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23 Abstract

24 Dynamic facial expressions are crucial for communication in primates. Due to the difficulty to control
25 shape and dynamics of facial expressions across species, it is unknown how species-specific facial
26 expressions are perceptually encoded and interact with the representation of facial shape. While
27 popular neural-network theories predict a joint encoding of facial shape and dynamics, the
28 neuromuscular control of faces evolved more slowly than facial shape, suggesting a separate
29  encoding. To investigate this hypothesis, we developed photo-realistic human and monkey heads
30 that were animated with motion-capture data from monkeys and human. Exact control of
31 expression dynamics was accomplished by a Bayesian machine-learning technique. Consistent
32 with our hypothesis, we found that human observers learned cross-species expressions very
33 quickly, where face dynamics was represented independently of facial shape. This result supports
34 the co-evolution of the visual processing and motor-control of facial expressions, while it challenges

35 popular neural-network theories of dynamic expression-recognition.
36  Main Text
37  Introduction

38 Facial expressions are crucial for social communication of human as well as non-human
39  primates'*, and humans can learn facial expressions even of other species®. While facial
40 expressions in everyday life are dynamic, specifically expression recognition across different
41  species has been studied mainly using static pictures of faces®'0. A few studies have compared
42 the perception of human and monkey expressions using movie stimuli, finding overlaps in the brain
43 activation patterns induced by within- and cross-species expression observation in humans as well
44  as in monkeys'"'2, Since natural video stimuli provide no accurate control of the dynamics and
45 form features of facial expressions, it is unknown how expression dynamics is perceptually encoded

46 across different primate species, and how it interacts with the representation of facial shape.

47 In primate phylogenesis the visual processing of dynamic facial expressions has co-evolved with
48  the neuromuscular control of faces'. Remarkably, the structure and arrangement of facial muscles
49 s highly similar across different primate species''®, while face shapes differ considerably, e.g.
50 between humans, apes, or monkeys. This motivates the following two hypotheses: 1) The
51 phylogenetic continuity in motor control should facilitate fast learning of dynamic expressions

52 across primate species; and 2) the different speeds of the phylogenetic development of the facial
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53 shape and its motor control should potentially imply a separate visual encoding of expression

54  dynamics and basic face shape.

55 We investigated these hypotheses, exploiting advanced methods from computer animation and
56 machine learning, combined with motion capture in monkeys and humans. We designed highly-
57 realistic three-dimensional human and monkey avatar heads by combining structural information
58 derived from 3D scans, multi-layer texture models for the reflectance properties of the skin, and
59 hair animation. Expression dynamics was derived from motion capture recordings on monkeys and
60 humans, exploiting a hierarchical generative Bayesian model to generate a continuous motion-style
61 space. This space includes continuous interpolations between two expression types (‘anger’ vs.
62 ‘fear’), and human- and monkey-specific motion. Human observers categorized these dynamic
63 expressions, presented on the human or the monkey head model, in terms of the perceived

64 expression type and species-specificity of the motion (human vs. monkey expression).

65 Consistent with our hypotheses, we found very fast cross-species learning of expression dynamics
66 with a more precise tuning for human- compared to monkey-specific expressions. Most importantly,
67 the perceptual representation of expression dynamics was largely independent of the facial shape
68 (human vs. monkey). Perceptual responses were determined by the coordinates of the stimuli in
69 the motion style space, and did not depend on the matching of face species with the species-
70 specificity of the motion. Our results were highly robust against substantial variations in the
71 expressive stimulus features. They specify fundamental constraints for the computational neural
72 mechanisms of dynamic face processing and challenge popular neural network models, accounting

73  for expression recognition by the learning of sequences of key shapes*.
74  Results

75 Exploiting photo-realistic human and monkey face avatars, we investigated the perceptual
76 representations of dynamic human and monkey facial expressions in human observers. The
77 dynamic avatars were created by combining advanced computer animation methods with motion

78 capture in both primate species (Figures 1A and 1B).
79
80
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83 Figure 1. Stimulus generation and paradigm. (A) Frame sequence of a monkey and a human facial expression. (B)
84 Monkey motion capture with 43 reflecting facial markers. (C) Regularized face mesh whose deformation is controlled by an
85 embedded elastic ribbon-like control structure that is optimized for animation. (D) Stimulus set. We generated 25 motion
86 patterns, spanning up a two-dimensional style space with the dimensions ‘expression’ and ‘species’ by interpolation between
87 two expressions (‘anger’ and ‘fear’) and the two species (‘monkey’ and ‘human’). Each motion pattern was used to animate
88 a monkey and a human avatar model.

89  Highly realistic dynamic face avatars

90  We developed a photo-realistic monkey head model, whose degree of realism exceeds the one of
91  all avatars used previously in perception and physiological research'®-'®. It was derived from a
92  structural magnetic resonance scan of a rhesus monkey. The surface of the face was modeled by
93  an elastic mesh structure (Fig 1C) which imitates the deformations induced by the major face
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94  muscles of macaque monkeys'®. The motion of this mesh was specified by motion capture of 43
95 reflecting markers. Skin surface and fur were modeled in very much detail in order to achieve a
96  high level of realism (Fig. 1A). A similar highly-realistic human avatar model was created based on
97  acommercially available scan-based human face model. Its animation was based on blend shapes,
98 exploiting a multi-channel texture simulation software. Mesh deformations compatible with the
99 human face muscle structure were computed from motion capture data in the same way as for the

100  monkey face (cf. Supplementary Information for details).

101  The facial motion of the avatars was based on motion capture data from humans and monkeys.
102  We recorded two expressions (prototypes), anger/threat and fear from both species. Facial
103  movements of humans and monkeys are quite different', so that our participants, who all had no
104 prior experience with macaque monkeys, needed to be familiarized briefly with the monkey
105 expressions. In order to study the structure of the perceptual representation parametrically, we
106 generated a continuous dynamic expression space by morphing between four prototypical
107 expressions, ‘anger/threat’ and ‘fear’, each executed by humans and monkeys. Interpolated
108 patterns were generated by a Bayesian generative model that was trained with examples of the
109  four prototypical face movements, resulting in a style space that included a total of 25 facial
110 movements that interpolate between the prototypes (see Supplementary Information for details on
111  the algorithm). Each generated motion pattern can be parameterized by a two-dimensional style
112 vector (e, s), where the first component e specifies the expression type (e = 0: expression 1
113  (fear), and e = 1: expression 2 (‘anger/threat’)), and where the second variable s the species-
114  specificity of the motion (s = 0: monkey, and s = 1: human). The resulting patterns corresponded
115 to equidistant points between 0 and 1 along these two style axes (Figure 1D). The 25 generated
116  facial movements were presented on the monkey as well as on the human avatar in order to study
117 how the basic shape of the avatar influences the perception of the dynamic facial expressions. A
118  control experiment (see Supplementary Information) verifies that faces animated with the motion

119 morphs are not perceived as less natural than faces animated with original motion capture data.
120  Dynamic expression perception is largely independent of facial shape

121  In our first experiment, we used the original dynamic expressions of humans and monkeys as
122 prototypes and presented morphs between them, separately, on the human and the monkey avatar
123 face. Prior to the experiment, participants were familiarized with the prototype stimuli, repeating
124  each stimulus at maximum 10 times and stopping as soon as the prototypes were recognized

125 reliably. Motions were presented in a randomized order, and in separate blocks for the two avatars.
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126 The expression movies had a duration of 5 s and showed the face going from a neutral expression
127 to the extreme expression, and back to neutral (Fig. 1A). Participants observed 10 repetitions of
128  each stimulus in block-randomized order. They had to decide whether the observed stimulus was
129 looking more like a human or a monkey expression (independent of the avatar type), and whether
130 the expression was rather ‘anger/threat’ or ‘fear’. The resulting two binary responses in each trial
131 can be interpreted as assignment of one out of four classes to the stimulus (expression 1 vs. 2,

132 either monkey- or human-specific movement).

133 In order to model these categorization results as a function of the position of the stimulus in the
134 two-dimensional motion style space, we approximated the classification probabilities of the four
135 classes by a logistic multinomial regression model. The resulting fits are shown in Figures 2A and
136 2B for the two avatar types. The class probabilities P; for the four classes were approximated by a
137  Generalized Linear Model of the form:

Yi

138 Pi(e,s) = — with

4 Yjr
Z]‘/:1"3 J

139 Yj = Boj + Bije + Bzjs (1)

140  where P;is the probability of class i as a function of the position of the stimulus in morphing space.
141  We tested also further variants of linear models for which the prediction y; depended on more or
142 less variables as predictors. A comparison of the prediction accuracies of these models is shown
143 in Figure 3A for the monkey avatar, where results for the human avatar are very similar. Model
144 comparison exploiting the Bayesian Information Criterion shows that (1) is the most compact model
145 that explains the classification data with high accuracy. Specifically, models only including the
146 predictors e or s provided significantly worse fits, and a model with an additional predictor of the
147  form e = s did not result in better predictions. Likewise, models that contained the average amount
148  of optic flow as additional predictor did not result in higher accuracy (see Table 1). These results
149 imply an almost entirely linear dependence of the classification model (1) on the style space

150  coordinates (e,s). Consequently, we used this model as basis for our further analyses.
151
152
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Model Comparison

Monkey Avatar Model Accuracy [%] Accuracy increase [%] BIC Parameters df x2 p
Model 1 38,29 7487 33
Model 2 57,86 19,56 (rel. to Model 1) 5076 36 3 2411  <0,0001
Model 3 49,49 11,2 (rel. to Model 1) 6125 36 3 1362 <0,0001
Model 4 77,53 19.7 (rel. to Model 2) 3586 39 3 1490 <0,0001
Model 5 77,53 0 (rel. to Model 4) 3598 42 3 -11,997 1
Model 6 77,42 -0.11 (rel. to Model 4) 3580 42 3 5,675 0,129
Human Avatar
Model 1 36,84 7481 33
Model 2 54,22 17,38 (rel. to Model 1) 5541 36 3 1940 <0,0001
Model 3 53,56 16,72 (rel. to Model 1) 5847 36 3 1633  <0,0001
Model 4 81,56 27,35 (rel. to Model 2) 3420 39 3 2120 <0,0001
Model 5 81,35 -0,22 (rel. to Model 4) 3309 42 3 112 <0,0001
Model 6 81,38 -0.18 (rel. to Model 4) 3389 42 3 31,66 <0,0001

154 Table 1. Model Comparison. Results of the Accuracy and the Bayesian Information Criterion (BIC) for the different logistic
155 multinomial regression models for the stimuli derived from the original motion (no occlusions) for the monkey and the human
156 avatar. The models included the following predictors: Model 1: constant; Model 2: constant, s; Model 3: constant, e; Model

157 4: constant, s, e; Model 5: constant, s, e, product s-e Model 5: constant, s, e, Optic Flow.

158
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162 Figure 2. Discriminant functions Pi(e,s) fitted to the classification responses. Classes correspond to the four prototype
163 motions, as specified in Fig. 1D (i = 1, 2: monkey, and i = 3, 4: human motion). (A) Discriminant functions for the stimulus

164 set created using original motion-captured expressions of humans and monkeys as prototypes, for presentation on a
165 monkey and a human avatar. (B) Same results for stimuli with occluded ears. (C) Results for a stimulus set derived from
166 prototypes that were equilibrated with respect to the amount of local motion or deformation information.

167 The functional forms of the discriminant functions for the human and the monkey avatar (Figure 2
168 A and B) were very similar. This is confirmed by the fact that the fraction of the variance that is
169  different between these functions divided by the one that is shared does not exceed 10%

170 (g = 6.35 %; see Methods). Also, a comparison of the multinomially distributed classification
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171 responses between the two avatar types, separately for the different points in morphing space and
172 across participants, revealed no significant differences across all tested points in morphing space
173 (p = 0.02, Bonferroni-corrected). Differences tended to be larger especially for intermediate values
174  of the coordinates e and s, thus for the stimuli with high perceptual ambiguity (Fig. 3B). This result
175 implies that the facial motion of human and monkey facial expressions is encoded largely
176 independently of the basic shape of the avatar (human or monkey). This independence might also
177  explain why many of our subjects were able to recognize human facial expressions on the monkey
178 avatar face spontaneously, even without familiarization.

179 Tuning is narrower for human-specific than for monkey-specific dynamic expressions

180 A biologically important question is whether expressions of the own species are processed
181  differently from those of other primate species, potentially supporting an own-species advantage in
182  the processing of dynamic facial expressions'®. In order to characterize the tuning of the perceptual
183 representation for monkey vs. human expressions, we computed tuning functions, marginalizing
184  the discriminant functions belonging to the same species category (P1 and P. belonging to the

185 human, and Ps and P4 to the monkey expressions) over the expression dimension e. This defines

186  the function Dy (s) = fol(P1 (e,s) + P,(e,s)) de that characterizes the tuning to monkey expressions

187  as function of the species dimension s, and the function Dy (s) = fol(P3 (e,1—5) + Py(e,1—5)) de,

188 which characterizes the tuning to human expressions. In the function Dy(s) we flipped the s-axis
189  so that the category center also appears for s = 0, just as for the function Du(s). Figure 3C shows
190 these two species-tuning functions, revealing smaller tuning width for the human than for the
191 monkey expressions. This observation is statistically confirmed by fitting of the tuning functions by
192  a sigmoidal threshold function. The fitted threshold values si with D,,(s,,), Dy(s.,) = 0.5 are
193 shown in (Fig. 3D). They are significantly smaller for the human expression tuning functions Dr(s)
194  than for the monkey expression tuning functions Du(s) for both avatars. This is confirmed by two
195 separate ANOVAs for the two avatar types. These 2-way mixed-model ANOVAs include the
196 expression type (human vs. monkey motion) as within-subject factor, and the stimulus type (original
197  motion, stimuli with occluded ears, or animated with equilibrated motion; see below) as between-
198  subject factor. The ANOVAs reveal a strong effect of the expression type (F(1,60) = 188.82
199  respectively F(1,60) = 46.39;p < 0.00001), but no significant influence of the stimulus type
200  (F(2,60) = 0.0 respectively F(2,60) = 0.01;p > 0.99). For both avatars we found a significant
201  interaction (F(2,60) = 4.51;p = 0.015 respectively F(2,60) = 3.15; p = 0.049). This implies that the
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202 tuning to human expressions is narrower than that for monkey expressions, independent of the
203  chosen avatar that was used to display the motion.
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205 Figure 3. Statistical analysis of the results. (A) Accuracy of the fits of the discriminant functions using Generalized Linear

206 Models (GLMs) with different sets of predictors. Numbers indicate change in accuracy compared to the constant model. (B)
207 Significance levels (Bonferroni-corrected) of the differences between the multinomially distributed classification responses
208 for the 25 motion patterns, presented on the monkey and human avatar. (C) Fitted tuning functions Dr(s) (solid lines) and
209 Dw(s) (dashed lines) for the categorization of patterns as monkey vs. human expressions, separately for the two avatar
210 types. Different line styles indicate the experiments using original motion captured motion, stimuli with occluded ears, and
211 the experiment using prototype motions that was equilibrated for the amount of motion / deformation across prototypes. (D)
212 Thresholds of the tuning functions for the three experiments for presentation on the human and monkey avatar. (E)
213 Steepness of the tuning functions at the threshold points for the experiments with and without equilibration of the prototype
214  motions (and without occlusions). (Uniformly colored bars indicate the results for the monkey avatar and dashed bars the
215 ones for the human avatar.)
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216 Robustness of results against variations of expressive features

217  One may ask whether the previous observations are robust with respect to variations of the chosen
218  stimuli. First, monkey facial movements include species-specific features, such as ear motion, that
219  are not present in human expressions. Do the observed differences between the recognition of
220  human and monkey expressions depend on these features? We investigated this question by
221 repeating the original experiment with a new set of participants, using stimuli for which the ear
222  region was occluded. Figures 2C and D depict the corresponding fitted discriminant functions,
223 which are quite similar to the ones without occlusion, characterized again by a high similarity in
224 shape between the human and monkey avatar (ratio of different vs. shared variance: ¢ = 5.77%;
225 only 12% of the categorization responses over the 25 points in morphing space were significantly
226  different between the two avatar types; p = 0.02). Figure 3C shows that also the corresponding
227  tuning functions Dw and D are very similar to the ones for the non-occluded stimuli, and the

228 associated threshold values (Fig. 3D) are not significantly different (see above).

229 A second possible concern is that the chosen prototypical expressions might specify different
230 amounts of expressive or salient low-level features, for example due to species differences in the
231  motion or between the anatomies of the human and the monkey face. In order to rule out the
232 influence of such differences, we repeated the experiment using a set of dynamic expressions (with
233  non-occluded ears) that was equilibrated in terms of the average amount of optic flow and
234  deformation information. This equilibration was based on a pilot experiment (see Supporting
235 Information) demonstrating that the expressiveness of the stimuli was best predicted by the two-
236  dimensional deformation flow of the underlying mesh. This deformation flow was manipulated by
237 computing morphs between the original prototypical expression trajectories and ones of neutral
238 facial expressions, exploiting the Bayesian generative model. Separate for the two avatar types,
239 we determined morph levels that resulted in equal values of the deformation flow for all prototypes,
240  where we tried to match the flow of the most expressive prototype (‘monkey fear’ for the monkey
241 avatar, and ‘human anger’ for the human avatar). We repeated the experiment with motion morphs

242  based on these equilibrated prototypes.

243  The resulting fitted discriminant functions (Figures 2E and 2F) are more symmetrical along the axes
244 of the morphing space than the original stimuli. This is corroborated by the fact that an Asymmetry
245 Index (Al) that measures the deviation from a perfect symmetry with respect to the e and s axis
246 (see Supporting Information) is significantly reduced for the data from the experiment with
247  equilibrated stimuli (AI = 0.656vs.0.486; t(21) = 2.81;p = 0.01). Again, we found very similar
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248 shapes of the discriminant functions for presentation on the human and the monkey avatar (ratio
249 of different vs. shared variance: ¢ = 11.6%; only 8% of the categorization responses over the points
250 in morphing space were significantly different; Fig 3B). Most importantly, also for these equilibrated
251 stimulus sets, we found a narrower tuning for the human than for the monkey dynamic expressions
252 (Fig. 3C), consistent with the results of the ANOVA for the threshold points of the tuning functions
253  Dw(s) and Dn(s) of the non-equilibrated stimuli. An analysis of the steepness of the fitted tuning
254  functions at the threshold points (Fig. 3E) shows, in addition, that the equilibration removes the
255 steepness difference between the monkey and the human expressions, which is apparent in the
256  data from the non-equilibrated stimuli. This is confirmed by 2-way ANOVAs for the original motion
257 stimuli and the ones with occluded ears, which show a (marginally) significant influence of the
258  avatar type (human vs. monkey) (F(1,40) = 6.3;p = 0.0162 respectively F(1,40) =3.33;p =
259 0.076 ), but not of the expression type (human vs. monkey motion) and no interactions
260  (F(1,40) respectively F(1,39) < 0.01;p > 0.93). Contrasting with this result, the ANOVA for the
261 stimuli with equilibrated motion does not show any significant effects, neither of the factor avatar
262  type, nor of the expression type, nor an interaction (F(1, 44) < 0.4;p > 0.53). The equilibration thus
263 levels out the steepness difference of the category boundary between the human and the monkey
264 avatar, but it does not affect that tuning for human expressions is more precise than the one for
265 monkey expressions. The sharper tuning for own-species expressions is thus not just a side effect

266 of differences in the amount of low-level salient features of the chosen prototypical motion patterns.
267  Discussion

268 Due to the technical difficulties of an exact control of dynamics of facial expressions?®?!, in
269 particular of animals, the computational principles of the perceptual representation of dynamic facial
270 expressions remain largely unknown. Exploiting advanced methods from computer animation with
271 motion capture across species and machine-learning methods for motion interpolation, our study
272 reveals fundamental insights about the perceptual encoding of dynamic facial expressions across
273 primate species. At the same time, the developed technology lays the ground for physiological

274  studies with highly-controlled stimuli on the neural encoding of such dynamic patterns'?18:2223,

275 Our first key observation was that facial expressions of macaque monkeys were learned very
276  quickly by human observers, always requiring less than 10 stimulus repetitions. This was the case
277  even though monkey expressions are quite different from human expressions, so that naive
278 observers cannot interpret them spontaneously. This fast learning might be a consequence of the

279 high similarity of the neuro-muscular control of facial movements in humans and macaques™,
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280  resulting in a high similarity of the structural properties of the expression dynamics that can be

281  exploited by the visual system for fast learning.

282 Second and unexpectedly from shape-based accounts for dynamic expression recognition, we
283 found that the categorization of dynamic facial expressions was only very weakly influenced by the
284  basic shape of the face, as parameterized by the avatar type (human vs. monkey). Neither did we
285  find strong differences between categorization responses between the two avatars, nor did we find
286 a better perceptual representation of species-specific dynamic expressions that matched the
287 species of the avatar. Facial expression dynamics is thus represented largely independently of the
288  basic shape of the face. Yet, we found a clear and highly robust own-species advantage?*?° in
289 terms of the accuracy of the tuning for expression dynamics: The tuning along the species axis of
290 our motion style space was narrower for human than for monkey expressions. This remained even
291  true for stimuli that eliminated species-specific features, or that were carefully balanced in terms of

292 the amount of low-level information.

293 Both key results support our initial hypotheses: Perception can exploit the similarity of the structure
294 of dynamic expressions across different primate species for fast learning. At the same time, and
295 consistent with a co-evolution of the visual processing of dynamic facial expressions with their
296  motor control, we found a largely independent encoding of facial expression dynamics from basic
297  facial shape. Such independence seems also in-line with results from functional imaging studies
298  that suggest a modular representation of different aspects of faces?®?’. At the same time, this
299 principle seems difficult to reconcile with popular (recurrent) neural network models that represent
300 facial expressions in terms of sequences of learned key-shapes*?. Since the shape differences
301 between human and the monkey faces are much larger than the ones between the keyframes from
302 the same expression, the observed spontaneous generalization to dynamic expressions to faces
303 from a completely different species seems difficult to account for by such models. A separate
304 encoding of facial dynamics from facial shape also explains why humans easily recognize
305 expressions from comic characters that are not even primates. Concrete circuits for such shape-
306 independent encoding of expression dynamics might be based on optic-flow analysis. Alternatively,
307 such representations might be based on vectorized or on norm-referenced encoding, where face
308 deformations are represented in terms of differences relative to a learned neutral reference pose
309  of the face?®?'. It seems an interesting theoretical question how deep neural architectures can be
310 combined with such physiologically-motivated encoding principles. Our novel technology for the

311  generation of photo-realistic, and however highly-controlled cross-species dynamic facial
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312  expressions enables electrophysiological studies that clarify the exact underlying neural

313 mechanisms.

314
315 Methods

316  Human participants

317 In total, 58 human participants (32 female) participated in the psychophysical studies. The age
318 range was from 21 to 53 years (mean: 26.9, standard deviation 5.11). All participants had no prior
319 experience with macaque monkeys and normal or to-normal corrected vision. Participants gave
320 written informed consent and were reimbursed by 10 EUR per hour for the experiment. In total, 21
321 participants (11 female) were taking part in the first experiment using stimuli based on the original
322 motion capture data and the experiment with occlusion of the ears. 12 participants (8 female) took
323  part in the experiment with equilibrated motion of the prototypes. In addition, 16 participants (8
324  female) took part in a Turing test control experiment (see below), and 9 (5 female) participants took
325 part in a control experiment to identify features that influence perceived expressiveness of the
326 stimuli. All psychophysical experiments were approved by the Ethics Board of the University Clinic

327 Tubingen and consistent with the rules of the Declaration of Helsinki.
328  Stimulus presentation

329 Subjects were presented the stimuli watching a computer screen at a distance of 70 cm in a dark
330  room, using Matlab® and the Psychotoolbox (3.0.15) library for stimulus presentation®?33. Each
331  stimulus was repeated at maximum three times before asking for the responses, but participants
332 could skip after the first presentation if they were certain about their responses. Participants were
333 first asked whether the perceived expression was rather from a human or a monkey, and whether
334 it was rather the first or the second expression. Responses were given by key presses. Stimuli for
335 the two different avatar types were presented in different blocks, with 10 repeated blocks per avatar
336 type.

337  Equilibration of stimuli for amount of motion / deformation

338  Stimuli were balanced for their amount of expressive low-level cues based on a control experiment
339 that tested the relationship between different measures characterizing the amount of low-level cues

340 and the rated expressivity of the stimulus for a set of morphs between the original prototypical facial
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341 movements and neutral expressions (see Supporting Information). Such morphs were generated
342 by weighting the original expression with the morph level 2 and the neutral expression with the
343  weight (1 — 1) The most predictive measure for expressiveness was the two-dimensional motion
344  flow MF of the vertex positions of the surface match, which could be computed easily from the
345 animations (see Supplementary Information for details). Stimuli were equilibrated by matching,
346 separately for the two avatar types, this measure to the value of the prototype motion that resulted
347 in the largest flow. For this purpose, we fitted (separately for each avatar) the relationship between

348  the morph level 1 and the motion flow MF by a logistic function of the form:
349 MF Q) = ay + a, /(1 + exp(ayA + a3)).

350 The inverse of this function was used to determine the values of the morph parameter 1 that

351 resulted in expressivities that matched the ones of the most expressive prototype motion.
352  Statistical analysis

353 Statistical analyses were implemented using Matlab® and RStudio (3.6.2), using R and the
354  package Ime4 for the mixed models of ANOVA.

355 Different GLMs for the modeling of the categorization data were fitted using the Matlab Statistics
356 Toolbox. Models including different sets of predictors were compared using a step-wise regression
357 approach. Models of different complexity were compared using the prediction accuracy and the

358  Bayesian Information Criterion (BIC) as criteria.

359 Two statistical measures were applied in order to compare the similarity of the categorization
360 responses for the two avatar types. First, we computed the ratio of the different vs. shared variance

361 between the fitted discriminant functions, defined by the expression:

X ffol(PMj(e’ s) — Pyj(e,s))* deds

362 q= T
Zj/ ffo ((PMjl(e’ S) + PH]-,(E,S))/Z)Z de ds

363 This ratio is zero if the discriminant functions for the human and the monkey avatar are identical.
364  The Py;(e,s) and Py;(e, s) signify the fitted discriminant functions for the monkey and the human

365  avatar with the category index .
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366 As second statistical analysis, we compared the multinomially distributed 4-class classification
367 responses across the participants for the individual points in morphing space using a contingency
368 table analysis that tested for significant differences between the two avatar types. Statistical
369 differences were evaluated using a X?-test, and for cases for which predicted frequencies were
370  lower than 5, exploiting a bootstrapping approach3+.

371 The species tuning functions Du(s) and Dwm(s) were fited by the sigmoidal function
372 Dyy = (tanh(w(s—0)) +1)/2 with the parameter 6 determining the threshold and w the
373 steepness. Differences of the tuning parameters 6 were tested using 2-factor mixed-model
374  ANOVAs (species-specific of motion (monkey vs. human) as within-subject factor, and experiment
375 (original motion, occlusion of the ears, and equilibrated motion) as between-subject factor).

376 Differences of the steepness parameters w were tested using a within-subject two-factor ANOVAs.
377
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