi: 10.1099/jgv.0.000852. 666 PubMed PMID: 28708049; PubMed Central PMCID: PMCPMC5721923.

667 30. Project AET, Project CSHLET. Post-transcriptional processing generates a diversity 668 of 5'-modified long and short RNAs. *Nature*. 2009;457(7232):1028-32. Epub 2009/01/25. doi: 669 10.1038/nature07759. PubMed PMID: 19169241; PubMed Central PMCID: PMCPMC2719882.

670 31. Kiledjian M. Eukaryotic RNA 5'-End NAD. *Trends Cell Biol*. 2018;28(6):454-64. Epub 671 2018/03/12. doi: 10.1016/j.tcb.2018.02.005. PubMed PMID: 29544676; PubMed Central 672 PMCID: PMCPMC5962413.

673 32. Bird JG, Zhang Y, Tian Y, Panova N, Barvík I, Greene L, et al. The mechanism of RNA 674 5' capping with NAD+, NADH and desphospho-CoA. *Nature*. 2016;535(7612):444-7. Epub 675 2016/07/06. doi: 10.1038/nature18622. PubMed PMID: 27383794; PubMed Central PMCID: 676 PMCPMC4961592.

677 33. Grudzien-Nogalska E, Bird JG, Nickels BE, Kiledjian M. "NAD-capQ" detection and 678 quantitation of NAD caps. *RNA*. 2018;24(10):1418-25. Epub 2018/07/25. doi: 679 10.1261/rna.067686.118. PubMed PMID: 30045887; PubMed Central PMCID: 680 PMCPMC6140466.

681 34. Sharma S, Grudzien-Nogalska E, Hamilton K, Jiao X, Yang J, Tong L, et al. 682 Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. *Nucleic Acids Res*. 683 2020;48(12):6788-98. doi: 10.1093/nar/gkaa402. PubMed PMID: 32432673; PubMed Central 684 PMCID: PMCPMC7337524.

685 35. Wickersheim ML, Blumenstiel JP. Terminator oligo blocking efficiently eliminates 686 rRNA from *Drosophila* small RNA sequencing libraries. *Biotechniques*. 2013;55(5):269-72. 687 Epub 2013/11/13. doi: 10.2144/000114102. PubMed PMID: 24215643; PubMed Central 688 PMCID: PMCPMC4077022.

689 36. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing 690 reads. 2011. 2011;17(1):3. Epub 2011-08-02. doi: 10.14806/ej.17.1.200.

691 37. Shi J, Ko E-A, Sanders KM, Chen Q, Zhou T. SPORTS1. 0: a tool for annotating and 692 profiling non-coding RNAs optimized for rRNA-and tRNA-derived small RNAs. *Genomics, 693 proteomics & bioinformatics*. 2018;16(2):144-51.

694 38. Team RC. R: A language and environment for statistical computing. Vienna, Austria: 695 R Foundation for Statistical Computing; 2018.

696 39. foreach: Provides Foreach Looping Construct [Internet]. 2020. Available from: 697 <https://CRAN.R-project.org/package=foreach>.

698 40. data.table: Extension of `data.frame` [Internet]. 2020. Available from: 699 <https://CRAN.R-project.org/package=data.table>.

700 41. Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: 701 a bioconductor package for input, quality assessment and exploration of high-throughput 702 sequence data. *Bioinformatics*. 2009;25(19):2607-8. Epub 2009/08/06. doi: 703 10.1093/bioinformatics/btp450. PubMed PMID: 19654119; PubMed Central PMCID: 704 PMCPMC2752612.

705 42. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient 706 alignment of short DNA sequences to the human genome. *Genome biology*. 2009;10(3):R25.

707 43. Wickham H. *ggplot2: elegant graphics for data analysis*: Springer; 2016.

708 44. Wei T, Simko V. R package "corrplot": Visualization of a Correlation Matrix. 2017.

709 45. Pages H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: String objects
710 representing biological sequences, and matching algorithms v2.48.0. R package. 2018. doi:
711 [citeulike-article-id:11644278](#).

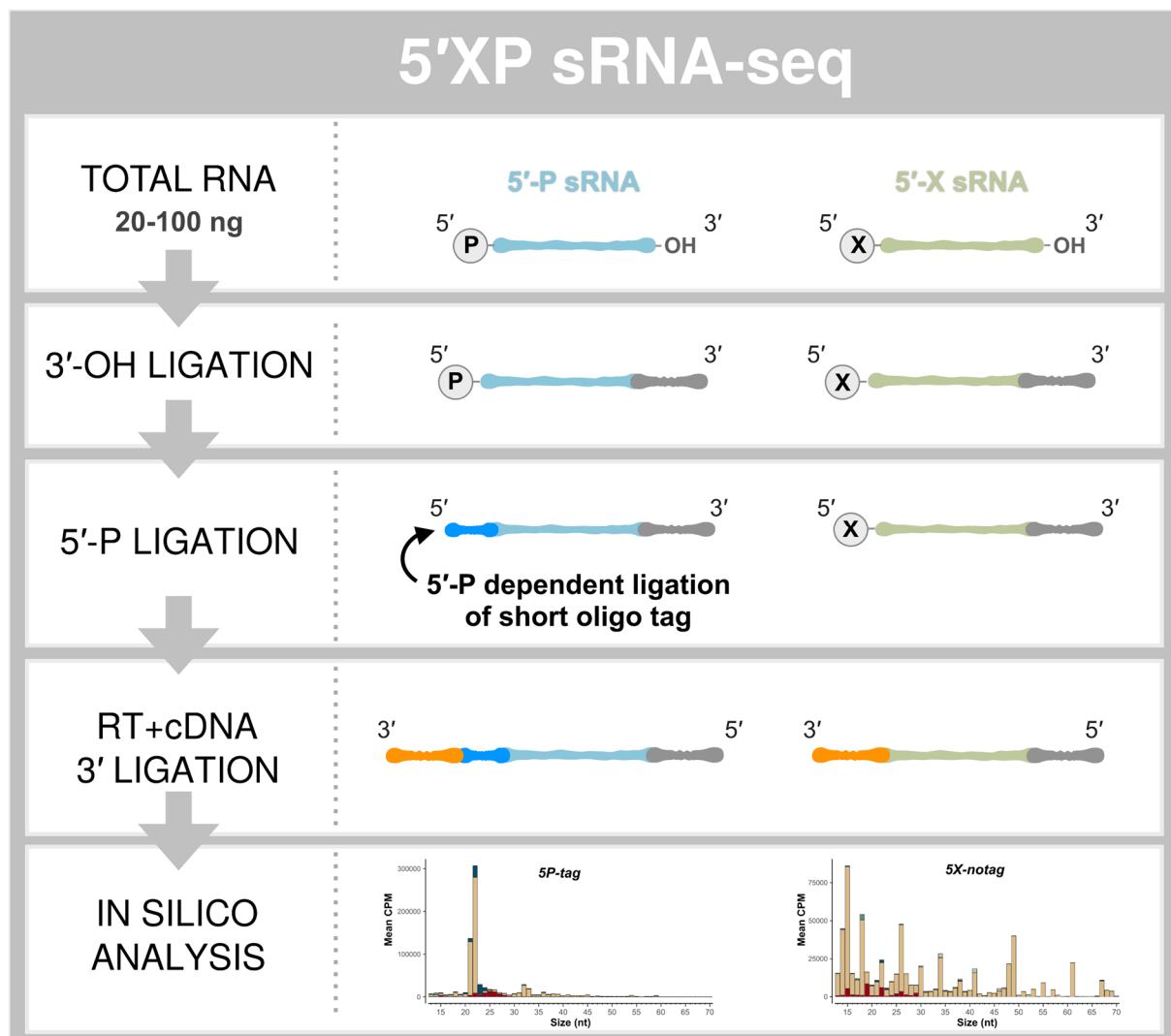
712

Table 1. Library stats and sequence diversity

Batch	Sub-library	n libraries	Selected size (nt)	General library stats:			Sequences with >10 cpm in all samples											
				Trimmed library size	Mean M counts (max/min)	Mean counts/cpm*	Library size past 10 cpm	Total ^a	miRNA ^b	piRNA ^c	tsRNA ^d	rsRNA ^e	n	n	%	n	n	%
5P-seq	A	-	3	10-70	18.21	(20.57/14.95)	14.33 (16/12)	8.35 (9.45/6.69)	46	4193	164	3.91	2835	67.61	117	2.79	932	22.23
5X-seq	A	-	3	10-70	14.74	(16.81/13.17)	13.67 (16/12)	5.05 (5.79/4.44)	34	2395	49	2.05	1628	67.97	144	6.01	1303	54.41
	B	-	3	10-70	20.12	(20.85/18.91)	19.33 (20/18)	9.97 (10.31/9.36)	50	2260	79	3.50	1502	66.46	294	13.01	1118	49.47
5XP-seq	A	5X-notag	3	10-70	10.89	(12.73/7.94)	9.33 (11/7)	3.74 (4.56/2.67)	34	2135	37	1.73	1460	68.38	132	6.18	1306	61.17
	B	5P-tag	(3)	10-70	1.87	(2.14/1.41)	2.00 (2/2)	1.19 (1.38/0.90)	64	2298	179	7.79	1905	82.90	134	5.83	837	36.42
	B	5X-notag	3	10-70	16.41	(18.23/14.45)	14.33 (16/13)	6.84 (7.92/5.95)	42	1895	64	3.38	1306	68.92	233	12.30	1076	56.78
	B	5P-tag	(3)	10-70	1.27	(1.40/1.15)	1.33 (2/1)	0.66 (0.74/0.60)	52	4194	219	5.22	3742	89.22	259	6.18	888	21.17

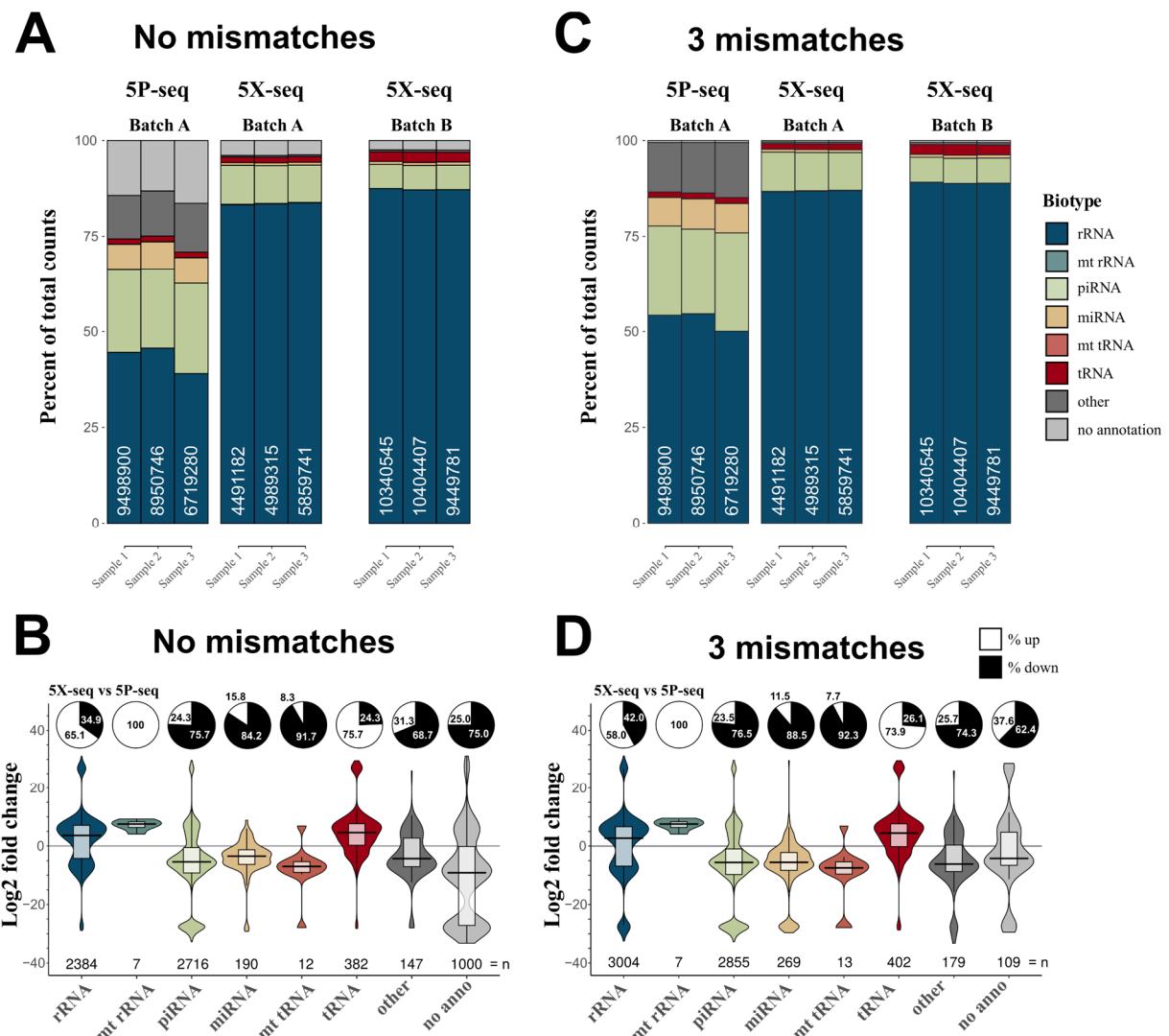
* Counts per million reads (cpm) was calculated on the affective library size where only sequences found in at least two independent samples were included.

^a n unique sequences surpassing a filter threshold of at least 10 cpm in all samples of the batch.


^b n unique sequences surpassing the filter in ^a and were listed in mirBase.

^c n unique sequences surpassing the filter in ^a and were listed in piBase.

^d n unique sequences surpassing the filter in ^a and were listed in GtRNAdb.

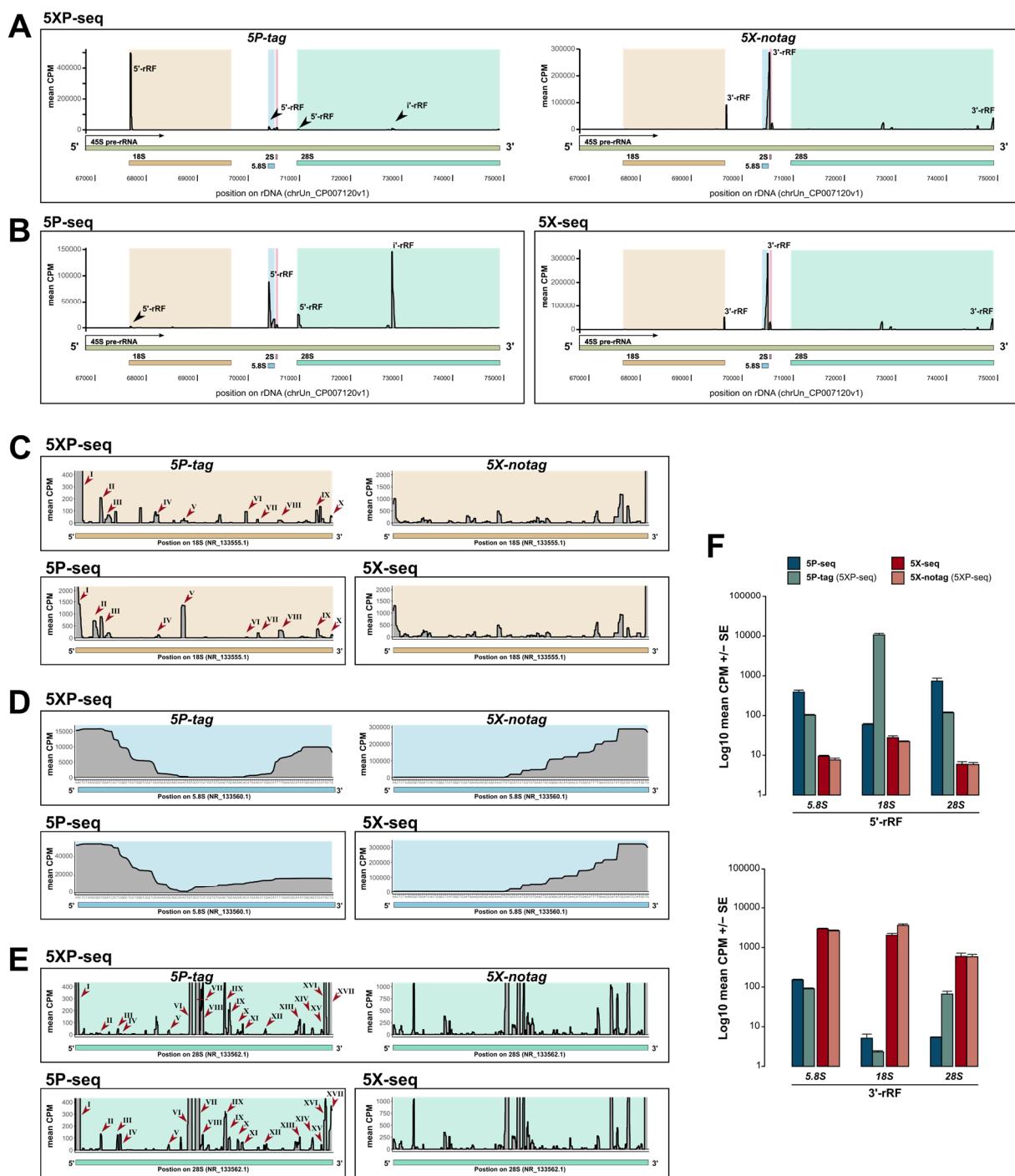

^e n unique sequences surpassing the filter in ^a and mapped to tRNA in Ensembl ncRNA.

714 **Figures:**

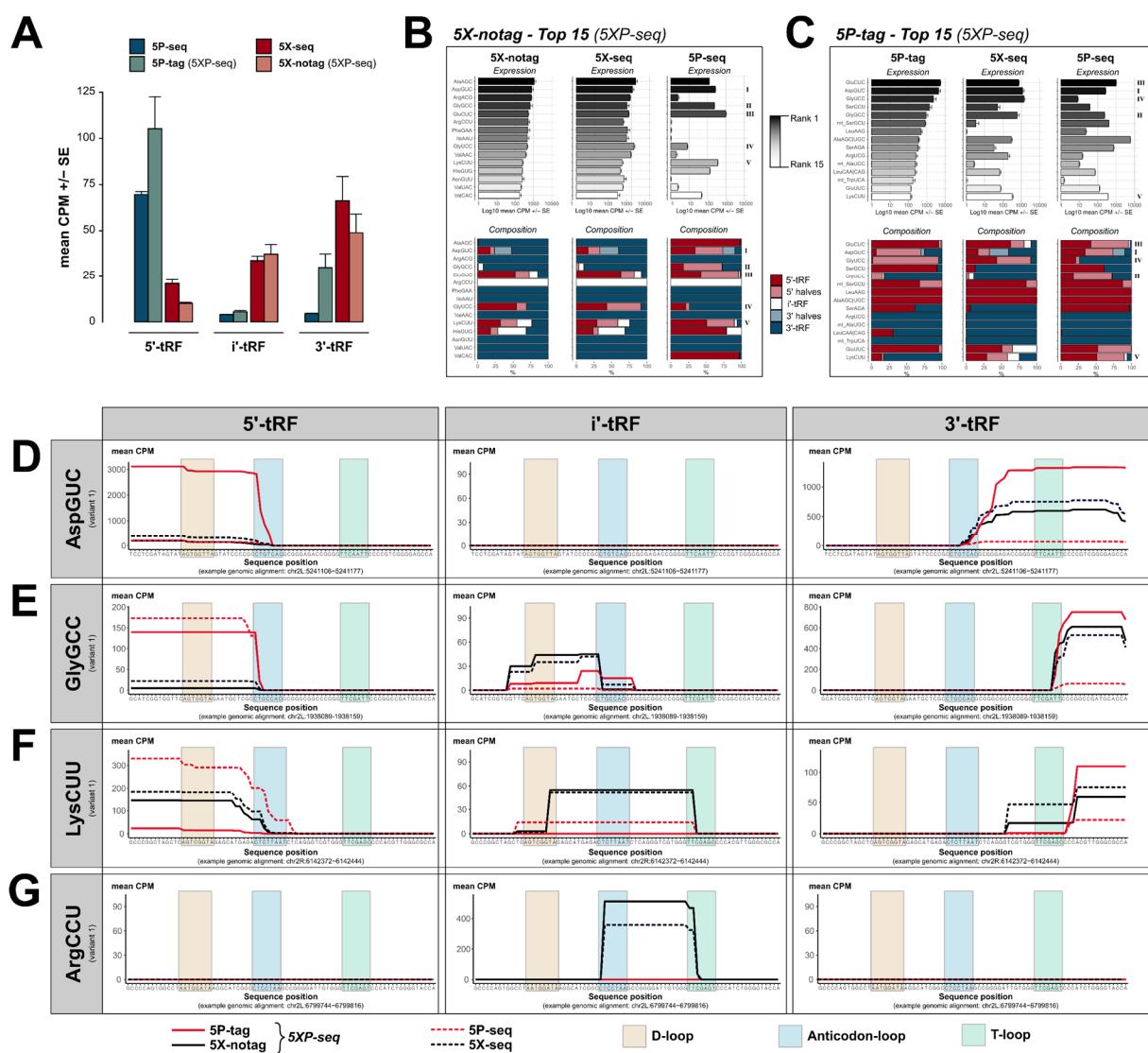


715
716

717 **Fig 1. The principle steps of 5'XP sRNA-seq.** Small RNA sequencing using 5'XP
718 sRNA-seq generates two sub-libraries, either sensitive (5P-tag) or insensitive (5X-
719 notag) to a phosphate (P) in the 5'-terminal of the original RNA. This is done by tagging
720 RNA fragments with 5'-P using a sequence specific oligo that identifies the 5'-P in the
721 downstream bioinformatic analysis.


722
723 **Fig 2. 5X-seq catches different small RNAs compared to 5P-seq.** In order to
724 generate a sequencing method more inclusive of RNAs with 5' modifications we
725 compared two adapter ligation strategies: 5P-seq adds the 5' adapter on RNA and is
726 dependent on 5' phosphorylation, and 5X-seq adds the 5' adapter, to the
727 corresponding 3' side of cDNA and is therefore independent of 5' RNA
728 phosphorylation. Stacked bars showing the sRNA composition of 5P and 5X libraries,
729 allowing for (A) no mismatches and (C) 3 mismatches in the annotation against sRNA
730 reference sequences. Batch A and B indicates samples isolated from the two
731 independent pools of RNA. Violin plots with log2 fold differences between 5X and 5P
732 per unique sequence when (B) 0 mismatches and (D) 3 mismatches are allowed. Pie
733 charts show percent up and down regulated sequences. Only unique sequences that
734 passed 10 CPM in all samples of a method (either 5P or 5X) was included.
735 mt=mitochondrial. CPM = counts per million reads.

736


Fig 3. 5XP-seq replicates 5X-seq and identifies 5' phosphorylated sRNA species. 5XP-seq distinguishes sRNA with (5P-tag) and without (5X-notag) 5'-terminal phosphorylation which characterize canonical miRNA and piRNA. **(A)** Correlation plot ordered by unsupervised hierarchical clustering showing three separate clusters, where all 5X-type libraries (5X-seq; 5X-notag sub-libraries of 5XP-seq) generates similar sequencing libraries, while 5P-seq and the 5P-tag sub-libraries of 5XP-seq forms two separate clades. **(B)** Histograms showing the mean expression of biotypes across different fragment sizes. **(C)** Size distributions of known miRNA and piRNA (left panels) show that the 5P-tag sub-libraries of 5XP-seq generates a cleaner canonical piRNA peak in the expected size range, with a typical Uridine (U) bias on the 1st nucleotide (middle panels), than 5P-seq. Size distribution and 1st nucleotide bias of miRNA are more similar between libraries (right panel). **(D)** Correlation plot ordered by hierarchical clustering of only annotated miRNA confirms that 5P-seq and 5P-tag sub-libraries enrich the same miRNA. Analysis was performed on sRNA that reached 10 CPM in all replicates of a method. Yellow and green boxes in the correlation plots shows libraries generated from two separate pools of RNA from *drosophila* embryos. CPM = counts per million reads.

754

755

756 **Fig 4. 5P-type libraries enrich 5' rRNA fragments while 5X-type libraries enrich**
 757 **3' fragments.** Graphs shows 5' and 3' stratification in sRNA derived from rRNA (rRF).
 758 **(A-B)** Coverage plots of rRFs across an example pre-rRNA sequence (45S; green)
 759 located on the repetitive rDNA loci (chrUn_CP007120v1), annotated with mature rRNA
 760 subunits 18S (light brown), 5.8 (light blue), 2S (light red) and 28S (light turquoise). **(A)**
 761 Shows mean CPM coverage of 5XP-seq libraries separated by 5P-tag (left panel) and
 762 5X-notag (right panel) sub-libraries. **(B)** Instead shows 5P-seq and 5X-seq control
 763 libraries. **(C-E)** Zoomed-in coverage plots of the 18S, 5.8S and 28S subunits. For 5P-
 764 type libraries, roman numbers indicate major peaks present in both regular 5P-seq
 765 libraries and the 5P-tag sub-libraries of 5XP-seq. **(F)** Bars show 5'-rRF enrichment in
 766 5P-type libraries (upper panel) and 3'-rRF enrichment in 5X-type libraries (lower
 767 panel). CPM = counts per million reads.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Fig 5. tRNA isodecoder analysis reveals the sRNA complexity generated by different library preparation strategies. Graphs show tRNA derived sRNA (tRFs) grouped by their classification into 5', i' and 3' sub-species, and tRNA isodecoder family. **(A)** Bars show 5'-tRF enrichment in 5P-type libraries and 3'-tRF enrichment in 5X-type libraries. **(B)** Top 15 expressed isodecoders in 5X-notag and their corresponding expression levels (black-grey-white bars) and 5'/i'/3' ratios (blue/light blue stacked bars) in regular 5X-seq and 5P-seq libraries. **(C)** Same as (B), but the top expressed isodecoders in 5P-tag sub-libraries. **(D-G)** Show tRF coverage plots of a selection of isodecoders, separated by 5', i' and 3' tRF classification (left, middle and right panels, respectively). **(D)** AspGCU, illustrating anticodon-loop cleavage with both 5' and 3' halves. **(E)** GlyGCC, illustrating a 5' half tRF cleaved in the anticodon-loop and a short 3' tRF cleaved in the T-loop. **(F)** LysCUU, illustrating many 5' - and 3' -tRFs, but also an i'-tRF resulting from D- and T-loop cleavage. **(G)** ArgCCU showing a i'-tRF cleaved between the anticodon- and T-loops. CPM = counts per million reads.