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Abstract  23	

Dynamic facial expressions are crucial for communication in primates.	Due to the difficulty to control 24	
shape and dynamics of facial expressions across species, it is unknown how species-specific facial 25	
expressions are perceptually encoded and interact with the representation of facial shape. While 26	
popular neural-network theories predict a joint encoding of facial shape and dynamics, the 27	
neuromuscular control of faces evolved more slowly than facial shape, suggesting a separate 28	
encoding. To investigate this hypothesis, we developed photo-realistic human and monkey heads 29	
that were animated with motion-capture data from monkeys and human. Exact control of 30	
expression dynamics was accomplished by a Bayesian machine-learning technique. Consistent 31	
with our hypothesis, we found that human observers learned cross-species expressions very 32	
quickly, where face dynamics was represented independently of facial shape. This result supports 33	
the co-evolution of the visual processing and motor-control of facial expressions, while it challenges 34	
popular neural-network theories of dynamic expression-recognition. 35	

Main Text 36	

Introduction 37	

Facial expressions are crucial for social communication of human as well as non-human  38	
primates1-4, and humans can learn facial expressions even of other species5. While facial 39	
expressions in everyday life are dynamic, specifically expression recognition across different 40	
species has been studied mainly using static pictures of faces6-10. A few studies have compared 41	
the perception of human and monkey expressions using movie stimuli, finding overlaps in the brain 42	
activation patterns induced by within- and cross-species expression observation in humans as well 43	
as in monkeys11,12. Since natural video stimuli provide no accurate control of the dynamics and 44	
form features of facial expressions, it is unknown how expression dynamics is perceptually encoded 45	
across different primate species, and how it interacts with the representation of facial shape.  46	

In primate phylogenesis the visual processing of dynamic facial expressions has co-evolved with 47	
the neuromuscular control of faces13. Remarkably, the structure and arrangement of facial muscles 48	
is highly similar across different primate species14,15, while face shapes differ considerably, e.g. 49	
between humans, apes, or monkeys. This motivates the following two hypotheses: 1) The 50	
phylogenetic continuity in motor control should facilitate fast learning of dynamic expressions 51	
across primate species; and 2) the different speeds of the phylogenetic development of the facial 52	
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shape and its motor control should potentially imply a separate visual encoding of expression 53	
dynamics and basic face shape.   54	

We investigated these hypotheses, exploiting advanced methods from computer animation and 55	
machine learning, combined with motion capture in monkeys and humans. We designed highly-56	
realistic three-dimensional human and monkey avatar heads by combining structural information 57	
derived from 3D scans, multi-layer texture models for the reflectance properties of the skin, and 58	
hair animation. Expression dynamics was derived from motion capture recordings on monkeys and 59	
humans, exploiting a hierarchical generative Bayesian model to generate a continuous motion-style 60	
space. This space includes continuous interpolations between two expression types (‘anger’ vs. 61	
‘fear’), and human- and monkey-specific motion. Human observers categorized these dynamic 62	
expressions, presented on the human or the monkey head model, in terms of the perceived 63	
expression type and species-specificity of the motion (human vs. monkey expression). 64	

Consistent with our hypotheses, we found very fast cross-species learning of expression dynamics 65	
with a more precise tuning for human- compared to monkey-specific expressions. Most importantly, 66	
the perceptual representation of expression dynamics was largely independent of the facial shape 67	
(human vs. monkey). Perceptual responses were determined by the coordinates of the stimuli in 68	
the motion style space, and did not depend on the matching of face species with the species-69	
specificity of the motion. Our results were highly robust against substantial variations in the 70	
expressive stimulus features. They specify fundamental constraints for the computational neural 71	
mechanisms of dynamic face processing and challenge popular neural network models, accounting 72	
for expression recognition by the learning of sequences of key shapes4. 73	

Results 74	

Exploiting photo-realistic human and monkey face avatars, we investigated the perceptual 75	
representations of dynamic human and monkey facial expressions in human observers. The 76	
dynamic avatars were created by combining advanced computer animation methods with motion 77	
capture in both primate species (Figures 1A and 1B). 78	

 79	

 80	

 81	
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	82	

Figure 1. Stimulus generation and paradigm. (A) Frame sequence of a monkey and a human facial expression. (B) 83	
Monkey motion capture with 43 reflecting facial markers. (C) Regularized face mesh whose deformation is controlled by an 84	
embedded elastic ribbon-like control structure that is optimized for animation. (D) Stimulus set. We generated 25 motion 85	
patterns, spanning up a two-dimensional style space with the dimensions ‘expression’ and ‘species’ by interpolation between 86	
two expressions (‘anger’ and ‘fear’) and the two species (‘monkey’ and ‘human’). Each motion pattern was used to animate 87	
a monkey and a human avatar model. 88	

Highly realistic dynamic face avatars 89	

We developed a photo-realistic monkey head model, whose degree of realism exceeds the one of 90	
all avatars used previously in perception and physiological research16-18. It was derived from a 91	
structural magnetic resonance scan of a rhesus monkey. The surface of the face was modeled by 92	
an elastic mesh structure (Fig 1C) which imitates the deformations induced by the major face 93	
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muscles of macaque monkeys15. The motion of this mesh was specified by motion capture of 43 94	
reflecting markers. Skin surface and fur were modeled in very much detail in order to achieve a 95	
high level of realism (Fig. 1A). A similar highly-realistic human avatar model was created based on 96	
a commercially available scan-based human face model. Its animation was based on blend shapes, 97	
exploiting a multi-channel texture simulation software. Mesh deformations compatible with the 98	
human face muscle structure were computed from motion capture data in the same way as for the 99	
monkey face (cf. Supplementary Information for details).  100	

The facial motion of the avatars was based on motion capture data from humans and monkeys. 101	
We recorded two expressions (prototypes), anger/threat and fear from both species. Facial 102	
movements of humans and monkeys are quite different14, so that our participants, who all had no 103	
prior experience with macaque monkeys, needed to be familiarized briefly with the monkey 104	
expressions. In order to study the structure of the perceptual representation parametrically, we 105	
generated a continuous dynamic expression space by morphing between four prototypical 106	
expressions, ‘anger/threat’ and ‘fear’, each executed by humans and monkeys. Interpolated 107	
patterns were generated by a Bayesian generative model that was trained with examples of the 108	
four prototypical face movements, resulting in a style space that included a total of 25 facial 109	
movements that interpolate between the prototypes (see Supplementary Information for details on 110	
the algorithm). Each generated motion pattern can be parameterized by a two-dimensional style 111	
vector (e, s), where the first component e specifies the expression type (𝑒	 = 	0: expression 1 112	
(‘fear’), and 𝑒 = 1: expression 2 (‘anger/threat’)), and where the second variable s the species-113	
specificity of the motion (𝑠 = 0: monkey, and 𝑠 = 1: human). The resulting patterns corresponded 114	
to equidistant points between 0 and 1 along these two style axes (Figure 1D). The 25 generated 115	
facial movements were presented on the monkey as well as on the human avatar in order to study 116	
how the basic shape of the avatar influences the perception of the dynamic facial expressions. A 117	
control experiment (see Supplementary Information) verifies that faces animated with the motion 118	
morphs are not perceived as less natural than faces animated with original motion capture data.  119	

Dynamic expression perception is largely independent of facial shape 120	

In our first experiment, we used the original dynamic expressions of humans and monkeys as 121	
prototypes and presented morphs between them, separately, on the human and the monkey avatar 122	
face. Prior to the experiment, participants were familiarized with the prototype stimuli, repeating 123	
each stimulus at maximum 10 times and stopping as soon as the prototypes were recognized 124	
reliably. Motions were presented in a randomized order, and in separate blocks for the two avatars. 125	
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The expression movies had a duration of 5 s and showed the face going from a neutral expression 126	
to the extreme expression, and back to neutral (Fig. 1A). Participants observed 10 repetitions of 127	
each stimulus in block-randomized order. They had to decide whether the observed stimulus was 128	
looking more like a human or a monkey expression (independent of the avatar type), and whether 129	
the expression was rather ‘anger/threat’ or ‘fear’. The resulting two binary responses in each trial 130	
can be interpreted as assignment of one out of four classes to the stimulus (expression 1 vs. 2, 131	
either monkey- or human-specific movement).  132	

In order to model these categorization results as a function of the position of the stimulus in the 133	
two-dimensional motion style space, we approximated the classification probabilities of the four 134	
classes by a logistic multinomial regression model. The resulting fits are shown in Figures 2A and 135	
2B for the two avatar types. The class probabilities Pi for the four classes were approximated by a 136	
Generalized Linear Model of the form:   137	

        𝑃((𝑒, 𝑠) =
,-.

∑ ,-012
0134

       with      138	

																																				𝑦6 = 𝛽86 + 𝛽:6𝑒 + 𝛽;6𝑠				                   (1) 139	

where Pi is the probability of class i as a function of the position of the stimulus in morphing space. 140	
We tested also further variants of linear models for which the prediction yi depended on more or 141	
less variables as predictors. A comparison of the prediction accuracies of these models is shown 142	
in Figure 3A for the monkey avatar, where results for the human avatar are very similar. Model 143	
comparison exploiting the Bayesian Information Criterion shows that (1) is the most compact model 144	
that explains the classification data with high accuracy. Specifically, models only including the 145	
predictors e or s provided significantly worse fits, and a model with an additional predictor of the 146	
form 𝑒 ∗ 𝑠 did not result in better predictions. Likewise, models that contained the average amount 147	
of optic flow as additional predictor did not result in higher accuracy (see Table 1).  These results 148	
imply an almost entirely linear dependence of the classification model (1) on the style space 149	
coordinates (𝑒, 𝑠).  Consequently, we used this model as basis for our further analyses.  150	

 151	

 152	

 153	
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Model Comparison 

Monkey Avatar Model Accuracy [%] Accuracy increase [%] BIC Parameters df  𝝌𝟐 p 

 Model 1 38,29  7487 33    

 Model 2 57,86 19,56 (rel. to Model 1) 5076 36 3 2411 <0,0001 

 Model 3 49,49 11,2 (rel. to Model 1) 6125 36 3 1362 <0,0001 

 Model 4 77,53 19.7 (rel. to Model 2) 3586 39 3 1490 <0,0001 

 Model 5 77,53 0 (rel. to Model 4) 3598 42 3 -11,997 1 

 Model 6 77,42 -0.11 (rel. to Model 4) 3580 42 3 5,675 0,129 

Human Avatar         

 Model 1 36,84  7481 33    

 Model 2 54,22 17,38 (rel. to Model 1) 5541 36 3 1940 <0,0001 

 Model 3 53,56 16,72 (rel. to Model 1) 5847 36 3 1633 <0,0001 

 Model 4 81,56 27,35 (rel. to Model 2) 3420 39 3 2120 <0,0001 

 Model 5 81,35 -0,22 (rel. to Model 4) 3309 42 3 112 <0,0001 

 Model 6 81,38 -0.18 (rel. to Model 4) 3389 42 3 31,66 <0,0001 

Table 1. Model Comparison. Results of the Accuracy and the Bayesian Information Criterion (BIC) for the different logistic 154	
multinomial regression models for the stimuli derived from the original motion (no occlusions) for the monkey and the human 155	
avatar. The models included the following predictors: Model 1: constant; Model 2: constant, s; Model 3: constant, e; Model 156	
4: constant, s, e; Model 5: constant, s, e, product s×e Model 5: constant, s, e, Optic Flow.  157	

 158	

 159	

 160	
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 161	

Figure 2. Discriminant functions Pi(e,s) fitted to the classification responses. Classes correspond to the four prototype 162	
motions, as specified in Fig. 1D (i = 1, 2: monkey, and i = 3, 4: human motion). (A) Discriminant functions for the stimulus 163	
set created using original motion-captured expressions of humans and monkeys as prototypes, for presentation on a 164	
monkey and a human avatar. (B) Same results for stimuli with occluded ears. (C) Results for a stimulus set derived from 165	
prototypes that were equilibrated with respect to the amount of local motion or deformation information.  166	

The functional forms of the discriminant functions for the human and the monkey avatar (Figure 2 167	
A and B) were very similar. This is confirmed by the fact that the fraction of the variance that is 168	
different between these functions divided by the one that is shared does not exceed 10%  169	
(𝑞 = 6.35  %; see Methods). Also, a comparison of the multinomially distributed classification 170	

Figure 2
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responses between the two avatar types, separately for the different points in morphing space and 171	
across participants, revealed no significant differences across all tested points in morphing space 172	
(𝑝 = 0.02, Bonferroni-corrected). Differences tended to be larger especially for intermediate values 173	
of the coordinates e and s, thus for the stimuli with high perceptual ambiguity (Fig. 3B). This result 174	
implies that the facial motion of human and monkey facial expressions is encoded largely 175	
independently of the basic shape of the avatar (human or monkey). This independence might also 176	
explain why many of our subjects were able to recognize human facial expressions on the monkey 177	
avatar face spontaneously, even without familiarization.  178	

Tuning is narrower for human-specific than for monkey-specific dynamic expressions 179	

A biologically important question is whether expressions of the own species are processed 180	
differently from those of other primate species, potentially supporting an own-species advantage in 181	
the processing of dynamic facial expressions19. In order to characterize the tuning of the perceptual 182	
representation for monkey vs. human expressions, we computed tuning functions, marginalizing 183	
the discriminant functions belonging to the same species category (P1 and P2 belonging to the 184	
human, and P3 and P4 to the monkey expressions) over the expression dimension e. This defines 185	
the function 𝐷G(𝑠) = ∫ I𝑃:(𝑒, 𝑠) + 𝑃;(𝑒, 𝑠)J	d𝑒

:
8 	 that characterizes the tuning to monkey expressions 186	

as function of the species dimension s, and the function 𝐷L(𝑠) = ∫ I𝑃M(𝑒, 1 − 𝑠) + 𝑃O(𝑒, 1 − 𝑠)J	d𝑒
:
8 , 187	

which characterizes the tuning to human expressions. In the function  𝐷L(𝑠) we flipped the s-axis 188	
so that the category center also appears for s = 0, just as for the function DM(s). Figure 3C shows 189	
these two species-tuning functions, revealing smaller tuning width for the human than for the 190	
monkey expressions. This observation is statistically confirmed by fitting of the tuning functions by 191	
a sigmoidal threshold function. The fitted threshold values sth with 𝐷P(𝑠QR), 𝐷S(𝑠QR) = 	0.5	  are 192	
shown in (Fig. 3D). They are significantly smaller for the human expression tuning functions DH(s) 193	
than for the monkey expression tuning functions DM(s) for both avatars. This is confirmed by two 194	
separate ANOVAs for the two avatar types. These 2-way mixed-model ANOVAs include the 195	
expression type (human vs. monkey motion) as within-subject factor, and the stimulus type (original 196	
motion, stimuli with occluded ears, or animated with equilibrated motion; see below) as between-197	
subject factor. The ANOVAs reveal a strong effect of the expression type (𝐹(1,60) = 188.82 198	
respectively 𝐹(1, 60) = 46.39; 𝑝 < 0.00001 ), but no significant influence of the stimulus type 199	
(𝐹(2,60) = 0.0  respectively 𝐹(2,60) = 0.01; 𝑝 > 0.99 ). For both avatars we found a significant 200	
interaction (𝐹(2,60) = 4.51; 𝑝 = 0.015 respectively 𝐹(2,60) = 3.15;𝑝 = 0.049). This implies that the 201	
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tuning to human expressions is narrower than that for monkey expressions, independent of the 202	
chosen avatar that was used to display the motion.  203	

 204	

Figure 3. Statistical analysis of the results. (A) Accuracy of the fits of the discriminant functions using Generalized Linear 205	
Models (GLMs) with different sets of predictors. Numbers indicate change in accuracy compared to the constant model. (B) 206	
Significance levels (Bonferroni-corrected) of the differences between the multinomially distributed classification responses 207	
for the 25 motion patterns, presented on the monkey and human avatar. (C) Fitted tuning functions DH(s) (solid lines) and 208	
DM(s) (dashed lines) for the categorization of patterns as monkey vs. human expressions, separately for the two avatar 209	
types.  Different line styles indicate the experiments using original motion captured motion, stimuli with occluded ears, and 210	
the experiment using prototype motions that was equilibrated for the amount of motion / deformation across prototypes. (D) 211	
Thresholds of the tuning functions for the three experiments for presentation on the human and monkey avatar. (E) 212	
Steepness of the tuning functions at the threshold points for the experiments with and without equilibration of the prototype 213	
motions (and without occlusions). (Uniformly colored bars indicate the results for the monkey avatar and dashed bars the 214	
ones for the human avatar.) 215	

Figure 3
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Species-tuning functions
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B

P-value
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Robustness of results against variations of expressive features 216	

One may ask whether the previous observations are robust with respect to variations of the chosen 217	
stimuli. First, monkey facial movements include species-specific features, such as ear motion, that 218	
are not present in human expressions. Do the observed differences between the recognition of 219	
human and monkey expressions depend on these features? We investigated this question by 220	
repeating the original experiment with a new set of participants, using stimuli for which the ear 221	
region was occluded. Figures 2C and D depict the corresponding fitted discriminant functions, 222	
which are quite similar to the ones without occlusion, characterized again by a high similarity in 223	
shape between the human and monkey avatar (ratio of different vs. shared variance: 𝑞 = 5.77%; 224	
only 12% of the categorization responses over the 25 points in morphing space were significantly 225	
different between the two avatar types; 𝑝 = 0.02). Figure 3C shows that also the corresponding 226	
tuning functions DM and DH are very similar to the ones for the non-occluded stimuli, and the 227	
associated threshold values (Fig. 3D) are not significantly different (see above).  228	

A second possible concern is that the chosen prototypical expressions might specify different 229	
amounts of expressive or salient low-level features, for example due to species differences in the 230	
motion or between the anatomies of the human and the monkey face. In order to rule out the 231	
influence of such differences, we repeated the experiment using a set of dynamic expressions (with 232	
non-occluded ears) that was equilibrated in terms of the average amount of optic flow and 233	
deformation information. This equilibration was based on a pilot experiment (see Supporting 234	
Information) demonstrating that the expressiveness of the stimuli was best predicted by the two-235	
dimensional deformation flow of the underlying mesh. This deformation flow was manipulated by 236	
computing morphs between the original prototypical expression trajectories and ones of neutral 237	
facial expressions, exploiting the Bayesian generative model. Separate for the two avatar types, 238	
we determined morph levels that resulted in equal values of the deformation flow for all prototypes, 239	
where we tried to match the flow of the most expressive prototype (‘monkey fear’ for the monkey 240	
avatar, and ‘human anger’ for the human avatar). We repeated the experiment with motion morphs 241	
based on these equilibrated prototypes.  242	

The resulting fitted discriminant functions (Figures 2E and 2F) are more symmetrical along the axes 243	
of the morphing space than the original stimuli. This is corroborated by the fact that an Asymmetry 244	
Index (AI) that measures the deviation from a perfect symmetry with respect to the e and s axis 245	
(see Supporting Information) is significantly reduced for the data from the experiment with 246	
equilibrated stimuli (𝐴𝐼 = 0.656	vs. 0.486; 	𝑡(21) = 2.81; 𝑝 = 0.01 ). Again, we found very similar 247	
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shapes of the discriminant functions for presentation on the human and the monkey avatar (ratio 248	
of different vs. shared variance: 𝑞 = 11.6%; only 8% of the categorization responses over the points 249	
in morphing space were significantly different; Fig 3B). Most importantly, also for these equilibrated 250	
stimulus sets, we found a narrower tuning for the human than for the monkey dynamic expressions 251	
(Fig. 3C), consistent with the results of the ANOVA for the threshold points of the tuning functions 252	
DM(s) and DH(s) of the non-equilibrated stimuli. An analysis of the steepness of the fitted tuning 253	
functions at the threshold points (Fig. 3E) shows, in addition, that the equilibration removes the 254	
steepness difference between the monkey and the human expressions, which is apparent in the 255	
data from the non-equilibrated stimuli. This is confirmed by 2-way ANOVAs for the original motion 256	
stimuli and the ones with occluded ears, which show a (marginally) significant influence of the 257	
avatar type (human vs. monkey) ( 𝐹(1,40) = 6.3; 𝑝 = 0.0162  respectively 𝐹(1,40) = 3.33;𝑝 =258	
0.076 ), but not of the expression type (human vs. monkey motion) and no interactions 259	
(𝐹(1,40)	respectively 𝐹(1,39) < 0.01; 𝑝 > 0.93). Contrasting with this result, the ANOVA for the 260	
stimuli with equilibrated motion does not show any significant effects, neither of the factor avatar 261	
type, nor of the expression type, nor an interaction (𝐹(1, 44) < 0.4; 𝑝 > 0.53). The equilibration thus 262	
levels out the steepness difference of the category boundary between the human and the monkey 263	
avatar, but it does not affect that tuning for human expressions is more precise than the one for 264	
monkey expressions. The sharper tuning for own-species expressions is thus not just a side effect 265	
of differences in the amount of low-level salient features of the chosen prototypical motion patterns.  266	

Discussion 267	

Due to the technical difficulties of an exact control of dynamics of facial expressions20,21, in 268	
particular of animals, the computational principles of the perceptual representation of dynamic facial 269	
expressions remain largely unknown. Exploiting advanced methods from computer animation with 270	
motion capture across species and machine-learning methods for motion interpolation, our study 271	
reveals fundamental insights about the perceptual encoding of dynamic facial expressions across 272	
primate species. At the same time, the developed technology lays the ground for physiological 273	
studies with highly-controlled stimuli on the neural encoding of such dynamic patterns12,18,22,23.  274	

Our first key observation was that facial expressions of macaque monkeys were learned very 275	
quickly by human observers, always requiring less than 10 stimulus repetitions. This was the case 276	
even though monkey expressions are quite different from human expressions, so that naïve 277	
observers cannot interpret them spontaneously. This fast learning might be a consequence of the 278	
high similarity of the neuro-muscular control of facial movements in humans and macaques15, 279	
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resulting in a high similarity of the structural properties of the expression dynamics that can be 280	
exploited by the visual system for fast learning.  281	

Second and unexpectedly from shape-based accounts for dynamic expression recognition, we 282	
found that the categorization of dynamic facial expressions was only very weakly influenced by the 283	
basic shape of the face, as parameterized by the avatar type (human vs. monkey). Neither did we 284	
find strong differences between categorization responses between the two avatars, nor did we find 285	
a better perceptual representation of species-specific dynamic expressions that matched the 286	
species of the avatar. Facial expression dynamics is thus represented largely independently of the 287	
basic shape of the face. Yet, we found a clear and highly robust own-species advantage24,25 in 288	
terms of the accuracy of the tuning for expression dynamics: The tuning along the species axis of 289	
our motion style space was narrower for human than for monkey expressions. This remained even 290	
true for stimuli that eliminated species-specific features, or that were carefully balanced in terms of 291	
the amount of low-level information.  292	

Both key results support our initial hypotheses: Perception can exploit the similarity of the structure 293	
of dynamic expressions across different primate species for fast learning. At the same time, and 294	
consistent with a co-evolution of the visual processing of dynamic facial expressions with their 295	
motor control, we found a largely independent encoding of facial expression dynamics from basic 296	
facial shape. Such independence seems also in-line with results from functional imaging studies 297	
that suggest a modular representation of different aspects of faces26,27. At the same time, this 298	
principle seems difficult to reconcile with popular (recurrent) neural network models that represent 299	
facial expressions in terms of sequences of learned key-shapes4,28. Since the shape differences 300	
between human and the monkey faces are much larger than the ones between the keyframes from 301	
the same expression, the observed spontaneous generalization to dynamic expressions to faces 302	
from a completely different species seems difficult to account for by such models. A separate 303	
encoding of facial dynamics from facial shape also explains why humans easily recognize 304	
expressions from comic characters that are not even primates. Concrete circuits for such shape-305	
independent  encoding of expression dynamics might be based on optic-flow analysis. Alternatively, 306	
such representations might be based on vectorized or on norm-referenced encoding, where face 307	
deformations are represented in terms of differences relative to a learned neutral reference pose 308	
of the face29-31. It seems an interesting theoretical question how deep neural architectures can be 309	
combined with such physiologically-motivated encoding principles. Our novel technology for the 310	
generation of photo-realistic, and however highly-controlled cross-species dynamic facial 311	
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expressions enables electrophysiological studies that clarify the exact underlying neural 312	
mechanisms.  313	

 314	

Methods 315	

Human participants 316	
In total, 58 human participants (32 female) participated in the psychophysical studies. The age 317	
range was from 21 to 53 years (mean: 26.9, standard deviation 5.11). All participants had no prior 318	
experience with macaque monkeys and normal or to-normal corrected vision. Participants gave 319	
written informed consent and were reimbursed by 10 EUR per hour for the experiment. In total, 21 320	
participants (11 female) were taking part in the first experiment using stimuli based on the original 321	
motion capture data and the experiment with occlusion of the ears. 12 participants (8 female) took 322	
part in the experiment with equilibrated motion of the prototypes. In addition, 16 participants (8 323	
female) took part in a Turing test control experiment (see below), and 9 (5 female) participants took 324	
part in a control experiment to identify features that influence perceived expressiveness of the 325	
stimuli. All psychophysical experiments were approved by the Ethics Board of the University Clinic 326	
Tübingen and consistent with the rules of the Declaration of Helsinki.  327	

Stimulus presentation 328	

Subjects were presented the stimuli watching a computer screen at a distance of 70 cm in a dark 329	
room, using Matlab® and the Psychotoolbox (3.0.15) library for stimulus presentation32,33. Each 330	
stimulus was repeated at maximum three times before asking for the responses, but participants 331	
could skip after the first presentation if they were certain about their responses. Participants were 332	
first asked whether the perceived expression was rather from a human or a monkey, and whether 333	
it was rather the first or the second expression. Responses were given by key presses. Stimuli for 334	
the two different avatar types were presented in different blocks, with 10 repeated blocks per avatar 335	
type. 336	

Equilibration of stimuli for amount of motion / deformation 337	

Stimuli were balanced for their amount of expressive low-level cues based on a control experiment 338	
that tested the relationship between different measures characterizing the amount of low-level cues 339	
and the rated expressivity of the stimulus for a set of morphs between the original prototypical facial 340	
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movements and neutral expressions (see Supporting Information). Such morphs were generated 341	
by weighting the original expression with the morph level 𝜆 and the neutral expression with the 342	
weight (1 − 	𝜆) The most predictive measure for expressiveness was the two-dimensional motion 343	
flow MF of the vertex positions of the surface match, which could be computed easily from the 344	
animations (see Supplementary Information for details). Stimuli were equilibrated by matching, 345	
separately for the two avatar types, this measure to the value of the prototype motion that resulted 346	
in the largest flow. For this purpose, we fitted (separately for each avatar) the relationship between 347	
the morph level 𝜆 and the motion flow MF by a logistic function of the form: 348	

𝑀𝐹d (𝜆) = 𝑎8 + 𝑎:/(1 + exp(𝑎;𝜆 + 𝑎M)). 349	

The inverse of this function was used to determine the values of the morph parameter 𝜆 that 350	
resulted in expressivities that matched the ones of the most expressive prototype motion. 351	

Statistical analysis 352	

Statistical analyses were implemented using Matlab® and RStudio (3.6.2), using R and the 353	
package lme4 for the mixed models of ANOVA.  354	

Different GLMs for the modeling of the categorization data were fitted using the Matlab Statistics 355	
Toolbox. Models including different sets of predictors were compared using a step-wise regression 356	
approach. Models of different complexity were compared using the prediction accuracy and the 357	
Bayesian Information Criterion (BIC) as criteria. 358	

Two statistical measures were applied in order to compare the similarity of the categorization 359	
responses for the two avatar types. First, we computed the ratio of the different vs. shared variance 360	
between the fitted discriminant functions, defined by the expression:  361	

𝑞 =
∑ ∬ (𝑃G6(𝑒, 𝑠) − 𝑃L6(𝑒, 𝑠));	d𝑒	d𝑠

:
86

∑ ∬ ((𝑃G6k(𝑒, 𝑠) + 𝑃L6k(𝑒, 𝑠))/2);	d𝑒	d𝑠
:
86k

 362	

This ratio is zero if the discriminant functions for the human and the monkey avatar are identical. 363	
The 𝑃G6(𝑒, 𝑠) and 𝑃L6(𝑒, 𝑠)	signify the fitted discriminant functions for the monkey and the human 364	
avatar with the category index j.   365	
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As second statistical analysis, we compared the multinomially distributed 4-class classification 366	
responses across the participants for the individual points in morphing space using a contingency 367	
table analysis that tested for significant differences between the two avatar types. Statistical 368	
differences were evaluated using a 𝒳2-test, and for cases for which predicted frequencies were 369	
lower than 5, exploiting a bootstrapping approach34.  370	

The species tuning functions DH(s) and DM(s) were fitted by the sigmoidal function 371	
𝐷S,P = 	 (tanhIω(s − θ)J + 1)/2  with the parameter 𝜃  determining the threshold and 𝜔  the 372	
steepness. Differences of the tuning parameters 𝜃  were tested using 2-factor mixed-model 373	
ANOVAs (species-specific of motion (monkey vs. human) as within-subject factor, and experiment 374	
(original motion, occlusion of the ears, and equilibrated motion) as between-subject factor). 375	
Differences of the steepness parameters 𝜔 were tested using a within-subject two-factor ANOVAs. 376	

377	
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