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Abstract 20 

From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin 21 
National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic 22 
enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased 23 
enterocolitis-positive marmosets for the presence of RNA viruses. In five out of eight marmosets 24 
with lymphocytic enterocolitis, we discovered a novel pegivirus that was not present in ten 25 
subsequently deep-sequenced matched, clinically-normal common marmosets with no evidence 26 
of lymphocytic enterocolitis. The novel virus, which we have named Southwest bike trail virus 27 
(SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A that 28 
was previously isolated from a three-striped night monkey (Aotus trivirgatus). To determine the 29 
prevalence of this novel virus within the WNPRC marmoset colony, we screened 146 living 30 
animals and found an overall prevalence of 34% (50/146). Over the next four years, 85 of the 31 
146 screened marmosets died or were euthanized and were examined histologically for 32 
lymphocytic enterocolitis. Out of these 85 animals, 27 SOBV-positive common marmosets had 33 
developed lymphocytic enterocolitis, compared to 42 SOBV-negative common marmosets, 34 
indicating no evidence of an association between this virus and development of enterocolitis in 35 
this cohort (p=0.0798). The novel pegivirus was also found in two of 32 (6%) clinically-normal 36 
common marmosets screened while in quarantine during the transfer from the New England 37 
Primate Research Center to the WNPRC, suggesting SOBV has different prevalence at different 38 
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centers and could exert confounding influences on the comparison of marmoset studies from 39 
multiple centers. 40 

Importance 41 

Common marmosets (Callithrix jacchus) are a valuable model species. We discovered two 42 
variants of a novel simian pegivirus, which we named the Southwest bike trail virus (SOBV), in 43 
common marmosets which had postmortem histologic diagnosis of lymphocytic enterocolitis. 44 
The virus was not present in ten matched, clinically-normal controls. We screened 146 live 45 
healthy common marmosets in the Wisconsin National Primate Research Center colony and 46 
found 34% (50/146) of the animals were SOBV-positive. SOBV was also present in two of 32 47 
(6%) clinically-normal common marmosets from the New England Primate Research Center. 48 
These findings could have confounding effects in animal studies, especially those in which 49 
infection-free animals are desired, and they demonstrate the need for further investigations into 50 
SOBV transmission, the length of time of SOBV persistence, and SOBV prevalence at other 51 
primate centers, in order to increase understanding of the effects of SOBV and of this viral 52 
genus. 53 

Introduction 54 

Common marmosets (Callithrix jacchus) are a valuable model species due to their small body 55 
size, communal monogamous familial behavior, birth of hematopoietic chimeric litters, short 56 
parturition intervals, and status as members of a non-endangered primate species.1-5 The utility 57 
of common marmosets in research has resulted in a recent increase in demand for these 58 
animals.6 The Wisconsin National Primate Research Center (WNPRC) in Madison, Wisconsin, 59 
USA, houses a common marmoset colony typically consisting of about 240 common 60 
marmosets, which are used by researchers at the University of Wisconsin-Madison for 61 
groundbreaking research in neurological, neurobehavioral, and pharmacologic research, among 62 
many others.7-17  63 
 64 
From 2010 to 2015, 73 common marmosets housed at the WNPRC were euthanized due 65 
experimental end point, chronic intractable diarrhea, or chronic severe weight loss, underwent 66 
necropsy with histology, and were diagnosed with lymphocytic enterocolitis.18-21 Beyond the 67 
regrettable loss of animal life, common marmoset morbidity and mortality due to enterocolitis is 68 
harmful both to colony success and to the scientific studies to which these animals are 69 
assigned. Though lymphocytic enterocolitis is one of the most common causes of death in 70 
captive common marmosets,18-23 the epizootic at the WNPRC was associated with an unusually 71 
high disease incidence for the colony, prompting investigations into a possible infectious 72 
contributor. Unbiased deep-sequencing led to the discovery of two similar variants of a novel 73 
pegivirus, most closely related to a variant of simian pegivirus A (SPgV-A) previously isolated 74 
from a three-striped night monkey (Aotus trivirgatus). This novel pegivirus was present in a 75 
subset of deceased common marmosets diagnosed postmortem with lymphocytic enterocolitis 76 
and was not present in matched, clinically-normal controls.  77 
 78 
Pegiviruses, members of genus Pegivirus (Amarillovirales: Flaviviridae), are ubiquitous in 79 
animal populations,24-35 but their biological consequences are poorly understood. Pegiviruses 80 
can persist at high titers for years or decades in humans36-40 and chimpanzees41 with an 81 
unusually low mutation rate compared to other RNA viruses,38,42 and they have never been 82 
shown to be the causative agent of any disease.43-60 Apparent links between pegiviruses and 83 
disease, such as that initially posited for Theiler’s disease associated virus (TDAV) and Theiler’s 84 
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disease,61,62 have later been shown to be more likely spurious.35,63 The mechanisms of pegivirus 85 
biology have eluded definition, but these viruses are considered most likely lymphotropic,64-67 86 
and evidence from in vivo and in vitro studies suggests they may affect T cell functioning and 87 
homeostasis.68-76 Lymphocytic enterocolitis in common marmosets is likewise characterized by 88 
a dysregulation of T cell biology, as the intestinal villus architecture is disrupted or lost due to 89 
the intraepithelial infiltration of large numbers of CD3 CD8-positive lymphocytes.22 Given the 90 
importance of common marmosets as a model species and the disease burden caused by 91 
lymphocytic enterocolitis, we set out to characterize the possible link between this new virus and 92 
the disease state. 93 
 94 
Here, we report the discovery of two variants of a novel pegivirus in a captive common 95 
marmoset colony. We establish phylogenetic relationships with other known pegiviruses. Since 96 
this virus was discovered in common marmosets with lymphocytic enterocolitis and was absent 97 
in clinically-normal controls, we measure the prevalence of the virus in the colony and track the 98 
potential association of viral status with risk of developing lymphocytic enterocolitis disease over 99 
four years. Our findings have implications for animal studies in which specific pathogen-free 100 
animals are desired, and they demonstrate the need for further investigations to increase 101 
understanding of these viruses and their impact on common marmoset health. 102 

Results 103 

Captive common marmosets harbor a novel pegivirus 104 

To examine the etiology of the unusually high rate of lymphocytic enterocolitis in deceased 105 
WNPRC common marmosets, banked plasma samples from eight common marmosets 106 
diagnosed with lymphocytic enterocolitis and from ten clinically-normal, live common marmosets 107 
to be used as controls were screened by deep sequencing for the presence of viral RNA. RNA 108 
from a previously undocumented pegivirus was detected in the plasma of five of eight deceased 109 
marmosets with lymphocytic enterocolitis. We propose this novel virus (BioProject 110 
PRJNA613737) be formally named the Southwest bike trail virus (SOBV). Pegivirus RNA was 111 
not detected in the plasma of the ten clinically-normal common marmoset controls.  112 
 113 
SOBV consists of a 9.8-kb-long contig that is highly similar to the genome of simian pegivirus A 114 
(SPgV A) trivirgatus, a simian pegivirus previously discovered in a three-striped night monkey 115 
(Aotus trivirgatus)27 (Figure 1), with 68% nucleotide identity across the coding sequence when 116 
aligned using ClustalW with an IUB cost matrix (gap extension cost, 6.66; gap open cost, 117 
15.00). Four of the five common marmosets positive for SOBV had variants of the virus having 118 
98-99% sequence identity, while one common marmoset had a variant with 88% sequence 119 
identity to the others. We have named these variants SOBV-1 (GenBank accession number 120 
MT513216) and SOBV-2 (GenBank accession number MT513217).  121 
 122 
Pairwise comparisons of nucleotide identity across the entire coding region further illustrate the 123 
similarity of SOBV-1 and SOBV-2 and the divergence between these novel virus strains and the 124 
next most closely-related viruses (Figure 2, Figure 3), most of which were simian pegiviruses. 125 
Several pegivirus isolates found in a bat77 also shared high degrees of similarity with the novel 126 
pegivirus. 127 
 128 
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 129 
Figure 1. A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV 130 
variants 1 and 2) shows it is most closely related to pegiviruses found in other New World 131 
monkeys and bats. We generated maximum likelihood trees using MEGA6.06 (1,000 bootstrap 132 
replicates, GTR+I+γ model) from codon-based alignments (via MAFFT); Bootstrap values of 133 
less than 70 are omitted. 134 
Abbreviations: HPgV = human pegivirus; SPgV = simian pegivirus  135 
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 136 

 137 
Figure 2. Sliding window similarity plots78 show the relatedness of the amino acid sequences of 138 
SOBV-2 and other closely related pegiviruses to SOBV-1. Dashed vertical lines indicate the 139 
putative approximate start positions of inferred viral proteins, from left to right: E1, E2, P7, NS2, 140 
NS3, NS4A, NS4B, NS5A, and NS5B.79  141 
Abbreviations: SPgV-A nigri = GBV-A-like virus recovered from Saguinus nigricollis; SPgV-A tri 142 
= GBV-A-like virus recovered from Aotus trivirgatus; SPgV-A mx = GBV-A-like virus recovered 143 
from Saguinus mystax; SPgV-A lab = GBV-A-like virus recovered from Saguinus labiatus; BPgV 144 
737 = bat pegivirus recovered from Eidolon helvum 145 
 146 

  147 
Figure 3. Sequence identity matrix based on amino acid alignment of the newly discovered 148 
SOBV-1 and SOBV-2 (red box) compared to members of the 11 recognized pegivirus species 149 
and of one* proposed species.79 150 
*The classification of dolphin into species “Pegivirus L” has been suggested.80  151 
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Novel pegivirus RNA is detected in up to 34% of a captive 152 
common marmoset colony 153 

Having identified the novel pegivirus in diseased animals, we sought to determine its prevalence 154 
within the WNPRC common marmoset colony. We developed an RT-PCR assay to detect a 155 
conserved region of the putative helicase protein of SOBV and used this to screen plasma 156 
collected from 146 clinically-normal live common marmosets in the WNPRC colony, confirming 157 
results through deep-sequencing of the amplicons. At the time of the initial screening in March–158 
April 2014, 50 of the 146 (34.25%) clinically-normal screened animals tested positive for SOBV 159 
RNA. Nineteen of 60 females (31.67%) and 31 of 86 males (36.05%) tested positive at the time 160 
of screening. Sex was not associated with the likelihood of SOBV using univariate logistic 161 
regression (p=0.583). Age at the time of screening was associated with the likelihood of SOBV 162 
(p=0.0324), with the likelihood of positivity increasing with age (Figure 4). 163 
 164 
 165 

 166 
 167 
 168 

Figure 4. Prevalence of infection with Southwest bike trail virus (SOBV) in common marmosets 169 
at the WNPRC increases with age. One hundred forty-six live, clinically-normal common 170 
marmosets in the WNPRC captive common marmoset colony were screened for SOBV using 171 
RT-PCR and deep sequencing methods. The likelihood of infection with these viruses was 172 
significantly statistically associated with increasing age (p=0.03237) using univariate logistic 173 
regression.  174 
 175 
In November 2014, 82 common marmosets were transferred from the New England Primate 176 
Research Center (NEPRC) to the WNPRC. Samples from 32 NEPRC common marmosets were 177 
collected while the animals were in quarantine. Two (6%) of these were found to be positive for 178 
SOBV RNA when screened by RT-PCR.  179 

Presence of novel pegivirus is not statistically significantly 180 
associated with lymphocytic enterocolitis in the common 181 
marmoset  182 

Given that pegiviruses are known to persist in hosts for years or decades,36-41 we sought to 183 
determine whether SOBV-positive animals were more likely to develop lymphocytic enterocolitis 184 
over a period of observation. Typical enteric architecture consists of slender, often branching 185 
villi, with short intestinal glands, small numbers of lymphocytes in the lamina propria, and 186 
prominent B cell aggregates dispersed throughout the length of the intestines (Figure 5, control). 187 

WNPRC common marmosets screened for SOBV 
Age 

(years) at 
time of 

screening 

Total 
number 
common 

marmosets 

Number 
common 

marmosets 
infected 

Number 
common 

marmosets 
non-

infected 
1 20 6 14 
2 24 5 19 
3 18 6 12 
4 14 3 11 
5 22 8 14 
6 7 2 5 
7 14 9 5 
8 13 3 10 
9 5 4 1 
10 6 2 4 
11 2 1 1 
12 0 0 0 
13 1 1 0 
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 7 

Lymphocytic enterocolitis was diagnosed as a disruption of this architecture, with lymphocytic 188 
infiltration that expands the lamina propria, resulting in widening and shortening of villi and 189 
hyperplasia of crypt epithelium (Figure 5, E1-E3). Cases varied in severity, with mild cases 190 
showing only slight expansion of the lamina propria and advanced cases showing complete loss 191 
of villus architecture due to infiltration of the lamina propria with large numbers of CD3-positive 192 
lymphocytes. Eighty-five of the live WNPRC animals initially screened for SOBV in 2014 were 193 
euthanized for experimental end points or clinical illness between their screening and May 3, 194 
2019. Sixty-nine (81.18%) of these animals were diagnosed by postmortem histological analysis 195 
with lymphocytic enteritis, colitis, or enterocolitis. Two animals were removed from this analysis 196 
due to confounding factors (one animal had severe tissue autolysis, and the other animal had B 197 
cell lymphoma of the small and large intestines). 198 
 199 

 200 
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Figure 5. Representative photomicrographs show disruption of the normal architecture in the 201 
duodenum, jejunum, and colon by lymphocytic enterocolitis in common marmosets. Histology 202 
was performed upon intestinal samples from 85 common marmosets. Intestinal sections were 203 
stained with hematoxylin and eosin (H&E) and with B cell-specific and T cell-specific staining 204 
procedures (immunohistochemistry) with monoclonal antibodies to CD20 or CD79 (B cell 205 
markers) and CD3 (T cell marker), respectively.  206 
 207 
Pegivirus infection was not found to be associated with an increased likelihood of developing 208 
lymphocytic enteritis in the small intestines (p=0.779), colitis in the large intestine (p=0.196), 209 
either a colitis or enteritis (p=0.820), or an enterocolitis (p=0.0798), or with lack of any 210 
lymphocytic disease (p=0.904) (Figure 6). Sex was not associated with likelihood of the various 211 
disease states (p=0.400, p=0.912, p=0.235, p=0.812, and p=0.235, respectively). 212 
 213 

    214 
Figure 6. Infection with Southwest bike trail virus (SOBV) is not associated with the likelihood of 215 
developing lymphocytic enteritis, colitis, or enterocolitis. Eighty-five common marmosets at the 216 
WNPRC, which had been previously screened for SOBV by RT-PCR or deep-sequencing of 217 
plasma samples, were examined postmortem for histological evidence of lymphocytic 218 
enterocolitis. Pegivirus infection was not found to be associated with an increased likelihood of 219 
developing lymphocytic colitis (p=0.196), enteritis (p=0.779), either enteritis or colitis (p=0.820), 220 
enterocolitis (p=0.0798), or lack of lymphocytic disease (p=0.904), using univariate logistic 221 
regression.  222 

Discussion 223 

We describe the discovery of a novel simian pegivirus, the Southwest bike trail virus (SOBV), 224 
first identified in common marmosets diagnosed with lymphocytic enterocolitis. We show this 225 
pegivirus was prevalent in our colony during a period of increased incidence of lymphocytic 226 
enterocolitis and that it was less prevalent in a similar, clinically-normal colony. The novel virus 227 
was not significantly associated with the likelihood of developing lymphocytic enterocolitis, 228 
though prevalence of the virus increased with increasing age in the common marmoset. With an 229 
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average prevalence of 34%, SOBV is common throughout the WNPRC common marmoset 230 
colony.  231 
 232 
Pegiviruses, the members of genus Pegivirus (Amarillovirales: Flaviviridae), have single-233 
stranded, positive-sense RNA genomes and produce enveloped virions.81 The first members of 234 
the genus were identified about 20 years ago,82,83 and since that time pegiviruses have been 235 
found in many animal populations.24-35,80 Pegiviruses have never been shown to be causative 236 
agents of any disease or alteration in physiology.43-60 Human pegivirus (HPgV) has been linked 237 
both to improved outcomes in HIV-1 infection68,84-101 and to increased incidence of various types 238 
of lymphoma,102-110 though this remains controversial.111-115 HPgV is considered likely 239 
lymphotropic,64-67 and evidence from in vivo and in vitro research suggests HPgV may affect T 240 
cell activation, signaling, proliferation and apoptosis, and CD4 or CD8 expresssion,68-76 and that 241 
it may be associated with a higher rate of host cell DNA damage116 and genomic 242 
destabilization.107 These effects on T cell functions may be a common pathway through which 243 
these viruses may cause lymphocytic diseases. 244 
 245 
It is not known whether common marmosets are the natural host for SOBV or whether they 246 
acquired this virus from another species in captivity.117 Other pegiviruses have been discovered 247 
in wild common marmosets in the 1990s,118 but their prevalence has never been examined. The 248 
prevalence of SOBV in our captive common marmoset population was quite high compared to 249 
the prevalence of HPgV, which is found in about 1–4% of human populations,119-126 and 250 
compared to the prevalence of pegiviruses in captive chimpanzees (1-3%).41 SOBV is most 251 
similar to a pegivirus discovered in a three-striped night monkey (Aotus trivirgatus),27 a species 252 
used in malaria research at other primate research facilities,127-129 indicating SOBV may have 253 
been introduced into common marmosets through contact in captivity. Interestingly, SOBV is 254 
highly similar to several variants of a bat pegivirus isolated from African straw-colored fruit bats 255 
(Eidolon helvum). Given that common marmosets and three-striped night monkeys are native to 256 
northern South America, this may indicate a South American bat species harbors a more 257 
closely-related pegivirus and could have been the source of an interspecies spillover. 258 
  259 
The routes of transmission of SOBV and of other simian pegiviruses have not been examined. 260 
Human pegivirus transmission has been extensively studied and is known to occur efficiently 261 
through blood products or dialysis,36,45,130-133 intravenous drug use and needle sticks,130,134-136 262 
sexual intercourse,130,134,137,138 and from mother to infant.130,139-143 Captive common marmosets 263 
are typically housed in familial groups in shared cages and receive some vaccines and other 264 
medication by injection, and common marmosets frequently give birth to non-identical twins.3-5,22 265 
These animals thus have the potential to transmit SOBV through direct contact, sexual contact, 266 
birth, and medical injections or veterinarian manipulations. Defining mechanisms of 267 
transmission will be important in preventing infection and thereby allowing the study of this virus’ 268 
effects. 269 
 270 
The high prevalence of this virus at the WNPRC raises important considerations about potential 271 
effects on common marmoset experiments. Facilities working with common marmosets should 272 
prescreen the animals to establish the pegivirus status of animals in research to account for 273 
potential confounding. Pegiviruses can replicate at high titers in a host for more than a 274 
decade;36,37,41,144 thus, the length of time for which an animal has been continuously infected 275 
may also be relevant in potentially confounding study outcomes. Future investigations, perhaps 276 
involving the isolation of common marmosets for years at a time to follow the natural history of 277 
chronic pegivirus infection in these animals, could examine the long-term effects of infecting 278 
common marmosets with SOBV.  279 
 280 
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This study has several limitations. First, this study was observational in nature, as we did not 281 
want to risk infecting more marmosets in our research colony with an apparently transmissible 282 
and potentially harmful virus. This study design could not examine a causal link between viral 283 
positivity and the development of lymphocytic enterocolitis. Definitive establishment of causation 284 
would require demonstrating that animals infected experimentally develop the disease. Second, 285 
many animals in this study were concurrently enrolled in other WNPRC studies, and therefore 286 
some were euthanized earlier than would have occurred otherwise when those studies reached 287 
experimental endpoints. We chose to use this convenience sample as it allowed us to achieve a 288 
large study sample size in which to investigate a potential infectious contributor to an important 289 
and poorly-understood cause of common marmoset mortality without disrupting other ongoing 290 
studies at the WNPRC. Third, not all of the animals initially screened were deceased at the time 291 
of this analysis, and future necropsies of these animals may contribute additional data 292 
concerning the likelihood of enterocolitis development. Finally, some animals in this study may 293 
have cleared the virus before the samples we tested were collected. Consequently, these 294 
animals could have been mistakenly classified as virus-naïve; others may have acquired the 295 
virus after our initial screening. Development of a SOBV-specific ELISA or other serodiagnosis 296 
tools would enable deeper appropriate analyses of SOBV infection rates both prospectively and 297 
retrospectively. 298 
 299 
In summary, this work describes the discovery of a novel simian pegivirus and investigates its 300 
relationship with a widespread and devastating cause of common marmoset mortality. Our 301 
study lays the groundwork for the future development of a nonhuman primate model system 302 
using this natural infection as a potential model for studying the mechanisms of these enigmatic 303 
viruses and providing a greater understanding of their genus as a whole. 304 
 305 

Materials and methods 306 

Animals 307 

All animals in this study were common marmosets (Callithrix jacchus Linnaeus, 1758) housed at 308 
the Wisconsin National Primate Research Center (WNPRC) in Madison, WI, USA. The common 309 
marmoset colony at the WNPRC was established in 1960. The original animals were imported 310 
from northeastern Brazil, with the final importation occurring in the early 1970s. The average 311 
yearly population of the colony each year from 2010 to 2019 was approximately 240 animals, all 312 
of which were born in captivity. WNPRC animals screened were 41% (60 animals) female and 313 
59% (86 animals) male. Age at the time of screening ranged from 0.82–12.82 years (mean 314 
4.65+/-2.83 years, median 4.26 years). 315 
 316 
The New England Primate Research Center (NEPRC), Southborough, MA, USA, was closed in 317 
2015, resulting in a transfer of 82 common marmosets to WNPRC before closure in November 318 
2014. Plasma samples were collected from some of these animals upon their arrival at WNPRC 319 
(November–December 2014) while quarantined in a separate building and location from the 320 
WNPRC marmoset colony. In the population initially from the NEPRC, 45 (55%) of the screened 321 
animals were female, and 37 (45%) were male. Age at the time of screening ranged from 0.65–322 
10.66 years (mean 3.74+/-2.60, median 2.51 years) in this population.  323 
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Ethics 324 

All common marmosets were cared for by WNPRC staff according to the regulations and 325 
guidelines outlined in the National Research Council’s Guide for the Care and Use of Laboratory 326 
Animals, the Animal Welfare Act, the Public Health Service Policy on the Humane Care and Use 327 
of Laboratory Animals, and the recommendations of the Weatherall report 328 
(https://royalsociety.org/topics-policy/publications/2006/weatherall-report/). Per WNPRC 329 
standard operating procedures for animals assigned to protocols involving the experimental 330 
inoculation of infectious pathogens, environmental enhancement included constant visual, 331 
auditory, and olfactory contact with conspecifics, the provision of feeding devices that inspire 332 
foraging behavior, the provision and rotation of novel manipulanda, and enclosure furniture (i.e., 333 
perches, shelves). The common marmosets were housed socially in enclosures measuring 334 
0.6m D × 0.9m W × 1.8 m H or 0.6m D × 1.2m W × 1.8 m H.  The WNPRC maintains an 335 
exemption from the USDA for these enclosures as they do not meet the Animal Welfare Act 336 
regulations for floor space but greatly exceed height requirements as the species are arboreal. 337 
This study was approved by the University of Wisconsin-Madison College of Letters and 338 
Sciences and Vice Chancellor for Research and Graduate Education Centers Institutional 339 
Animal Care and Use Committee (animal protocol numbers G005401 and G005443). 340 

Unbiased deep-sequencing 341 

Samples from 18 common marmosets (8 deceased common marmosets diagnosed with 342 
lymphocytic enterocolitis through necropsy and 10 live, healthy common marmosets) from the 343 
WNPRC and 12 common marmosets (all live and healthy) from the NEPRC were screened for 344 
the presence of viruses using unbiased deep-sequencing. The live WNPRC common 345 
marmosets and the live NEPRC common marmosets were selected randomly for deep-346 
sequencing. 347 
 348 
DNA and RNA were isolated from plasma. Common marmoset plasma (1 ml/animal) was 349 
centrifuged at 5,000 x g for 5 min at 4°C. Supernatants were removed and filtered through a 350 
0.45-µm filter, then centrifuged at maximum speed (20,817 g) for 5 min at 4°C. Supernatants 351 
were removed and incubated for 90 min at 37°C with a DNA/RNA digest cocktail consisting of 4 352 
μl DNAfree DNAse (0.04 U/μl; Ambion, Austin, TX, USA), 6 μl Baseline Zero DNAse (0.1 U/μl, 353 
Epicentre Technologies, Madison, WI, USA), 1 μl Benzonase (1 U/μl, Sigma-Adrich, St. Louis, 354 
MO, USA), and 12 μl DNAse 10x buffer. Viral nucleic acids were then isolated using the Qiagen 355 
QIAamp MinElute Virus Spin Kit without the use of AW1 buffer or carrier RNA (Qiagen, 356 
Valencia, CA, USA). Random hexamers were used to prime cDNA synthesis (Life 357 
Technologies, Grand Island, NY, USA), followed by DNA purification using Ampure XP beads, 358 
as previously described.145,146 Deep-sequencing libraries were prepared using the Nextera XT 359 
DNA Library Prep Kit (Illumina, San Diego, CA, USA) and sequenced on MiSeq (Illumina).  360 

Viral sequence and phylogenetic analysis 361 

Sequence data were analyzed using CLC Genomics Workbench 5.5 (CLC bio, Aarhus, 362 
Denmark). Low-quality reads (Phred <Q30) and short reads (<100 bp) were removed with CLC 363 
Genomics Workbench 7.1 (CLC bio, Aarhus, Denmark), and the remaining reads were 364 
assembled de novo using the MEGAHIT assembler. Assembled contiguous sequences 365 
(contigs) and singleton reads were queried against GenBank database nt using the basic local 366 
alignment search tools blastn. Nucleotide sequences were codon aligned individually for all 367 
known pegiviruses with complete genomes using ClustalW in the alignment editor program in 368 
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MEGA6.06 and edited manually. The best-fitting distance model of nucleotide substitution for 369 
each alignment was inferred using the maximum likelihood (ML) method with goodness of fit 370 
measured by the Bayesian information criterion in MEGA6.06. The best-fitting nucleotide 371 
substitution model for the phylogenetic alignments was inferred to be the GTR model with 372 
discrete gamma and invariant among-site rate variation.  373 
 374 
Protein family analysis and putative protein predictions were performed using Pfam 375 
(http://pfam.xfam.org/). The nucleotide similarity of the novel pegivirus with related pegivirus 376 
lineages was determined across the polyprotein using SimPlot v3.5.178 following TranslatorX 377 
alignment (MAAFT) without Gblocks cleaning. 378 
 379 
The sequence similarity matrix was created in Geneious Prime 2020.1.2 (Auckland, New 380 
Zealand) using representative members of each pegivirus species.79,80 381 

Screening for SOBV by RT-PCR 382 

Plasma samples from 136 healthy WNPRC common marmosets were screened specifically for 383 
SOBV by RT-PCR. Twenty plasma samples collected from NEPRC animals were likewise 384 
screened by RT-PCR. 385 
 386 
Screening of these animals was performed with samples from animals positive for SOBV by 387 
deep-sequencing as positive controls. RNA was isolated from 100–500 μl of plasma using the 388 
QIAamp Viral RNA Mini Kit (Qiagen). A primer set (forward primer: 389 
GGTGGTCCACGAGTGATGA; reverse primer: AGGTACCGCCTGGGGTTAG) targeting a 390 
region of the viral helicase which was conserved among the animals initially positive by deep 391 
sequencing was designed, resulting in a 615-bp amplicon. Viral RNA was reverse-transcribed 392 
and amplified using the SuperScript III High Fidelity One-Step RT-PCR kit (Invitrogen, Life 393 
Technologies, Carlsbad, CA, USA). The reverse transcription-PCR conditions were as follows: 394 
50°C for 30 min; 94°C for 2 min; 40 cycles of 94°C for 15 s, 55°C for 30 s, and 68°C for 1 min; 395 
and 68°C for 5 min. Following PCR, amplicons were purified from excised gel slices (1% 396 
agarose) using the Qiagen MinElute Gel Extraction kit (Qiagen). Each amplicon was quantified 397 
using Quant-IT HS reagents (Invitrogen), and approximately 1 ng of each was used in a 398 
tagmentation reaction with the Nextera XT DNA Library Prep Kit. Final libraries representing 399 
each amplicon were characterized for average length using a DNA high sensitivity chip on a 400 
2100 bioanalyzer (Agilent Technologies, Loveland, CO, USA) and quantitated with Quant-IT HS 401 
reagents. Libraries were sequenced on a MiSeq.  402 

Postmortem diagnosis of lymphocytic enterocolitis 403 

All animals humanely euthanized or found dead at the WNPRC undergo complete post mortem 404 
examination (necropsy) with histology. Standard hematoxylin and eosin (H&E) stains are used 405 
for histological examinations to determine whether normal tissue architecture and cellular 406 
populations are present. In this study, immunohistochemical (IHC) CD3 and CD20 or CD79 407 
staining was additionally performed on samples from these animals to differentiate lymphocyte 408 
populations (primarily T cells, B cells, or mixed T and B cells). Diagnosis of T-cell rich 409 
lymphocytic enterocolitis was based on abnormal architecture of the intestines and IHC 410 
staining.22,147 If confounding factors hampered diagnosis (e.g., severe B cell lymphoma or 411 
autolysis), the animal was removed from the analysis. 412 
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Statistical analysis 413 

We used univariate logistic regression to evaluate the associations of SOBV viremia with 414 
enterocolitis risk. Analyses were repeated to determine association with lymphocytic disease in 415 
small intestines only, large intestines only, both the small and large intestines, and either the 416 
small or large intestines. All reported P-values are two-sided and P<0.05 was used to define 417 
statistical significance. Statistical analyses were conducted using R version 3.6.3 in RStudio 418 
version 1.1.383.  419 

Data accessibility and management 420 

Metagenomic sequencing data have been deposited in the Sequence Read Archive (SRA) 421 
under Bioproject PRJNA613737. Derived data, analysis pipelines, and figures have been made 422 
available for easy replication of these results at a publicly-accessible GitHub 423 
(https://github.com/aheffron/SPgVwnprc_in_marmosets).  424 
 425 
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