

1 **The magnitude of airway remodelling is not altered by distinct allergic**
2 **inflammatory responses in BALB/c vs C57BL/6 mice but matrix**
3 **composition differs**

4
5
6
7 James E Parkinson ^{1,2}, Stella Pearson ^{1,2}, Dominik Rückerl ¹, Judith E Allen
8 ^{1,2}, Tara E Sutherland* ¹

9
10 ¹Lydia Becker Institute for Immunology and Infection, Faculty of Biology,
11 Medicine and Health, Manchester Academic Health Science Centre,
12 University of Manchester, Manchester, United Kingdom

13
14 ²Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine
15 and Health, Manchester Academic Health Science Centre, University of
16 Manchester, Manchester, United Kingdom

17
18 *Corresponding Author
19 Tara E Sutherland
20 The University of Manchester, Core Technology Facility, 46 Grafton St,
21 Manchester, M13 9NT
22 tara.sutherland@manchester.ac.uk
23 Phone: +44 (0)161 306 6052

24
25
26
27 **Running title:**
28 Allergic airway inflammation and remodelling in mice

29
30
31 **Keywords:**
32 Allergic airway inflammation; type 2 cytokines; type 17 cytokines; extracellular matrix;
33 airway remodelling; collagen; mouse strain differences

35 **Abstract**

36 Allergic airway inflammation is heterogenous with variability in immune phenotypes
37 observed across asthmatic patients. Inflammation has been thought to directly contribute
38 to airway remodelling in asthma, but clinical data suggests that neutralising type 2
39 cytokines does not necessarily alter disease pathogenesis. Here, we utilised C57BL/6 and
40 BALB/c mice to investigate the development of allergic airway inflammation and
41 remodelling. Exposure to an allergen cocktail for up to 8 weeks led to type 2 and type
42 17 inflammation, characterized by airway eosinophilia and neutrophilia and increased
43 expression of chitinase-like proteins in both C57BL/6 and BALB/c mice. However,
44 BALB/c mice developed much greater inflammatory responses than C57BL/6 mice,
45 effects possibly explained by a failure to induce pathways that regulate and maintain T
46 cell activation in C57BL/6 mice, as shown by whole lung RNA transcript analysis.
47 Allergen administration resulted in a similar degree of airway remodelling between
48 mouse strains but with differences in collagen subtype composition. Increased collagen
49 III was observed around the airways of C57BL/6 but not BALB/c mice while allergen-
50 induced loss of basement membrane collagen IV was only observed in BALB/c mice.
51 This study highlights a model of type 2/type 17 airway inflammation in mice whereby
52 development of airway remodelling can occur in both BALB/c and C57BL/6 mice despite
53 differences in immune response dynamics between strains. Importantly, compositional
54 changes in the ECM between genetic strains of mice may help us better understand the
55 relationships between lung function, remodelling and airway inflammation.

56

57

58 **Introduction**

59

60 Asthma is a global health problem with increasing prevalence, currently affecting over
61 300 million people.¹ Of note, the term “asthma” encompasses a range of disease
62 phenotypes. Progress in understanding heterogeneity of airway inflammation has led to
63 defined asthma endotypes^{2,3} often characterized by the presence or absence of type 2
64 eosinophilic inflammation and/or type 17 neutrophilic inflammation.⁴ A clarified
65 definition of such inflammatory phenotypes in asthma has led to development of
66 innovative therapies directed at modulating specific inflammatory pathways, in
67 particular type 2 inflammation.⁵ Whilst the use of biologicals targeting IgE or either type
68 2 cytokines Interleukin (IL)-4, IL-5, IL-13 or their cognate receptors (IL-4R α , IL-5R, IL-
69 13R α 1) have been effective at reducing disease exacerbations in allergic asthmatics,
70 these therapies are often insufficient to improve underlying disease pathogenesis.⁶⁻⁸
71 Furthermore, clinical trials with antibodies targeting IL-17 signalling have shown no
72 benefit⁹, despite a strong association of severe asthma with type 17 neutrophilic
73 inflammation.¹⁰ To achieve progress in treating asthma we need a more comprehensive
74 understanding of pathology beyond viewing inflammation as the main instigator of
75 disease.

76

77 Along with airway inflammation, asthma is characterized by airway hyper-
78 responsiveness (AHR) and airway remodelling, a process of changes to the composition,
79 content and organisation of cells and extracellular matrix in the lung. Although tissue
80 remodelling is a critical process during development and tissue repair¹¹, it is also a
81 pathogenic response in diseases like asthma, and undoubtedly impacts on lung
82 function.¹² Comprehensive research using a combination of mouse models and human
83 studies typically attribute the development of remodelling to chronic airway
84 inflammation.¹³⁻¹⁷ However, this view conflicts with emerging data that shows
85 remodelling can occur as a primary event prior to inflammation.¹⁸⁻²⁰ Glucocorticoid
86 steroids can generally improve lung function but do not alter airway remodelling.²¹
87 Alternatively, drugs that successfully target specific inflammatory pathways fail to
88 improve lung function^{7,8} presumably because they do not affect airway remodelling.
89 Overall, the links between inflammation, remodelling and lung function are still unclear

90 and thus warrant investigation. Airway remodelling is a complex disease process,
91 difficult to study in patients especially in the context of understanding multiple
92 components that may influence development of individual remodelling processes over
93 time. Therefore, there is a crucial need for animal models that reflect asthma disease
94 processes with a focus on studying the development of stable and irreversible airway
95 remodelling.

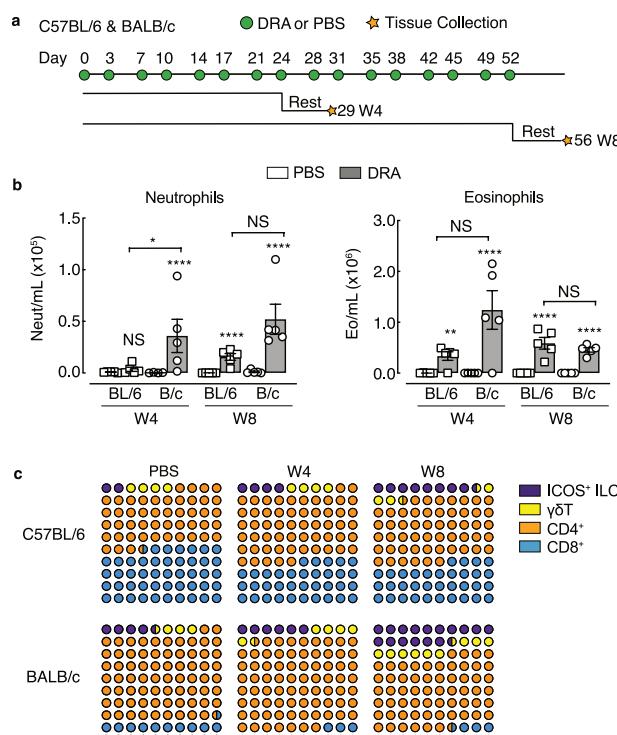
96

97 Genetic differences between inbred mouse strains are well known to strongly affect both
98 airway inflammation²²⁻²⁵ and AHR.²⁶ For instance, C57BL/6 mice are known to have a
99 high airway resistance in response to methacholine challenge independent of allergic
100 inflammation²², whereas BALB/c mice generally exhibit greater airway reactivity in
101 response to allergens.²⁶ Therefore, studies examining airway pathology in different
102 mouse strains can provide a basis to explore the relationships between immune cell
103 dynamics in relation to changes in airway remodelling and lung function. In this study
104 we utilised a model of chronic allergic airway inflammation that shares features of
105 disease common to severe asthma in people, including mixed type 2 and type 17 airway
106 inflammation, steroid resistant neutrophilia and AHR independent of type 2 cytokines^{27,28}
107 to investigate inflammation and remodelling parameters. Together our results highlight
108 mouse strain dependent differences in type 2 and type 17 inflammation that do not seem
109 to alter the development of remodelling but may impact on deposition of specific
110 collagen subtypes.

111

112 **Results**

113 **Chronic allergen-induced immune response dynamics differ between C57BL/6 and**
114 **BALB/c mouse strains.**


115 Aspects of allergen-induced airway inflammation have been extensively studied in
116 mouse models, largely in the context of acute Th2-mediated immune responses.^{29,30}
117 Here, using a model of mixed type 2 and type 17 inflammation, we characterised
118 immune cell dynamics in two common in-bred mouse strains, C57BL/6 and BALB/c,
119 strains known to respond differently in models of airway inflammation and hyper-
120 responsiveness.^{26,31,32} Mice were exposed to a multi-allergen cocktail (House Dust Mite,
121 Ragweed and *Aspergillus fumigatus*; DRA) for 4 or 8 weeks (**Figure 1a**) and inflammation
122 assessed. All mice exposed to DRA had a mixed neutrophilic/eosinophilic inflammation,
123 although neutrophilia was not evident in C57BL/6 mice until week 8 (**Figure 1b**).
124 Neutrophils were still present in the BAL 5 days after the last allergen administration
125 (**Figure 1a, b**), even though their numbers were considerably lower compared to
126 eosinophils (**Figure 1b**). Analysis of T lymphocytes and related populations in the lungs,
127 revealed relatively similar proportions of allergen-induced immune cell accumulation
128 between mouse strains, with gradual increases in ICOS⁺ innate lymphoid cells (ILCs)
129 (**Figure 1c**). BALB/c mice generally had a greater ratio of CD4⁺ to CD8⁺ T cells
130 compared to C57BL/6 mice reflected in higher total lung CD4⁺ T cell numbers
131 (**Supplementary figure 1**), but this ratio did not change due to allergen exposure (**Figure**
132 **1c**). In addition, innate populations of $\gamma\delta$ T cells and ICOS⁺ ILCs were more predominant
133 in BALB/c mice compared to C57BL/6 mice with clear increases in cell numbers in
134 BALB/c mice following allergen exposure at either week 4 or 8 (**Figure 1c and**
135 **supplementary figure 1**). Despite the increased ILC numbers (**Supplementary figure 1**),
136 CD4⁺ T cells and $\gamma\delta$ T cells appeared to be the major cytokine producing lymphocyte
137 populations in the lungs of all allergic mice. Exposure to DRA resulted in both IL-17A
138 and type 2 inflammatory responses in the lung, with an increased proportion of IL-4 and
139 IL-17A expressing CD4⁺ T cells in both C57BL/6 and BALB/c mice (**Figure 2a**).
140 Interestingly, the numbers of IL-4⁺ CD4⁺ T cells were reduced from week 4 to week 8 in
141 BALB/c mice (**Figure 2b**), also corresponding to a reduction in eosinophils (**Figure 1b**).
142 Nonetheless, there were enhanced numbers of IL-17A⁺ TCR $\gamma\delta$ ⁺ T cells and IL-17A⁺ CD4⁺
143 T as well as IL-4⁺ CD4⁺ T cells on week 4 in BALB/c compared to C57BL/6 mice (**Figure**

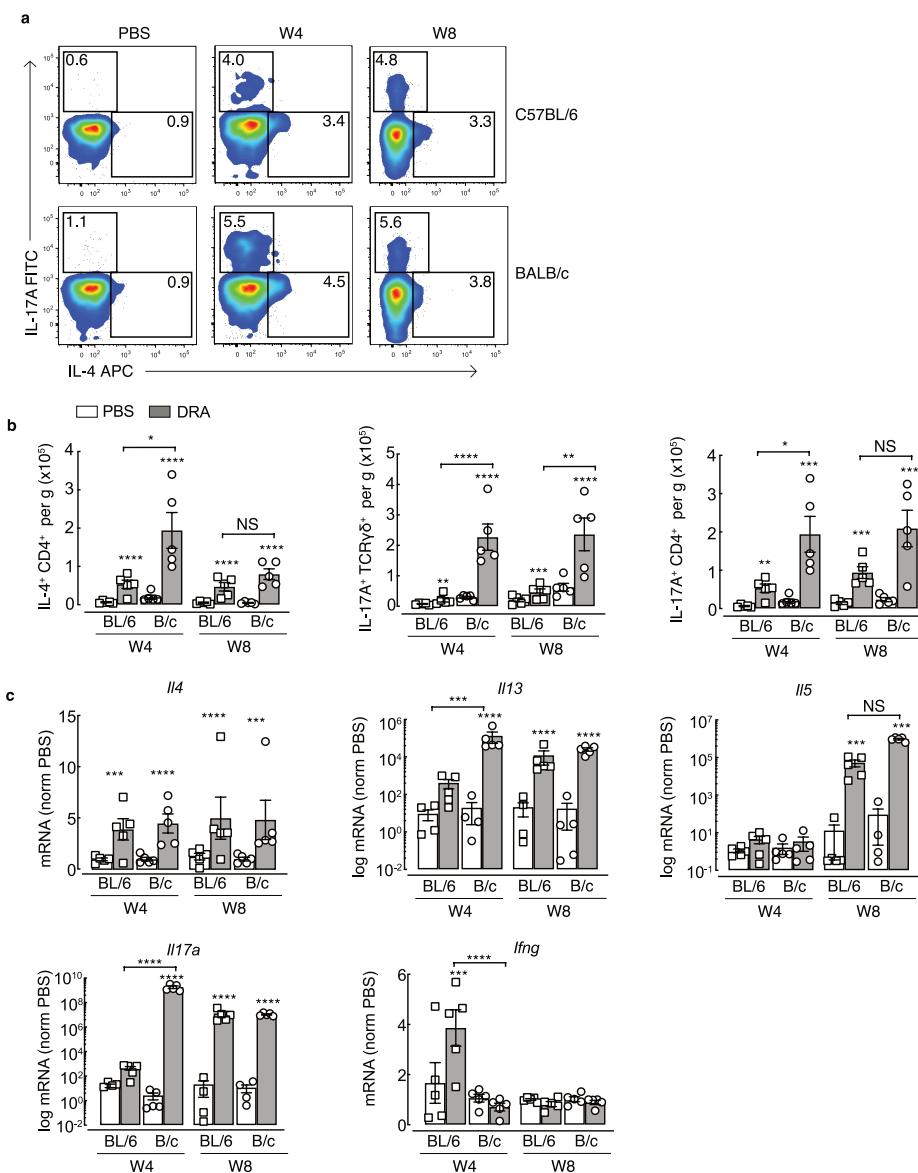
144 2b). Of note, TCR $\gamma\delta^+$ and CD4 $^+$ T cells contributed equally to the pool of IL-17A $^+$ cells
145 in allergic BALB/c mice, whereas CD4 $^+$ T cells were the main IL-17A $^+$ population in
146 C57BL/6 mice (Figure 2b).

147

148

149

150


151 **Figure 1: Chronic exposure to DRA allergens induce neutrophil and eosinophil airway**
152 **inflammation**

153 a) Schematic showing allergic airway inflammation model highlighting the timing of DRA or PBS
154 intranasal administration into C57BL/6 or BALB/c mice. Cells were collected for flow cytometry
155 analysis 5 days after the last administration of PBS or DRA (rest) at either 4 or 8 weeks. b)
156 Numbers of neutrophils and eosinophils in the BAL of C57BL/6 or BALB/c mice administered
157 PBS or DRA for 4 or 8 weeks. c) Plot showing the average proportions of different T cells and
158 ILCs in the lungs of C57BL/6 or BALB/c mice administered PBS or DRA for 4 or 8 weeks. Data
159 are representative of 2 experiments. Data is plotted as mean \pm sem with points representing
160 individual animals (b). Data in b was analysed by ANOVA with Tukey's multiple comparison
161 test with significance level showing comparisons between either PBS animals within each strain
162 and each time point or C57BL/6 to BALB/c mice as indicated on the graph. NS not significant,
163 * $P<0.05$, *** $P<0.0001$.

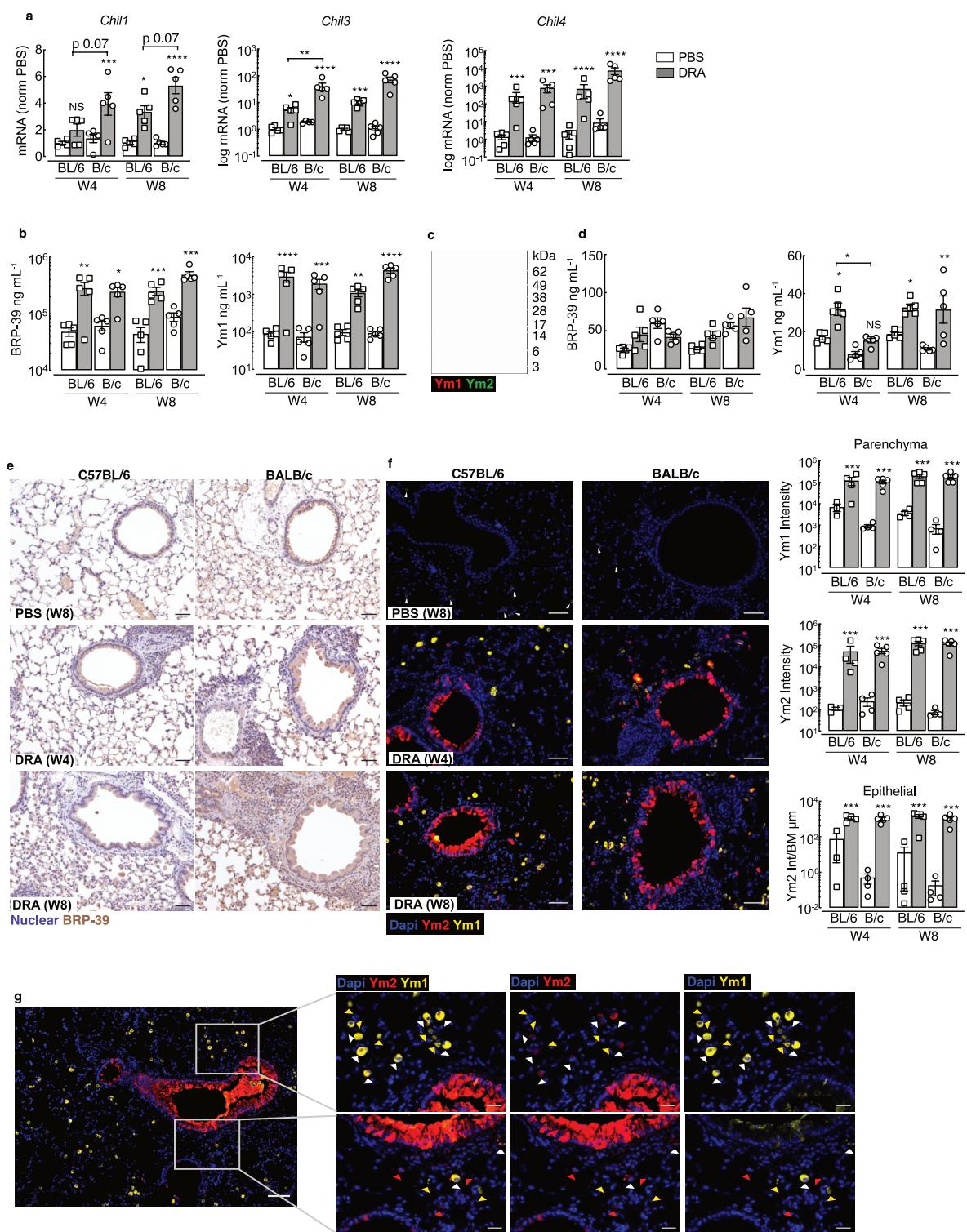
164

165

166

167

168 **Figure 2: Chronic exposure to DRA allergens induce mixed Th2/Th17 airway inflammation**
169 **a**) Whole lung single cell suspensions were stained for flow cytometry. Live, single TCR γ δ ⁺TCR β ⁺
170 CD8⁻CD4⁺ cells were gated on and representative intracellular staining plots of IL-4⁺ and IL-17A⁺
171 CD4⁺ T cells in the lungs of C57BL/6 or BALB/c mice administered PBS or DRA intranasally two
172 times a week for up to 8 weeks. Cells were analysed by flow cytometry 5 days after the last
173 instillation of allergen. Single cell lung suspensions were stimulated with PMA/ionomycin prior
174 to analysis by flow cytometry. Numbers indicate the percentage of cytokine positive CD4⁺ T cells
175 within each gate. **b**) Absolute numbers of IL-17A⁺ TCR γ δ ⁺ or IL-17A⁺ or IL-4⁺ CD4⁺ T cells in the
176 lungs of mice as in **a**. **c**) mRNA expression of II4, II13, II5, II17a and Ifng in whole lungs of mice
177 treated as in **a**. mRNA were normalised to levels found in PBS C57BL/6 or BALB/c mice at each
178 time point and are relative to geometric mean of housekeeping genes Gapdh, Rpl13a and Rn45s.
179 Data are representative of 2 experiments. Data is plotted as mean \pm sem with points representing
180 individual animals. Data was analysed by ANOVA with Tukey's multiple comparison test with
181 significance level showing comparisons between either PBS animals within each strain and each
182 time point or C57BL/6 to BALB/c mice as indicated on the graph. NS not significant, *P<0.05,
183 **P<0.01, ***P<0.001, ****P<0.0001.


184

185 Expression of key cytokines in whole lung RNA also revealed an increase in type 2 genes
186 (*Il4*, *Il5*, *Il13*) and *Il17a* upon DRA treatment with exaggerated *Il13* and *Il17a* expression
187 at week 4 in allergic BALB/c compared to C57BL/6 mice (**Figure 2c**). Whilst we saw no
188 evidence of increased $\text{IFN}\gamma^+$ T cells or ILCs (data not shown) in the lungs of mice
189 following allergen administration, there was a transient increase in *Ifng* expression in the
190 lungs of C57BL/6 mice but not BALB/c (**Figure 2c**). Overall, although both mouse strains
191 developed allergen-induced airway inflammation, the degree of inflammation and
192 eosinophilic and neutrophilic responses were higher in BALB/c compared to C57BL/6
193 mice.

194

195 **Chitinase-like proteins are abundantly expressed in the lungs during type 2 and type 17 196 allergic airway inflammation**

197 Chitinase-like proteins (CLPs) are molecules strongly associated with severe asthma,
198 neutrophilia and IL-17A.³³⁻³⁶ Following exposure to DRA allergen, mRNA expression of
199 murine CLPs *Chil1*, *Chil3* and *Chil4* were upregulated in both BALB/c and C57BL/6 mice
200 compared to PBS controls (**Figure 3a**). However, *Chil1* mRNA expression was less in
201 C57BL/6 compared to BALB/c mice, albeit this did not reach statistical significance in
202 this dataset ($P = 0.07$ DRA C57BL/6 versus DRA BALB/c mice at week 4 or 8). Additionally,
203 no significant increase in *Chil1* mRNA was detected in whole lung tissue of C57BL/6
204 mice after 4 weeks of allergen exposure as compared to PBS controls (**Figure 3a**) despite
205 significant increases in secreted BRP-39 protein levels in the BAL (**Figure 3b**). *Chil3* and
206 *Chil4* were significantly increased in both mouse strains at week 4, and expression levels
207 did not change upon further allergen exposure (**Figure 3a**), findings that were supported
208 by measurement of Ym1 secreted protein in the BAL (**Figure 3b**). As there were no
209 commercially available reagents to measure Ym2 protein levels, we developed a Ym2
210 specific antibody to examine Ym2 expression in the lungs (**Supplementary figure 2**). By
211 western blot, neither Ym1 nor Ym2 was detected in mice administered PBS, but both
212 Ym1 and Ym2 greatly increased following allergen exposure (**Figure 3c**). CLPs can be
213 readily detected in the serum, and serum levels of YKL-40 in humans has been proposed
214 as a biomarker for disease severity and is associated with reduced lung function in
215 several pulmonary pathologies.³⁷⁻³⁹

216

217

218 **Figure 3: Chitinase-like proteins are abundantly expressed during chronic allergic airway**
219 **inflammation**

220 **a)** mRNA expression of CLPs *Chil1*, *Chil3* and *Chil4* in whole lungs of C57BL/6 or BALB/c mice
221 exposed intranasally to PBS or DRA for 4 or 8 weeks. Lungs were collected 5 days after the last
222 PBS/DRA administration. mRNA were normalised to levels found in PBS C57BL/6 or BALB/c
223 mice at each time point and are relative to the geometric mean of housekeeping genes *Gapdh*,
224 *Rpl13a* and *Rn45s*. *Chil3* and *Chil4* is depicted as log mRNA levels. **b)** Concentration of Ym1

225 and BRP-39 protein measured by ELISA in the BAL of C57BL/6 or BALB/c mice treated as in **a**.
226 **c**) Western blot analysis of Ym1 (red) and Ym2 (green) levels in the BAL from C57BL/6 mice
227 administered with PBS or DRA for 8 weeks, with BAL taken 5 days after the last DRA/PBS
228 administration. **e**) Concentration of Ym1 and BRP-39 protein measured by ELISA in serum of
229 C57BL/6 or BALB/c mice treated as in **a**. **e**) Microscopy images of immunohistochemical staining
230 of BRP-39 (brown) in lung sections from C57BL/6 and BALB/c mice treated with either PBS for 8
231 weeks, or DRA for 4 or 8 weeks. Cell nuclei counterstained with haematoxylin (purple); scale
232 bar 50 μ m. **f**) Microscopy images of lungs sections of mice as in **a** stained with DNA-binding dye
233 (DAPI) blue; Ym1 (yellow) and Ym2 (red). Scale bar; 50 μ m. Images are representative of n=5
234 mice per group. Quantification of antibody positive staining intensity from stained sections. Ym1
235 and Ym2 intensity in lung parenchyma areas and Ym2 intensity in airway epithelial cells
236 normalised to length of airway basement membrane. **g**) Microscopy images of
237 immunofluorescent staining for Ym1 (yellow) and Ym2 (red) in lung sections for mice as in **f**.
238 Images show areas where co-staining in airway epithelial or parenchyma cells is evident.
239 Triangles superimposed onto images show Ym1⁺Ym2⁻ cells (yellow), Ym1⁻Ym2⁺ cells (red) or
240 Ym1⁺Ym2⁺ cells (white). Centre image scale bar, 100 μ m; outer images scale bar, 50 μ m.
241 Datapoints depict individual animals with bars representing mean and sem (**a**, **b**, **d**, **f**). Data are
242 representative of 2 experiments. Data were analysed by ANOVA with Tukey's multiple
243 comparison test with significance level showing comparisons between either PBS animals within
244 each strain and each time point or C57BL/6 to BALB/c mice as indicated on the graph. NS not
245 significant; *P<0.05, ** P<0.01, ***P<0.001, ****P<0.0001.
246

247

248

249 Although BRP-39 is a genetic ortholog of YKL-40, the level of BRP-39 in the blood was
250 not significantly altered following allergic-inflammation in this model (**Figure 3d**).
251 However, increased serum Ym1 was detectable in allergic mice of both strains (**Figure**
252 **3d**). To determine whether localisation of the three CLPs differed between strains of mice
253 following allergen exposure, we examined immunostained lung sections. BRP-39 was
254 already expressed in macrophages and epithelial cells in the steady state, but the
255 intensity and number of positive cells increased further following allergen administration
256 and the increase was particularly evident in BALB/c mice (**Figure 3e**). Corresponding to
257 secreted levels in the BAL (**Figure 3c**), expression of Ym2 was absent in the lungs of PBS
258 mice, while numerous Ym1⁺ cells, likely alveolar macrophages could be detected (**Figure**
259 **3f**).⁴⁰ The expression of Ym1 and Ym2 dramatically increased in the lungs of allergic
260 BALB/c or C57BL/6 mice and the level of expression reached its maximum expression at
261 4 weeks post DRA treatment (**Figure 3f**). Interestingly, Ym1 and Ym2 appear to have a
262 fairly distinct expression pattern in the lung, with Ym1 largely restricted to myeloid cells
263 and Ym2 largely expressed by epithelial cells, and very few cells that co-stained for Ym1
264 and Ym2 (**Figure 3f, g**). Overall, we observed modest increases in BRP-39 levels in

265 allergic animals, but strongly enhanced Ym1 and Ym2 expression in the lungs of both
266 allergic C57BL/6 and BALB/c mice. For the first time we show distinct expression of Ym2
267 in the lungs compared to Ym1, despite their protein sequence being ~96% homologous.

268

269

270 **Allergen-induced immune pathways are fundamentally different between C57/BL6 and**
271 **BALB/c mouse strains**

272 C57BL/6 and BALB/c mice both developed neutrophilic and eosinophilic airway
273 inflammation in response to chronic allergen administration, despite a greater magnitude
274 of both type 2 and IL-17A cytokine responses in BALB/c mice. Therefore, to more broadly
275 characterise the differences in immune response between mouse strains, we performed
276 differential gene expression analysis of whole lung RNA after 8 weeks of allergen or PBS
277 administration using the NanoString nCounter Myeloid Innate Immunity Panel
278 (NanoString, Amersham, UK). Principal component analysis (PCA) demonstrated a clear
279 separation in gene signatures not only from exposure to DRA versus PBS, Principal
280 Component (PC) 1, but also mouse strain, explained by PC2 (**Figure 4a**). Investigation of
281 the genes that were significantly altered in the DRA model showed that numerous genes
282 were induced (e.g. type 2 effector molecules *Retnla* and *Arg1*) or inhibited (e.g. basement
283 membrane collagens, *Col4a1*, *Col4a1*) to an equivalent degree in both strains
284 (**Supplementary figure 3a**). Hierarchical clustering also separated a considerable number
285 of genes that were regulated in the same way across the strains, but to a much higher
286 degree in one mouse strain over the other (**Figure 4b**) or expression of genes that were
287 fundamentally different between strains (**Supplementary figure 3b**). As predicted from
288 the allergic cytokine responses and alterations in immune cell infiltration into the lung
289 (**Fig 1 & 2**), it was not surprising that type 2 related genes such as *Il13*, *Fcer2a*, *Csf2*, *Ccl2*,
290 *Ccl11* were more highly upregulated in whole lung tissue from BALB/c compared to
291 C57BL/6 mice (**Figure 4b**). However, interestingly factors known to play an important
292 role in leukocyte adhesion (*Itgb2*, *Itgb7*, *Selp1g*) were upregulated in allergic C57BL/6
293 mice but not BALB/c mice (**Figure 4b**), despite an apparent slower rate of inflammatory
294 cell accumulation in C57BL/6 compared to BALB/c mice (**Figure 1b and supplementary**
295 **figure 1**).

296

297

298

299 **Figure 4: C57BL/6 and BALB/c allergic mice have fundamental differences in immune gene**
300 **signatures**

301 Whole lung RNA from C57BL/6 and BALB/c mice administered with either PBS or DRA for 8
302 weeks were analysed using NanoString Myeloid Panel v2. **a)** PCA of expressed genes from
303 C57BL/6 and BALB/c. **b)** Unsupervised, hierarchically clustered heatmap of genes that were
304 significantly regulated in C57BL/6 and BALB/c allergic compared to PBS mice, but also
305 differential regulated between the treated strains. **c)** Differentially expressed genes were
306 visualised with Ingenuity Pathway Analysis tool and top 20 canonical pathways shown for
307 C57BL/6 versus BALB/c mice. Red or blue indicates pathways upregulated or downregulated
308 (respectively) in C57BL/6 compared BALB/c allergic mice. Grey indicates pathways that are
309 significantly regulated but not in a particular direction. Percentage at end of the bar equates to
310 the number of molecules detected compared to the total number of molecules within the
311 canonical pathway. **d)** Chord diagram shows specific genes up or down regulated (colour
312 indicating log fold change) within Go Term that were found to be significantly regulated in
313 C57BL/6 allergic mice compared to BALB/c allergic mice. Transcriptomic analysis was performed
314 on one experiment that was representative of 2 individual experiments.

315

316 Analysis of common properties within a signalling pathway (canonical pathway) showed
317 enrichment of various pathways in C57BL/6 compared to BALB/c mice (**Figure 4c**).
318 Pathways including 'IL-4 signalling' and 'airway pathology in COPD' were significantly
319 different across mouse strains (**Figure 4c**). Whether these pathways were activated or
320 inhibited in C57BL/6 compared to BALB/c mice could not be clearly defined by the
321 analysis (as denoted by the grey bar; **Figure 4c**). However, the specific genes that
322 contributed to the z scores (**Figure 4c**) were also examined (**Figure 4d**). For example, a
323 downregulation of both type 2 cytokines *Il5*, *Il13* and the type 2 inducing cytokine *Il25*
324 in addition to reduced expression of pro-inflammatory cytokines *Il1a*, *Il1b*, *Il12a* and
325 *Il12b* indicates that genes characteristic of the "airway pathology in COPD" pathway
326 (**Figure 4d**) were reduced in allergic C57BL/6 mice relative to BALB/c mice. Interestingly,
327 both 'OX40 signalling' and 'PD-1, PD-L1 signalling', pathways involved in maintenance
328 and regulation of T cell responses, were downregulated in allergic C57BL/6 compared
329 to BALB/c mice (**Figure 4d**). These and other changes in canonical pathways involved in
330 DC-T cell stimulation possibly explain reduced cytokine production in C57BL/6 mice
331 (**Figure 2**). In addition, LXR/RXR activation, which maintains cholesterol homeostasis but
332 is also known to be anti-fibrotic and anti-inflammatory⁴¹, was downregulated in C57BL/6
333 mice (**Figure 4c, d**). Overall, analysis of gene regulation at chronic allergic inflammatory
334 time points revealed differences in gene signatures between mouse strains that may
335 explain reduced immune responses in C57BL/6 compared to BALB/c mice.

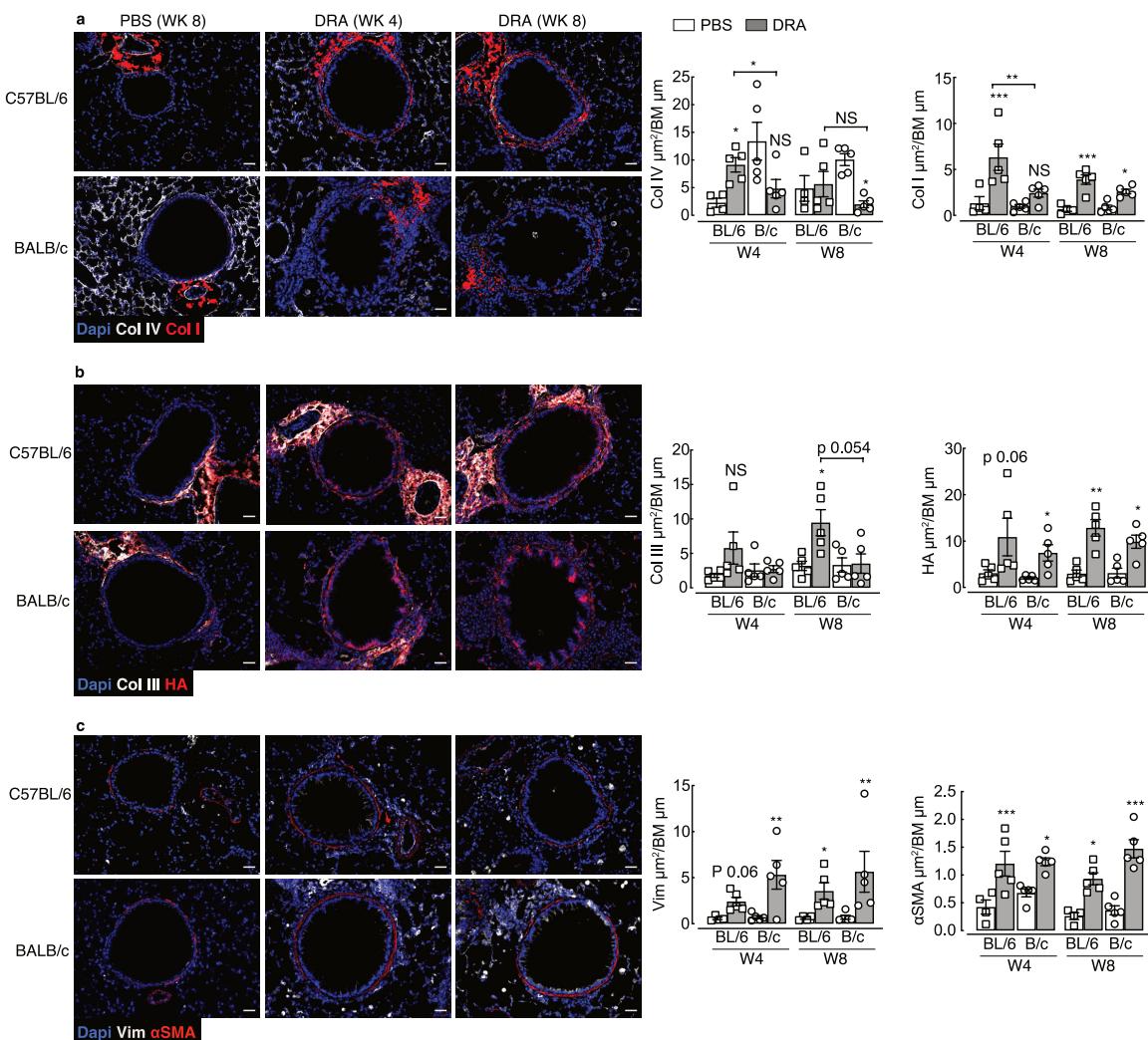
336

337 **Airway remodelling develops in both C57BL/6 and BALB/c mice despite different 338 allergic inflammation dynamics and immune signatures**

339 The relationship between inflammation and airway remodelling in asthma is still
340 controversial (reviewed by Saglani & Lloyd⁴², Boulet⁴³, Guida & Riccio⁴⁴). Some features
341 of remodelling may occur in parallel or even prior to excessive inflammation¹⁸⁻²⁰
342 although difficult to test in the clinical setting. Considering different immune cell
343 dynamics between BALB/c and C57BL/6 mice (**Figure 1 - 4**), we sought to determine
344 whether features of airway remodelling also varied between mouse strains. Goblet cell
345 hyperplasia is a key feature of remodelling in asthma and contributes to excessive airway
346 mucus secretion.

347

348


349 **Figure 5: Goblet cell numbers and total collagen increases around the airways following**
350 **exposure to DRA allergens.**

351 C57BL/6 or BALB/c mice were intranasally administered PBS or DRA twice a week up to 8 weeks,
352 and lungs collected for histological analysis 5 days after the last PBS or DRA at weeks 4 and 8.
353 **a**) Microscopy images of lung sections stained for PAS. Airways show PAS⁺ cells (purple) within
354 the epithelium. Graph shows quantification of numbers of PAS⁺ cells per length of basement
355 membrane. **b**) Microscopy images of lung sections stained for Masson's trichrome from C57BL/6
356 or BALB/c mice. Airways show accumulation of collagen (blue) below the basement membrane.
357 Graph shows quantification of the area of Masson's trichrome positive staining around the
358 airways normalised to basement membrane length. All images are representative of n=5 mice;
359 scale bar equals 50 μm. Datapoints depict individual animals with bars representing mean and
360 sem. Data are representative of 2 experiments and were analysed by ANOVA with Tukey's
361 multiple comparison test and significance level shown relative to PBS animals within each strain
362 and each time point. ***P<0.001, ****P<0.0001.

363

364

365 Equivalent increases in periodic acid schiff (PAS) positive cells, indicative of goblet cells,
366 were observed in both C57BL/6 and BALB/c mice at weeks 4 and 8 (**Figure 5a**). Airway
367 remodelling in asthmatic patients is also characterized by thickening of the basement
368 membrane and deposition of sub-epithelial extracellular matrix proteins. Following DRA
369 allergen exposure, increased collagen deposition, measured by Masson's Trichrome
370 stain, was also evident around the airways of both mouse strains (**Figure 5b**). Specific
371 immunostaining for components of the ECM (**Figure 6a, c**) previously described to be
372 regulated in asthma⁴⁵⁻⁴⁸, supported increases in total airway collagen following allergen
373 exposure (**Figure 5b**). However, fundamental differences in collagen expression between
374 mouse strains were also evident (**Figure 6a, b**).

375

376

377 **Figure 6: Changes to the ECM and muscle mass around the airway occur following exposure to**
 378 **DRA allergens.**

379 C57BL/6 or BALB/c mice were intranasally administered PBS or DRA twice a week up to 8 weeks,
 380 and lungs collected for immuno-staining 5 days after the last PBS or DRA at weeks 4 and 8. **a-c**
 381 Microscopy images of lung sections from C57BL/6 or BALB/c mice stained with DNA-binding
 382 dye (DAPI) blue; **(a)** Col IV white; Col I red; **(b)** Col III, white; hyaluronan (HA) binding protein,
 383 red; **(c)** vimentin (Vim) white; alpha smooth muscle actin (α SMA) red. Scale bar, 30 μ m. Images
 384 are representative of $n=5$ mice. Antibody positive staining area was quantified around the airway
 385 and normalised to basement membrane length and values are depicted in **a-c**. Data points depict
 386 individual animals with bars representing mean and sem. Data are representative of 2
 387 experiments and were analysed by ANOVA with Tukey's multiple comparison test and
 388 significance level showing comparisons between either PBS animals within each strain and each
 389 time point or C57BL/6 to BALB/c mice as indicated on the graph. * $P<0.05$, ** $P<0.01$,
 390 *** $P<0.001$.

391

392

393 Basement membrane protein collagen IV was highly expressed in the steady-state around
 394 the airways and alveoli of BALB/c mice compared to C57BL/6 (**Figure 6a**). Upon allergen

395 administration, collagen IV expression decreased over time in BALB/c mice, whereas
396 levels transiently increased in C57BL/6 mice. Additionally, a greater and more rapid
397 increase in airway collagen I in allergic C57BL/6 compared to BALB/c mice was observed
398 (**Figure 6a**) and similarly, accumulation of airway collagen III was significantly increased
399 only in allergic C57BL/6 mice (**Figure 6b**). In contrast, expression of a major
400 glycosaminoglycan component of the ECM, hyaluronan (HA), was increased in response
401 to allergen exposure independently of mouse strain (**Figure 6b**). Changes to collagen
402 composition around the airways of allergic mice was accompanied by an increase in the
403 number of vimentin positive cells (**Figure 6c**), potentially indicating an increase in
404 matrix-secreting fibroblasts.⁴⁹ Additionally, airway muscle mass was also examined and
405 revealed increases in allergic mice regardless of mouse strain (**Figure 6c**). Together, these
406 results demonstrate features of remodelling such as goblet cell hyperplasia, increased
407 smooth muscle mass and ECM changes occur in both C57BL/6 and BALB/c mice.
408 However, differences in deposition of specific collagen subtypes exists between mouse
409 strains.

410

411

412

413 **Discussion**

414 IL-17 and neutrophilia are often associated with severe asthma.¹⁰ Despite this, models of
415 allergic airway inflammation still largely focus on studying the regulation of allergen
416 induced type 2 immune responses, utilising BALB/c mice that generally show a strongly
417 skewed type 2 inflammatory response.²⁶ Here, we utilised a model of allergic airway
418 inflammation in which neutrophilia and IL-17 are dominant features, with inflammation
419 resistant to steroid intervention²⁸ and AHR unaffected by neutralisation of IL-5 or IL-13
420 cytokines.²⁷ As expected BALB/c mice developed rapid and prominent airway
421 inflammation that was skewed toward type 2 responses, but also greater IL-17
422 production, particularly by $\gamma\delta$ T cells. However, type 2 inflammation was reduced from
423 week 4 to week 8 perhaps reflecting the emergence of a tolerogenic response to allergens
424 in BALB/c mice.²⁵ C57BL/6 mice still responded to allergens, but Th2 and IL-17A
425 responses developed at a slower rate compared to BALB/c mice. Delayed type 2 cytokine

426 expression is potentially explained by an early but transient spike in IFN γ expression
427 only observed in C57BL/6 mice. Interestingly, increased IL-17A expression in C57BL/6
428 mice between weeks 4 and 8 coincided with a reduction in IFN γ levels in allergic mice,
429 which we have shown previously to be an important factor that allows the development
430 of a pulmonary type 2 immune response.⁵⁰ Additionally, IL-10 derived from T cells has
431 been shown to signal via alveolar macrophages leading to suppression of IFN γ -induced
432 airway epithelial disruption.⁵¹ No difference in expression of *Il10* between strains at
433 chronic time points was observed after DRA administration in our study. However,
434 temporal changes in IL-10 in C57BL/6 mice may contribute to suppression of IFN γ
435 alongside IL-17A.

436

437 IL-13 production is known to be higher in BALB/c versus C57BL/6 mice²⁶, as also shown
438 here, and is thought to account for increased AHR observed in BALB/c compared to the
439 relatively hypo-responsive C57BL/6 mice.^{22,52} In fact, type 2 cytokine producing cells,
440 rather than eosinophilic inflammation, appear to be key for the maintenance of AHR in
441 models of type 2 airway inflammation.^{53,23} In addition to enhanced type 2 cytokine
442 production, pathway analysis suggested a reduced capacity (in C57BL/6 mice) for
443 antigen-presenting cell (APC) mediated activation of T cells via costimulatory molecules
444 PD-1/PDL-1 and OX40/OX40L, despite enhanced 'DC maturation' pathways from
445 NanoString analysis in these mice. Different DC subsets can dictate the allergic immune
446 response and targeting either DC activation or molecules involved in antigen
447 presentation may be a fruitful approach to therapeutically target allergic asthma, and
448 specifically different immune phenotypes of disease.^{54,55} PDL1 is known to enhance AHR
449 and Th2 cytokine production in allergic mice.⁵⁶ Thereby a reduction in PD1-PDL1
450 signalling, alongside reduced OX40 signalling may explain the reduced Th2 response in
451 C57BL/6 mice compared to BALB/c. Future research identifying specific dendritic cell
452 phenotypes in both strains during AAI could prove useful for understanding pathways to
453 target AHR and inflammation in asthma.

454

455 In this model of Th2/Th17 allergic airway inflammation, both BALB/c and C57BL/6 mice
456 developed a similar degree of airway remodelling in response to allergen exposure.
457 However, our study reveals intriguing differences in ECM composition between mouse

458 strains, not only in response to allergens but also in the steady state. One could anticipate
459 that changes in collagen composition, particularly centred around the ratios of collagen
460 I and III, could profoundly alter lung function and along with varied immune responses,
461 may contribute to well reported differences in AHR measurement between mouse
462 strains.^{22,52} Both collagen I and III play major roles in the structural integrity of tissues
463 and are often co-expressed within the tissue, with Col I contributing to tensile strength,
464 whilst Col III allows tissue flexibility.⁵⁷ Collagen III can modulate scar formation⁵⁸ and
465 during early active fibrosis levels of Col III significantly increase.^{59,60} However, an
466 increased ratio between type I and type III collagen occurs in infants diagnosed with
467 chronic lung disease proceeding respiratory distress syndrome.⁵⁹ Additionally, a lack of
468 collagen III can disturb the development of collagen fibril formation resulting in
469 functional failure of the organ.^{61,62} Here, allergic BALB/c mice appeared to have
470 preferential increase in collagen I around the airways, with no significant changes to
471 collagen III, although we cannot rule out expression of collagen III at time points earlier
472 than week 4. A failure to induce collagen III during remodelling processes may in fact
473 perturb lung function, perhaps contributing to increases in AHR often observed in
474 BALB/c mice in response to allergen challenge.^{22,26,52} Differential dynamics in col IV
475 expression between mouse strains is also intriguing, as Col IV is crucial for barrier
476 formation anchoring airway epithelial cells. The rapid loss of Col IV in BALB/c mice may
477 relate to a significant increased vimentin-positive cells around the airway at week 4, and
478 potentially enhanced epithelial mesenchymal transition leading to a more rapid
479 remodelling response in BALB/c versus C57BL/6. Although both mouse strains feature a
480 similar magnitude of allergen-induced remodelling, further analysis of the early
481 dynamics, pre-week 4, and mechanisms leading to changes in the ECM in these two
482 mouse strains may reveal important features of tissue remodelling in disease.

483

484 Remodelling is typically examined as a change in epithelial goblet hyperplasia, increased
485 muscle mass and total collagen, but here our study in genetically distinct mouse strains,
486 highlights that the term remodelling is much more complicated. Just as inflammation
487 varies greatly between asthmatic cohorts, airway remodelling too may be considered an
488 “umbrella” term, whereby different pathways are likely to be more or less important in
489 different asthma phenotypes. A greater understanding of how ECM composition changes

490 can alter lung mechanics/function, but also how the differing ECM components can
491 regulate immune cell recruitment and activation, will help us to understand the
492 development of lung diseases like asthma and whether approaches to target remodelling
493 will prove useful in treating such chronic inflammatory diseases. Furthermore, it is
494 interesting to speculate that different genetic strains of mice, rather than using different
495 allergens or timings of allergen exposure, could prove more useful for modelling different
496 trajectories of allergic asthma in people.

497

498 **Methods**

499 **Animals and Ethics**

500 Wild-type (BALB/c or C57BL/6J) mice were obtained from a commercial supplier
501 (Envigo, Hillcrest, UK). Experimental mice, all female, were between 7-10 weeks old at
502 the start of the experiment and were housed in individually ventilated cages maintained
503 in groups of 5 animals in specific pathogen-free facilities at the University of Manchester.
504 Mice were not randomised in cages, but each cage was randomly assigned to a treatment
505 group. Sample size was calculated on the basis of the number of animals needed for
506 detection of a 25% change in Masson's trichrome positive area around the airway in PBS
507 versus allergic mice, with a P value of <0.05, based on pilot experiments carried out
508 with 3 mice per group. All animal experiments were performed in accordance with the
509 UK Animals (Scientific Procedures) Act of 1986 under a Project License (70/8548)
510 granted by the UK Home Office and approved by the University of Manchester Animal
511 Welfare and Ethical Review Body. Euthanasia was performed by asphyxiation in a rising
512 concentration of carbon dioxide.

513

514 **Model of allergic airway inflammation**

515 Allergic airway inflammation was induced in mice in a similar manner as has been
516 described previously.²⁷ Allergen DRA cocktail comprising of 5 µg House Dust Mite
517 (*Dermatophagoides pteronyssinus*, 5450 EU, 69.23 mg per vial), 50 µg Ragweed
518 (*Ambrosia artemisiifolia*), 5 µg *Aspergillus fumigatus* extracts (Greer Laboratories, Lenoir,
519 NC, USA) were freshly prepared prior to each inoculation. Mice were briefly
520 anaesthetised via inhalation of isoflurane, and 20 µL of DRA cocktail or PBS were given
521 via intranasal inoculation twice weekly for up to 8 weeks. Mice were rested for 5 days
522 prior to performing BAL and collecting lung tissue.

523

524 **Isolation of cells from the BAL and lung tissue**

525 Following exsanguination, BAL cells were obtained through cannulation of the trachea
526 and washing the lungs with 0.4 mL PBS (Sigma Aldrich, St. Louis, MO, USA) containing
527 0.25 % BSA (Sigma Aldrich) (four washes). Lungs were processed as previously
528 described.⁴⁰ Briefly, a right lobe was removed and minced in 1 mL of HBSS buffer

529 containing 0.4 U mL⁻¹ Liberase TL (Sigma Aldrich) and 80 U mL⁻¹ DNase type I
530 (ThermoFisher Scientific, Waltham, MA, USA) for 25 min in a 37°C shaking incubator.
531 Digestion was stopped with 2 % FBS (ThermoFisher Scientific) and 2 mM EDTA prior to
532 passing the suspension through a 70 µm cell strainer (Greiner Bio-One, Stonehouse, UK).
533 Red blood cells were lysed (Sigma) and total live BAL and lung cell counts assessed with
534 Viastain AOPI (Nexcelom Bioscience LLC, Lawrence, MA, USA) using a Cellometer
535 Auto2000 automated cell counter (Nexcelom Bioscience LLC).

536

537 **Flow Cytometry**

538 Equal cell numbers of each lung and BAL sample were stained for flow cytometry. Cells
539 were washed with ice-cold PBS and stained with Live/Dead Aqua or Blue (ThermoFisher
540 Scientific) for 10 min at room temperature. All samples were then incubated with Fc
541 block (5 µg mL⁻¹ CD16/CD32 (BD Biosciences, San Diego, CA, USA) and 0.1 % mouse
542 serum in FACS buffer (PBS containing 0.5 % BSA and 2 mM EDTA (ThermoFisher
543 Scientific)) for 20 min before staining for specific surface markers with fluorescence-
544 conjugated antibodies for 25 min at 4°C (**Table 1**) Following surface staining, cells were
545 fixed with ICC fix (Biolegend, San Diego, CA, USA) and stored at 4°C until intracellular
546 staining was performed or cells were acquired. For intracellular cytokine staining, cells
547 were stimulated for 4h at 37°C with PMA (phorbol myristate acetate; 0.5 µg mL⁻¹; Sigma
548 Aldrich) and ionomycin (1 µg mL⁻¹)(Sigma Aldrich) and for 3 h at 37°C with Brefaldin A
549 (10 µg mL⁻¹; Biolegend). Cell surfaces were stained and cells fixed as described above.
550 All cells were permeabilized (eBioscience, San Diego, CA, USA) then stained with
551 antibodies for intracellular cytokines (**Table 1**). Cells were identified with the following
552 markers: eosinophils F4/80⁺ CD11c⁻ CD11b⁺ SigF⁺; neutrophils Ly6G⁺ CD11b⁺ CD11c⁻;
553 T cells TCR β ⁺ TCR $\gamma\delta$ ⁻ and either CD4⁺ or CD8⁺; gamma delta T cells TCR β ⁻ TCR $\gamma\delta$ ⁺ CD4⁻
554 CD8⁻; innate lymphoid cells (ILCs) CD90⁺ ICOS⁺ Lineage⁻ (CD11b, Ly6G, Ly6C, CD11c,
555 Ter119, NK1.1, B220, CD3). All samples were acquired with a FACS Canto II or 5 laser
556 Fortessa with BD FACS Diva software and analysed with FlowJo software (versions 9 and
557 10; BD Biosciences).

558

559

560 **RNA extraction and qRT-PCR**

561 One right lung lobe was stored in RNAlater (ThermoFisher Scientific) prior to
562 homogenization in Qiazol reagent (Qiagen, Hilden, Germany). RNA was prepared
563 according to manufacturer's instructions and stored at -70 °C. Reverse transcription of
564 0.2-0.5 µg total RNA was performed using 50 U Tetro reverse transcriptase (Bioline,
565 London, UK), 40 mM dNTPs (Promega), 0.5 µg primer for cDNA synthesis (Sigma
566 Aldrich) and RNasin inhibitor (Promega, Madison, WI, USA). The transcripts for genes of
567 interest were measured by real-time PCR with a Lightcycler 480 II system (Roche, Basel,
568 Switzerland) and a Brilliant III SYBR Green Master mix (Agilent Technologies, Santa
569 Clara, CA, USA) with specific primer pairs (**Table 2**). mRNA amplification was analysed
570 by second derivative maximum algorithm (LightCycler 480 Sw 1.5; Roche) and
571 expression of the gene of interest was normalised to the geometric mean of three
572 housekeeping genes *Rn45s*, *Rpl13a*, *Gapdh* (**Table 2**).

573

574 **Transcriptome profile and associated analysis**

575 Quality of RNA extracted from lung tissue, as described above, was assessed with Agilent
576 2200 TapeStation system prior to downstream analyses, samples with an RIN value of
577 <5.5 were excluded. RNA concentration was determined using Qubit TM RNA BR Assay
578 Kit (ThermoFisher Scientific) and 100 ng RNA (per sample) run on a Nanotstring
579 nCounter R FLEC system using the Myeloid Innate Immunity v2 panel (XT-CSO-MMII2-
580 12). Note, the probes in this panel do not distinguish between *Chil3* and *Chil4*. Raw
581 counts were uploaded onto nSolver version 4.0 using default settings. Non-normalised
582 counts were exported, and subsequent analyses performed in R (version 3.6.3) using
583 RStudio Version 1.2.5033 (2009-2019 RStudio, Inc, Boston, MA, USA). Positive controls
584 were analysed to ensure there was clear resolution at variable expression levels and
585 negative controls were used to set a minimum detection threshold which was then
586 applied to all samples. Data were normalised with EdgeR using the Upper Quartile
587 method and differential expression of genes calculated via linear modelling accounting
588 for sample quality weights with Empirical Bayes smoothing using the limma-voom R
589 packages.⁶³ All genes expressed above the background threshold were used for principal
590 component analysis (PCA). Genes with an absolute fold change of greater than 0.5 and
591 a significance value of under 0.05 after correction for multiple comparisons using the

592 Benjamini-Yekuteli method were defined as “differentially expressed” and taken
593 forward for further analysis. Heatmaps were then generated from scaled normalized
594 counts of DE genes using the ComplexHeatmaps R package. The networks and functional
595 analyses of DE genes were generated with Ingenuity Pathway Analyser (IPA; QIAGEN
596 Inc., <https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis>).
597 Within the IPA software no tissue filtering was used and the user dataset was defined as
598 the reference. Pathway data were then imported into R for visualisation using the ggplot
599 package.

600

601 **Generating Anti-Ym2 and determining antibody specificity**

602 Anti-Ym2 specific antibodies were generated by Cambridge Research Biochemicals
603 (Billingham, UK). The 9 amino acid sequence at the N-terminal (CKASYRGEL) were used
604 as the immunogen as it has almost no homology to the Ym1 sequence. Bacterial
605 optimised expression plasmids for Ym1 and Ym2 were purchased from (Genscript,
606 Piscataway, NJ, USA). Plasmids were then transfected into competent *E. Coli* (BL21) using
607 heat shock followed antibiotic selection against Ampicillin (Amp; 25 mg mL⁻¹) and
608 Chloramphenicol (Chl; 34 mg mL⁻¹). To generate recombinant protein a small scraping
609 of the stock sample was expanded in LB media including antibiotics until optical density
610 reached between 0.6-1.0 at which point IPTG (0.1 M) was added to the cultures. The
611 OD was kept under 1.0 by diluting the culture with fresh media as required and left
612 overnight. Thereafter bacteria were pelleted and resuspended in loading buffer
613 containing DTT (200 mM; ThermoFischer Scientific).

614

615 **Western Blotting**

616 Lysed Ym1 or Ym2 transfected *E.coli* cells and murine BAL were denatured in the
617 presence of DTT (200 mM; Thermo Fischer Scientific) for 5 mins at 95°C. Each sample
618 (2-10 µL) or protein ladder (Seeblue; ThermoFischer Scientific) was separated on Bis-Tris
619 4-12 % gradient gel with MES buffer (ThermoFischer Scientific) before transfer onto a
620 PVDF membrane. The membrane was washed in distilled water followed by incubation
621 in blocking buffer (5 % BSA in PBST (0.05 % Tween-20 in PBS)) for 60 mins at room
622 temperature on a rocking platform. Primary antibodies were used at 1:500 (rabbit anti-
623 mouse Ym2, polyclonal (custom made) or goat anti-mouse Ym1 polyclonal; R&D

624 Systems, Minneapolis, MN, USA) and incubated at room temperature over-night on a
625 rocking platform. The membrane was then washed in PBST followed by secondary
626 antibody detection (1:1000 anti-Rabbit IgG Cy3 and Streptavidin-Cy3; ThermoFisher
627 Scientific) for one hour at room temperature. Membranes were imaging using a Gel Doc
628 (Azure Biosystems, Cambridge Bioscience, Cambridge, UK).

629

630 **Histology and Immunostaining**

631 The left lung lobe was fixed perfused with 10 % neutral buffered formalin (Sigma Aldrich)
632 and was incubated overnight before being transferred to 70 % ethanol. Lungs were
633 processed and embedded in paraffin, then sectioned (5 μ m) and stained with Masson's
634 trichrome (MT) or periodic acid schiff (PAS) stains using standard protocols. Images were
635 captured with a Leica microscope with digital DMC2900 camera. For immunostaining
636 with antibodies, lung sections were deparaffinised and heat-mediated antigen retrieval
637 performed using Tris-EDTA buffer (10 mM Tris Base, 1 mM EDTA, 0.05 % Tween-20 pH
638 8.0; incubation 20 min 95°C). Non-specific protein was blocked with 2 % normal
639 donkey serum (Sigma Aldrich) in PBS containing 0.05 % Tween-20 and 1 % BSA. If a
640 biotin labelled antibody or probe was used, avidin biotin block (ThermoFisher Scientific)
641 was performed prior to an overnight incubation at 4°C with primary antibodies (Table 3).
642 Sections were washed in PBS before incubation with secondary antibodies (**Table 3**) for
643 1 hr at room temperature followed by mounting with DAPI containing fluoromount
644 (Southern Biotech, Birmingham, AL, USA). Images were captured with an EVOS FL
645 imaging system (ThermoFisher Scientific). Analysis of images was performed using
646 ImageJ software (version 2.09.0-rc69/1.52p) on sections where sample identification was
647 blinded for the investigator and airways analysed had to be intact and fit within a single
648 microscope field of view 480 μ m x 360 μ m. Goblet cells were visualised on PAS-stained
649 sections and numbers of PAS+ cells counted per airway and normalised to the length the
650 airway basement membrane. Total collagen area was calculated by measuring the area
651 of Masson's trichrome positive stain (blue) around the airway and values were normalised
652 to basement membrane length. For calculation of collagen, hyaluronan, vimentin and
653 α SMA area, background autofluorescence was subtracted from all images based on pixel
654 intensities of sections stained with secondary antibodies only. A region of interest was
655 drawn parallel to the airway basement membrane at a distance of 50 μ m. A threshold

656 was applied to all images to incorporate positively stained pixels and area of positively
657 stained pixels within the region of interest calculated and normalised to the length of the
658 basement membrane. All areas of the airway that contained a blood vessel was excluded
659 from analysis to ensure measurements specifically related to airways and not vasculature.
660 For all image analysis, between 5-15 airways were measured per mouse.

661

662 **Quantification of Ym1 and BRP-39**

663 The levels of Ym1 and BRP-39 in the serum and BAL were measured by sandwich ELISA,
664 with DuoSet ELISA kits (R&D Systems) as per manufacturers recommendation.

665

666 **Statistical analysis**

667 Statistical analysis was performed using JMP Pro 12.2.0 for Mac OS X (SAS Institute Inc.,
668 Cary, NC, USA). Normal distribution of data was determined by optical examination of
669 residuals, and each group was tested for unequal variances using Welch's test.
670 Differences between groups were determined by analysis of variance (ANOVA) followed
671 by a Tukey-Kramer HSD multiple comparison test or unpaired two-tailed Student's t-test
672 as indicated in figure legends. In some data sets, data were log transformed to achieve
673 normal distribution. Differences were considered statistically significant for *P* values of
674 less than 0.05.

675 **Acknowledgments**

676 This work was supported by the Medical Research Foundation UK jointly with Asthma
677 UK (MRFAUK-2015-302 to TES), the Medical Research Council UK (MR/P02615X/1 to
678 DR and MR/K01207X/1 to JEA) and the Wellcome Trust (106898/A/15/Z to JEA). The
679 authors would like to thank Brian Chan for his technical support, Alistair Chenery and
680 Anthony Day for *E. coli* expressing recombinant Ym1 and Ym2 and Conor Finlay for
681 critical reading of the manuscript. We also thank the Flow Cytometry, Histology and
682 Biological Services core facilities at the University of Manchester.

683

684 **Conflict of Interest**

685 The authors declare no competing financial interests.

686

687 **Author Contributions**

688 **JEP:** Data curation; investigation; methodology; formal analysis; writing – original draft;
689 Writing – reviewing and editing. **SP:** investigation; methodology. **DR:** investigation;
690 writing – reviewing and editing. **JEA:** Funding acquisition; investigation; writing –
691 reviewing and editing. **TES:** Conceptualisation; Investigation; methodology; project
692 administration; supervision; funding acquisition; writing – original draft; writing – review
693 and editing.

694

695

696

697

698

699

700

701

702

703

704

705

706

707 **References**

708 1 The Global Asthma Report, Auckland, New Zealand. *New Zealand* 2018; 1–92.

709 2 Custovic A, Henderson J, Simpson A. Does understanding endotypes translate to
710 better asthma management options for all? *J Allergy Clin Immunol* 2019; **144**: 25–
711 33.

712 3 Pavord ID, Beasley R, Agusti A et al. After asthma: redefining airways diseases.
713 *Lancet* 2018; **391**: 350–400.

714 4 Kuruvilla ME, Lee FE-H, Lee GB. Understanding Asthma Phenotypes, Endotypes,
715 and Mechanisms of Disease. *Clin Rev Allergy Immunol* 2019; **56**: 219–233.

716 5 McGregor MC, Krings JG, Nair P, Castro M. Role of Biologics in Asthma. *Am J
717 Respir Crit Care Med* 2019; **199**: 433–445.

718 6 Hansbro PM, Kaiko GE, Foster PS. Cytokine/anti-cytokine therapy - novel
719 treatments for asthma? *Br J Pharmacol* 2011; **163**: 81–95.

720 7 Pavord ID, Korn S, Howarth P et al. Mepolizumab for severe eosinophilic asthma
721 (DREAM): a multicentre, double-blind, placebo-controlled trial. *Lancet* 2012; **380**:
722 651–659.

723 8 Haldar P, Brightling CE, Singapuri A et al. Outcomes after cessation of
724 mepolizumab therapy in severe eosinophilic asthma: a 12-month follow-up
725 analysis. *J Allergy Clin Immunol* 2014; **133**: 921–923.

726 9 Busse WW, Holgate S, Kerwin E et al. Randomized, double-blind, placebo-
727 controlled study of brodalumab, a human anti-IL-17 receptor monoclonal
728 antibody, in moderate to severe asthma. *Am J Respir Crit Care Med* 2013; **188**:
729 1294–1302.

730 10 Lindén A, Dahlén B. Interleukin-17 cytokine signalling in patients with asthma.
731 *Eur Respir J* 2014; **44**: 1319–1331.

732 11 Beers MF, Morrisey EE. The three R's of lung health and disease: repair,
733 remodeling, and regeneration. *J Clin Invest* 2011; **121**: 2065–2073.

734 12 Hansbro PM, Kim RY, Starkey MR et al. Mechanisms and treatments for severe,
735 steroid-resistant allergic airway disease and asthma. *Immunol Rev* 2017; **278**: 41–
736 62.

737 13 Hoshino M, Takahashi M, Takai Y, Sim J, Aoike N. Inhaled corticosteroids
738 decrease vascularity of the bronchial mucosa in patients with asthma. *Clin Exp
739 Allergy* 2001; **31**: 722–730.

740 14 Laitinen A, Altraja A, Kämpe M, Linden M, Virtanen I, Laitinen LA. Tenascin is
741 increased in airway basement membrane of asthmatics and decreased by an
742 inhaled steroid. *Am J Respir Crit Care Med* 1997; **156**: 951–958.

743 15 Hoshino M, Takahashi M, Takai Y, Sim J. Inhaled corticosteroids decrease
744 subepithelial collagen deposition by modulation of the balance between matrix
745 metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in
746 asthma. *J Allergy Clin Immunol* 1999; **104**: 356–363.

747 16 Flood-Page P, Menzies-Gow A, Phipps S et al. Anti-IL-5 treatment reduces
748 deposition of ECM proteins in the bronchial subepithelial basement membrane of
749 mild atopic asthmatics. *J Clin Invest* 2003; **112**: 1029–1036.

750 17 Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway
751 inflammation abrogate regulatory T-cell-mediated tolerance and contribute to
752 airway remodeling. *Mucosal Immunol* 2013; **6**: 335–346.

753 18 Henschen M, Stocks J, Brookes I, Frey U. New aspects of airway mechanics in
754 pre-term infants. *Eur Respir J* 2006; **27**: 913–920.

755 19 Saglani S, Payne DN, Zhu J et al. Early detection of airway wall remodeling and
756 eosinophilic inflammation in preschool wheezers. *Am J Respir Crit Care Med*
757 2007; **176**: 858–864.

758 20 Lezmi G, Gosset P, Deschildre A et al. Airway Remodeling in Preschool Children
759 with Severe Recurrent Wheeze. *Am J Respir Crit Care Med* 2015; **192**: 164–171.

760 21 Donohue JF, Ohar JA. Effects of corticosteroids on lung function in asthma and
761 chronic obstructive pulmonary disease. *Proc Am Thorac Soc* 2004; **1**: 152–160.

762 22 Van Hove CL, Maes T, Cataldo DD et al. Comparison of acute inflammatory and
763 chronic structural asthma-like responses between C57BL/6 and BALB/c mice. *Int
764 Arch Allergy Immunol* 2009; **149**: 195–207.

765 23 Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation
766 and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33
767 pathway. *Am J Respir Crit Care Med* 2009; **179**: 772–781.

768 24 Hirota JA, Ask K, Fritz D et al. Role of STAT6 and SMAD2 in a model of chronic
769 allergen exposure: a mouse strain comparison study. *Clin Exp Allergy* 2009; **39**:
770 147–158.

771 25 Shinagawa K. Mouse Model of Airway Remodeling: Strain Differences. *Am J
772 Respir Crit Care Med* 2003; **168**: 959–967.

773 26 Gueders MM, Paulissen G, Crahay C et al. Mouse models of asthma: a
774 comparison between C57BL/6 and BALB/c strains regarding bronchial
775 responsiveness, inflammation, and cytokine production. *Inflamm Res* 2009; **58**:
776 845–854.

777 27 Goplen N, Karim MZ, Liang Q et al. Combined sensitization of mice to extracts of
778 dust mite, ragweed, and *Aspergillus* species breaks through tolerance and
779 establishes chronic features of asthma. *J Allergy Clin Immunol* 2009; **123**: 925–
780 32.e11.

781 28 Liu R, Bai J, Xu G *et al.* Multi-allergen challenge stimulates steroid-resistant airway
782 inflammation via NF-κB-mediated IL-8 expression. *Inflamm* 2013; **36**: 845–854.

783 29 Voskamp AL, Kormelink TG, van Wijk RG *et al.* Modulating local airway immune
784 responses to treat allergic asthma: lessons from experimental models and human
785 studies. *Semin Immunopathol* 2020; **42**: 95–110.

786 30 Rosenberg HF, Druey KM. Modeling asthma: Pitfalls, promises, and the road
787 ahead. *J Leukoc Biol* 2018; **104**: 41–48.

788 31 Sahu N, Morales JL, Fowell D, August A. Modeling susceptibility versus resistance
789 in allergic airway disease reveals regulation by Tec kinase Itk. *PLoS ONE* 2010; **5**:
790 e11348.

791 32 De Vooght V, Vanoirbeek JA, Luyts K, Haenen S, Nemery B, Hoet PHM. Choice
792 of Mouse Strain Influences the Outcome in a Mouse Model of Chemical-Induced
793 Asthma. *PLoS ONE* 2010; **5**: e12581–9.

794 33 James AJ, Reinius LE, Verhoek M *et al.* Increased YKL-40 and Chitotriosidase in
795 Asthma and Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med*
796 2016; **193**: 131–142.

797 34 Liu L, Zhang X, Liu Y *et al.* Chitinase-like protein YKL-40 correlates with
798 inflammatory phenotypes, anti-asthma responsiveness and future exacerbations.
799 *Respir Res* 2019; **20**: 95.

800 35 Ober C, Tan Z, Sun Y *et al.* Effect of variation in *CHI3L1* on serum YKL-40 level,
801 risk of asthma, and lung function. *N Engl J Med* 2008; **358**: 1682–1691.

802 36 Konradsen JR, James A, Nordlund B *et al.* The chitinase-like protein YKL-40: a
803 possible biomarker of inflammation and airway remodeling in severe pediatric
804 asthma. *J Allergy Clin Immunol* 2013; **132**: 328–35.e5.

805 37 Tong X, Wang D, Liu S *et al.* The YKL-40 protein is a potential biomarker for
806 COPD: a meta-analysis and systematic review. *COPD* 2018; **13**: 409–418.

807 38 Chupp GL, Lee CG, Jarjour N *et al.* A chitinase-like protein in the lung and
808 circulation of patients with severe asthma. *N Engl J Med* 2007; **357**: 2016–2027.

809 39 Furuhashi K, Suda T, Nakamura Y *et al.* Increased expression of YKL-40, a
810 chitinase-like protein, in serum and lung of patients with idiopathic pulmonary
811 fibrosis. *Respir Med* 2010; **104**: 1204–1210.

812 40 Sutherland TE, Ruckel D, Logan N, Duncan S, Wynn TA, Allen JE. Ym1 induces
813 RELM α and rescues IL-4R α deficiency in lung repair during nematode infection.
814 *PLoS Pathog* 2018; **14**: e1007423.

815 41 Smet M, Van Hoecke L, De Beuckelaer A *et al.* Cholesterol-sensing liver X
816 receptors stimulate Th2-driven allergic eosinophilic asthma in mice. *Immun
817 Inflamm Dis* 2016; **4**: 350–361.

818 42 Saglani S, Lloyd CM. Novel concepts in airway inflammation and remodelling in
819 asthma. *Eur Respir J* 2015; **46**: 1796–1804.

820 43 Boulet L-P. Airway remodeling in asthma: update on mechanisms and therapeutic
821 approaches. *Curr Opin Pulm Med* 2018; **24**: 56–62.

822 44 Guida G, Riccio AM. Immune induction of airway remodeling. *Semin Immunol*
823 2019; **46**: 101346.

824 45 Chakir J, Shannon J, Molet S et al. Airway remodeling-associated mediators in
825 moderate to severe asthma: effect of steroids on TGF- β , IL-11, IL-17, and type I
826 and type III collagen expression. *J Allergy Clin Immunol* 2003; **111**: 1293–1298.

827 46 Benayoun L, Druilhe A, Dombret M-C, Aubier M, Pretolani M. Airway structural
828 alterations selectively associated with severe asthma. *Am J Respir Crit Care Med*
829 2003; **167**: 1360–1368.

830 47 Johnson PRA, Burgess JK, Underwood PA et al. Extracellular matrix proteins
831 modulate asthmatic airway smooth muscle cell proliferation via an autocrine
832 mechanism. *J Allergy Clin Immunol* 2004; **113**: 690–696.

833 48 Lauer ME, Majors AK, Comhair S et al. Hyaluronan and Its Heavy Chain
834 Modification in Asthma Severity and Experimental Asthma Exacerbation. *J Biol
835 Chem* 2015; **290**: 23124–23134.

836 49 Goodpaster T, Legesse-Miller A, Hameed MR, Aisner SC, Randolph-Habecker J,
837 Coller HA. An immunohistochemical method for identifying fibroblasts in
838 formalin-fixed, paraffin-embedded tissue. *J Histochem Cytochem* 2008; **56**: 347–
839 358.

840 50 Ajendra J, Chenery AL, Parkinson JE et al. IL-17A both initiates, via IFN γ
841 suppression, and limits the pulmonary type-2 immune response to nematode
842 infection. *Mucosal Immunol* 2020; **18**: 604–968.

843 51 Branchett WJ, Stölting H, Oliver RA et al. A T cell-myeloid IL-10 axis regulates
844 pathogenic IFN- γ -dependent immunity in a mouse model of type 2-low asthma. *J
845 Allergy Clin Immunol* 2020; **145**: 666–678.e9.

846 52 Kelada SNP, Wilson MS, Tavarez U et al. Strain-dependent genomic factors affect
847 allergen-induced airway hyperresponsiveness in mice. *Am J Respir Cell Mol Biol*
848 2011; **45**: 817–824.

849 53 Walter DM, McIntire JJ, Berry G et al. Critical role for IL-13 in the development of
850 allergen-induced airway hyperreactivity. *J Immunol* 2001; **167**: 4668–4675.

851 54 Cook PC, MacDonald AS. Dendritic cells in lung immunopathology. *Semin
852 Immunopathol* 2016; **38**: 449–460.

853 55 Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in
854 asthma. *Expert Rev Clin Immunol* 2013; **9**: 899–919.

855 56 McAlees JW, Lajoie S, Dienger K et al. Differential control of CD4⁺ T-cell subsets
856 by the PD-1/PD-L1 axis in a mouse model of allergic asthma. *Eur J Immunol* 2015;
857 **45**: 1019–1029.

858 57 Silver FH, Freeman JW, Seehra GP. Collagen self-assembly and the development
859 of tendon mechanical properties. *J Biomech* 2003; **36**: 1529–1553.

860 58 Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing
861 and Its Impact on Abnormal Scarring. *Adv Wound Care (New Rochelle)* 2015; **4**:
862 119–136.

863 59 Shoemaker CT, Reiser KM, Goetzman BW, Last JA. Elevated ratios of type I/III
864 collagen in the lungs of chronically ventilated neonates with respiratory distress.
865 *Pediatr Res* 1984; **18**: 1176–1180.

866 60 Bateman ED, Turner-Warwick M, Adelmann-Grill BC. Immunohistochemical
867 study of collagen types in human foetal lung and fibrotic lung disease. *Thorax*
868 1981; **36**: 645–653.

869 61 Asgari M, Latifi N, Heris HK, Vali H, Mongeau L. *In vitro* fibrillogenesis of
870 tropocollagen type III in collagen type I affects its relative fibrillar topology and
871 mechanics. *Sci Rep* 2017; **7**: 1392–10.

872 62 Kuivaniemi H, Tromp G. Type III collagen (COL3A1): Gene and protein structure,
873 tissue distribution, and associated diseases. *Gene* 2019; **707**: 151–171.

874 63 Ritchie ME, Phipson B, Wu D et al. limma powers differential expression analyses
875 for RNA-sequencing and microarray studies. *Nucleic Acids Res* 2015; **43**: e47.

876

877

878
879

Table 1: Antibodies used for flow cytometry analysis

Antigen	Antibody Clone	Isotype	Source	880 881
<i>Ly6G</i>	1A8	Rat IgG2a κ	Biolegend	
<i>CD11b</i>	M1/70	Rat IgG2b κ	Biolegend	883
<i>CD11c</i>	N418	Armenian Hamster IgG	Biolegend	
<i>F4/80</i>	BM8	Rat IgG2a κ	Biolegend	885
<i>CD64</i>	X54-5/7.1	Mouse IgG1 κ	Biolegend	---
<i>SiglecF</i>	E50-2440	Rat IgG2a κ	BD Biosciences	887 889
<i>I-A/I-E</i>	M5/144.15.2	Rat IgG2b κ	Biolegend	---
<i>TCRβ</i>	H57-597	Armenian Hamster IgG	eBioscience	890
<i>TCRγδ</i>	GL3	Armenian Hamster IgG	Biolegend	
<i>CD4</i>	GK1.5	Rat IgG2b κ	Biolegend	892
<i>CD8</i>	53-6.7	Rat IgG2a κ	Biolegend	
<i>CD3</i>	17A2	Rat IgG2b κ	Biolegend	894 895
<i>B220</i>	RA3-682	Rat IgG2a κ	Biolegend	
<i>Ter119</i>	Ter-119	Rat IgG2b κ	Biolegend	896 897
<i>NK1.1</i>	PK136	Mouse IgG2a κ	Biolegend	
<i>ICOS</i>	C398.4A	Armenian Hamster IgG	Biolegend	899
<i>CD90.2</i>	30-H12	Rat IgG2b κ	Biolegend	
<i>IL-4</i>	11b11	Rat IgG1 κ	Biolegend	901
<i>IL-13</i>	eBio13A	Rat IgG1 κ	eBioscience	
<i>IL-17a</i>	TC11-18H10.1	Rat IgG1 κ	Biolegend	902 903
<i>IFNγ</i>	XMG1.2	Rat IgG1 κ	Biolegend	---

906
907
908
909
910
911
912

Table 2: Sequences of primers for measurement of mRNA expression via quantitative RT-PCR

Gene	Forward Primer	Reverse Primer
<i>Il4</i>	CCTGCTCTTCTTCCTGAATG	CACATCCATCTCCGTGCAT
<i>Il13</i>	CCTCTGACCCTTAAGGAGCTTAT	CGTTGCACAGGGGAGTCT
<i>Il5</i>	ACATTGACCGCCAAAAAGAG	CACCATGGAGCAGCTCAG
<i>Il17a</i>	GCTCCAGAAGGCCCTCAGACT	CCAGCTTCCCTCCGCATTGA
<i>Ifng</i>	GGAGGAAGTGGCAAAAGGAT	TTCAAGACTTCAAAGAGTCTGAGG
<i>Chil1</i>	CCAGCCAGGCAGAGAGAAC	GCCACCTTCCCTGCTGACA
<i>Chil3</i>	TCTGGTGAAGGAAATCGTAAA	GCAGCCTTGGAAATGTCTTCTC
<i>Chil4</i>	TCTGGTCAGGAAATCGTAAA	GCAGCCTTGGAAATGTGGTCAAAG
<i>Rn45s</i>	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG
<i>Rpl13a</i>	CATGAGGTGGGTGGAAGTA	GCCTGTTCCGTAACCTCAA
<i>Gapdh</i>	ATGACATCAAGAAGGTGGT	CATACCAGGAAATGAGCTTG

913
914

915
916

Table 3: Antibodies used for immuno-histological analysis

Antigen	Antibody Clone	Dilution	Source
<i>Ym1</i>	Goat polyclonal - Biotinylated	1:100	R&D – BAF2446
<i>Ym2</i>	Rabbit polyclonal	1:1000	Home-made
<i>Collagen I</i>	Goat polyclonal	1:200	Cambridge Bioscience – 1310-01
<i>Collagen III (N-terminal)</i>	Rabbit polyclonal	1:300	Proteintech – 22734-1-AP
<i>Collagen IV alpha 1</i>	Rabbit polyclonal	1:200	Novus Biologicals – NB120-6586
<i>Hyaluronan binding protein</i>	Biotinylated	1:100	Merck Millipore - 385911
<i>α-Smooth muscle actin</i>	Goat polyclonal	1:200	Novus Biologicals – NB-300-978
<i>Vimentin</i>	Rabbit polyclonal	1:200	Abcam – ab45939
<i>BRP-39</i>	Rabbit Polyclonal	1:100	Biorbyt – orb10365
-	Streptavidin 557	1:800	R&D – NL999
-	Streptavidin 637	1:400	R&D – NL998
-	Donkey anti-rabbit IgG 557	1:200	R&D – NL004
-	Donkey anti-rabbit IgG 637	1:200	R&D – NL005
-	Donkey anti-goat IgG 557	1:200	R&D – NL001
-	Donkey anti-goat IgG 637	1:200	R&D – NL002

917
918
919

920