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Abstract

From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin
National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic
enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased
enterocolitis-positive marmosets for the presence of RNA viruses. In five out of eight marmosets
with lymphocytic enterocolitis, we discovered a novel pegivirus that was not present in ten
subsequently deep-sequenced matched, clinically-normal common marmosets with no evidence
of lymphocytic enterocolitis. The novel virus, which we have named Southwest bike trail virus
(SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A that
was previously isolated from a three-striped night monkey (Aotus trivirgatus). To determine the
prevalence of this novel virus within the WNPRC marmoset colony, we screened 146 living
animals and found an overall prevalence of 34% (50/146). Over the next four years, 85 of the
146 screened marmosets died or were euthanized and were examined histologically for
lymphocytic enterocolitis. Out of these 85 animals, 27 SOBV-positive common marmosets had
developed lymphocytic enterocolitis, compared to 42 SOBV-negative common marmosets,
indicating no evidence of an association between this virus and development of enterocolitis in
this cohort (p=0.0798). The novel pegivirus was also found in two of 32 (6%) clinically-normal
common marmosets screened while in quarantine during the transfer from the New England
Primate Research Center to the WNPRC, suggesting SOBV has different prevalence at different
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centers and could exert confounding influences on the comparison of marmoset studies from
multiple centers.

Importance

Common marmosets (Callithrix jacchus) are a valuable model species. We discovered two
variants of a novel simian pegivirus, which we named the Southwest bike trail virus (SOBV), in
common marmosets which had postmortem histologic diagnosis of lymphocytic enterocolitis.
The virus was not present in ten matched, clinically-normal controls. We screened 146 live
healthy common marmosets in the Wisconsin National Primate Research Center colony and
found 34% (50/146) of the animals were SOBV-positive. SOBV was also present in two of 32
(6%) clinically-normal common marmosets from the New England Primate Research Center.
These findings could have confounding effects in animal studies, especially those in which
infection-free animals are desired, and they demonstrate the need for further investigations into
SOBYV transmission, the length of time of SOBV persistence, and SOBV prevalence at other
primate centers, in order to increase understanding of the effects of SOBV and of this viral
genus.

Introduction

Common marmosets (Callithrix jacchus) are a valuable model species due to their small body
size, communal monogamous familial behavior, birth of hematopoietic chimeric litters, short
parturition intervals, and status as members of a non-endangered primate species.'® The utility
of common marmosets in research has resulted in a recent increase in demand for these
animals.® The Wisconsin National Primate Research Center (WNPRC) in Madison, Wisconsin,
USA, houses a common marmoset colony typically consisting of about 240 common
marmosets, which are used by researchers at the University of Wisconsin-Madison for
groundbreaking research in neurological, neurobehavioral, and pharmacologic research, among
many others.”"

From 2010 to 2015, 73 common marmosets housed at the WNPRC were euthanized due
experimental end point, chronic intractable diarrhea, or chronic severe weight loss, underwent
necropsy with histology, and were diagnosed with lymphocytic enterocolitis.'®?' Beyond the
regrettable loss of animal life, common marmoset morbidity and mortality due to enterocolitis is
harmful both to colony success and to the scientific studies to which these animals are
assigned. Though lymphocytic enterocolitis is one of the most common causes of death in
captive common marmosets,'®? the epizootic at the WNPRC was associated with an unusually
high disease incidence for the colony, prompting investigations into a possible infectious
contributor. Unbiased deep-sequencing led to the discovery of two similar variants of a novel
pegivirus, most closely related to a variant of simian pegivirus A (SPgV-A) previously isolated
from a three-striped night monkey (Aotus trivirgatus). This novel pegivirus was present in a
subset of deceased common marmosets diagnosed postmortem with lymphocytic enterocolitis
and was not present in matched, clinically-normal controls.

Pegiviruses, members of genus Pegivirus (Amarillovirales: Flaviviridae), are ubiquitous in
animal populations,?*3® but their biological consequences are poorly understood. Pegiviruses
can persist at high titers for years or decades in humans®*° and chimpanzees*' with an
unusually low mutation rate compared to other RNA viruses,**“? and they have never been
shown to be the causative agent of any disease.***° Apparent links between pegiviruses and
disease, such as that initially posited for Theiler’s disease associated virus (TDAV) and Theiler’s
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85 disease,®"®? have later been shown to be more likely spurious.®*®® The mechanisms of pegivirus
86  biology have eluded definition, but these viruses are considered most likely lymphotropic,®-%’
87 and evidence from in vivo and in vitro studies suggests they may affect T cell functioning and
88  homeostasis.®®*"® Lymphocytic enterocolitis in common marmosets is likewise characterized by
89  adysregulation of T cell biology, as the intestinal villus architecture is disrupted or lost due to
90 the intraepithelial infiltration of large numbers of CD3 CD8-positive lymphocytes.?? Given the
91 importance of common marmosets as a model species and the disease burden caused by
92  Ilymphocytic enterocolitis, we set out to characterize the possible link between this new virus and
93 the disease state.
94
95 Here, we report the discovery of two variants of a novel pegivirus in a captive common
96 marmoset colony. We establish phylogenetic relationships with other known pegiviruses. Since
97  this virus was discovered in common marmosets with lymphocytic enterocolitis and was absent
98 in clinically-normal controls, we measure the prevalence of the virus in the colony and track the
99 potential association of viral status with risk of developing lymphocytic enterocolitis disease over
100 four years. Our findings have implications for animal studies in which specific pathogen-free
101 animals are desired, and they demonstrate the need for further investigations to increase
102  understanding of these viruses and their impact on common marmoset health.

103  Results

104 Captive common marmosets harbor a novel pegivirus

105 To examine the etiology of the unusually high rate of lymphocytic enterocolitis in deceased

106  WNPRC common marmosets, banked plasma samples from eight common marmosets

107  diagnosed with lymphocytic enterocolitis and from ten clinically-normal, live common marmosets
108 to be used as controls were screened by deep sequencing for the presence of viral RNA. RNA
109 from a previously undocumented pegivirus was detected in the plasma of five of eight deceased
110  marmosets with lymphocytic enterocolitis. We propose this novel virus (BioProject

111 PRJNA613737) be formally named the Southwest bike trail virus (SOBV). Pegivirus RNA was
112  not detected in the plasma of the ten clinically-normal common marmoset controls.

113

114  SOBYV consists of a 9.8-kb-long contig that is highly similar to the genome of simian pegivirus A
115  (SPgV A) trivirgatus, a simian pegivirus previously discovered in a three-striped night monkey
116 (Aotus trivirgatus)?” (Figure 1), with 68% nucleotide identity across the coding sequence when
117  aligned using ClustalW with an IUB cost matrix (gap extension cost, 6.66; gap open cost,

118  15.00). Four of the five common marmosets positive for SOBV had variants of the virus having
119  98-99% sequence identity, while one common marmoset had a variant with 88% sequence

120 identity to the others. We have named these variants SOBV-1 (GenBank accession number
121 MT513216) and SOBV-2 (GenBank accession number MT513217).

122

123  Pairwise comparisons of nucleotide identity across the entire coding region further illustrate the
124  similarity of SOBV-1 and SOBV-2 and the divergence between these novel virus strains and the
125  next most closely-related viruses (Figure 2, Figure 3), most of which were simian pegiviruses.
126  Several pegivirus isolates found in a bat’’ also shared high degrees of similarity with the novel
127  pegivirus.

128
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129
130  Figure 1. A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV

131  variants 1 and 2) shows it is most closely related to pegiviruses found in other New World

132  monkeys and bats. We generated maximum likelihood trees using MEGA6.06 (1,000 bootstrap
133  replicates, GTR+I+y model) from codon-based alignments (via MAFFT); Bootstrap values of
134  less than 70 are omitted.

135  Abbreviations: HPgV = human pegivirus; SPgV = simian pegivirus
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Figure 2. Sliding window similarity plots’® show the relatedness of the amino acid sequences of
SOBV-2 and other closely related pegiviruses to SOBV-1. Dashed vertical lines indicate the
putative approximate start positions of inferred viral proteins, from left to right: E1, E2, P7, NS2,
NS3, NS4A, NS4B, NS5A, and NS5B.7°
Abbreviations: SPgV-A nigri = GBV-A-like virus recovered from Saguinus nigricollis; SPgV-A tri
= GBV-A-like virus recovered from Aotus trivirgatus; SPgV-A mx = GBV-A-like virus recovered
from Saguinus mystax; SPgV-A lab = GBV-A-like virus recovered from Saguinus labiatus; BPgV
737 = bat pegivirus recovered from Eidolon helvum
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Figure 3. Sequence identity matrix based on amino acid alignment of the newly discovered
SOBV-1 and SOBV-2 (red box) compared to members of the 11 recognized pegivirus species
and of one* proposed species.’®

*The classification of dolphin into species “Pegivirus L” has been suggested.®°
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152 Novel pegivirus RNA is detected in up to 34% of a captive
153 common marmoset colony

154  Having identified the novel pegivirus in diseased animals, we sought to determine its prevalence
155  within the WNPRC common marmoset colony. We developed an RT-PCR assay to detect a
156  conserved region of the putative helicase protein of SOBV and used this to screen plasma

157  collected from 146 clinically-normal live common marmosets in the WNPRC colony, confirming
158 results through deep-sequencing of the amplicons. At the time of the initial screening in March—
159  April 2014, 50 of the 146 (34.25%) clinically-normal screened animals tested positive for SOBV
160  RNA. Nineteen of 60 females (31.67%) and 31 of 86 males (36.05%) tested positive at the time
161  of screening. Sex was not associated with the likelihood of SOBV using univariate logistic

162  regression (p=0.583). Age at the time of screening was associated with the likelihood of SOBV
163  (p=0.0324), with the likelihood of positivity increasing with age (Figure 4).

164

165

WNPRC common marmosets screened for SOBV
Age Total Number Number
(years) at b
timeof | common | mar ts | mar
screening marmosets infected non-

infected
75 20 14
24 19
18 12
14 11
22 14
50~ 7 5
14 5
8 13 10
9 1
10 4
57 11 1
12 0
13 0
0- —
5 10

Age (years) at time of testing
169  Figure 4. Prevalence of infection with Southwest bike trail virus (SOBV) in common marmosets
170  at the WNPRC increases with age. One hundred forty-six live, clinically-normal common
171 marmosets in the WNPRC captive common marmoset colony were screened for SOBV using
172  RT-PCR and deep sequencing methods. The likelihood of infection with these viruses was
173  significantly statistically associated with increasing age (p=0.03237) using univariate logistic
174  regression.
175
176  In November 2014, 82 common marmosets were transferred from the New England Primate
177  Research Center (NEPRC) to the WNPRC. Samples from 32 NEPRC common marmosets were
178  collected while the animals were in quarantine. Two (6%) of these were found to be positive for
179  SOBV RNA when screened by RT-PCR.

100-
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Percent of marmoset population positive for SOBV

180 Presence of novel pegivirus is not statistically significantly
181 associated with lymphocytic enterocolitis in the common
182 marmoset

183  Given that pegiviruses are known to persist in hosts for years or decades,***' we sought to

184  determine whether SOBV-positive animals were more likely to develop lymphocytic enterocolitis
185  over a period of observation. Typical enteric architecture consists of slender, often branching
186 villi, with short intestinal glands, small numbers of lymphocytes in the lamina propria, and

187  prominent B cell aggregates dispersed throughout the length of the intestines (Figure 5, control).
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188  Lymphocytic enterocolitis was diagnosed as a disruption of this architecture, with lymphocytic
189 infiltration that expands the lamina propria, resulting in widening and shortening of villi and

190 hyperplasia of crypt epithelium (Figure 5, E1-E3). Cases varied in severity, with mild cases

191  showing only slight expansion of the lamina propria and advanced cases showing complete loss
192  of villus architecture due to infiltration of the lamina propria with large numbers of CD3-positive
193  lymphocytes. Eighty-five of the live WNPRC animals initially screened for SOBV in 2014 were
194  euthanized for experimental end points or clinical illness between their screening and May 3,
195  2019. Sixty-nine (81.18%) of these animals were diagnosed by postmortem histological analysis
196  with lymphocytic enteritis, colitis, or enterocolitis. Two animals were removed from this analysis
197  due to confounding factors (one animal had severe tissue autolysis, and the other animal had B
198 cell lymphoma of the small and large intestines).

duodenum
jejunum control
colon
iyres
Sy
duodenum . ?\:5
jejunum
colon
duodenum
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colon
duodenum
jejunum
colon
4x 10x CD20 CD3
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201 Figure 5. Representative photomicrographs show disruption of the normal architecture in the
202  duodenum, jejunum, and colon by lymphocytic enterocolitis in common marmosets. Histology
203  was performed upon intestinal samples from 85 common marmosets. Intestinal sections were
204  stained with hematoxylin and eosin (H&E) and with B cell-specific and T cell-specific staining
205  procedures (immunohistochemistry) with monoclonal antibodies to CD20 or CD79 (B cell

206  markers) and CD3 (T cell marker), respectively.

207

208 Pegivirus infection was not found to be associated with an increased likelihood of developing
209 lymphocytic enteritis in the small intestines (p=0.779), colitis in the large intestine (p=0.196),
210 either a colitis or enteritis (p=0.820), or an enterocolitis (p=0.0798), or with lack of any

211 lymphocytic disease (p=0.904) (Figure 6). Sex was not associated with likelihood of the various
212  disease states (p=0.400, p=0.912, p=0.235, p=0.812, and p=0.235, respectively).

213

100 -

75

SOBYV infection status
50 - . Negative
Positive
25-
0- .

Enteritis Colitis Enteritis or colitis  Enterocolitis No disease
214 Location of lymphocytic disease

215  Figure 6. Infection with Southwest bike trail virus (SOBV) is not associated with the likelihood of
216  developing lymphocytic enteritis, colitis, or enterocolitis. Eighty-five common marmosets at the
217  WNPRC, which had been previously screened for SOBV by RT-PCR or deep-sequencing of
218 plasma samples, were examined postmortem for histological evidence of lymphocytic

219  enterocaolitis. Pegivirus infection was not found to be associated with an increased likelihood of
220  developing lymphocytic colitis (p=0.196), enteritis (p=0.779), either enteritis or colitis (p=0.820),
221  enterocolitis (p=0.0798), or lack of lymphocytic disease (p=0.904), using univariate logistic

222 regression.

Percent of infected or non-infected population
with disease condition

223 Discussion

224  We describe the discovery of a novel simian pegivirus, the Southwest bike trail virus (SOBV),
225 first identified in common marmosets diagnosed with lymphocytic enterocolitis. We show this
226  pegivirus was prevalent in our colony during a period of increased incidence of lymphocytic

227  enterocolitis and that it was less prevalent in a similar, clinically-normal colony. The novel virus
228  was not significantly associated with the likelihood of developing lymphocytic enterocolitis,

229  though prevalence of the virus increased with increasing age in the common marmoset. With an
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230 average prevalence of 34%, SOBV is common throughout the WNPRC common marmoset

231  colony.

232

233  Pegiviruses, the members of genus Pegivirus (Amarillovirales: Flaviviridae), have single-

234  stranded, positive-sense RNA genomes and produce enveloped virions.®! The first members of
235 the genus were identified about 20 years ago,®*® and since that time pegiviruses have been
236  found in many animal populations.?*3%%° Pegiviruses have never been shown to be causative
237  agents of any disease or alteration in physiology.***° Human pegivirus (HPgV) has been linked
238  both to improved outcomes in HIV-1 infection® 819" and to increased incidence of various types
239  of lymphoma,'%""% though this remains controversial."'""'®* HPgV is considered likely

240  lymphotropic,5®" and evidence from in vivo and in vitro research suggests HPgV may affect T
241  cell activation, signaling, proliferation and apoptosis, and CD4 or CD8 expresssion,®®® and that
242 it may be associated with a higher rate of host cell DNA damage''® and genomic

243  destabilization."” These effects on T cell functions may be a common pathway through which
244  these viruses may cause lymphocytic diseases.

245

246  Itis not known whether common marmosets are the natural host for SOBV or whether they

247  acquired this virus from another species in captivity."'” Other pegiviruses have been discovered
248  in wild common marmosets in the 1990s,''® but their prevalence has never been examined. The
249  prevalence of SOBV in our captive common marmoset population was quite high compared to
250 the prevalence of HPgV, which is found in about 1-4% of human populations,'®'% and

251  compared to the prevalence of pegiviruses in captive chimpanzees (1-3%).*' SOBV is most
252  similar to a pegivirus discovered in a three-striped night monkey (Aotus trivirgatus),?” a species
253  used in malaria research at other primate research facilities,'?'? indicating SOBV may have
254  been introduced into common marmosets through contact in captivity. Interestingly, SOBV is
255  highly similar to several variants of a bat pegivirus isolated from African straw-colored fruit bats
256  (Eidolon helvum). Given that common marmosets and three-striped night monkeys are native to
257  northern South America, this may indicate a South American bat species harbors a more

258 closely-related pegivirus and could have been the source of an interspecies spillover.

259

260 The routes of transmission of SOBV and of other simian pegiviruses have not been examined.
261 Human pegivirus transmission has been extensively studied and is known to occur efficiently
262  through blood products or dialysis,**%'3%133 intravenous drug use and needle sticks, 30134136
263  sexual intercourse,¥%134137.138 and from mother to infant.'%1%%-143 Captive common marmosets
264  are typically housed in familial groups in shared cages and receive some vaccines and other
265  medication by injection, and common marmosets frequently give birth to non-identical twins.*>5%
266  These animals thus have the potential to transmit SOBV through direct contact, sexual contact,
267  birth, and medical injections or veterinarian manipulations. Defining mechanisms of

268 transmission will be important in preventing infection and thereby allowing the study of this virus’
269 effects.

270

271 The high prevalence of this virus at the WNPRC raises important considerations about potential
272  effects on common marmoset experiments. Facilities working with common marmosets should
273  prescreen the animals to establish the pegivirus status of animals in research to account for
274  potential confounding. Pegiviruses can replicate at high titers in a host for more than a

275  decade;**3"4""* thus, the length of time for which an animal has been continuously infected
276  may also be relevant in potentially confounding study outcomes. Future investigations, perhaps
277  involving the isolation of common marmosets for years at a time to follow the natural history of
278  chronic pegivirus infection in these animals, could examine the long-term effects of infecting
279  common marmosets with SOBV.
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281  This study has several limitations. First, this study was observational in nature, as we did not
282  want to risk infecting more marmosets in our research colony with an apparently transmissible
283  and potentially harmful virus. This study design could not examine a causal link between viral
284  positivity and the development of lymphocytic enterocolitis. Definitive establishment of causation
285  would require demonstrating that animals infected experimentally develop the disease. Second,
286  many animals in this study were concurrently enrolled in other WNPRC studies, and therefore
287  some were euthanized earlier than would have occurred otherwise when those studies reached
288  experimental endpoints. We chose to use this convenience sample as it allowed us to achieve a
289 large study sample size in which to investigate a potential infectious contributor to an important
290 and poorly-understood cause of common marmoset mortality without disrupting other ongoing
291  studies at the WNPRC. Third, not all of the animals initially screened were deceased at the time
292  of this analysis, and future necropsies of these animals may contribute additional data

293  concerning the likelihood of enterocolitis development. Finally, some animals in this study may
294  have cleared the virus before the samples we tested were collected. Consequently, these

295 animals could have been mistakenly classified as virus-naive; others may have acquired the
296  virus after our initial screening. Development of a SOBV-specific ELISA or other serodiagnosis
297  tools would enable deeper appropriate analyses of SOBV infection rates both prospectively and
298  retrospectively.

299

300 In summary, this work describes the discovery of a novel simian pegivirus and investigates its
301 relationship with a widespread and devastating cause of common marmoset mortality. Our

302  study lays the groundwork for the future development of a nonhuman primate model system
303  using this natural infection as a potential model for studying the mechanisms of these enigmatic
304  viruses and providing a greater understanding of their genus as a whole.

305

306 Materials and methods

307  Animals

308  All animals in this study were common marmosets (Callithrix jacchus Linnaeus, 1758) housed at
309 the Wisconsin National Primate Research Center (WNPRC) in Madison, WI, USA. The common
310  marmoset colony at the WNPRC was established in 1960. The original animals were imported
311 from northeastern Brazil, with the final importation occurring in the early 1970s. The average
312 yearly population of the colony each year from 2010 to 2019 was approximately 240 animals, all
313  of which were born in captivity. WNPRC animals screened were 41% (60 animals) female and
314  59% (86 animals) male. Age at the time of screening ranged from 0.82—-12.82 years (mean

315  4.65+/-2.83 years, median 4.26 years).

316

317  The New England Primate Research Center (NEPRC), Southborough, MA, USA, was closed in
318 2015, resulting in a transfer of 82 common marmosets to WNPRC before closure in November
319  2014. Plasma samples were collected from some of these animals upon their arrival at WNPRC
320 (November—December 2014) while quarantined in a separate building and location from the

321 WNPRC marmoset colony. In the population initially from the NEPRC, 45 (55%) of the screened
322  animals were female, and 37 (45%) were male. Age at the time of screening ranged from 0.65—
323  10.66 years (mean 3.74+/-2.60, median 2.51 years) in this population.
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324 Ethics

325  All common marmosets were cared for by WNPRC staff according to the regulations and

326  guidelines outlined in the National Research Council’s Guide for the Care and Use of Laboratory
327  Animals, the Animal Welfare Act, the Public Health Service Policy on the Humane Care and Use
328  of Laboratory Animals, and the recommendations of the Weatherall report

329  (https://royalsociety.org/topics-policy/publications/2006/weatherall-report/). Per WNPRC

330 standard operating procedures for animals assigned to protocols involving the experimental

331 inoculation of infectious pathogens, environmental enhancement included constant visual,

332  auditory, and olfactory contact with conspecifics, the provision of feeding devices that inspire
333  foraging behavior, the provision and rotation of novel manipulanda, and enclosure furniture (i.e.,
334  perches, shelves). The common marmosets were housed socially in enclosures measuring

335 0.6mDx09MmMWx1.8mHor0.6mDx1.2mW x1.8m H. The WNPRC maintains an

336  exemption from the USDA for these enclosures as they do not meet the Animal Welfare Act

337  regulations for floor space but greatly exceed height requirements as the species are arboreal.
338  This study was approved by the University of Wisconsin-Madison College of Letters and

339  Sciences and Vice Chancellor for Research and Graduate Education Centers Institutional

340  Animal Care and Use Committee (animal protocol numbers G005401 and G005443).

341 Unbiased deep-sequencing

342  Samples from 18 common marmosets (8 deceased common marmosets diagnosed with

343  lymphocytic enterocolitis through necropsy and 10 live, healthy common marmosets) from the
344  WNPRC and 12 common marmosets (all live and healthy) from the NEPRC were screened for
345  the presence of viruses using unbiased deep-sequencing. The live WNPRC common

346  marmosets and the live NEPRC common marmosets were selected randomly for deep-

347  sequencing.

348

349  DNA and RNA were isolated from plasma. Common marmoset plasma (1 ml/animal) was

350 centrifuged at 5,000 x g for 5 min at 4°C. Supernatants were removed and filtered through a
351  0.45-pm filter, then centrifuged at maximum speed (20,817 g) for 5 min at 4°C. Supernatants
352  were removed and incubated for 90 min at 37°C with a DNA/RNA digest cocktail consisting of 4
353  ul DNAfree DNAse (0.04 U/ul; Ambion, Austin, TX, USA), 6 ul Baseline Zero DNAse (0.1 U/pl,
354  Epicentre Technologies, Madison, WI, USA), 1 ul Benzonase (1 U/ul, Sigma-Adrich, St. Louis,
355 MO, USA), and 12 ul DNAse 10x buffer. Viral nucleic acids were then isolated using the Qiagen
356  QlAamp MinElute Virus Spin Kit without the use of AW1 buffer or carrier RNA (Qiagen,

357  Valencia, CA, USA). Random hexamers were used to prime cDNA synthesis (Life

358  Technologies, Grand Island, NY, USA), followed by DNA purification using Ampure XP beads,
359 as previously described.'*'* Deep-sequencing libraries were prepared using the Nextera XT
360 DNA Library Prep Kit (llumina, San Diego, CA, USA) and sequenced on MiSeq (lllumina).

361 Viral sequence and phylogenetic analysis

362  Sequence data were analyzed using CLC Genomics Workbench 5.5 (CLC bio, Aarhus,

363  Denmark). Low-quality reads (Phred <Q30) and short reads (<100 bp) were removed with CLC
364  Genomics Workbench 7.1 (CLC bio, Aarhus, Denmark), and the remaining reads were

365 assembled de novo using the MEGAHIT assembler. Assembled contiguous sequences

366  (contigs) and singleton reads were queried against GenBank database nt using the basic local
367  alignment search tools blastn. Nucleotide sequences were codon aligned individually for all
368  known pegiviruses with complete genomes using ClustalW in the alignment editor program in
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369 MEGAG6.06 and edited manually. The best-fitting distance model of nucleotide substitution for
370  each alignment was inferred using the maximum likelihood (ML) method with goodness of fit
371 measured by the Bayesian information criterion in MEGAG6.06. The best-fitting nucleotide
372  substitution model for the phylogenetic alignments was inferred to be the GTR model with
373  discrete gamma and invariant among-site rate variation.

374

375  Protein family analysis and putative protein predictions were performed using Pfam

376  (http://pfam.xfam.org/). The nucleotide similarity of the novel pegivirus with related pegivirus
377 lineages was determined across the polyprotein using SimPlot v3.5.17® following TranslatorX
378  alignment (MAAFT) without Gblocks cleaning.

379

380  The sequence similarity matrix was created in Geneious Prime 2020.1.2 (Auckland, New
381  Zealand) using representative members of each pegivirus species.’®®

382 Screening for SOBV by RT-PCR

383  Plasma samples from 136 healthy WNPRC common marmosets were screened specifically for
384  SOBV by RT-PCR. Twenty plasma samples collected from NEPRC animals were likewise

385  screened by RT-PCR.

386

387  Screening of these animals was performed with samples from animals positive for SOBV by
388  deep-sequencing as positive controls. RNA was isolated from 100-500 pl of plasma using the
389  QlAamp Viral RNA Mini Kit (Qiagen). A primer set (forward primer:

390 GGTGGTCCACGAGTGATGA,; reverse primer: AGGTACCGCCTGGGGTTAG) targeting a

391 region of the viral helicase which was conserved among the animals initially positive by deep
392  sequencing was designed, resulting in a 615-bp amplicon. Viral RNA was reverse-transcribed
393  and amplified using the SuperScript Il High Fidelity One-Step RT-PCR kit (Invitrogen, Life

394  Technologies, Carlsbad, CA, USA). The reverse transcription-PCR conditions were as follows:
395  50°C for 30 min; 94°C for 2 min; 40 cycles of 94°C for 15 s, 55°C for 30 s, and 68°C for 1 min;
396 and 68°C for 5 min. Following PCR, amplicons were purified from excised gel slices (1%

397  agarose) using the Qiagen MinElute Gel Extraction kit (Qiagen). Each amplicon was quantified
398 using Quant-IT HS reagents (Invitrogen), and approximately 1 ng of each was used in a

399 tagmentation reaction with the Nextera XT DNA Library Prep Kit. Final libraries representing
400 each amplicon were characterized for average length using a DNA high sensitivity chip on a
401 2100 bioanalyzer (Agilent Technologies, Loveland, CO, USA) and quantitated with Quant-IT HS
402 reagents. Libraries were sequenced on a MiSeq.

403 Postmortem diagnosis of lymphocytic enterocolitis

404  All animals humanely euthanized or found dead at the WNPRC undergo complete post mortem
405 examination (necropsy) with histology. Standard hematoxylin and eosin (H&E) stains are used
406 for histological examinations to determine whether normal tissue architecture and cellular

407  populations are present. In this study, immunohistochemical (IHC) CD3 and CD20 or CD79
408 staining was additionally performed on samples from these animals to differentiate lymphocyte
409  populations (primarily T cells, B cells, or mixed T and B cells). Diagnosis of T-cell rich

410 lymphocytic enterocolitis was based on abnormal architecture of the intestines and IHC

411  staining.?>" If confounding factors hampered diagnosis (e.g., severe B cell ymphoma or

412  autolysis), the animal was removed from the analysis.
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413 Statistical analysis

414  We used univariate logistic regression to evaluate the associations of SOBV viremia with

415  enterocolitis risk. Analyses were repeated to determine association with lymphocytic disease in
416  small intestines only, large intestines only, both the small and large intestines, and either the
417  small or large intestines. All reported P-values are two-sided and P<0.05 was used to define
418  statistical significance. Statistical analyses were conducted using R version 3.6.3 in RStudio
419  version 1.1.383.

420 Data accessibility and management

421  Metagenomic sequencing data have been deposited in the Sequence Read Archive (SRA)

422  under Bioproject PRINA613737. Derived data, analysis pipelines, and figures have been made
423  available for easy replication of these results at a publicly-accessible GitHub

424  (https://github.com/aheffron/SPgVwnprc_in_marmosets).

425
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