

1 Discovery of a novel simian pegivirus in 2 common marmosets (*Callithrix jacchus*) 3 with lymphocytic enterocolitis

4
5 Anna S. Heffron¹, Michael Lauck¹, Elizabeth D. Somsen¹, Elizabeth C. Townsend¹, Adam L.
6 Bailey², Megan Sosa³, Jens Eickhoff⁴, Saverio Capuano III³, Christina M. Newman¹, Jens H.
7 Kuhn⁵, Andres Mejia³, Heather A. Simmons³, David H. O'Connor^{1,3}

8 Affiliations

9 ¹ Department of Pathology and Laboratory Medicine, School of Medicine and Public Health,
10 University of Wisconsin-Madison, Madison, Wisconsin, United States of America

11 ² Department of Pathology and Immunology, Washington University School of Medicine, St.
12 Louis, Missouri, United States of America

13 ³ Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison,
14 Wisconsin, United States of America

15 ⁴ Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison,
16 WI, United States of America

17 ⁵ Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious
18 Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of
19 America

20 Abstract

21 From 2010 to 2015, 73 common marmosets (*Callithrix jacchus*) housed at the Wisconsin
22 National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic
23 enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased
24 enterocolitis-positive marmosets for the presence of RNA viruses. In five out of eight marmosets
25 with lymphocytic enterocolitis, we discovered a novel pegivirus that was not present in ten
26 subsequently deep-sequenced matched, clinically-normal common marmosets with no evidence
27 of lymphocytic enterocolitis. The novel virus, which we have named Southwest bike trail virus
28 (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A that
29 was previously isolated from a three-striped night monkey (*Aotus trivirgatus*). To determine the
30 prevalence of this novel virus within the WNPRC marmoset colony, we screened 146 living
31 animals and found an overall prevalence of 34% (50/146). Over the next four years, 85 of the
32 146 screened marmosets died or were euthanized and were examined histologically for
33 lymphocytic enterocolitis. Out of these 85 animals, 27 SOBV-positive common marmosets had
34 developed lymphocytic enterocolitis, compared to 42 SOBV-negative common marmosets,
35 indicating no evidence of an association between this virus and development of enterocolitis in
36 this cohort ($p=0.0798$). The novel pegivirus was also found in two of 32 (6%) clinically-normal
37 common marmosets screened while in quarantine during the transfer from the New England
38 Primate Research Center to the WNPRC, suggesting SOBV has different prevalence at different

39 centers and could exert confounding influences on the comparison of marmoset studies from
40 multiple centers.

41 Importance

42 Common marmosets (*Callithrix jacchus*) are a valuable model species. We discovered two
43 variants of a novel simian pegivirus, which we named the Southwest bike trail virus (SOBV), in
44 common marmosets which had postmortem histologic diagnosis of lymphocytic enterocolitis.
45 The virus was not present in ten matched, clinically-normal controls. We screened 146 live
46 healthy common marmosets in the Wisconsin National Primate Research Center colony and
47 found 34% (50/146) of the animals were SOBV-positive. SOBV was also present in two of 32
48 (6%) clinically-normal common marmosets from the New England Primate Research Center.
49 These findings could have confounding effects in animal studies, especially those in which
50 infection-free animals are desired, and they demonstrate the need for further investigations into
51 SOBV transmission, the length of time of SOBV persistence, and SOBV prevalence at other
52 primate centers, in order to increase understanding of the effects of SOBV and of this viral
53 genus.

54 Introduction

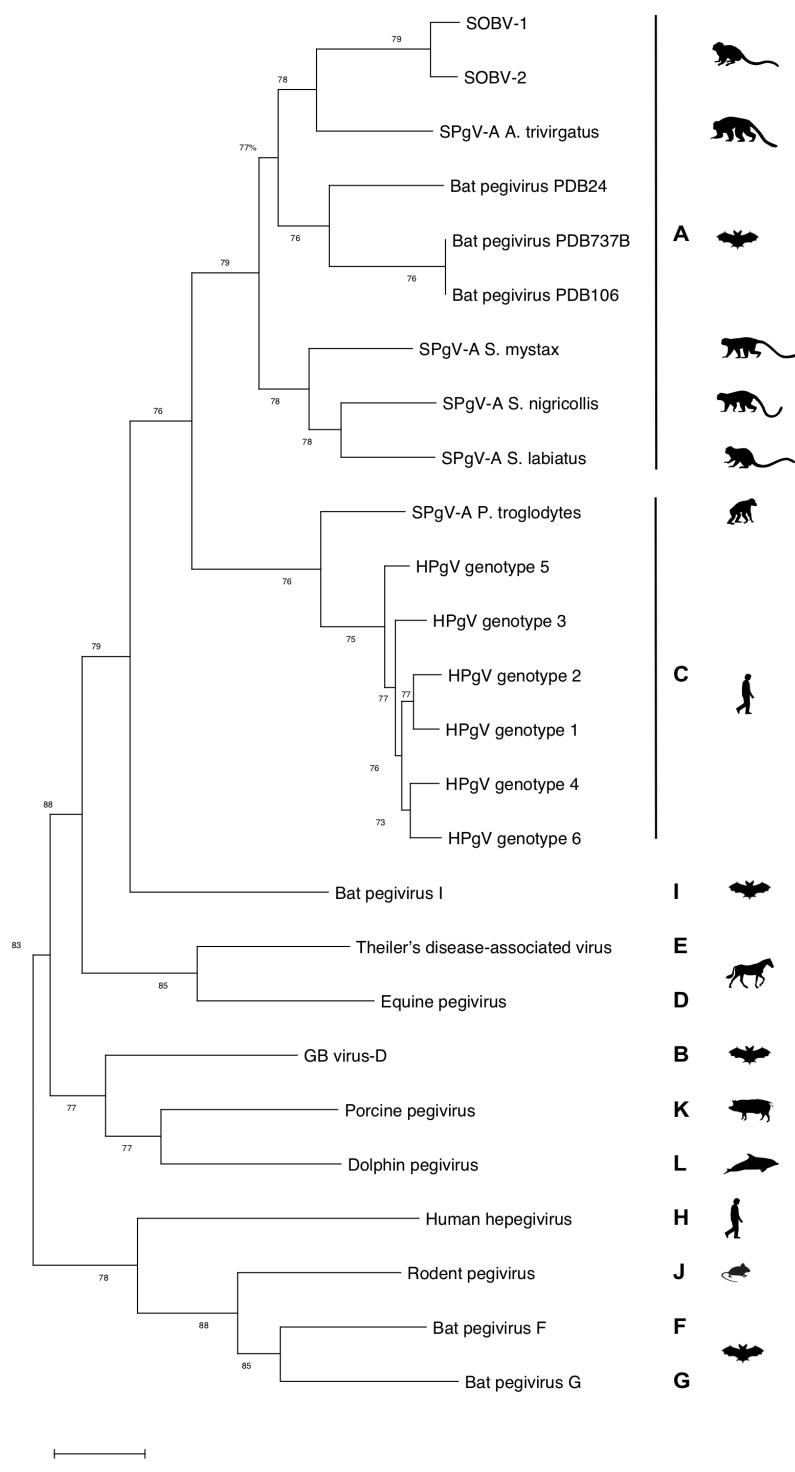
55 Common marmosets (*Callithrix jacchus*) are a valuable model species due to their small body
56 size, communal monogamous familial behavior, birth of hematopoietic chimeric litters, short
57 parturition intervals, and status as members of a non-endangered primate species.¹⁻⁵ The utility
58 of common marmosets in research has resulted in a recent increase in demand for these
59 animals.⁶ The Wisconsin National Primate Research Center (WNPRC) in Madison, Wisconsin,
60 USA, houses a common marmoset colony typically consisting of about 240 common
61 marmosets, which are used by researchers at the University of Wisconsin-Madison for
62 groundbreaking research in neurological, neurobehavioral, and pharmacologic research, among
63 many others.⁷⁻¹⁷

64 From 2010 to 2015, 73 common marmosets housed at the WNPRC were euthanized due
65 experimental end point, chronic intractable diarrhea, or chronic severe weight loss, underwent
66 necropsy with histology, and were diagnosed with lymphocytic enterocolitis.¹⁸⁻²¹ Beyond the
67 regrettable loss of animal life, common marmoset morbidity and mortality due to enterocolitis is
68 harmful both to colony success and to the scientific studies to which these animals are
69 assigned. Though lymphocytic enterocolitis is one of the most common causes of death in
70 captive common marmosets,¹⁸⁻²³ the epizootic at the WNPRC was associated with an unusually
71 high disease incidence for the colony, prompting investigations into a possible infectious
72 contributor. Unbiased deep-sequencing led to the discovery of two similar variants of a novel
73 pegivirus, most closely related to a variant of simian pegivirus A (SPgV-A) previously isolated
74 from a three-striped night monkey (*Aotus trivirgatus*). This novel pegivirus was present in a
75 subset of deceased common marmosets diagnosed postmortem with lymphocytic enterocolitis
76 and was not present in matched, clinically-normal controls.

77
78 Pegiviruses, members of genus *Pegivirus* (*Amarillovirales: Flaviviridae*), are ubiquitous in
79 animal populations,²⁴⁻³⁵ but their biological consequences are poorly understood. Pegiviruses
80 can persist at high titers for years or decades in humans³⁶⁻⁴⁰ and chimpanzees⁴¹ with an
81 unusually low mutation rate compared to other RNA viruses,^{38,42} and they have never been
82 shown to be the causative agent of any disease.⁴³⁻⁶⁰ Apparent links between pegiviruses and
83 disease, such as that initially posited for Theiler's disease associated virus (TDAV) and Theiler's

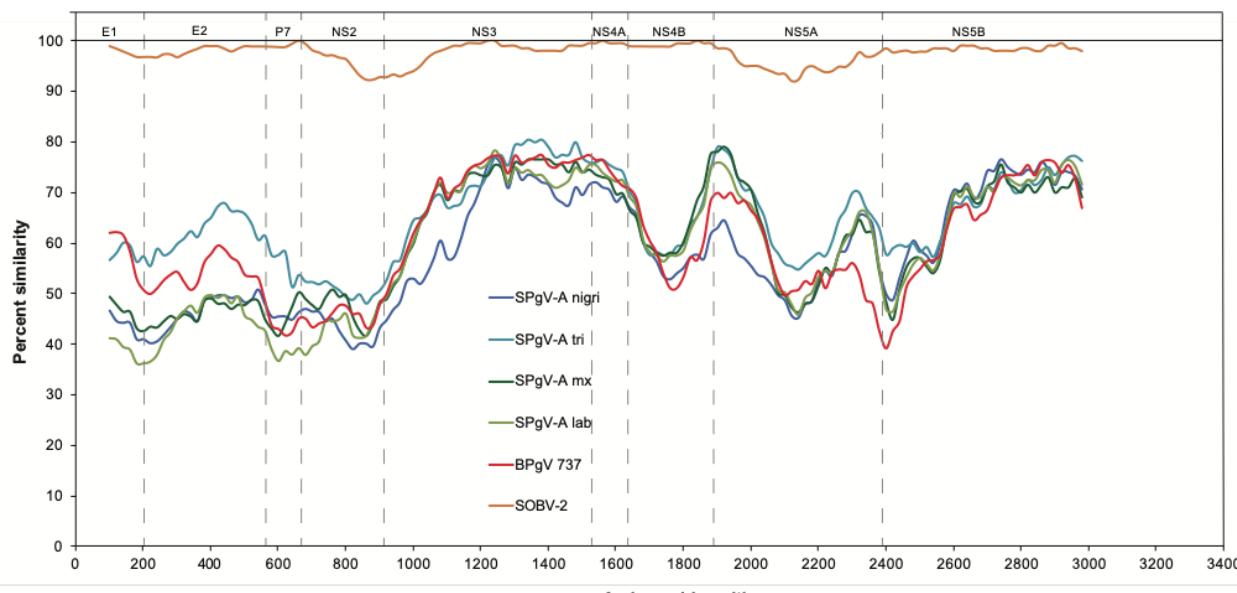
85 disease,^{61,62} have later been shown to be more likely spurious.^{35,63} The mechanisms of pegivirus
86 biology have eluded definition, but these viruses are considered most likely lymphotropic,⁶⁴⁻⁶⁷
87 and evidence from *in vivo* and *in vitro* studies suggests they may affect T cell functioning and
88 homeostasis.⁶⁸⁻⁷⁶ Lymphocytic enterocolitis in common marmosets is likewise characterized by
89 a dysregulation of T cell biology, as the intestinal villus architecture is disrupted or lost due to
90 the intraepithelial infiltration of large numbers of CD3 CD8-positive lymphocytes.²² Given the
91 importance of common marmosets as a model species and the disease burden caused by
92 lymphocytic enterocolitis, we set out to characterize the possible link between this new virus and
93 the disease state.

94
95 Here, we report the discovery of two variants of a novel pegivirus in a captive common
96 marmoset colony. We establish phylogenetic relationships with other known pegiviruses. Since
97 this virus was discovered in common marmosets with lymphocytic enterocolitis and was absent
98 in clinically-normal controls, we measure the prevalence of the virus in the colony and track the
99 potential association of viral status with risk of developing lymphocytic enterocolitis disease over
100 four years. Our findings have implications for animal studies in which specific pathogen-free
101 animals are desired, and they demonstrate the need for further investigations to increase
102 understanding of these viruses and their impact on common marmoset health.


103 Results

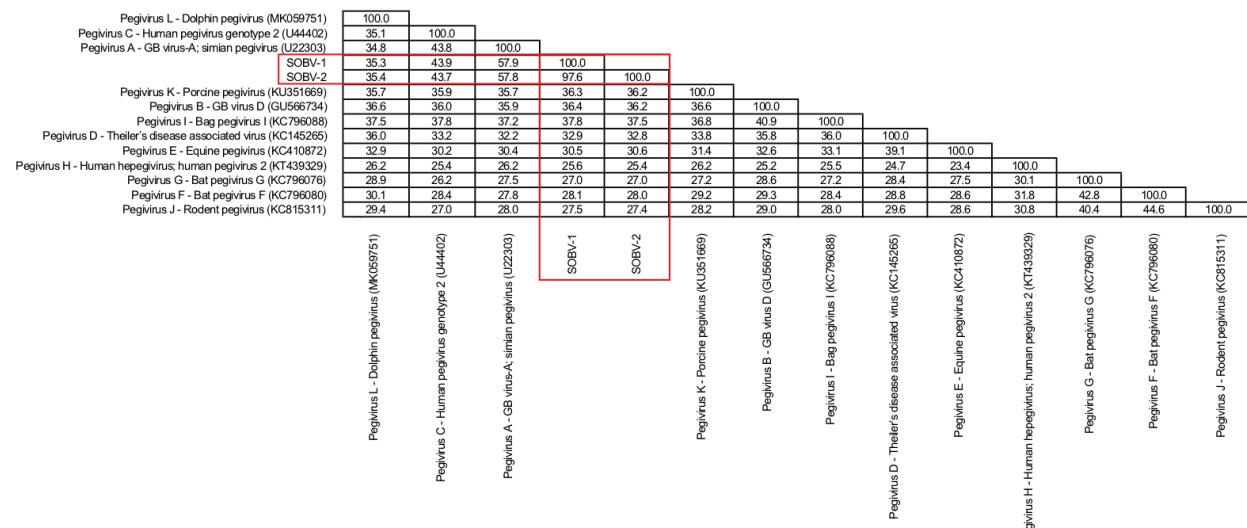
104 Captive common marmosets harbor a novel pegivirus

105 To examine the etiology of the unusually high rate of lymphocytic enterocolitis in deceased
106 WNPRC common marmosets, banked plasma samples from eight common marmosets
107 diagnosed with lymphocytic enterocolitis and from ten clinically-normal, live common marmosets
108 to be used as controls were screened by deep sequencing for the presence of viral RNA. RNA
109 from a previously undocumented pegivirus was detected in the plasma of five of eight deceased
110 marmosets with lymphocytic enterocolitis. We propose this novel virus (BioProject
111 PRJNA613737) be formally named the Southwest bike trail virus (SOBV). Pegivirus RNA was
112 not detected in the plasma of the ten clinically-normal common marmoset controls.


113
114 SOBV consists of a 9.8-kb-long contig that is highly similar to the genome of simian pegivirus A
115 (SPgV A) *trivirgatus*, a simian pegivirus previously discovered in a three-striped night monkey
116 (*Aotus trivirgatus*)²⁷ (Figure 1), with 68% nucleotide identity across the coding sequence when
117 aligned using ClustalW with an IUB cost matrix (gap extension cost, 6.66; gap open cost,
118 15.00). Four of the five common marmosets positive for SOBV had variants of the virus having
119 98-99% sequence identity, while one common marmoset had a variant with 88% sequence
120 identity to the others. We have named these variants SOBV-1 (GenBank accession number
121 MT513216) and SOBV-2 (GenBank accession number MT513217).

122
123 Pairwise comparisons of nucleotide identity across the entire coding region further illustrate the
124 similarity of SOBV-1 and SOBV-2 and the divergence between these novel virus strains and the
125 next most closely-related viruses (Figure 2, Figure 3), most of which were simian pegiviruses.
126 Several pegivirus isolates found in a bat⁷⁷ also shared high degrees of similarity with the novel
127 pegivirus.
128

129
130 **Figure 1.** A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV)
131 variants 1 and 2) shows it is most closely related to pegiviruses found in other New World
132 monkeys and bats. We generated maximum likelihood trees using MEGA6.06 (1,000 bootstrap
133 replicates, GTR+I+γ model) from codon-based alignments (via MAFFT); Bootstrap values of
134 less than 70 are omitted.
135 Abbreviations: HPgV = human pegivirus; SPgV = simian pegivirus

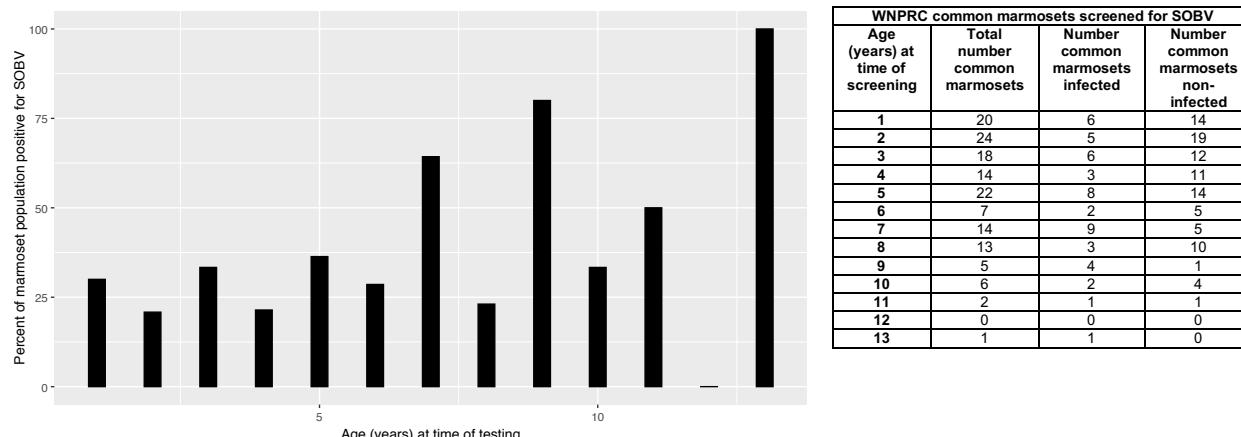

136

137
138
139
140
141
142
143
144
145
146

Figure 2. Sliding window similarity plots⁷⁸ show the relatedness of the amino acid sequences of SOBV-2 and other closely related pegiviruses to SOBV-1. Dashed vertical lines indicate the putative approximate start positions of inferred viral proteins, from left to right: E1, E2, P7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B.⁷⁹

Abbreviations: SPgV-A nigri = GBV-A-like virus recovered from *Saguinus nigricollis*; SPgV-A tri = GBV-A-like virus recovered from *Aotus trivirgatus*; SPgV-A mx = GBV-A-like virus recovered from *Saguinus mystax*; SPgV-A lab = GBV-A-like virus recovered from *Saguinus labiatus*; BPgV 737 = bat pegivirus recovered from *Eidolon helvum*

147
148
149
150
151


Figure 3. Sequence identity matrix based on amino acid alignment of the newly discovered SOBV-1 and SOBV-2 (red box) compared to members of the 11 recognized pegivirus species and of one* proposed species.⁷⁹

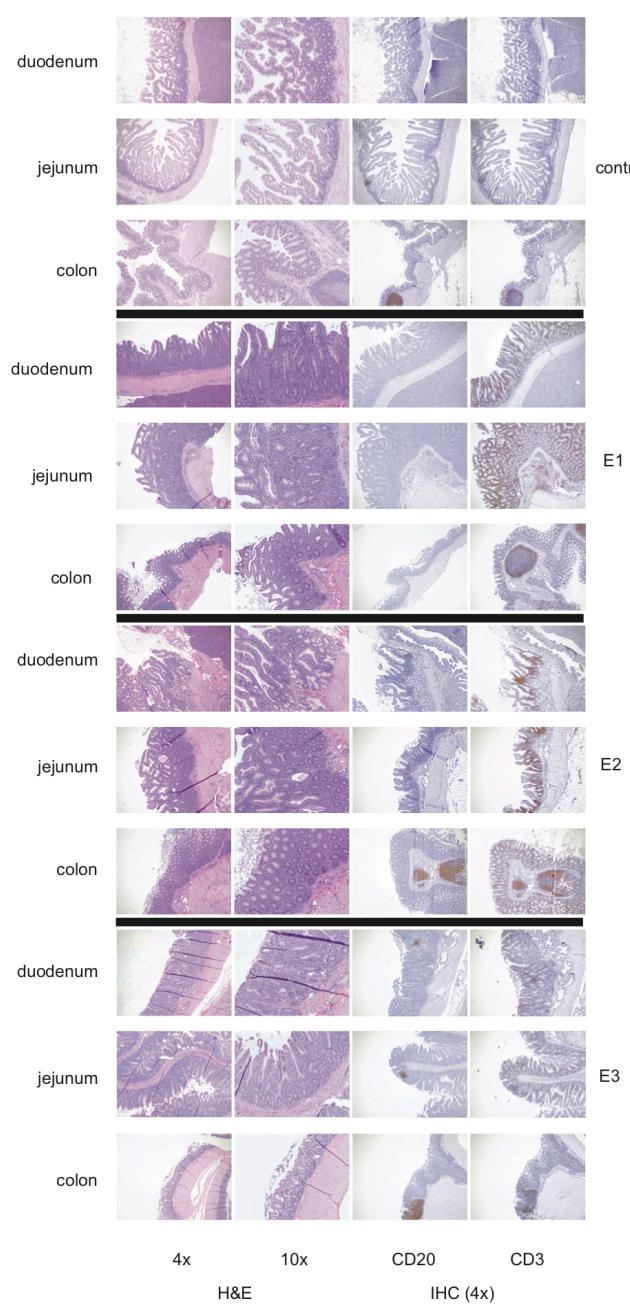
*The classification of dolphin into species "Pegivirus L" has been suggested.⁸⁰

152 Novel pegivirus RNA is detected in up to 34% of a captive
153 common marmoset colony

154 Having identified the novel pegivirus in diseased animals, we sought to determine its prevalence
155 within the WNPRC common marmoset colony. We developed an RT-PCR assay to detect a
156 conserved region of the putative helicase protein of SOBV and used this to screen plasma
157 collected from 146 clinically-normal live common marmosets in the WNPRC colony, confirming
158 results through deep-sequencing of the amplicons. At the time of the initial screening in March–
159 April 2014, 50 of the 146 (34.25%) clinically-normal screened animals tested positive for SOBV
160 RNA. Nineteen of 60 females (31.67%) and 31 of 86 males (36.05%) tested positive at the time
161 of screening. Sex was not associated with the likelihood of SOBV using univariate logistic
162 regression ($p=0.583$). Age at the time of screening was associated with the likelihood of SOBV
163 ($p=0.0324$), with the likelihood of positivity increasing with age (Figure 4).

164
165

169 **Figure 4.** Prevalence of infection with Southwest bike trail virus (SOBV) in common marmosets
170 at the WNPRC increases with age. One hundred forty-six live, clinically-normal common
171 marmosets in the WNPRC captive common marmoset colony were screened for SOBV using
172 RT-PCR and deep sequencing methods. The likelihood of infection with these viruses was
173 significantly statistically associated with increasing age ($p=0.03237$) using univariate logistic
174 regression.

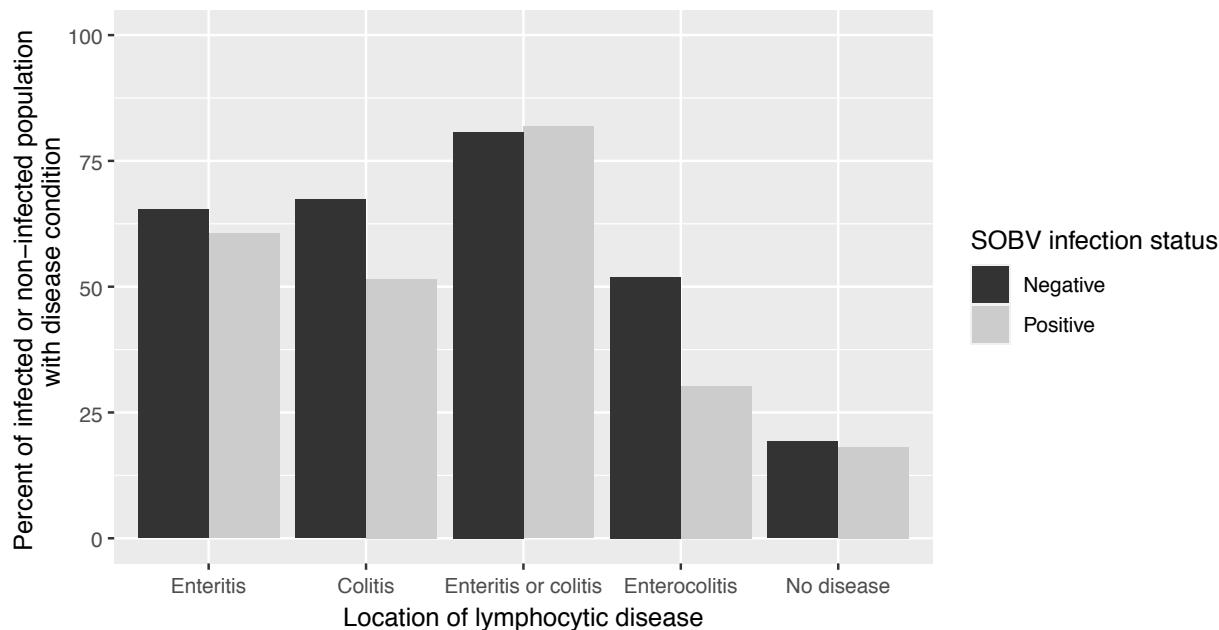

175

176 In November 2014, 82 common marmosets were transferred from the New England Primate
177 Research Center (NEPRC) to the WNPRC. Samples from 32 NEPRC common marmosets were
178 collected while the animals were in quarantine. Two (6%) of these were found to be positive for
179 SOBV RNA when screened by RT-PCR.

180 Presence of novel pegivirus is not statistically significantly
181 associated with lymphocytic enterocolitis in the common
182 marmoset

183 Given that pegiviruses are known to persist in hosts for years or decades,^{36–41} we sought to
184 determine whether SOBV-positive animals were more likely to develop lymphocytic enterocolitis
185 over a period of observation. Typical enteric architecture consists of slender, often branching
186 villi, with short intestinal glands, small numbers of lymphocytes in the lamina propria, and
187 prominent B cell aggregates dispersed throughout the length of the intestines (Figure 5, control).

188 Lymphocytic enterocolitis was diagnosed as a disruption of this architecture, with lymphocytic
189 infiltration that expands the lamina propria, resulting in widening and shortening of villi and
190 hyperplasia of crypt epithelium (Figure 5, E1-E3). Cases varied in severity, with mild cases
191 showing only slight expansion of the lamina propria and advanced cases showing complete loss
192 of villus architecture due to infiltration of the lamina propria with large numbers of CD3-positive
193 lymphocytes. Eighty-five of the live WNPRC animals initially screened for SOBV in 2014 were
194 euthanized for experimental end points or clinical illness between their screening and May 3,
195 2019. Sixty-nine (81.18%) of these animals were diagnosed by postmortem histological analysis
196 with lymphocytic enteritis, colitis, or enterocolitis. Two animals were removed from this analysis
197 due to confounding factors (one animal had severe tissue autolysis, and the other animal had B
198 cell lymphoma of the small and large intestines).
199



200

201 **Figure 5.** Representative photomicrographs show disruption of the normal architecture in the
202 duodenum, jejunum, and colon by lymphocytic enterocolitis in common marmosets. Histology
203 was performed upon intestinal samples from 85 common marmosets. Intestinal sections were
204 stained with hematoxylin and eosin (H&E) and with B cell-specific and T cell-specific staining
205 procedures (immunohistochemistry) with monoclonal antibodies to CD20 or CD79 (B cell
206 markers) and CD3 (T cell marker), respectively.

207
208 Pegivirus infection was not found to be associated with an increased likelihood of developing
209 lymphocytic enteritis in the small intestines ($p=0.779$), colitis in the large intestine ($p=0.196$),
210 either a colitis or enteritis ($p=0.820$), or an enterocolitis ($p=0.0798$), or with lack of any
211 lymphocytic disease ($p=0.904$) (Figure 6). Sex was not associated with likelihood of the various
212 disease states ($p=0.400$, $p=0.912$, $p=0.235$, $p=0.812$, and $p=0.235$, respectively).

213

214

215 **Figure 6.** Infection with Southwest bike trail virus (SOBV) is not associated with the likelihood of
216 developing lymphocytic enteritis, colitis, or enterocolitis. Eighty-five common marmosets at the
217 WNPRC, which had been previously screened for SOBV by RT-PCR or deep-sequencing of
218 plasma samples, were examined postmortem for histological evidence of lymphocytic
219 enterocolitis. Pegivirus infection was not found to be associated with an increased likelihood of
220 developing lymphocytic colitis ($p=0.196$), enteritis ($p=0.779$), either enteritis or colitis ($p=0.820$),
221 enterocolitis ($p=0.0798$), or lack of lymphocytic disease ($p=0.904$), using univariate logistic
222 regression.

223

Discussion

224 We describe the discovery of a novel simian pegivirus, the Southwest bike trail virus (SOBV),
225 first identified in common marmosets diagnosed with lymphocytic enterocolitis. We show this
226 pegivirus was prevalent in our colony during a period of increased incidence of lymphocytic
227 enterocolitis and that it was less prevalent in a similar, clinically-normal colony. The novel virus
228 was not significantly associated with the likelihood of developing lymphocytic enterocolitis,
229 though prevalence of the virus increased with increasing age in the common marmoset. With an

230 average prevalence of 34%, SOBV is common throughout the WNPRC common marmoset
231 colony.

232
233 Pegiviruses, the members of genus *Pegivirus* (*Amarillovirales: Flaviviridae*), have single-
234 stranded, positive-sense RNA genomes and produce enveloped virions.⁸¹ The first members of
235 the genus were identified about 20 years ago,^{82,83} and since that time pegiviruses have been
236 found in many animal populations.^{24-35,80} Pegiviruses have never been shown to be causative
237 agents of any disease or alteration in physiology.⁴³⁻⁶⁰ Human pegivirus (HPgV) has been linked
238 both to improved outcomes in HIV-1 infection^{68,84-101} and to increased incidence of various types
239 of lymphoma,¹⁰²⁻¹¹⁰ though this remains controversial.¹¹¹⁻¹¹⁵ HPgV is considered likely
240 lymphotropic,⁶⁴⁻⁶⁷ and evidence from *in vivo* and *in vitro* research suggests HPgV may affect T
241 cell activation, signaling, proliferation and apoptosis, and CD4 or CD8 expression,⁶⁸⁻⁷⁶ and that
242 it may be associated with a higher rate of host cell DNA damage¹¹⁶ and genomic
243 destabilization.¹⁰⁷ These effects on T cell functions may be a common pathway through which
244 these viruses may cause lymphocytic diseases.

245
246 It is not known whether common marmosets are the natural host for SOBV or whether they
247 acquired this virus from another species in captivity.¹¹⁷ Other pegiviruses have been discovered
248 in wild common marmosets in the 1990s,¹¹⁸ but their prevalence has never been examined. The
249 prevalence of SOBV in our captive common marmoset population was quite high compared to
250 the prevalence of HPgV, which is found in about 1–4% of human populations,¹¹⁹⁻¹²⁶ and
251 compared to the prevalence of pegiviruses in captive chimpanzees (1-3%).⁴¹ SOBV is most
252 similar to a pegivirus discovered in a three-striped night monkey (*Aotus trivirgatus*),²⁷ a species
253 used in malaria research at other primate research facilities,¹²⁷⁻¹²⁹ indicating SOBV may have
254 been introduced into common marmosets through contact in captivity. Interestingly, SOBV is
255 highly similar to several variants of a bat pegivirus isolated from African straw-colored fruit bats
256 (*Eidolon helvum*). Given that common marmosets and three-striped night monkeys are native to
257 northern South America, this may indicate a South American bat species harbors a more
258 closely-related pegivirus and could have been the source of an interspecies spillover.

259
260 The routes of transmission of SOBV and of other simian pegiviruses have not been examined.
261 Human pegivirus transmission has been extensively studied and is known to occur efficiently
262 through blood products or dialysis,^{36,45,130-133} intravenous drug use and needle sticks,^{130,134-136}
263 sexual intercourse,^{130,134,137,138} and from mother to infant.^{130,139-143} Captive common marmosets
264 are typically housed in familial groups in shared cages and receive some vaccines and other
265 medication by injection, and common marmosets frequently give birth to non-identical twins.^{3-5,22}
266 These animals thus have the potential to transmit SOBV through direct contact, sexual contact,
267 birth, and medical injections or veterinarian manipulations. Defining mechanisms of
268 transmission will be important in preventing infection and thereby allowing the study of this virus'
269 effects.

270
271 The high prevalence of this virus at the WNPRC raises important considerations about potential
272 effects on common marmoset experiments. Facilities working with common marmosets should
273 prescreen the animals to establish the pegivirus status of animals in research to account for
274 potential confounding. Pegiviruses can replicate at high titers in a host for more than a
275 decade;^{36,37,41,144} thus, the length of time for which an animal has been continuously infected
276 may also be relevant in potentially confounding study outcomes. Future investigations, perhaps
277 involving the isolation of common marmosets for years at a time to follow the natural history of
278 chronic pegivirus infection in these animals, could examine the long-term effects of infecting
279 common marmosets with SOBV.

280

281 This study has several limitations. First, this study was observational in nature, as we did not
282 want to risk infecting more marmosets in our research colony with an apparently transmissible
283 and potentially harmful virus. This study design could not examine a causal link between viral
284 positivity and the development of lymphocytic enterocolitis. Definitive establishment of causation
285 would require demonstrating that animals infected experimentally develop the disease. Second,
286 many animals in this study were concurrently enrolled in other WNPCR studies, and therefore
287 some were euthanized earlier than would have occurred otherwise when those studies reached
288 experimental endpoints. We chose to use this convenience sample as it allowed us to achieve a
289 large study sample size in which to investigate a potential infectious contributor to an important
290 and poorly-understood cause of common marmoset mortality without disrupting other ongoing
291 studies at the WNPCR. Third, not all of the animals initially screened were deceased at the time
292 of this analysis, and future necropsies of these animals may contribute additional data
293 concerning the likelihood of enterocolitis development. Finally, some animals in this study may
294 have cleared the virus before the samples we tested were collected. Consequently, these
295 animals could have been mistakenly classified as virus-naïve; others may have acquired the
296 virus after our initial screening. Development of a SOBV-specific ELISA or other serodiagnosis
297 tools would enable deeper appropriate analyses of SOBV infection rates both prospectively and
298 retrospectively.

299
300 In summary, this work describes the discovery of a novel simian pegivirus and investigates its
301 relationship with a widespread and devastating cause of common marmoset mortality. Our
302 study lays the groundwork for the future development of a nonhuman primate model system
303 using this natural infection as a potential model for studying the mechanisms of these enigmatic
304 viruses and providing a greater understanding of their genus as a whole.

305

306 Materials and methods

307 Animals

308 All animals in this study were common marmosets (*Callithrix jacchus* Linnaeus, 1758) housed at
309 the Wisconsin National Primate Research Center (WNPRC) in Madison, WI, USA. The common
310 marmoset colony at the WNPRC was established in 1960. The original animals were imported
311 from northeastern Brazil, with the final importation occurring in the early 1970s. The average
312 yearly population of the colony each year from 2010 to 2019 was approximately 240 animals, all
313 of which were born in captivity. WNPRC animals screened were 41% (60 animals) female and
314 59% (86 animals) male. Age at the time of screening ranged from 0.82–12.82 years (mean
315 4.65+/-2.83 years, median 4.26 years).

316

317 The New England Primate Research Center (NEPRC), Southborough, MA, USA, was closed in
318 2015, resulting in a transfer of 82 common marmosets to WNPRC before closure in November
319 2014. Plasma samples were collected from some of these animals upon their arrival at WNPRC
320 (November–December 2014) while quarantined in a separate building and location from the
321 WNPRC marmoset colony. In the population initially from the NEPRC, 45 (55%) of the screened
322 animals were female, and 37 (45%) were male. Age at the time of screening ranged from 0.65–
323 10.66 years (mean 3.74+/-2.60, median 2.51 years) in this population.

324 Ethics

325 All common marmosets were cared for by WNPRC staff according to the regulations and
326 guidelines outlined in the National Research Council's Guide for the Care and Use of Laboratory
327 Animals, the Animal Welfare Act, the Public Health Service Policy on the Humane Care and Use
328 of Laboratory Animals, and the recommendations of the Weatherall report
329 (<https://royalsociety.org/topics-policy/publications/2006/weatherall-report/>). Per WNPRC
330 standard operating procedures for animals assigned to protocols involving the experimental
331 inoculation of infectious pathogens, environmental enhancement included constant visual,
332 auditory, and olfactory contact with conspecifics, the provision of feeding devices that inspire
333 foraging behavior, the provision and rotation of novel manipulanda, and enclosure furniture (i.e.,
334 perches, shelves). The common marmosets were housed socially in enclosures measuring
335 0.6m D × 0.9m W × 1.8 m H or 0.6m D × 1.2m W × 1.8 m H. The WNPRC maintains an
336 exemption from the USDA for these enclosures as they do not meet the Animal Welfare Act
337 regulations for floor space but greatly exceed height requirements as the species are arboreal.
338 This study was approved by the University of Wisconsin-Madison College of Letters and
339 Sciences and Vice Chancellor for Research and Graduate Education Centers Institutional
340 Animal Care and Use Committee (animal protocol numbers G005401 and G005443).

341 Unbiased deep-sequencing

342 Samples from 18 common marmosets (8 deceased common marmosets diagnosed with
343 lymphocytic enterocolitis through necropsy and 10 live, healthy common marmosets) from the
344 WNPRC and 12 common marmosets (all live and healthy) from the NEPRC were screened for
345 the presence of viruses using unbiased deep-sequencing. The live WNPRC common
346 marmosets and the live NEPRC common marmosets were selected randomly for deep-
347 sequencing.

348 DNA and RNA were isolated from plasma. Common marmoset plasma (1 ml/animal) was
349 centrifuged at 5,000 × g for 5 min at 4°C. Supernatants were removed and filtered through a
350 0.45-µm filter, then centrifuged at maximum speed (20,817 g) for 5 min at 4°C. Supernatants
351 were removed and incubated for 90 min at 37°C with a DNA/RNA digest cocktail consisting of 4
352 µl DNAfree DNase (0.04 U/µl; Ambion, Austin, TX, USA), 6 µl Baseline Zero DNase (0.1 U/µl,
353 Epicentre Technologies, Madison, WI, USA), 1 µl Benzonase (1 U/µl, Sigma-Aldrich, St. Louis,
354 MO, USA), and 12 µl DNase 10x buffer. Viral nucleic acids were then isolated using the Qiagen
355 QIAamp MinElute Virus Spin Kit without the use of AW1 buffer or carrier RNA (Qiagen,
356 Valencia, CA, USA). Random hexamers were used to prime cDNA synthesis (Life
357 Technologies, Grand Island, NY, USA), followed by DNA purification using Ampure XP beads,
358 as previously described.^{145,146} Deep-sequencing libraries were prepared using the Nextera XT
359 DNA Library Prep Kit (Illumina, San Diego, CA, USA) and sequenced on MiSeq (Illumina).
360

361 Viral sequence and phylogenetic analysis

362 Sequence data were analyzed using CLC Genomics Workbench 5.5 (CLC bio, Aarhus,
363 Denmark). Low-quality reads (Phred <Q30) and short reads (<100 bp) were removed with CLC
364 Genomics Workbench 7.1 (CLC bio, Aarhus, Denmark), and the remaining reads were
365 assembled *de novo* using the MEGAHIT assembler. Assembled contiguous sequences
366 (contigs) and singleton reads were queried against GenBank database nt using the basic local
367 alignment search tools blastn. Nucleotide sequences were codon aligned individually for all
368 known pegiviruses with complete genomes using ClustalW in the alignment editor program in

369 MEGA6.06 and edited manually. The best-fitting distance model of nucleotide substitution for
370 each alignment was inferred using the maximum likelihood (ML) method with goodness of fit
371 measured by the Bayesian information criterion in MEGA6.06. The best-fitting nucleotide
372 substitution model for the phylogenetic alignments was inferred to be the GTR model with
373 discrete gamma and invariant among-site rate variation.

374
375 Protein family analysis and putative protein predictions were performed using Pfam
376 (<http://pfam.xfam.org/>). The nucleotide similarity of the novel pegivirus with related pegivirus
377 lineages was determined across the polyprotein using SimPlot v3.5.1⁷⁸ following TranslatorX
378 alignment (MAFFT) without Gblocks cleaning.

379
380 The sequence similarity matrix was created in Geneious Prime 2020.1.2 (Auckland, New
381 Zealand) using representative members of each pegivirus species.^{79,80}

382 Screening for SOBV by RT-PCR

383 Plasma samples from 136 healthy WNPRC common marmosets were screened specifically for
384 SOBV by RT-PCR. Twenty plasma samples collected from NEPRC animals were likewise
385 screened by RT-PCR.

386
387 Screening of these animals was performed with samples from animals positive for SOBV by
388 deep-sequencing as positive controls. RNA was isolated from 100–500 µl of plasma using the
389 QIAamp Viral RNA Mini Kit (Qiagen). A primer set (forward primer:
390 GGTGGTCCACGAGTGATGA; reverse primer: AGGTACCGCCTGGGGTTAG) targeting a
391 region of the viral helicase which was conserved among the animals initially positive by deep
392 sequencing was designed, resulting in a 615-bp amplicon. Viral RNA was reverse-transcribed
393 and amplified using the SuperScript III High Fidelity One-Step RT-PCR kit (Invitrogen, Life
394 Technologies, Carlsbad, CA, USA). The reverse transcription-PCR conditions were as follows:
395 50°C for 30 min; 94°C for 2 min; 40 cycles of 94°C for 15 s, 55°C for 30 s, and 68°C for 1 min;
396 and 68°C for 5 min. Following PCR, amplicons were purified from excised gel slices (1%
397 agarose) using the Qiagen MinElute Gel Extraction kit (Qiagen). Each amplicon was quantified
398 using Quant-IT HS reagents (Invitrogen), and approximately 1 ng of each was used in a
399 fragmentation reaction with the Nextera XT DNA Library Prep Kit. Final libraries representing
400 each amplicon were characterized for average length using a DNA high sensitivity chip on a
401 2100 bioanalyzer (Agilent Technologies, Loveland, CO, USA) and quantitated with Quant-IT HS
402 reagents. Libraries were sequenced on a MiSeq.

403 Postmortem diagnosis of lymphocytic enterocolitis

404 All animals humanely euthanized or found dead at the WNPRC undergo complete post mortem
405 examination (necropsy) with histology. Standard hematoxylin and eosin (H&E) stains are used
406 for histological examinations to determine whether normal tissue architecture and cellular
407 populations are present. In this study, immunohistochemical (IHC) CD3 and CD20 or CD79
408 staining was additionally performed on samples from these animals to differentiate lymphocyte
409 populations (primarily T cells, B cells, or mixed T and B cells). Diagnosis of T-cell rich
410 lymphocytic enterocolitis was based on abnormal architecture of the intestines and IHC
411 staining.^{22,147} If confounding factors hampered diagnosis (e.g., severe B cell lymphoma or
412 autolysis), the animal was removed from the analysis.

413 Statistical analysis

414 We used univariate logistic regression to evaluate the associations of SOBV viremia with
415 enterocolitis risk. Analyses were repeated to determine association with lymphocytic disease in
416 small intestines only, large intestines only, both the small and large intestines, and either the
417 small or large intestines. All reported P-values are two-sided and P<0.05 was used to define
418 statistical significance. Statistical analyses were conducted using R version 3.6.3 in RStudio
419 version 1.1.383.

420 Data accessibility and management

421 Metagenomic sequencing data have been deposited in the Sequence Read Archive (SRA)
422 under Bioproject PRJNA613737. Derived data, analysis pipelines, and figures have been made
423 available for easy replication of these results at a publicly-accessible GitHub
424 (https://github.com/aheffron/SPgVwnprc_in_marmosets).
425
426

427 Acknowledgments

428 This work was supported in part through Laulima Government Solutions, LLC prime contract
429 with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No.
430 HHSN272201800013C. J.H.K. performed this work as employees of Tunnell Government
431 Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No.
432 HHSN272201800013C. The views and conclusions contained in this document are those of the
433 authors and should not be interpreted as necessarily representing the official policies, either
434 expressed or implied, of the US Department of Health and Human Services or of the institutions
435 and companies affiliated with the authors. We would like to thank the WNPRC Animal Services,
436 especially Christina Cruzen, Anna Goodroe, and Casey Fitz for medical care and sample
437 collection from the live animals included in this study and the Pathology Services Unit including
438 Dr. Daniel I. Schenkman and Dr. Raman Muthuswamy for necropsy and diagnostic services.
439 Access to the dolphin silhouette was generously provided by Chris Huh
440 (<https://creativecommons.org/licenses/by-sa/3.0/>). This research was supported by
441 R01AI116382 (to D.H.O) from the National Institute of Allergy and Infectious Diseases of the
442 National Institutes of Health (www.niaid.nih.gov). This work was also supported in part by the
443 Office of Research Infrastructure Programs/OD (P51OD011106) awarded to the Wisconsin
444 National Primate Research Center at the University of Wisconsin - Madison. This research was
445 conducted in part at a facility constructed with support from Research Facilities Improvement
446 Program (<https://orip.nih.gov/>) grants RR15459-01 and RR020141-01. Author A.S.H has been
447 supported by NRSA award T32 AI078985 and NRSA award T32 AI007414. *The funders had no*
448 *role in study design, data collection and analysis, decision to publish, or preparation of the*
449 *manuscript.*

450

451

452

453

454 References

455 1. Tardif S, Bales K, Williams L, et al. Preparing New World monkeys for laboratory
456 research. *ILAR J.* 2006;47(4):307-315.

457 2. Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ. Aspects of
458 common marmoset basic biology and life history important for biomedical research.
459 *Comp Med.* 2003;53(4):339-350.

460 3. Mansfield K. Marmoset models commonly used in biomedical research. *Comp Med.*
461 2003;53(4):383-392.

462 4. Primate Factsheets: Common marmoset (*Callithrix jacchus*) Taxonomy, Morphology, &
463 Ecology. 2005. http://pin.primate.wisc.edu/factsheets/entry/common_marmoset.
464 Accessed 04 April 2020.

465 5. Smucny DA, Abbott DH, Mansfield KG, et al. Reproductive output, maternal age, and
466 survivorship in captive common marmoset females (*Callithrix jacchus*). *Am J Primatol.*
467 2004;64(1):107-121.

468 6. Servick K. Why are U.S. neuroscientists clamoring for marmosets? *Science Magazine*.
469 23 Oct. 2018, 2018.

470 7. Converse AK, Aubert Y, Allers KA, Sommer B, Abbott DH. Flibanserin-Stimulated
471 Partner Grooming Reflects Brain Metabolism Changes in Female Marmosets. *J Sex
472 Med.* 2015;12(12):2256-2266.

473 8. Smith AL, Freeman SM, Barnhart TE, et al. Initial investigation of three selective and
474 potent small molecule oxytocin receptor PET ligands in New World monkeys. *Bioorg
475 Med Chem Lett.* 2016;26(14):3370-3375.

476 9. Ausderau KK, Dammann C, McManus K, Schneider M, Emborg ME, Schultz-Darken N.
477 Cross-species comparison of behavioral neurodevelopmental milestones in the common
478 marmoset monkey and human child. *Dev Psychobiol.* 2017;59(7):807-821.

479 10. Vermilyea SC, Guthrie S, Meyer M, et al. Induced Pluripotent Stem Cell-Derived
480 Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. *Stem Cells Dev.*
481 2017;26(17):1225-1235.

482 11. Olson EJ, Shaw GC, Hutchinson EK, et al. Bone Disease in the Common Marmoset:
483 Radiographic and Histological Findings. *Vet Pathol.* 2015;52(5):883-893.

484 12. Ziegler TE, Sosa ME, Colman RJ. Fathering style influences health outcome in common
485 marmoset (*Callithrix jacchus*) offspring. *PLoS One.* 2017;12(9):e0185695.

486 13. Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common
487 marmoset: an integral species for developing nonhuman primate models of human
488 diseases. *Biol Reprod.* 2017;96(2):277-287.

489 14. Jones CA, Duffy MK, Hoffman SA, et al. Vocalization development in common
490 marmosets for neurodegenerative translational modeling. *Neurol Res.* 2018;40(4):303-
491 311.

492 15. Iwatsuki-Horimoto K, Nakajima N, Kiso M, et al. The Marmoset as an Animal Model of
493 Influenza: Infection With A(H1N1)pdm09 and Highly Pathogenic A(H5N1) Viruses via the
494 Conventional or Tracheal Spray Route. *Front Microbiol.* 2018;9:844.

495 16. Braun K, Schultz-Darken N, Schneider M, Moore CF, Emborg ME. Development of a
496 novel postnatal neurobehavioral scale for evaluation of common marmoset monkeys.
497 *Am J Primatol.* 2015;77(4):401-417.

498 17. Kraynak M, Flowers MT, Shapiro RA, Kapoor A, Levine JE, Abbott DH. Extraovarian
499 gonadotropin negative feedback revealed by aromatase inhibition in female marmoset
500 monkeys. *Am J Physiol Endocrinol Metab.* 2017;313(5):E507-E514.

501 18. Parambeth JC, Ross CN, Miller AD, et al. Serum Cobalamin and Folate Concentrations
502 in Common Marmosets (*Callithrix jacchus*) with Chronic Lymphocytic Enteritis. *Comp
503 Med.* 2019;69(2):135-143.

504 19. Chalmers DT, Murgatroyd LB, Wadsworth PF. A survey of the pathology of marmosets
505 (*Callithrix jacchus*) derived from a marmoset breeding unit. *Lab Anim.* 1983;17(4):270-
506 279.

507 20. David JM, Dick EJ, Jr., Hubbard GB. Spontaneous pathology of the common marmoset
508 (Callithrix jacchus) and tamarins (Saguinus oedipus, Saguinus mystax). *J Med Primatol.*
509 2009;38(5):347-359.

510 21. Tucker MJ. A survey of the pathology of marmosets (Callithrix jacchus) under
511 experiment. *Lab Anim.* 1984;18(4):351-358.

512 22. Ludlage E, Mansfield K. Clinical care and diseases of the common marmoset (Callithrix
513 jacchus). *Comp Med.* 2003;53(4):369-382.

514 23. Kaspereit J, Friderichs-Gromoll S, Buse E, Habermann G. Background pathology of the
515 common marmoset (Callithrix jacchus) in toxicological studies. *Exp Toxicol Pathol.*
516 2006;57(5-6):405-410.

517 24. Buhk J, Kim JP, Govindarajan S, et al. Experimental infection of chimpanzees with
518 hepatitis G virus and genetic analysis of the virus. *J Infect Dis.* 1998;177(4):855-862.

519 25. Birkenmeyer LG, Desai SM, Muerhoff AS, et al. Isolation of a GB virus-related genome
520 from a chimpanzee. *J Med Virol.* 1998;56(1):44-51.

521 26. Cheng Y, Zhang W, Li J, et al. Serological and histological findings in infection and
522 transmission of GBV-C/HGV to macaques. *J Med Virol.* 2000;60(1):28-33.

523 27. Sibley SD, Lauck M, Bailey AL, et al. Discovery and characterization of distinct simian
524 pegiviruses in three wild African Old World monkey species. *PLoS One.*
525 2014;9(2):e98569.

526 28. Adams NJ, Prescott LE, Jarvis LM, et al. Detection in chimpanzees of a novel flavivirus
527 related to GB virus-C/hepatitis G virus. *J Gen Virol.* 1998;79 (Pt 8):1871-1877.

528 29. Baechlein C, Grundhoff A, Fischer N, et al. Pegivirus Infection in Domestic Pigs,
529 Germany. *Emerg Infect Dis.* 2016;22(7):1312-1314.

530 30. Yang C, Wang L, Shen H, et al. Detection and genetic characterization of porcine
531 pegivirus in pigs in the United States. *Transbound Emerg Dis.* 2018;65(3):618-626.

532 31. Lei D, Ye Y, Lin K, et al. Detection and genetic characterization of porcine pegivirus from
533 pigs in China. *Virus Genes.* 2019;55(2):248-252.

534 32. Epstein JH, Quan PL, Briese T, et al. Identification of GBV-D, a novel GB-like flavivirus
535 from old world frugivorous bats (*Pteropus giganteus*) in Bangladesh. *PLoS Pathog.*
536 2010;6:e1000972.

537 33. Kapoor A, Simmonds P, Scheel TK, et al. Identification of rodent homologs of hepatitis C
538 virus and pegiviruses. *mBio.* 2013;4(2):e00216-00213.

539 34. Shi M, Lin XD, Vasilakis N, et al. Divergent Viruses Discovered in Arthropods and
540 Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses. *J*
541 *Virol.* 2016;90(2):659-669.

542 35. Tomlinson JE, Kapoor A, Kumar A, et al. Viral testing of 18 consecutive cases of equine
543 serum hepatitis: A prospective study (2014-2018). *J Vet Intern Med.* 2019;33(1):251-
544 257.

545 36. Linnen J, Wages J, Jr., Zhang-Keck ZY, et al. Molecular cloning and disease association
546 of hepatitis G virus: a transfusion-transmissible agent. *Science.* 1996;271(5248):505-
547 508.

548 37. Wang JT, Tsai FC, Lee CZ, et al. A prospective study of transfusion-transmitted GB
549 virus C infection: similar frequency but different clinical presentation compared with
550 hepatitis C virus. *Blood.* 1996;88(5):1881-1886.

551 38. Nakao H, Okamoto H, Fukuda M, et al. Mutation rate of GB virus C/hepatitis G virus over
552 the entire genome and in subgenomic regions. *Virology.* 1997;233(1):43-50.

553 39. Theodore D, Lemon SM. GB virus C, hepatitis G virus, or human orphan flavivirus?
554 *Hepatology.* 1997;25(5):1285-1286.

555 40. Alter HJ. G-pers creepers, where'd you get those papers? A reassessment of the
556 literature on the hepatitis G virus. *Transfusion.* 1997;37(6):569-572.

557 41. Mohr EL, Murthy KK, McLinden JH, Xiang J, Stapleton JT. The natural history of non-
558 human GB virus C in captive chimpanzees. *J Gen Virol.* 2011;92(Pt 1):91-100.

559 42. Suzuki Y, Katayama K, Fukushi S, et al. Slow evolutionary rate of GB virus C/hepatitis G
560 virus. *J Mol Evol.* 1999;48(4):383-389.

561 43. Heringlake S, Tillmann HL, Cordes-Temme P, Trautwein C, Hunsmann G, Manns MP.
562 GBV-C/HGV is not the major cause of autoimmune hepatitis. *J Hepatol.* 1996;25(6):980-
563 984.

564 44. Bralet MP, Roudot-Thoraval F, Pawlotsky JM, et al. Histopathologic impact of GB virus C
565 infection on chronic hepatitis C. *Gastroenterology.* 1997;112(1):188-192.

566 45. Feucht HH, Fischer L, Sterneck M, Broelsch CE, Laufs R. GB virus C transmission by
567 blood products. *Lancet.* 1997;349(9049):435.

568 46. Goeser T, Seipp S, Wahl R, Muller HM, Stremmel W, Theilmann L. Clinical presentation
569 of GB-C virus infection in drug abusers with chronic hepatitis C. *J Hepatol.*
570 1997;26(3):498-502.

571 47. Kanda T, Yokosuka O, Imazeki F, et al. GB virus-C RNA in Japanese patients with
572 hepatocellular carcinoma and cirrhosis. *J Hepatol.* 1997;27(3):464-469.

573 48. Hadziyannis SJ. Fulminant hepatitis and the new G/GBV-C flavivirus. *J Viral Hepat.*
574 1998;5(1):15-19.

575 49. Rambusch EG, Wedemeyer H, Tillmann HL, Heringlake S, Manns MP. [Significance of
576 coinfection with hepatitis G virus for chronic hepatitis C--a review of the literature]. *Z
577 Gastroenterol.* 1998;36(1):41-53.

578 50. Brown KE, Wong S, Young NS. Prevalence of GBV-C/HGV, a novel 'hepatitis' virus, in
579 patients with aplastic anaemia. *Br J Haematol.* 1997;97(2):492-496.

580 51. Servant A, Bogard M, Delaugerre C, Cohen P, Deny P, Guillemin L. GB virus C in
581 systemic medium- and small-vessel necrotizing vasculitides. *Br J Rheumatol.*
582 1998;37(12):1292-1294.

583 52. Viazov S, Alberts KR, Ross RS, Seemayer CA, Roggendorf M. Lack of association
584 between GBV-C infection and spontaneous abortion. *Eur J Clin Microbiol Infect Dis.*
585 1999;18(6):458-459.

586 53. Misiani R, Mantero G, Bellavita P, et al. GB virus C infection in patients with type II
587 mixed cryoglobulinemia. *Ann Intern Med.* 1997;127(10):891-894.

588 54. Crovatto M, Mazzaro C, Mishiro S, et al. GBV-C/HGV and HCV infection in mixed
589 cryoglobulinaemia. *Br J Haematol.* 1999;106(2):510-514.

590 55. Liu F, Knight GB, Agnello V. Hepatitis C virus but not GB virus C/hepatitis G virus has a
591 role in type II cryoglobulinemia. *Arthritis Rheum.* 1999;42(9):1898-1901.

592 56. Hardie D, Smuts H. Human pegivirus-1 in the CSF of patients with HIV-associated
593 neurocognitive disorder (HAND) may be derived from blood in highly viraemic patients. *J
594 Clin Virol.* 2017;91:58-61.

595 57. Sauleda S, Rio J, Montalban X, Martinez-Caceres E, Esteban JI, Guardia J. Lack of
596 association between hepatitis G virus and multiple sclerosis. *J Neurol Neurosurg
597 Psychiatry.* 1998;64(2):283.

598 58. Lamoril J, Andant C, Bogard C, et al. Epidemiology of hepatitis C and G in sporadic and
599 familial porphyria cutanea tarda. *Hepatology.* 1998;27(3):848-852.

600 59. Font J, Tassies D, Garcia-Carrasco M, et al. Hepatitis G virus infection in primary
601 Sjogren's syndrome: analysis in a series of 100 patients. *Ann Rheum Dis.*
602 1998;57(1):42-44.

603 60. Jones JF, Kulkarni PS, Butera ST, Reeves WC. GB virus-C--a virus without a disease:
604 we cannot give it chronic fatigue syndrome. *BMC Infect Dis.* 2005;5:78.

605 61. de Souza AJS, Malheiros AP, de Sousa ERP, et al. First report of equine Pegivirus in
606 South America, Brazil. *Acta Trop.* 2015;152:56-59.

607 62. Chandriani S, Skewes-Cox P, Zhong W, et al. Identification of a previously undescribed
608 divergent virus from the Flaviviridae family in an outbreak of equine serum hepatitis.
609 *Proc Natl Acad Sci U S A.* 2013;110(15):E1407-1415.

610 63. Tomlinson JE, Tenant BC, Struzyna A, et al. Viral testing of 10 cases of Theiler's
611 disease and 37 in-contact horses in the absence of equine biologic product
612 administration: A prospective study (2014-2018). *J Vet Intern Med.* 2019;33(1):258-265.

613 64. Tucker TJ, Smuts HE, Eedes C, et al. Evidence that the GBV-C/hepatitis G virus is
614 primarily a lymphotropic virus. *J Med Virol.* 2000;61(1):52-58.

615 65. Radkowski M, Kubicka J, Kisiel E, et al. Detection of active hepatitis C virus and
616 hepatitis G virus/GB virus C replication in bone marrow in human subjects. *Blood.*
617 2000;95(12):3986-3989.

618 66. George SL, Varmaz D, Stapleton JT. GB virus C replicates in primary T and B
619 lymphocytes. *J Infect Dis.* 2006;193(3):451-454.

620 67. Kisiel E, Cortez KC, Pawelczyk A, et al. Hepatitis G virus/GBV-C in serum, peripheral
621 blood mononuclear cells and bone marrow in patients with hematological malignancies.
622 *Infect Genet Evol.* 2013;19:195-199.

623 68. Stapleton JT, Chaloner K, Zhang J, et al. GBV-C viremia is associated with reduced
624 CD4 expansion in HIV-infected people receiving HAART and interleukin-2 therapy.
625 *AIDS.* 2009;23(5):605-610.

626 69. Maidana-Giret MT, Silva TM, Sauer MM, et al. GB virus type C infection modulates T-
627 cell activation independently of HIV-1 viral load. *AIDS.* 2009;23(17):2277-2287.

628 70. Berzsenyi MD, Woppard DJ, McLean CA, et al. Down-regulation of intra-hepatic T-cell
629 signaling associated with GB virus C in a HCV/HIV co-infected group with reduced liver
630 disease. *J Hepatol.* 2011;55(3):536-544.

631 71. Rydze RT, Xiang J, McLinden JH, Stapleton JT. GB virus type C infection polarizes T-
632 cell cytokine gene expression toward a Th1 cytokine profile via NS5A protein
633 expression. *J Infect Dis.* 2012;206(1):69-72.

634 72. Rydze RT, Bhattarai N, Stapleton JT. GB virus C infection is associated with a reduced
635 rate of reactivation of latent HIV and protection against activation-induced T-cell death.
636 *Antivir Ther.* 2012;17(7):1271-1279.

637 73. Stapleton JT, Xiang J, McLinden JH, et al. A novel T cell evasion mechanism in
638 persistent RNA virus infection. *Trans Am Clin Climatol Assoc.* 2014;125:14-24;
639 discussion 24-16.

640 74. Bhattarai N, Stapleton JT. GB virus C: the good boy virus? *Trends Microbiol.*
641 2012;20(3):124-130.

642 75. Xiang J, McLinden JH, Rydze RA, et al. Viruses within the Flaviviridae decrease CD4
643 expression and inhibit HIV replication in human CD4+ cells. *J Immunol.*
644 2009;183(12):7860-7869.

645 76. Bhattarai N, Rydze RT, Chivero ET, Stapleton JT. GB virus C viremia is associated with
646 higher levels of double-negative T cells and lower T-cell activation in HIV-infected
647 individuals receiving antiretroviral therapy. *J Infect Dis.* 2012;206(9):1469-1472.

648 77. Quan PL, Firth C, Conte JM, et al. Bats are a major natural reservoir for hepaciviruses
649 and pegiviruses. *Proc Natl Acad Sci U S A.* 2013;110(20):8194-8199.

650 78. Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus
651 type 1 genomes from subtype C-infected seroconverters in India, with evidence of
652 intersubtype recombination. *J Virol.* 1999;73(1):152-160.

653 79. Virus Taxonomy: 2019 Release: Genus: Pegivirus. 2020. https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae/363/genus-pegvirus.
654 Accessed 04 April 2020.

655

656 80. Rodrigues TCS, Subramaniam K, McCulloch SD, et al. Genomic characterization of a
657 novel pegivirus species from free-ranging bottlenose dolphins (*Tursiops truncatus*) in the
658 Indian River Lagoon, Florida. *Virus Res.* 2019;263:98-101.

659 81. Smith DB, Becher P, Bukh J, et al. Proposed update to the taxonomy of the genera
660 Hepacivirus and Pegivirus within the Flaviviridae family. *J Gen Virol.* 2016;97(11):2894-
661 2907.

662 82. Simons JN, Leary TP, Dawson GJ, et al. Isolation of novel virus-like sequences
663 associated with human hepatitis. *Nat Med.* 1995;1(6):564-569.

664 83. Stapleton JT, Foun S, Muerhoff AS, Bukh J, Simmonds P. The GB viruses: a review
665 and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus
666 within the family Flaviviridae. *J Gen Virol.* 2011;92(Pt 2):233-246.

667 84. Toyoda H, Fukuda Y, Hayakawa T, Takamatsu J, Saito H. Effect of GB virus C/hepatitis
668 G virus coinfection on the course of HIV infection in hemophilia patients in Japan. *J*
669 *Acquir Immune Defic Syndr Hum Retrovirol.* 1998;17(3):209-213.

670 85. Tillmann HL, Heringlake S, Trautwein C, et al. Antibodies against the GB virus C
671 envelope 2 protein before liver transplantation protect against GB virus C de novo
672 infection. *Hepatology.* 1998;28(2):379-384.

673 86. Lefrere JJ, Roudot-Thoraval F, Morand-Joubert L, et al. Carriage of GB virus C/hepatitis
674 G virus RNA is associated with a slower immunologic, virologic, and clinical progression
675 of human immunodeficiency virus disease in coinfecting persons. *J Infect Dis.*
676 1999;179(4):783-789.

677 87. Yeo AE, Matsumoto A, Hisada M, Shih JW, Alter HJ, Goedert JJ. Effect of hepatitis G
678 virus infection on progression of HIV infection in patients with hemophilia. Multicenter
679 Hemophilia Cohort Study. *Ann Intern Med.* 2000;132(12):959-963.

680 88. Xiang J, Wunschmann S, Diekema DJ, et al. Effect of coinfection with GB virus C on
681 survival among patients with HIV infection. *N Engl J Med.* 2001;345(10):707-714.

682 89. Tillmann HL, Heiken H, Knapik-Botor A, et al. Infection with GB virus C and reduced
683 mortality among HIV-infected patients. *N Engl J Med.* 2001;345(10):715-724.

684 90. Williams CF, Klinzman D, Yamashita TE, et al. Persistent GB virus C infection and
685 survival in HIV-infected men. *N Engl J Med.* 2004;350(10):981-990.

686 91. Van der Bij AK, Kloosterboer N, Prins M, et al. GB virus C coinfection and HIV-1 disease
687 progression: The Amsterdam Cohort Study. *J Infect Dis.* 2005;191(5):678-685.

688 92. Tenckhoff S, Kaiser T, Bredeek F, et al. Role of GB virus C in HIV-1-infected and
689 hepatitis C virus-infected hemophiliac children and adolescents. *J Acquir Immune Defic*
690 *Syndr.* 2012;61(2):243-248.

691 93. Sahni H, Kirkwood K, Kyriakides TC, et al. GBV-C viremia and clinical events in
692 advanced HIV infection. *J Med Virol.* 2014;86(3):426-432.

693 94. Hollingsworth RC, Jameson CL, Minton JE, et al. GBV-C/HGV coinfection in HIV-1-
694 positive men: frequent detection of viral RNA in blood plasma but absence from seminal
695 fluid plasma. *J Med Virol.* 1998;56(4):321-326.

696 95. Goubau P, Liu HF, Goderniaux E, Burtonboy G. Influence of CD4+ lymphocyte counts
697 on GB virus C/hepatitis G virus carriers in HIV-positive individuals. *J Med Virol.*
698 1999;57(4):367-369.

699 96. Rey D, Vidinic-Moularde J, Meyer P, et al. High prevalence of GB virus C/hepatitis G
700 virus RNA and antibodies in patients infected with human immunodeficiency virus type 1.
701 *Eur J Clin Microbiol Infect Dis.* 2000;19(9):721-724.

702 97. Voirin N, Trepo C, Esteve J, et al. Effects of co-infection with hepatitis C virus and GB
703 virus C on CD4 cell count and HIV-RNA level among HIV-infected patients treated with
704 highly active antiretroviral therapy. *AIDS.* 2002;16(11):1556-1559.

705 98. Li C, Collini P, Danso K, et al. GB virus C and HIV-1 RNA load in single virus and co-
706 infected West African individuals. *AIDS.* 2006;20(3):379-386.

707 99. Lauck M, Bailey AL, Andersen KG, Goldberg TL, Sabeti PC, O'Connor DH. GB virus C
708 coinfections in west African Ebola patients. *J Virol.* 2015;89(4):2425-2429.

709 100. Zhang W, Chaloner K, Tillmann HL, Williams CF, Stapleton JT. Effect of early and late
710 GB virus C viraemia on survival of HIV-infected individuals: a meta-analysis. *HIV Med.*
711 2006;7(3):173-180.

712 101. Stapleton JT, Martinson JA, Klinzman D, Xiang J, Desai SN, Landay A. GB virus C
713 infection and B-cell, natural killer cell, and monocyte activation markers in HIV-infected
714 individuals. *AIDS.* 2013;27(11):1829-1832.

715 102. De Renzo A, Persico E, de Marino F, et al. High prevalence of hepatitis G virus infection
716 in Hodgkin's disease and B-cell lymphoproliferative disorders: absence of correlation
717 with hepatitis C virus infection. *Haematologica.* 2002;87(7):714-718; discussion 718.

718 103. Krajden M, Yu A, Braybrook H, et al. GBV-C/hepatitis G virus infection and non-Hodgkin
719 lymphoma: a case control study. *Int J Cancer.* 2010;126(12):2885-2892.

720 104. Giannoulis E, Economopoulos T, Mandraveli K, et al. The prevalence of hepatitis C and
721 hepatitis G virus infection in patients with B cell non-Hodgkin lymphomas in Greece: a
722 Hellenic Cooperative Oncology Group Study. *Acta Haematol.* 2004;112(4):189-193.

723 105. Wiwanitkit V. Individuals with HGV-RNA are at high risk of B cell non-Hodgkin's
724 lymphoma development. *Asian Pac J Cancer Prev.* 2005;6(2):215-216.

725 106. Ellenrieder V, Weidenbach H, Frickhofen N, et al. HCV and HGV in B-cell non-Hodgkin's
726 lymphoma. *J Hepatol.* 1998;28(1):34-39.

727 107. Pavlova BG, Heinz R, Selim U, Tuchler H, Pittermann E, Eder G. Association of GB
728 virus C (GBV-C)/hepatitis G virus (HGV) with haematological diseases of different
729 malignant potential. *J Med Virol.* 1999;57(4):361-366.

730 108. Chang CM, Stapleton JT, Klinzman D, et al. GBV-C infection and risk of NHL among
731 U.S. adults. *Cancer Res.* 2014;74(19):5553-5560.

732 109. Fama A, Xiang J, Link BK, et al. Human Pegivirus infection and lymphoma risk and
733 prognosis: a North American study. *Br J Haematol.* 2018;182(5):644-653.

734 110. Fama A, Larson MC, Link BK, et al. Human Pegivirus Infection and Lymphoma Risk: A
735 Systematic Review and Meta-analysis. *Clin Infect Dis.* 2019.

736 111. Collier JD, Zanke B, Moore M, et al. No association between hepatitis C and B-cell
737 lymphoma. *Hepatology.* 1999;29(4):1259-1261.

738 112. Arican A, Sengezer T, Bozdayi M, et al. Prevalence of hepatitis-G virus and hepatitis-C
739 virus infection in patients with non-Hodgkin's lymphoma. *Med Oncol.* 2000;17(2):123-
740 126.

741 113. Nicolosi Guidicelli S, Lopez-Guillermo A, Falcone U, et al. Hepatitis C virus and GBV-C
742 virus prevalence among patients with B-cell lymphoma in different European regions: a
743 case-control study of the International Extranodal Lymphoma Study Group. *Hematol
744 Oncol.* 2012;30(3):137-142.

745 114. Keresztes K, Takacs M, Horanyi M, Miltenyi Z, Illes A. HCV and HGV infection in
746 Hodgkin's disease. *Pathol Oncol Res.* 2003;9(4):222-225.

747 115. Persico M, De Renzo A, Persico E, Notaro R, Torella R, Rotoli B. Hepatitis G virus in
748 patients with Hodgkin's lymphoma. *Br J Haematol.* 1998;103(4):1206-1207.

749 116. Reshetnyak VI, Sharafanova TI, Il'chenko LY, Poroshenko GG. DNA structure in
750 peripheral blood lymphocytes from patients with chronic viral liver damages. *Bull Exp
751 Biol Med.* 2002;133(4):399-400.

752 117. Porter AF, Pettersson JH-O, Wei-Shan C, et al. Metagenomic identification of diverse
753 animal hepaciviruses and pegiviruses. *bioRxiv.* 2020.

754 118. Bukh J, Apgar CL. Five new or recently discovered (GBV-A) virus species are
755 indigenous to New World monkeys and may constitute a separate genus of the
756 Flaviviridae. *Virology.* 1997;229(2):429-436.

757 119. Seifried E, Balleck H, Weber H, et al. [Prevalence of hepatitis G virus genome in blood
758 donors]. *Beitr Infusionsther Transfusionsmed*. 1997;34:11-15.

759 120. Roth WK, Waschk D, Marx S, et al. Prevalence of hepatitis G virus and its strain variant,
760 the GB agent, in blood donations and their transmission to recipients. *Transfusion*.
761 1997;37(6):651-656.

762 121. Yoshikawa A, Fukuda S, Itoh K, et al. Infection with hepatitis G virus and its strain
763 variant, the GB agent (GBV-C), among blood donors in Japan. *Transfusion*.
764 1997;37(6):657-663.

765 122. Gutierrez RA, Dawson GJ, Knigge MF, et al. Seroprevalence of GB virus C and
766 persistence of RNA and antibody. *J Med Virol*. 1997;53(2):167-173.

767 123. Lara C, Halasz R, Sonnerborg A, Sallberg M. Detection of hepatitis G virus RNA in
768 persons with and without known risk factors for blood-borne viral infections in Sweden
769 and Honduras. *J Clin Microbiol*. 1998;36(1):255-257.

770 124. Gallian P, Rodrigues V, Cantaloube JF, et al. High prevalence of GB-C/hepatitis G virus
771 in a Brazilian population with helminth infection. *J Med Virol*. 1998;56(4):310-315.

772 125. Mphahlele MJ, Aspinall S, Spooner R, Carman WF. Age related prevalence of hepatitis
773 G virus in South Africans. *J Clin Pathol*. 1999;52(10):752-757.

774 126. Corwin AL, Hyams KC, Kim JP, et al. Short report: evidence of worldwide transmission
775 of hepatitis G virus. *Am J Trop Med Hyg*. 1997;57(4):455-456.

776 127. Herrera S, Perlaza BL, Bonelo A, Arevalo-Herrera M. Aotus monkeys: their great value
777 for anti-malaria vaccines and drug testing. *Int J Parasitol*. 2002;32(13):1625-1635.

778 128. Hutt MS, Davies DR, Voller A. Malarial infections in Aotus trivirgatus with special
779 reference to renal pathology. II. *P. falciparum* and mixed malaria infections. *Br J Exp
780 Pathol*. 1975;56(5):429-438.

781 129. Schmidt LH. Plasmodium falciparum and Plasmodium vivax infections in the owl monkey
782 (Aotus trivirgatus). II. Responses to chloroquine, quinine, and pyrimethamine. *Am J Trop
783 Med Hyg*. 1978;27(4):703-717.

784 130. Karayiannis P, Thomas HC. Current status of hepatitis G virus (GBV-C) in transfusion: is
785 it relevant? *Vox Sang*. 1997;73(2):63-69.

786 131. Stark K, Meyer CG, Tacke M, et al. Hepatitis G virus RNA and hepatitis G virus
787 antibodies in renal transplant recipients: prevalence and risk factors. *Transplantation*.
788 1997;64(4):608-612.

789 132. Kallinowski B, Ahmadi R, Seipp S, Bommer J, Stremmel W. Clinical impact of GB-C
790 virus in haemodialysis patients. *Nephrol Dial Transplant*. 1998;13(1):93-98.

791 133. Huang CH, Kao JH, Kuo YM, Tsai TJ, Hung KY, Chen DS. GB virus C/hepatitis G virus
792 infection in patients on continuous ambulatory peritoneal dialysis. *Nephrol Dial
793 Transplant*. 1998;13(11):2914-2919.

794 134. Fiordalisi G, Bettinardi A, Zanella I, et al. Parenteral and sexual transmission of GB virus
795 C and hepatitis C virus among human immunodeficiency virus-positive patients. *J Infect
796 Dis*. 1997;175(4):1025-1026.

797 135. Anastassopoulou CG, Paraskevis D, Sypsa V, et al. Prevalence patterns and genotypes
798 of GB virus C/hepatitis G virus among imprisoned intravenous drug users. *J Med Virol*.
799 1998;56(3):246-252.

800 136. Shibuya A, Takeuchi A, Sakurai K, Saigenji K. Hepatitis G virus infection from needle-
801 stick injuries in hospital employees. *J Hosp Infect*. 1998;40(4):287-290.

802 137. Kao JH, Chen W, Chen PJ, Lai MY, Lin RY, Chen DS. GB virus-C/hepatitis G virus
803 infection in prostitutes: possible role of sexual transmission. *J Med Virol*. 1997;52(4):381-
804 384.

805 138. Semprini AE, Persico T, Thiers V, et al. Absence of hepatitis C virus and detection of
806 hepatitis G virus/GB virus C RNA sequences in the semen of infected men. *J Infect Dis*.
807 1998;177(4):848-854.

808 139. Viazov S, Riffelmann M, Sarr S, Ballauff A, Meisel H, Roggendorf M. Transmission of
809 GBV-C/HGV from drug-addicted mothers to their babies. *J Hepatol.* 1997;27(1):85-90.
810 140. Zanetti AR, Tanzi E, Romano L, et al. Multicenter trial on mother-to-infant transmission
811 of GBV-C virus. The Lombardy Study Group on Vertical/Perinatal Hepatitis Viruses
812 Transmission. *J Med Virol.* 1998;54(2):107-112.
813 141. Hino K, Moriya T, Ohno N, et al. Mother-to-infant transmission occurs more frequently
814 with GB virus C than hepatitis C virus. *Arch Virol.* 1998;143(1):65-72.
815 142. Lin HH, Kao JH, Yeh KY, et al. Mother-to-infant transmission of GB virus C/hepatitis G
816 virus: the role of high-titered maternal viremia and mode of delivery. *J Infect Dis.*
817 1998;177(5):1202-1206.
818 143. Santos LM, Lobato RC, Barral MFM, Goncalves CV, da Hora VP, Martinez AMB.
819 Prevalence and vertical transmission of human pegivirus among pregnant women
820 infected with HIV. *Int J Gynaecol Obstet.* 2017;138(1):113-118.
821 144. Prati D, Zanella A, Bosoni P, et al. The incidence and natural course of transfusion-
822 associated GB virus C/hepatitis G virus infection in a cohort of thalassemic patients. The
823 CooleyCare Cooperative Group. *Blood.* 1998;91(3):774-777.
824 145. Lauck M, Sibley SD, Hyeroba D, et al. Exceptional simian hemorrhagic fever virus
825 diversity in a wild African primate community. *J Virol.* 2013;87(1):688-691.
826 146. Lauck M, Switzer WM, Sibley SD, et al. Discovery and full genome characterization of
827 two highly divergent simian immunodeficiency viruses infecting black-and-white colobus
828 monkeys (*Colobus guereza*) in Kibale National Park, Uganda. *Retrovirology.*
829 2013;10:107.
830 147. Gartner LP, Hiatt JL. *Color atlas of histology*. 5th ed. Philadelphia: Wolters Kluwer
831 Health/Lippincott William & Wilkins; 2009.
832